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Chapter 1

Introduction

Computers are becoming a very important part of our every day life, and therefore a lot of
jokes on computers are going around. One of the jokes reads “ If the automobile had followed the
same development as the computer, a Rolls-Royce would today cost $100, get a million miles per
gallon, and explode once a year killing everyone inside ”. This joke indicates that the computer
development has followed the famous Moore’s Law. Moore’s Law in computer development is
a statement that the switching speed of transistors has been doubled every 18 to 24 months by
miniaturization thus leading to faster computers. But the joke is also an indications that every
technology eventualy will reach its intrinsic limitations, in this case the development of cars.

As discussed recently the miniaturization of the traditional silicon-based transistors will reach
its intrinsic limitation in the near future [1, 2]. Muller et al. found that the gate oxide which
insulates the voltage electrodes from the current-carrying electrodes will reach its fundamental
physical limitation in year 2012 [2]. They found that if the gate oxide, which consist of silicon
dioxide, has a thickness of less than four layers of silicon atoms, current will penetrate through
the gate oxide. There will with the increasing demand for faster computers and information
distribution, therefore, be a need for new approaches. One approach emerges from Feynmans
famous talk “There’s Plenty of Room at the Bottom” [3]. The “bottom up” approach implies the
construction of molecular-level components capable of performing the functions needed [4,5]. It
opens up a whole new area of electronics where we use molecules instead of macroscopic materials
to construct devices. In order to construct molecular computers, component like molecular wires,
transistors, memory elements and switches have to be constructed [6–9]. Nano-size molecules
such as carbon nanotubes and DNA are very interesting candidates for the construction of these
new molecular electronic devices [10,11].

Figure 1.1: Structure of a (5,5) carbon nanotube with 110 atoms.

The way that information is distributed is also changing, going from electronic devices
towards photonic devices. In the future a major goal will be the use of light as information
carrier, in order to speed up the process of data transmission. The statement of P. Ball [12];
“The next revolution in information technology will dispence with the transistor and use light,
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2 CHAPTER 1. INTRODUCTION

not electricity, to carry information. This change will rely on the development of photonic
materials, which produce, guide, detect, and process light.” clearly illustrates that photonic
materials are the new materials of the 21st century in the same way that silicon was for the
20th century. New devices and materials such as optical memory storage [13, 14], photonic
wires [15–18] and optical switches [19, 20] have to be constructed. Photonic devices rely on the
interaction between matter and electromagnetic fields and the response of a material to the
perturbation of a electromagnetic field can be linear and non-linear depending on the applied
field. In the development of photonic materials it is, therefore, of fundamental importance to
understand the optical response properties of the materials. In order to design new materials we
need an understanding on how these properties depend on the molecular structure. Especially,
the understanding of not only the static but also the frequency-dependent (hyper)polarizability
at the molecular level is of fundamental importance [21–27].

Today new functional materials are being designed at the molecular level but it is not
always clear how small changes in the molecular structure affects the response properties of the
materials. Ab initio method used to calculate the molecular properties would therefore be an
ideal tool for studying molecular based materials. However, these accurate methods are currently
limited to small molecules. From a technological point of view the interest lies in predicting
optical properties of large molecules which can be used in the contruction of new, molecular
based, photonic devices. Therefore in order to treat large molecules such as polymers, carbon
nanotubes, molecular crystals or the surrounding medium we have to look for less sophisticated
models. Therefore, a combination of ab initio methods and less sophisticated models should
be used to gain chemical insight into the structure-property relation and thereby guiding the
experimentalist.

The purpose of this thesis has been to develop a model capable of calculating the frequency-
dependent polarizability and hyper-polarizability of large molecules such as carbon nanotubes,
polymers and molecular crystals. This is done by investigating a classical electrostatic model for
interacting atoms, thereby parameterizing the frequency-dependent molecular properties. The
idea is that from a single set of transferable atomic parameters we are able to calculate the
frequency-dependent properties of all types of molecules including aromatic, aliphatic, olephinic
and combinations of these. This implies that the parameters should only depend on the type
of atom and not on the specific chemical surroundings associated with the atom. Using such
model should easily predict properties of molecules containing several hundred atoms and the
inclusion of new types of atoms should be straight forward. The model should also be of the
“black-box” type meaning that in addition to the molecular structure as little information as
possibly should be needed.

The outline of the thesis is as following

• Chapter 2 describes the quantum mechanical basis for calculating molecular properties.
Appendices A, B and C should be consulted for some of the details.

• Chapter 3 gives a theoretical introduction to the different interaction models used in this
work. A short historical review on the litterature of additivity and the interaction model
is also presented.

• Chapter 4 presents the parameterization of the frequency-dependent molecular polariz-
ability.

• Chapter 5 deals with the application of the interaction model parameterized in chapter 4
on carbon nanotubes.
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• Chapter 6 describes the extension of the static model from chapter 4 to include intramolec-
ular charge transfer.

• Chapter 7 illustrated shortly the application of the interaction model used on interaction
induced polarizabilities in dimers.

• Chapter 8 summerizes and gives some concluding remarks and further directions for con-
tinuing investigations using the interaction model.

The results of the work presented in this thesis has been written into three articles where
one has been accepted, one has been submitted and one is still in preperation. The abstracts
for the articles are given in appendix G.

Unless otherwise stated atomic units have been used throughout the presents work. Also the
Einstein summation convention, i.e. summing over repeated indices, will be used extensively.
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Chapter 2

Molecular Properties and Non-linear
Optics

As discussed in the introduction, photonics is going to be a major player in the development
of technology in the future. Photonics rely on nonlinear optical processes such as frequency
conversion and optical switching. In order to optimize the nonlinear processes, a knowledge on
how the optical properties depend on the molecular structure is needed. In this chapter we will
discuss the calculation of molecular properties in terms of semi-classical radiation theory. We
will also comment on the relation between calculated properties and experimentally determined
properties.

2.1 Physical Insight into Optical Processes

When a medium is placed in a electric field, either static or optical, a nonlinear polarization
of the medium occurs. This macroscopic polarization of the medium due to an external field E
is given by

P = χ(1)E +
1
2!
χ(2)E2 +

1
3!
χ(3)E3 + · · · , (2.1)

where χ(n) is the n’th order electrical susceptibility tensor of rank (n + 1). A simple way of
gaining insight into the physics of nonlinear optics is to consider the medium as an assembly
of forced anharmonic oscillators. Using Newton´s second law and considering damping, the
equation of motion for a particle with mass m and charge q can in one dimension be written as

d2x(t)
dt2

+ Γx
dx(t)
dt

+ ω2
xx(t) + ax2 = − q

m
E(ω1)E(ω2). (2.2)

The electric field is polarized along the x-direction and is evaluated at the origin of the oscillator
motion. The solution to the equation of motion gives terms like [28,29]

x = x1(ω1) + x2(2ω1) + x2(0) + x2(ω1 + ω2) + x2(ω1 − ω2) +O(ω2), (2.3)

where O(ω2) denotes similar terms in ω2. x1 is the solution to the harmonic (linear) problem
and x2 is the nonlinear solution. Using that the polarization of the medium can be written as

P = P (1) + P (2) = −Nex1 −Ne{x2(2ω1) + x2(0) + x2(ω1 + ω2) + x2(ω1 − ω2)}, (2.4)

we can identify different susceptibilities having the same frequency-dependence as the solutions
x1 and x2. We can therefore identify the following susceptibilities

5
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• χ(1)(−ω;ω),

determines the linear response and is the dominating term in the refractive index.

• χ(2)(0;ω − ω),

gives optical rectification of the dynamic field yielding a static field.

• χ(2)(−2ω;ω, ω),

Second Harmonic Generation (SHG) yielding a field at the double frequence.

• χ(2)(−ω1 ± ω2;ω1, ω2),

Sum and Difference Generation.

This illustrates some of the important 2nd order nonlinear optical properties. Especially the
SHG susceptibility is very important and can be used e.g. to convert a laserpulse at one frequency
to a pulse with the double frequency, which frequently is used in femto-second spectroscopy.
Having made these preliminary comments we will now turn our attention to the molecular level.

2.2 The Semi-Classical Hamiltonian

When a molecule is subjected to an electromagnetic field, the motion of the electrons will be
altered. This is also the case for the nuclear motion but to a lesser extent because of the greater
nuclear mass. A complete quantum mechanical treatment would require very time consuming
quantum electrodynamics and therefore we will make some initial approximations. We will
use a semi-classical approach where the molecule is treated by quantum mechanics and the
electromagnetic field is treated classically. Only the molecular electronic structure is treated
by non-relativistic quantum mechanics, i.e. by solving the Schrödinger equation A.1 in the
Born-Oppenheimer approximation. A derivation of the Born-Oppenheimer approximation is
presented in Appendix A. Since the electromagnetic field is treated classically it will only occur
as a pertubation to the zeroth-order desciption and thus enters as an additional term in the
electronic Hamiltonian, Eq. A.3.

The normal approach for deriving the additional terms in the Hamiltonian, which arises from
the electromagnetic field, is to find the classical Lagrangian [30]. From the Lagrangian we can
contruct the classical Hamiltonian which can then be converted to operator form thereby yielding
the desired Hamiltonian. Classically, a particle with charge q subjected to an electromagnetic
field will experience a force given by [30,31]

~F = q( ~E + ~υ × ~B), (2.5)

called the Lorentz force, where ~E, ~B is the electric and magnetic field, respectively, and ~υ the
velocity of the particle. Construcing the Lagrangian using the Lorentz force and converting it
to operator form yields a Hamiltonian as [30,31]

H =
1

2m
(p̂+ e ~A)2 − eφ+ V, (2.6)

where p̂ is the normal linear momentum operator, V is the electrostatic potential, φ is a scalar
potential and ~A is a vector potential. Since the original electric field ~E and magnetic field ~B
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are unchanged by a gauge transformation of the potentials we can transform the Schödinger
equation provided that the wavefunction and the Hamiltonian transform as

Φ = eieFΨ, (2.7)

H ′ = eieFHe−ieF − ieieF ∂

∂t
e−ieF , (2.8)

where F is an arbitrary classical function [32]. We will choose F to be r · ~A and make a Taylor
expansion of the vector potential keeping only the first term. This still leaves us with a choice
of the gauge used in the transformation. This is done by choosing the Coulomb gauge where
φ = 0 and ∇ · ~A = 0. Using this gauge and ignoring terms quadratic in ~A we can transform the
Hamiltonian in the following way

H = H0 +
1
m
eier·A0(A0 · p̂)e−ier·A0 − ieier·A0

∂

∂t
e−ier·A0

= H0 +
1
m
eier·A0(A0 · p̂)e−ier·A0 − eier·A0(e

∂

∂t
r ·A0)e−ir·A0

= H0 − eier·A0(er
∂A0

∂t
)e−ir·A0

= H0 − er∂A0

∂t
= H0 − µ̂ ~E0, (2.9)

where we have used that m∂〈r〉
∂t = 〈p̂〉 and introduced the dipole operator µ̂. This approximation

is called the electric dipole approximation and can be extended by keeping more terms in the
Taylor expansion of the vector potential. It is this Hamiltonian that will be our starting point
in the following discussion of molecular properties.

2.3 Molecular Properties

When a molecule is subjected to a static electric field the energy of the molecule will be
altered. This can be expressed as a Taylor expansion of the energy in terms of powers of the
electric field

W = W0 +
(
dW

d~E

)

0

~E − 1
2

(
d2W

d~E2

)

0

~E2 +
1
3!

(
d3W

d~E3

)

0

~E3 + · · · . (2.10)

In order to make the conection to molecular properties we will use the Hellmann-Feynmann
theorem

dW (P )
dP

=
〈
∂H

∂P

〉
, (2.11)

where P is some parameter on which the energy depend. The Hellmann-Feynmann theorem
is valid for exact and variational optimized wave functions. Using this on the Hamiltonian in
Eq. 2.9 with respect to the electric field strength we get

dW ( ~E)

d ~E
=

〈
∂(H0 − µ~E)

∂ ~E

〉
= −〈µ〉 . (2.12)

The expectation value of a component of the dipole operator in the presence of a static electric
field is normally expanded in the following way [33]

〈µα〉 = µ0
α + ααβ(0; 0)Eβ +

1
2
βαβγ(0; 0, 0)EβEγ +

1
3!
γαβγδ(0; 0, 0, 0)EβEγEδ + · · · , (2.13)



8 CHAPTER 2. MOLECULAR PROPERTIES AND NON-LINEAR OPTICS

where the expansion coefficients ααβ(0; 0), βαβγ(0; 0, 0) and γαβγδ(0; 0, 0, 0) are the static molec-
ular dipole polarizability, first and second hyperpolarizability tensors, respectively. We now have
a connection between derivatives of the energy and the expectation value of the dipole operator.
We can therefore define the molecular polarizability and hyperpolarizability as

ααβ(0; 0) =
∂ 〈µα〉
∂Eβ

∣∣∣∣
~E=0

= − d2W

dEαdEβ

∣∣∣∣
~E=0

, (2.14)

and

βαβγ(0; 0, 0) =
∂2 〈µα〉
∂Eβ∂Eγ

∣∣∣∣
~E=0

= − d3W

dEαdEβdEγ

∣∣∣∣
~E=0

. (2.15)

However, since the electric field is time-dependent

~E(t) =
∫ ∞
−∞

dω ~Eω cos(ωt) =
1
2

∫ ∞
−∞

dω ~Eω
(
e−iωt + eiωt

)
, (2.16)

the expansion coefficience will also be time-dependent and we can therefore write Eq. 2.13 in
the Fourier representation as

〈µα〉 = µ0
α +

∫ ∞
−∞

dω1ααβ(−ω1;ω1)Eω1
β cos(ω1t)

+
1
2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2βαβγ(−ω1 − ω2;ω1, ω2)Eω1
β cos(ω1t)Eω2

γ cos(ω2t)

+ · · · . (2.17)

Since the Hellmann-Feynmann theorem, Eq. 2.11, is only valid in the time-indenpedent case we
can not make the link between derivatives of the energy and the molecular properties. We will
therefore use Eq. 2.17 when indentifying the molecular properties.

2.3.1 Molecular Properties from Pertubation Theory

In the previous section we defined our static properties as derivatives of the energy with
respect to the electric field. We can therefore use time-independent pertubation theory to
express the properties in terms of the unpertubed wavefunction. In non-degenerate Rayleigh-
Schrödinger pertubation theory we expand the energy and the wavefunction in a series as

W = W
(0)
0 +W

(1)
0 +W

(2)
0 + · · · , (2.18)

Ψ = Ψ(0)
0 + Ψ(1)

0 + Ψ(2)
0 + · · · , (2.19)

where W
(0)
n and Ψ(0)

n are the solutions to the unperturbed problem. The corrections to the
energy are then given by [31,32]

W = W (0) +
〈

Ψ(0)
0

∣∣∣µα
∣∣∣Ψ(0)

0

〉
Eα+(1+P (α, β))

∑

n 6=0

〈
Ψ(0)

0

∣∣∣µα
∣∣∣Ψ(0)

n

〉〈
Ψ(0)
n

∣∣∣µβ
∣∣∣Ψ(0)

0

〉

W
(0)
0 −W (0)

n

EαEβ+· · · ,

(2.20)
where P (α, β) permutes the indices α and β. From this expansion we can indentify the static
polarizability as the sum-over-states (SOS) expression as

ααβ(0; 0) = − d2W

dEαdEβ

∣∣∣∣
~E=0

= −(1 + P (α, β))
∑

n 6=0

〈
Ψ(0)

0

∣∣∣µα
∣∣∣Ψ(0)

n

〉〈
Ψ(0)
n

∣∣∣µβ
∣∣∣Ψ(0)

0

〉

W
(0)
n −W (0)

0

. (2.21)
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A similar expression can be derived using time-dependent pertubation theory to express the
expectation value of the dipole operator yielding the following SOS expression for the time-
dependent polarizability [31–33]

ααβ(−ω;ω) =
∑

n 6=0





〈
Ψ(0)

0

∣∣∣µα
∣∣∣Ψ(0)

n

〉〈
Ψ(0)
n

∣∣∣µβ
∣∣∣Ψ(0)

0

〉

ωn − ω +

〈
Ψ(0)

0

∣∣∣µβ
∣∣∣Ψ(0)

n

〉〈
Ψ(0)
n

∣∣∣µα
∣∣∣Ψ(0)

0

〉

ωn + ω



 .

(2.22)
Therefore, in order to calculate the polarizability using the SOS expression we have to perform
a sum over all excited states in the molecule. This is not possible and therefore the sum is often
truncated to the lowest excited states. The SOS expression for calculating molecular properties
is often used with semi-empirical methods to study hyperpolarizabilities of large molecules [22].

2.3.2 Molecular Properties from Response Theory

Another way of indentifying molecular properties is to use time-dependent response theory.
A derivation of the time-dependent expectation value of an operator is presented in Appendix C.
Using the Hamiltonian in Eq. 2.9 and Eq. C.14 we can write the expectation value of the dipole
operator as

〈µα〉 =
〈

Ψ(0)
∣∣∣µα

∣∣∣Ψ(0)
〉

+
∫ ∞
−∞

dω1e
−iω1t 〈〈µα;−µβ〉〉ω1

Eω1
β

2

+
∫ ∞
−∞

dω1e
iω1t 〈〈µα;−µβ〉〉−ω1

Eω1
β

2
+ · · ·

=
〈

Ψ(0)
∣∣∣µα

∣∣∣Ψ(0)
〉

+
∫ ∞
−∞

dω1 〈〈µα;−µβ〉〉ω1
Eω1
β cos(ω1t) + · · · , (2.23)

where we have used that a monochromatic pertubation operator in the Fourier representation
can be written as

V ω = −µαE
ω0
α

2
(δ(ω − ω0) + δ(ω + ω0)), (2.24)

and that the response functions 〈〈µα;µβ〉〉ω1
and 〈〈µα;µβ〉〉−ω1

are equal. This allows us to
indentify the polarizability and hyperpolarizability as the linear and quadratic response function,
respectively :

ααβ(−ω;ω) = −〈〈µα;µβ〉〉ω1
, (2.25)

βαβγ(−ω1 − ω2;ω1, ω2) = −〈〈µα;µβ, µγ〉〉ω1,ω2
. (2.26)

In Appendix C it is also shown that the response functions are indentical with the SOS ex-
pression. From the SOS-expression we see that responce functions have poles at the excitation
energies of the unpertubed system and, that the residues at the poles correspond to the dipole
transitions moments.

2.4 Calculating (hyper-)Polarizabilies

For some time, static molecular polarizabilities have been calculated using the Finite Field
method, i.e. the molecular dipole moment is calculated for a set of explicit external electric fields
and the polarizability is obtained from numerical differentiation [34–36]. A more attractive and
computationally more efficient approach is to adopt quantum chemical response theory. For
a general overview of calculating nonlinear properties see ref. [22, 24]. We will restrict the
calculation to the SCF-level because of the computational time and the fact that we are more
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interested in fundamental aspects rather than obtaining highly accurate values. In appendix B
the optimization of the SCF wave function is described and appendix C describes how the SCF
wave function can be used to calculate the response functions by solving linear sets of equations.
The SCF ( or Hartree-Fock) approach is a mean field approach meaning that the interaction
between the electrons are only accounted for in an average way. The instantaneous electrostatic
interaction (electron correlation) between electrons in the molecule are therefore not accounted
for. Electron correlation can be accounted for using e.g. Coupled Cluster (CC) or Configuration
Interaction(CI) methods, but with an increase in computational time. Response theory using a
SCF wave function as reference state is often refered to as the Random Phase Approximation
(RPA).

2.5 Macroscopic vs. Microscopic Properties

Until now we have only discussed the properties in terms of a single molecule, but experiments
are in general done on a assembly of molecules. We therefore have to make some connection
between our microscopic (molecular) properties and the macroscopic properties measured in
experiments. The macroscopic polarization of the medium due to an external field E is given
by Eq.2.1. We can write a similar expansion of the polarization of a single molecule as

p = αeffE +
1
2
βeffE2 + · · · . (2.27)

The macroscopic susceptibilities are assumed related to the molecular susceptibilties by [28,37]

χ(1)(−ω;ω) = Nf (1)(−ω;ω)αeff(−ω;ω),

χ(2)(−ωm − ωn;ωm, ωn) = Nf (2)(−ωm − ωn;ωm, ωn)βeff(−ωm − ωn;ωm, ωn). (2.28)

The αeff and β
eff are orientationally averaged microscopic molecular properties and N is the

number density. The f (n)-factors are known as local field factors and correct for the difference
between the applied macroscopic field and the local microscopic field felt by the molecules.
The averaged microscopic molecular properties have to be calculated under the influence of the
media into which the molecule is embedded. In a diluted gas there is no difference between
the applied field and the local field. Therefore the local field factors are equal to unity and a
direct comparison between experiments and calculations is possible. In the case of the liquid
phase a determination of the local field factor often involves the Lorentz correction factor given
by [37,38]

fω =
1
3

(εω + 2) =
1
3

(n2
ω + 2), (2.29)

where ε is the dielectric constant and n is the index of refraction. ω refers to the frequency of
the external applied field. When this is used the local field factors in Eq. 2.28 are given by

f (1)(−ω;ω) = fωfω

f (2)(−ωm − ωn;ωm, ωn) = fωm+ωnfωmfωn (2.30)

In the case of a static field the Onsager expression is often used to decribe the local field
factors [37].
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f0 =
ε0(εω + 2)
2ε0 + εω

=
ε0(n2 + 2)
2ε0 + n2

. (2.31)

The subject of local field factors have also been the discussion of some recent investigations [39–
41]. The effective polarizabilities in Eq. 2.28 have a vibrational, rotational and an electronic
contribution. It is only the electronic contribution that are calculated in the RPA approach
and therefore care has to be taken when comparing directly with experiments. A review by
Bishop on the calculation of the vibrational and rotational contribution to the polarizabilty can
be found in ref. [42]. In this treatment we will however ignore vibrational contributions and
consider the rotational contribution by classical averaging over rotational states as [42]

αZZ =

∫ 2π
0

∫ π
0 αijkikje

−∆E/kT sin θdθdφ∫ 2π
0

∫ π
0 e−∆E/kT sin θdθdφ

, (2.32)

where the ki is the cosine of the angle between the molecular axis i and the laboratory axis Z.
Upper case indices refer to laboratory fixed axises where as lower case indices refer to molecular
axises. The energy in Eq. 2.32 is given by −∆E = µikiE + αijkikjE

2 + · · ·, and an expansion
of exp(−∆E/kT ) gives

αZZ = 〈α〉ZZ +O(T ), (2.33)

where O(T ) designate the terms which are temperature dependent and 〈α〉ZZ is the isotropic
average given by

〈α〉ZZ =
1

4π

∫ 2π

0

∫ π

0
αijkikj sin θdθdφ

=
1
2

[
−1

3
cos3 θ

]2π

0

αii

=
1
3

(αxx + αyy + αzz). (2.34)

In a similary manner isotropic averaged expressions for the hyperpolarizabilities may be obtained
as

〈β〉ZZZ =
1
5

(βzii + βizi + βiiz), (2.35)

〈β〉XXZ =
1
5

(2βzii − 3βizi + 2βiiz). (2.36)

We have now made the connection between properties calculated using the RPA approach and
the experimental properties. Since we only calculate the gas phase molecular properties ignor-
ing vibrational contributions, we should compare with gas phase experiments or only use the
experimental value as a guideline.

2.6 Experimental Polarizabiltities

We will restict the treatment of experimental methods to two traditional ways of determining
the mean polarizability. For a more complete review on experimental determination of the
polarizability see ref. [43] and for a description of experimental ways to determine the nonlinear
response see e.g. ref. [28]. The polarizability can be related to the dielectric constant, ε, by the
Debye equation [38]
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α(0; 0) =
3

4πN
ε− 1
ε+ 2

− µ2
0

3kT
, (2.37)

where α(0; 0) is the average polarizability defined in Eq. 2.34, N is the number density and µ0

is the permanent dipole moment. When the permanent dipole moment is zero, Eq. 2.37 reduces
to the Clausius-Mossotti equation [38]. The experiment is done by measuring the capacitance,
C, and then relating it to the dielectric contant by ε = lC

Aε0
, where ε0 is the vacuum permitivity,

l is the thickness and A is the area of the capacitor [43].
The frequency-dependent polarizability can be related to the index of refraction, n, i.e. the
ratio of the speed of light in vacuum to the speed of light in the material. When the frequency
is sufficiently high, so that the permanent dipole moment cannot instantaneously follow the
electric field, the Lorentz-Lorenz equation can be used to make the following relation [38]

α(−ω;ω) =
3

4πN
n2 − 1
n2 + 2

. (2.38)

The Lorentz-Lorenz equation and the Clausius-Mossotti equation are related by the Maxwell
relation ε = n2.



Chapter 3

Modelling Molecular Properties

The molecular properties, that we are interested in, are the frequency-dependent molecular
polarizability and first and second hyperpolarizability. As shown in section 2.3 and 2.4, these
properties can be calculated using quantum chemical methods, but they are currently limited to
small molecules due to large requirements in computational time. Therefore, if we are interested
in molecular properties of large molecules such as polymers, proteins, molecular crystals or
nanotubes, we have to use less sophisticated methods in order to calculate these properties. The
idea that a simple model predicts molecular properties of both small and large molecules is very
appealing. Thus several studies of this kind has previosly been undertaken. We will restrict
our treatment to two models, i.e. the additivity model and the interaction model because of the
simplicity of both models. Other models, that should be mentioned, are the work on the first
hyperpolarizability by Oudar and Chemla [44,45]. They found that the first hyperpolarizability
of donor/acceptor π-systems could be described by a sum of two contributions, β = βadd + βct,
where βadd is an additive contribution arising from the substituents and βct is the contribution
arising from the charge transfer between donor/acceptor. The charge transfer term was described
by a two-level interaction between the ground state and the first excited state. This two-level
approach has proven valuable for analysing calculations within the SOS-formalism [22,46]. Also,
the coupled anharmonic oscillator model by Prasad et. al. [47] used to predict the polarizability
and second hyperpolarizability as a function of repeated units of oligomers of thiophene and
benzene is very illustative.

3.1 The Additivity Model

The molecular polarizability is to a good extent an additive property, indicating that the
polarizability can be calculated simply from a sum of transferable atomic or bond contributions.
Perfect additivity can only occur if the sub-units are non-interacting, which obviously is not
the case for atoms in molecules. Therefore, a very simple model assigning one polarizability
parameter to each type of atom and adding the contributions fails, see fig. 3.1. One of the
earliest attemps to overcome this problem was the bond polarizability model [48] where each
type of bond in the molecule was assigned a polarizability, which then were summed. This
model was quite accurate in predicting the static mean polarizability of alkanes [49]. Several
other methods using the additivity concept to calculate the static mean polarizability have been
proposed using either atomic hybridization [50, 51] or atomic hybrid polarizabilities [52], where
each atom is assigned a parameter accordingly to its state of hybridization. Also, recently has
the additivity model been adopted for the static polarizability tensors of organic molecules [53,
54] and futhermore also for both the static and frequency-dependent polarizability tensors of
halogen-derivatives of benzene [55] using atomic polarizability tensor elements. However, since
the molecular polarizabilities are tensors, also the atomic contributions have to be tensors.

13
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Figure 3.1: Molecular polarizability is only approximatively a sum of atomic polarizability pa-
rameters.

The additivity model has been quite successfully in describing the static molecular polariz-
ability. However, the use of the additivity model on the hyperpolarizabilites has shown to be
less successful [44,45,56,58]. Levine and Bethea [56] used scalar bond additivity for the second
hyperpolarizability and vector bond additivity [57] for the first hyperpolarizability. They found
for a very small set of experimental data, that the additivity model could to some extent de-
scribe the hyperpolarizabilities. By using additivity of atomic (hyper-)polarizability tensors on
a set of organic molecules Zhou and Dykstra [58] found good agreement for the polarizability
and reasonable agreement for the second hyperpolarizability.

3.2 The Interaction Model

Atoms are spherical particles and therefore atomic polarizabilities are isotropic, implying only
one physical atomic polarizability parameter. Using isotropic atomic polarizabilities one needs
an interaction model in order to describe the molecular polarizability tensors. An atom dipole
interaction model was introduced by Silberstein [59–61] and was then to a large extent developed
by Applequist et. al. [62–64]. The principle of the interaction model is that atoms in a molecule
are regarded as isotropic particles, which interact by means of their atomic dipole moments
induced by an external field. Since the dipole fields are anisotropic the molecule as a whole
also becomes anisotropic. Both in the additivity and interaction models, the atomic (or bond)
polarizabilities are fitted to the molecular polarizabilities of a trail set of molecules. Applequist
et. al. [62] fitted there parameters to experimental mean polarizabilities and found that their
model predicted mean polarizabiliy well but overshot the anisotropy. Birge [65] showed that the
large anisotropy could be remove by using an extra atomic anisotropy parameter and including
the effect of electron repulsion. Both parameterizations showed that the transferability of the
parameters between different classes of molecules was rather bad. Therfore, they needed different
parameters depending on the chemical environment. Thole [66] corrected this by replacing the
point dipole interaction with a smeared out (damped) dipole interaction and thereby reducing
the parameter set to atomic-type polarizabilities plus one overall damping parameter. Applequist
et. al. [64] showed that the large anisotropy in their original work could be corrected by including
anisotropy data in the parameterization.

All of the above investigations were on aliphatic systems and calculations on molecules
having π-systems indicated that the model failed for such systems [63]. Olson and Sundberg [67]
extended the dipole interaction model to include charge transfer effects between atoms. This
was done by treating the atoms as capacitive points connected by conducting but noncapacitive
wires. Applequist [68] adopted this model and found for a series af planer aromatic molecules
that some modifications of the model was needed in order to obtain a physical parametrization.
This modification, refered to as the partial neglet of ring interactions, consisted of introducing
two parameters for each carbon atom, one perpendicular to and one in the plane of the molecule.
Using this he found an improvement for the aromatic molecules, but for a serie of alkanes no



CHAPTER 3. MODELLING MOLECULAR PROPERTIES 15

improvement was found.
Sundberg [69] has generalized the atomic dipole interaction model to include the molecular
polarizability and the first and second hyperpolarizabilities. He used this model to treat the mean
molecular second hyperpolarizability of a set of haloalkanes [70] and found reasonable agreement
with experimental values. The interaction model has also been adopted with bond parameters
and used to treat the molecular dipole moment, polarizability and hyperpolarizabilities [71,72],
showing the same accuracy.

3.3 Choice of Model

Since the interaction model originates from classical electrostatic it is more attractive from a
physical point of view than the more simple additivity model. Also, the fact that there is an
explicit dependence on the molecular geometry in the interaction model speaks in favour of
this model. The explicit geometry dependence lacking in the additivity model is reflected in
the fact that the model predicts the same polarizability of e.g. cis-trans isomers [56, 58]. The
additivity model is a bit simpler than the interaction model and therefore also a bit faster
computionally speaking. The small increase in the computational time is well spend, due to the
explicit geometry dependence and the systematic ways of extending the model. The usefulness
of the explicit geometry dependence of the interaction model is illustrated in the application of
the model to e.g. optical rotation [73, 74], raman optical activity [75] and in polarizable force
fields [76,77]. We will, therefore, use the interaction model and the theory used in this thesis is
presented in the following sections.

3.4 The Applequist Model

The molecular dipole moment induced by an external electric field is give by the sum of the
induced atomic dipole moments

µmol =
∑
p

µp =
∑
p

∑
α

µp,α, (3.1)

where indices p, q, · · ·, refer to atoms and indices α, β, · · ·, denote cartesian components. A
component of the atomic dipole moment in the present of a uniform electric field is given by a
Taylor expansion in terms of the local field

µp,α = αp,αβE
tot
p,β +

1
6
γp,αβγδE

tot
p,βE

tot
p,γE

tot
p,δ + · · · , (3.2)

where Etot
p is the local electric field at atom p. Due to symmetry reasons the permanent dipole

moment and the first hyperpolarizability vanish for a spherically symmetric element, i.e. an
atom [33]. In the following we will truncate Eq. 3.2 after the polarizability term and the atomic
induced dipole moment is thus given by

µp,α = αp,αβE
tot
p,β. (3.3)

The electric field at atom p consists of a sum of the applied external field and the field from
the induced dipole moments of the other atoms. The field can be written in the following way,
where Eext

β is a component of the applied field

Etot
p,β = Eext

β +
∑

q 6=p
T

(2)
pq,αβµq,β, (3.4)
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and T
(2)
pq is the dipol interaction tensor. An element in the dipole interaction tensor is defined

as [38]

T
(2)
pq,αβ =

3rpq,αrpq,β
R5
pq

− δαβ
R3
pq

, (3.5)

where rpq,α is a component of the vector from atom p to q and Rpq is the distance between
atom p and q. If we consider a set of N atoms, each with an isotropic atomic polarizability
ααβ = αδαβ then the induced dipole moment of atom p can be written as

µp,α = αp


Eext

α +
∑

q 6=p
T

(2)
pq,αβµq,β


 . (3.6)

Rearranging Eq. 3.6 as

α−1
p µp,α −

∑

q 6=p
T

(2)
pq,αβµq,β = Eext

α , (3.7)

we obtain a system of N matrix equations which can be written as one matrix equation




α−1
1 −T (2)

12 · · · −T (2)
1N

−T (2)
21 α−1

2 · · · −T (2)
2N

...
...

. . .
...

−T (2)
N1 −T (2)

N2 · · · α−1
N







µ1

µ2
...
µN


 =




Eext

Eext

...
Eext


 . (3.8)

We now introduce a supermatrix notation as

µ =
(
α−1 − T (2)

)−1
Eext, (3.9)

where µ and Eext are 3N -dimensional vectors and α−1 and T (2) are 3N × 3N matrices. We can
define a two-atom relay tensor B as

B =
(
α−1 − T (2)

)−1
, (3.10)

where the name relay tensor indicates that the polarizability at atom p is relayed to the induced
dipole moment at atom q. The molecular dipole moment, µmol, is then

µmol =

[
N∑
p

N∑
q

Bpq

]
Eext = αmolEext, (3.11)

from which it is seen that the molecular polarizability, αmol, is given by [62]

αmol =
N∑
p

N∑
q

Bpq. (3.12)

This is the approach taken by Applequist et. al. [62–64] in their original work and will from here
on be refered to as the Applequist model.
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3.5 The Thole Model

If we consider a case of a diatomic molecule X − Y whose atoms have isotropic polarizabilities
αX and αY , respectively, we can rewrite the relay tensor explicitly as

B =
1

α−1
X α−1

Y − T (2)
XY T

(2)
XY

[
α−1
Y T

(2)
XY

T
(2)
XY α−1

X

]
. (3.13)

If we expand the relay matrix according to Eq. 3.12 we can write the molecular polarizability as

αmol =
αX + αY + 2T (2)

XY αXαY

1− αXαY T (2)
XY T

(2)
XY

. (3.14)

The molecular polarizability of a diatomic molecule has two distinct components, namely α‖
and α⊥, parallel and perpendicular to the bond axis, respectively. If we place the atom along
one of the cartesian axises we can write the interaction tensor as

T
(2)
XY (‖) = 2/r3, (3.15)

T
(2)
XY (⊥) = −1/r3. (3.16)

Inserting this explicit interaction tensor in Eq.3.14 gives Silberstein’s equations [61]

α‖ =
αX + αY + 4αXαY /r3

1− 4αXαY /r6
, (3.17)

α⊥ =
αX + αY − 2αXαY /r3

1− αXαY /r6
. (3.18)

Inspection of Eqs. 3.17 and 3.18 shows that when r approaches (4αXαY )1/6 then α‖ goes to
infinity, and in a similar manner does α⊥ when r approaches (αXαY )1/6. This means that the
dipole interaction model predicts that the molecular polarizability goes to infinity when the
distance between the atoms becomes to small. This effect is similar to what is observed in a
system of undamped coupled harmonic oscillators. This is not observed in reality and therefore
some sort of damping of the interaction at small distances must occur. Thole [66] included this
damping by considering smeared out charge distributions and thereby modifying the interaction
tensor in the following way

T
(2)
pq,αβ =

3υ4
pqrpq,αrpq,β

R5
pq

− (4υ3
pq − 3υ4

pq)δαβ
R3
pq

, (3.19)

where υpq = rpq
spq

if rpq < spq and if rpq > spq then υpq = 1 and the normal interaction tensor is
recovered. Thole defined the scaling factor spq as

spq = cd(αpαq)1/6, (3.20)

where cd is an extra fitting parameter originally obtained by Thole as cd = 1.662 [66]. The
scaling factor (αpαq)1/6 has dimension of length and can thus be related to the average radius
of atom p and q. This model is refered to as the Thole model. Since the scaling factor is
propertional to the average radius of the atoms we can introduce an extra set of parameters,
Φp, propertional to the second order moments of the atoms as

spq = (ΦpΦq)
1
4 . (3.21)
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This model with the extra set of parameters will be termed the modified Thole model. Accord-
ingly we can also modify the zero and first order interaction tensors respectively as [66]

T (0)
pq =

(υ4
pq − 2υ3

pq + 2υpq)
Rpq

, (3.22)

T (1)
pq,α = −(4υ3

pq − 3υ4
pq)rpq,α

R3
pq

. (3.23)

These zero and first order interaction tensors will be used in the following section.

3.6 The Olson-Sundberg Model

Following the approach of Olson and Sundberg [67] we will introduce a set of atomic capacitances
connected with conducting but noncapacitive wires in order to allow for charge transfer within
the molecule. The idea is to minimize the total energy of the molecule in the presence of the
external field. First, we recall that the energy of a capacitive point in an external potential,
φext, is

V =
q2

2a
+ qφext, (3.24)

where q is the induced charge and a is the capacitance. The first term is the self-energy required
for creating an induced charge and the second term is the interaction with the external potential.
Now we construct the energy expression for a molecule with N atoms subjected to an external
field, where each atom possess a capacitance, ap, and a polarizability, αp,αβ. The energy of the
N induced dipole moments is given by [38]

Vµµ =
1
2

N∑
p

α−1
p,αβµp,αµp,β −

1
2

N∑
p

N∑

q 6=p
T

(2)
pq,αβµp,αµq,β −

N∑
p

Eext
α µp,α, (3.25)

where µ is the dipole moment, T (2) is the interaction tensor in Eq. 3.19 and Eext is the uniform
external field. The first term is the self-energy required for creating an induced dipole moment,
the second term is the interaction between dipole moments on different atoms and the last term
is the interaction with the external electric field. Analogously, the energy of N induced atomic
charges is given as [67]

Vqq =
1
2

N∑
p

q2
p

ap
+

1
2

N∑
p

N∑

q 6=p
qpqqT

(0)
pq +

N∑
p

qpφ
ext
p − λ

N∑
p

qp, (3.26)

where T (0)
pq is the zero order interaction tensor defined in Eq. 3.22. The last term is a Lagrange

multiplier which is included to ensure electrical neutrality during energy minimization. Finaly,
the interaction between the charges and the dipoles is given as [38]

Vqµ =
N∑
p

N∑

q 6=p
qpT

(1)
pq,αµq,α = −

N∑
p

N∑

q 6=p
µp,αT

(1)
pq,αqq. (3.27)

The total energy is given as the sum of the above contributions

V = Vqq + Vqµ + Vµµ. (3.28)

We continue by minimizing the total energy with respect to the induced charges, dipole moments
and the Lagrange multiplier,
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∂V

∂µp,α
= 0 = α−1

p,αβµp,β −
N∑

q 6=p
T

(2)
pq,αβµq,β − Eext

α −
N∑

q 6=p
T (1)
pq,αqq, (3.29)

∂V

∂qp
= 0 =

qp
ap

+
N∑

q 6=p
qqT

(0)
pq + φext

p +
N∑

q 6=p
T (1)
pq,αµq,α − λ, (3.30)

∂V

∂λ
= 0 =

N∑
p

qp. (3.31)

Eq. 3.29, 3.30 and 3.31 constitutes a set of linear equations which can be written in matrix form
by defining the following submatrix elements

App,αβ = α−1
p,αβ ; Apq,αβ = −T (2)

pq,αβ (p 6= q), (3.32)

Mpp,α = 0 ; Mpq,α = T (1)
pq,α (p 6= q), (3.33)

Cpp = a−1
p ; Cpq = T (0)

pq (p 6= q). (3.34)

Using these definitions we can write the set of equations as

Eext
α =

∑
q

Apq,αβµq,β −
∑
q

Mpq,αqq, (3.35)

φext
p = −

∑
q

Mpq,αµq,α −
∑
q

Cpqqq + λ, (3.36)

0 =
∑
q

qq. (3.37)

We now write this set of equations as a single matrix equation



Eext

φext

0


 =




A −M 0
−MT −C 1

0 1 0






µ
q
λ


 , (3.38)

where we have introduced the submatrix notation. The dimension of the matrix is (4N + 1)×
(4N + 1) arising from 3N dipoles, N charges and the Lagrange multiplier. Superscript T indi-
cates tranposition . We solve for the dipole moments and charges in Eq. 3.38 by inverting the
matrix




µ
q
λ


 =




A −M 0
−MT −C 1

0 1 0



−1


Eext

φext

0


 =




B g h1

gT D h2

hT1 hT2 h3






Eext

φext

0


 , (3.39)

where we have written the inverted matrix as a blockmatrix. We can now indentify the terms
contributing to the induced molecular dipole moment as

µmolα =
∑
p

µp,α +
∑
p

rp,αqp

=
∑
p,q

Bpq,αβE
ext
β +

∑
p,q

gpq,αφ
ext
q +

∑
p

rp,α
∑
q

(
gqp,βE

ext
β +Dpqφ

ext
q

)
. (3.40)
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If φext
q is the potential of a uniform field and we ignore the arbitrary constant contribution to

the potential, we can write it as

φext
p = rp,αE

ext
α , (3.41)

and the total induced dipole moment is then given by

µmol
α =

∑
p,q

(Bpq,αβ + gpq,αrq,β + rp,αgqp,β + rp,αDpqrq,β)Eext
β . (3.42)

Using that the matrix g has the useful property1

∑
p

gpq,α =
∑
q

gpq,α = 0, (3.43)

all contributions involving g in Eq. 3.42 vanish and the induced dipole moment becomes

µmol
α =

∑
p,q

(Bpq,αβ + rp,αDpqrq,β)Eext
β . (3.44)

This leads to identifying the molecular polarizability as [67]

αmol
αβ =

∑
p,q

(Bpq,αβ + rp,αDpqrq,β) . (3.45)

This model where we have introduced an atomic capacitance in order to describe intramolecular
charge transfer will be termed the Olson-Sundberg model. As seen from in Eq. 3.44, the molec-
ular dipole moment is zero if there is no external electric field and that is not true. The remedy
is to consider the nuclear charges separately as described in the next section.

3.6.1 Inclusion of the Internal Field

The inclusion of the internal field of a molecule is accomplished by a minor modification of the
Olson-Sundberg model and we will therefore use the same notation and follow their derivation
as closely as possible. It should be noted that even if our method formally is very similar to the
approach by Olson and Sundberg [67], it will be apparant that it is conceptually different. The
atomic charge, qp, may be divided into two parts: the nuclear charge, Zp, and the electronic
charge, Np,

qp = Zp +Np. (3.46)

It is noted that it is only the electrons that can respond instantaneously to an external field
and therefore contribute to the molecular polarizability. It should, therefore, be more correct
to differentiate Eq. 3.30 with respect to Np instead of qp and treat the contributions from Zp
separately. Utilizing this separation Eq. 3.29 is rewritten as

∂V

∂µp,α
= 0 = α−1

p,αβµp,β −
N∑

q 6=p
T

(2)
pq,αβµq,β −Eperm

p,α −
N∑

q 6=p
T (1)
pq,αNq, (3.47)

where we have introduced the permanent electric field, Eperm
p,α , which consists of the external

field and an internal field arising from the nuclear charges

1Seen from the relations XX−1=I and X−1X=I of the matrices in Eq. 3.39
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Eperm
p,α = Eext

α +Eint
p,α = Eext

α +
N∑

q 6=p
T (1)
pq,αZq. (3.48)

Similar, Eq. 3.30 will, when differentiated with respect to the Np then look like

∂V

∂Np
= 0 =

Np + Zp
ap

+
N∑

q 6=p
NqT

(0)
pq + φperm

p +
N∑

q 6=p
T (1)
pq,αµq,α − λ, (3.49)

where the permanent potential is given by the external and internal contributions as

φperm
p = φext

p + φint
p = φext

p +
N∑

q 6=p
ZqT

(0)
pq . (3.50)

In order to rearrange the equations in a manner similar to what was done in the previous section
we introduce a new parameter, bp, such that

Np

bp
=
Np + Zp

ap
. (3.51)

The differentiation of the energy with respect to the Lagrange multiplier, Eq. 3.31, is trivially
rewritten as

∂V

∂λ
= 0 =

N∑
p

Np +
N∑
p

Zp. (3.52)

Using the same notation as in Eq. 3.32 - 3.34 (apart from Cpp = b−1
p ) and writing it as the

inverted matrix equation where we have solved for the dipole moment and charge we get




µ
N
λ


 =




A −M 0
−MT −C 1

0 1 0



−1


Eperm

φperm

−Z


 =




B g h1

gT D h2

hT1 hT2 h3






Eperm

φperm

−Z


 , (3.53)

where Z =
∑

p Zp is the total nuclear charge. In comparison to the Olson-Sundberg model,
the main difference is that the right-hand side contains the permanent potentials and electric
fields, which also include contributions from nuclear charges. Again, we can indentify the terms
contributing to the molecular dipole moment, now given in terms of the permanent field and
potential

µmol
α =

∑
p

µp,α + rp,α (Np + Zp)

=
∑
p

[∑
q

Bpq,αβE
perm
q,β + gpq,αφ

perm
q

]
− h1,p,αZ

+ rp,α

[(∑
q

gqp,βE
perm
q,β +Dpqφ

perm
q

)
− h2,pZ + Zp

]
, (3.54)

where we have used that
∑

q h2,q = 1. We now divide Eq. 3.54 into external and internal
contributions
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µmolα =
∑
p,q

[
Bpq,αβ

(
Eext
β + Eint

q,β

)
+ gpq,α

(
φint
q + rq,βE

ext
β

)
+ rp,αgqp,β

(
Eext
β + Eint

q,β

)

+ rp,αDpq

(
rq,βE

ext
β + φint

q

)]
+
∑
p

rp,α (Zp − h2,pZ)− h1,p,αZ

=
∑
p,q

[
Bpq,αβE

int
q,β + gpq,αφ

int
q + rp,αgqp,βE

int
q,β + rp,αDpqφ

int
q

]
+
∑
p

rp,α (Zp − h2,pZ)

− h1,p,αZ +
∑
p,q

[Bpq,αβ + gpq,αrq,β + rp,αgqp,β + rp,αDpqrq,β ]Eext
β , (3.55)

where we have used Eqs. 3.48 and 3.50 as well as Eqs. 3.43 and 3.41. The molecular dipole
moment can be divided into a permanent part, µperm

α , and a part that is induced by the external
electric field and thus defines the molecular polarizability. The permanent dipole moment is
given by

µperm
α =

∑
p,q

[
Bpq,αβE

int
q,β + rp,αgqp,βE

int
q,β + rp,αDpqφ

int
q

]

+
∑
p

rp,α (Zp − h2,pZ)− h1,p,αZ, (3.56)

as seen by using the condition in Eq. 3.43. From the induced dipole moment we can indentify
the molecular polarizability as

αmol
αβ =

∑
p,q

[Bpq,αβ + rp,αDpqrq,β] , (3.57)

again by using the condition in Eq. 3.43. The structure of the molecular polarizability is identical
to the one given by the Olson-Sundberg model and in good agreement with the fact that the
polarizability has contributions arising only from the external field. In the same manner, we
identity the contributions to the atomic charges, qp, as

qp = Zp +Np = Zp − h2,pZ +
∑
q

(
gqp,βE

perm
q,β +Dpqφ

perm
q

)

= Zp − h2,pZ +
∑
q

(
gqp,βE

int
q,β +Dpqφ

int
q

)
+
∑
q

(gqp,β +Dpqrq,β)Eext
β , (3.58)

and in the limit of no external field we get the permanent atomic charges

qp = Zp − h2,pZ +
∑
q

(
gqp,βE

int
q,β +Dpqφ

int
q

)
. (3.59)

By separating the nuclear and electron charges we have modified the Olson-Sundberg model in
a way that makes it possibly to treat the permanent dipole moment and charges in a similar
way as the molecular polarizaility. This extention will be termed the modified Olson-Sundberg
model. Finally, it is noted that an apparent atomic capacitance can be optained by rearranging
Eq. 3.51 as

ap = bp

(
1 +

Zp
Np

)
. (3.60)

Thus, different atomic capacitances are obtained for each atom and they can be used to analyze
the conductivity of molecules.
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3.7 The Nonlinear Interaction Model

If we include nonlinear terms in the expansion of the induced molecular dipole moment we can
write it as

µmol
α = αmol

αβ E
ext
β +

1
2
βmol
αβγE

ext
γ Eext

β +
1
6
γmol
αβγδE

ext
δ Eext

γ Eext
β . (3.61)

The induced dipol moment of atom p is given by Eq. 3.2

µind
p,α = αp,αβE

tot
p,β +

1
6
γp,αβγδE

tot
p,βE

tot
p,γE

tot
p,δ , (3.62)

where Etot
p,β is given by Eq. 3.4. Due to symmetry arguments, the polarizability of a spherically

symmetric atom is given as
αp,αβ = αpδαβ, (3.63)

and the corresponding second hyperpolarizability as [33]

γp,αβγδ =
1
3
γp(δαβδγδ + δαγδβδ + δαδδβγ). (3.64)

If we regard the electric field at each atom as an independent variable, we may expand the
atomic induced dipole moment as [69]

µind
p,α =

∑
q

Bpq,αβE
ext
q,β +

1
2

∑
q,r

Cpqr,αβγE
ext
r,γE

ext
q,β +

1
6

∑
q,r,s

Dpqrs,αβγδE
ext
s,δ E

ext
r,γE

ext
q,β . (3.65)

The coefficients in the Taylor expansion are termed relay tensors and by taking the appropriate
gradients of Eq. 3.65 we get the definition of the two-atom relay tensor as

Bpq,αβ =

[
∂µind

p,α

∂Eext
q,β

]

Eext
q,β=0

, (3.66)

and the three-atom relay tensor as

Cpqr,αβγ =

[
∂2µind

p,α

∂Eext
q,β∂E

ext
r,γ

]

Eext
q,β=0,Eext

r,γ=0

, (3.67)

and the four-atom relay tensor as

Dpqrs,αβγδ =

[
∂3µind

p,α

∂Eext
q,β∂E

ext
r,γ ∂E

ext
s,δ

]

Eext
q,β=0,Eext

r,γ=0,Eext
s,δ=0

. (3.68)

We know that the molecular induced dipole moment is the sum of all atomic induced dipole
moments, i.e. Eq. 3.1, and for a homogeneous applied field we have Eext

β = Eext
q,β for all q.

Combining this with Eq. 3.65 allows us to write the molecular dipole moment as

µmol
p,α =

(∑
p,q

Bpq,αβ

)
Eext
β +

1
2

(∑
p,q,r

Cpqr,αβγ

)
Eext
γ Eext

β +
1
6

(∑
p,q,r,s

Dpqrs,αβγδ

)
Eext
δ Eext

γ Eext
β .

(3.69)
By comparing with Eq 3.61 we can define the molecular (hyper-)polarizabilities as [69]

αmol
αβ =

∑
p,q

Bpq,αβ , (3.70)
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βmol
αβγ =

∑
p,q,r

Cpqr,αβγ , (3.71)

and

γmol
αβγδ =

∑
p,q,r,s

Dpqrs,αβγδ. (3.72)

We have now related the molecular (hyper-)polarizabilities with the relay tensors. In the fol-
lowing we will derive explicit expression for the relay tensors.

3.7.1 The Polarizability

The two-atom relay tensor is obtained by combining Eqs. 3.62 and 3.66 ( see appendix D.1 for
details). For the relay tensor B, we obtain

Bpr,αε =
∂µind

p,α

∂Etot
p,β

∂Etot
p,β

∂Eext
r,ε

=
(
αp,αβ +

1
2
γp,αβγδE

tot
p,δE

tot
p,γ

)
δprδβε +

N∑

q 6=p
T

(2)
pq,βγBqr,γε


 , (3.73)

c.f Eq. 11 in ref. [71], however we have no atomic first hyperpolarizability and we have carried
out a Taylor expansion instead of a power expansion. As in section 3.4, this expression may be
rewritten in a super-matrix notation

B = αeff (1 + TB) , (3.74)

where αeff is given by

αeff,p,αβ =
(
αp,αβ +

1
2
γp,αβγδE

tot
p,δE

tot
p,γ

)
. (3.75)

We can write B in a form similar to Eq. 3.10

B =
(
α−1

eff − T (2)
)−1

. (3.76)

If γp vanishes for all atoms it follows from Eq. 3.75 that the two-atom relay tensor becomes
identical with Eq. 3.10 and this model becomes identical with the one Applequist et. al. derived.
Note that Etot is calculated in the limit Eext = 0, which means that for a system with only atomic
polarizabilities and second hyperpolarizabilities, Etot in Eq. 3.4 becomes zero and Eq. 3.76 is
equivalent to Eq. 3.10. This is realized from Eq. 3.9 since there is no induced dipole moment in
the limit of no external field. Therefore, in order to obtain a contribution from γp in Eq. 3.76,
we need to include atomic charges which gives a permanent electric field. Thus, we need to
modify Eq. 3.4 as

Etot
p,β = Eext

p,β + Estat
p,β +

N∑

q 6=p
T

(2)
pq,βγµ

ind
q,γ , (3.77)

where Estatp,β is the permanent, static field from the atomic charges of the other atoms,

Estat
p,β =

N∑

q 6=p
T

(1)
pq,βqq, (3.78)
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where qq is an atomic charge and T (1) is given in Eq. 3.23. The atomic charges could be
calculated from Eq. 3.59 using the modified Olson-Sundberg model. However, since the induced
dipole moment in Eq. 3.62 and Etot depend on each other, we have to calculate µind in an
iterative and self-consistent procedure.

3.7.2 The First Hyperpolarizability

The three-atom relay tensor is obtained in a similar way (see appendix D.2 for details). We can
therefore write the three-atom relay tensor in the following way

Cpqr,αβγ =
∂2µp,α

∂Eext
q,β∂E

ext
r,γ

= γp,αεσδE
tot
p,δ B̃pr,σγB̃pq,εβ +

(
αp,αε +

1
2
γp,αεγδE

tot
p,δE

tot
p,γ

)
C̃pqr,εβγ , (3.79)

where the matrices B̃pr,βε and C̃prs,βεσ respectively are given as

B̃pr,βε = δprδβε +
N∑

q 6=p
T

(2)
pq,βγBqr,γε, (3.80)

and

C̃prs,βεσ =
N∑

q 6=p
T

(2)
pq,βγCqrs,γεσ. (3.81)

c.f Eq. 12 in ref. [71]. Since C̃prs,βεσ depends on Cqrs,γεσ it indicates that we have to solve the
three-atom relay tensor in an iterative fasion. This can be avoided by rewriting the three-atom
relay tensor as (see appendix D.2) [69]

Cmqr,στν =
N∑
p

γp,αβγδE
tot
p,δ B̃pr,γνB̃pq,βτ B̃pm,ασ. (3.82)

The three-atom relay tensor is thus writen in terms of the two-atom relay tensor which we
already know. We are therefore able to calculate the molecular polarizability and first hyper-
polarizability. Expressions for the second hyperpolarizability can also be derive in a similar
manner, only with more complicated expressions.

3.8 Frequency-dependent Properties

Until now we have only discussed time-independent properties. However, as mentioned in the
introduction it is really the time-dependent properties that we are interested in, and some
extension has to be included in order to describe these properties. A time-dependent external
field is given by Eq. 2.16 and can in the discrete form be writen as

E (t) = E (ω = 0) +
1
2

∑

j

[
E (ωj) e−iωjt +E (−ωj) eiωjt

]
, (3.83)

and the resultant electric dipole moment is then given by

µ (t) = µ (ω = 0) +
1
2

∑
σ

[
µ (ωσ) e−iωσt + µ (−ωσ) eiωσt

]
. (3.84)
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The frequency of which the dipole moment oscillates is defined in terms of the applied field
frequencies as

ωσ = ω1 + ω2 + . . .+ ωn. (3.85)

We can write the dipole moments at a specific frequency as [71]

µ (ωσ) =
∞∑

n=0

[
1
n!
K (−ωσ;ω1, ω2, . . . , ωn) ξ(n) (−ωσ;ω1, ω2, . . . , ωn)E (ω1)E (ω2) . . . E (ωn)

]
,

(3.86)
where ξ(n) is the (n−1)’th hyperpolarizability. Therefore Eq. 3.86 is a generalization of Eq. 3.62
to the frequency-dependent regime. The numerical factor K is given by factors from the Fourier
transform and the number of different field frequencies [78]. In order to get the correct behaviour
in the limit of static fields the K factor has to be unity,

K (0; 0, 0, . . . , 0) = 1 for all n, (3.87)

and the frequency-dependent (hyper)polarizabilities equal to there static counterparts

lim
all ω→0

ξ(n) (−ωσ;ω1, ω2, . . . , ωn) = ξ(n) (0; 0, 0, . . . , 0) . (3.88)

We have now establish a formalism where we can treat frequency-dependent properties as well
as static properties. We will now continue and describe the frequency-dependent polarizability
and the hyperpolarizability corresponding to SHG in terms of the interaction model.

3.8.1 Frequency-dependent Polarizabilities

The frequency-dependent polarizability, αmol
αβ (−ω;ω), may be obtained with the same approach

as for the static polarizability in section 3.4. From Eq. 3.86, it is given as

µα (ω) = αmol
αβ (−ω;ω)Eext

β (ω) . (3.89)

Considering a set of N point polarizabilities, the atomic induced dipole moment is

µp,α (ω) = αp (−ω;ω)Etot
α (ω) = αp (−ω;ω)


Eext

α (ω) +
N∑

q 6=p
T

(2)
pq,αβµq,β (ω)


 , (3.90)

and then Eqs. 3.9 to 3.12 may be applied in order to get the frequency-dependent polarizability.
If we instead want to use the nonlinear interaction model we can generalized the two-atom relay
tensor in Eq. 3.66 to include frequency-dependence as

Bpq,αβ (−ω;ω) =
∂µp,α (ω)
∂Eext

q,β (ω)
, (3.91)

where the frequency-dependent atomic induced dipole moment is given in line with Eq. 3.2 as

µp,α (ω) = αp,αβ (−ω;ω)Etot
p,β (ω)

+
1
6
K (−ω;ω1, ω2, ω3) γp,αβγδ (−ω;ω1, ω2, ω3)Etot

p,δ (ω3)Etot
p,γ (ω2)Etot

p,β (ω1) ,(3.92)

with ω = ω1 + ω2 + ω3. Following the discussion in section 3.7.1, we have that the total field,
Etot
p,α (ω) becomes zero when Eext (ω) → 0 apart from a static term, Etot

p,α (ω = 0), when we
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have included atomic charges. Since we only differentiate ones with respect to the frequency-
dependent field we can in order to get a contribution from γp only have one frequency-dependent
field in Eq. 3.92, and it reduces to

µp,α (ω) = αp,αβ (−ω;ω)Etot
p,β (ω) +

1
2
γp,αβγδ (−ω;ω, 0, 0)Etot

p,δ (0)Etot
p,γ (0)Etot

p,β (ω) . (3.93)

We can therefore obtain the two-atom relay tensor as

Bpr,αε(−ω;ω) =
[
αp,αβ(−ω;ω) +

1
2
γp,αβγδ(−ω;ω, 0, 0)Etot

p,δ (0)Etot
p,γ(0)

]
B̃pr,βε(−ω;ω), (3.94)

if we similar to Eq. 3.91 generalize Eq. D.5 to

B̃pr,βε(−ω;ω) =

[
∂Etot

p,β(ω)
∂Eext

r,ε (ω)

]

Eext(ω)=0

= δprδβε +
N∑

q 6=p
T

(2)
pq,βγBqr,γε(−ω;ω), (3.95)

and Eqs. 3.74 to 3.76 can be applied in order to extrakt the molecular polarizabilty.

3.8.2 Second-Harmonic Generation

The frequency-dependent first hyperpolarizability can be derived in a similar way as was done
for the frequency-dependent polarizability. The hyperpolarizability which corresponds to SHG
is given by β(−2ω;ω, ω). Therefore, the relay tensor corresponding to SHG is defined as

Cpqr,αβγ (−2ω;ω, ω) =
∂2µp,α (2ω)

∂Eext
q,β (ω) ∂Eext

r,γ (ω)
. (3.96)

Following the same line of argument as for the two-atom relay tensor we have that the only term
contributing to Eq. 3.96 is

µp,α (2ω) = αp,αβ (−2ω; 2ω)Etot
p,β (2ω) +

1
2
γp,αβγδ (−2ω; 2ω, 0, 0)Etot

p,δE
tot
p,γE

tot
p,β (2ω)

+
1
2
γp,αβγδ (−2ω;ω, ω, 0)Etot

p,δE
tot
p,γ (ω)Etot

p,β (ω) . (3.97)

Using this equation for the induced dipole moment we can derive the frequency-dependent three-
atom relay tensor following the same strategy as in the static case. This allows us to write the
SHG three-atom relay tensor as

Cpqr,αβγ (−2ω;ω, ω) = γp,αεσδ (−2ω;ω, ω, 0)Etot
p,δ B̃pr,σγ (−ω;ω) B̃pq,εβ (−ω;ω)

+
(
αp,αε (−2ω; 2ω) +

1
2
γp,αεγδ (−2ω; 2ω, 0, 0)Etot

p,δE
tot
p,γ

)
×

C̃pqr,εβγ (−2ω;ω, ω) , (3.98)

where we have generalized Eq. D.12 to be frequency-dependent. From this and the previous
discussion of the polarizability we see that we are able to calculate the frequency-dependent
(hyper)polarizabilities once we know the atomic frequency-dependent (hyper)polarizabilities. In
the next section we will discuss how we can model the frequency-dependence of the atomic
polarizability and thereby the frequency-dependence of the molecular properties.
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3.8.3 Modelling the Frequency-dependence

Well below any electronic absorption bands the molecular (hyper)polarizabilities often has a
smooth dependence on the frequency and can therefore be modelled with a simple dispersion
formular [24,26]. If we asumme that the atomic (hyper)polarizabilities have the same frequency
dependence we can use the dispersion formulars to describe the frequency dependence. Often a
Taylor expansion of the (hyper)polarizability is used which in our case gives [71]

ξ(n) (−ωσ;ω1, . . . , ωl, . . . , ωn) = lim
all ω→0

ξ(n) (−ωσ;ω1, . . . , ωl, . . . , ωn)

+
∑

l

ωl lim
all ω→0

∂

∂ωl

[
ξ(n) (−ωσ;ω1, . . . , ωl, . . . , ωn)

]

+ · · · . (3.99)

However, optical properties are invariant to a sign change in ωl [24] and thus the odd terms in
ωl vanish. If we use the Taylor expansion we can for the atomic polarizability write

αp(−ω;ω) = αp(0; 0)× [1 +Apω
2 +Bpω

4 · · ·], (3.100)

where the expansion coefficience Ap and Bp are regarded as atom-type parameters. Instead of
the Taylor expansion in Eq. 3.99, we can use the Unsöld approximation to model the isotropic
atomic polarizability as

αp (−ω;ω) = αp (0; 0)×
[

ω2
p

ω2
p − ω2

]
, (3.101)

where two atom-type parameters are used, the static atomic polarizability, αp, introduced in
Eq. 3.62 and ωp that describes the frequency-dependence. Generally, for an atomic hyperpolar-
izability, ξ(n)

p , the frequency-dependence may be modelled as

ξ(n)
p (−ωσ;ω1, ω2, . . . , ωn) = ξ(n)

p (0; 0, 0, . . . , 0)
n∏

i=1

[
ω2
p

ω2
p − ω2

i

]
. (3.102)

We have now described how to model the frequency-dependent (hyper)polarizability and in the
following chapters we will describe how to obtain the parameters used in the different models
described in this chapter.



Chapter 4

Parametization of the
Frequency-dependent Polarizability

We will in this chapter investigate the three interaction models describe in section 3.4
and 3.5 in order to parameterize the molecular polarizability. Furthermore, we investigate the
two dispersion models described in section 3.8.3. In all of the models the atomic parameters
are fitted to molecular polarizabilities of a trail set of molecules. If experimental molecular
polarizabilities are used, it should be noted that they also include zero-point vibrational and
pure vibrational contributions that most propably are not negligible [42,80,81]. In the interaction
model it is only the electronic polarization that is considered and therefore, it may not be suitable
to parameterize experimental molecular polarizabilities. Instead it is preferable to use quantum
chemical calculations of molecular electronic polarizabilities for the parameterization and then
treat the vibrational effects separately.
The models and parameters used for parameterization of the static molecular polarizability are

• The Applequist model. Parameter: αp.

• The Thole model. Parameter: αp and cd = 1.662.

• The Thole model. Parameters: αp and cd optimized.

• The modified Thole model. Parameters: αp and Φp

For the parameterization of the frequency-dependent molecular polarizability we use the opti-
mized parameters from the modified Thole model and the following models and parameters

• Unsöld model. Parameter: ωp.

• Quadratic model. Parameter: Ap.

• Quartic model. Parameter: Ap and Bp.

We have used a trail set of molecules containg the elements hydrogen, carbon, nitrogen, oxygen,
fluorid and chlorid.

4.1 Quantum Chemical Calculation

The quantum chemical computations of frequency-dependent polarizabilities were invoked at
the SCF level, see appendices B and C. We used the Dalton program package [82] as described
in Refs. [83–85]. The basis set by Sadlej [86] was used since it has been shown previously
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that it gives good results for polarizabilities considering its limitted size [55]. The following
frequencies have been used: ω=0.0, 0.02389, 0.04282 and 0.0774 au (1 au = 27.21 eV), and we
carried out calculations for 115 molecules (the frequency-dependence has been calculated for
112 molecules)1 adopting standard bond lengths and bond angles taken from Refs [87,88]. The
molecules considered were restricted to aliphatic and aromatic molecules. Olephines have not
been included since in this case intramolecular charge-transfer effects are important, and these
effects cannot be modelled on the basis of atomic polarizabilities only [67,68]. We tried to add a
set of 13 small alkenes, but did not obtain any reasonable results. It should, however, be noted
that we have included for example p-nitroaniline which indeed has large charge-transfer effects.

4.2 Fitting of Atomic Parameters

The parameters describing the static polarizabilities have been optimized by minimizing the
difference between the quantum chemical molecular polarizability tensors, αQCαβ,i, and the model
molecular polarizability tensors, αmodelαβ,i ,as

rms =

√√√√
∑N

i=1

∑3
α,β=1

(
αmodelαβ,i − αQCαβ,i

)2

N − 1
, (4.1)

where N is the number of molecules.
The parameters describing the frequency-dependence of the molecular polarizability have been
optimized by minimizing

rms =

√√√√
∑N

i=1

∑3
α,β=1

[(
αmodelαβ,i (ω)− αmodelαβ,i (0)

)
−
(
αQCαβ,i (ω)− αQCαβ,i (0)

)]2

N − 1
, (4.2)

i.e. we parameterize the frequency-dependence only and do not attempt to correct for errors
obtained in the parameterization of the static polarizability. For the frequency-dependence, we
have adopted both the Unsöld model and the Taylor expansion as described previously.

4.3 Results

The optimized parameters are given in Table 4.1 and are compared to the parameters given
in previous work on the Applequist model [62] and the Thole model [66, 89], respectively. The
results are displayed in Figure 4.1, where the quantum chemically derived polarizabilities have
been plotted against the model molecular polarizabilities, including all diagonal components of
the polarizability tensors for the 115 molecules using the parameters obtained in this work.

A detailed comparison with the Applequist model is not possible since we have used only
one atom-type polarizability for each element whereas normally two or three types have been
used for H, C, N and O, respectively [62]. Such results are included, however, for comparison
with the other models. Nonetheless, in comparison with previous work [62], we find a reasonable
agreement for the atomic polarizabilities of most of the elements. Especially, F and Cl are in
good agreement and our C polarizability is close to the carbonyl C parameter of 4.16 [62]. Our
H polarizability is considerably higher, but especially N and O give different results. The large
spread in Figure 4.1 a is probably due to that we included both aliphatic and aromatic molecules
since previously, it has been demonstrated that polarizabilites obtained by the Applequist model
cannot be adopted for both kinds of molecules [68].

1For a list of the molecules studied see appendix F.
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Figure 4.1: Parameterization of quantum chemically derived polarizabilities with interacting
atom models. a) The Applequist model. b) The Thole model. c) The cd parameter in the Thole
model being optimized. d) Individual damping parameters for each element. (×) indicates
aliphatic molecules and (¡) aromatic molecules, respectively.

For the Thole model, we find a good agreement between our results and previous work [66,89].
In line with previous investigations, we find that the Thole model gives a much better description
of the molecular polarizability tensor than the Applequist model even though the number of
fitting parameters is the same. Further, the rms-value is reduced with more than an order of
magnitude. Recently, van Duijnen and Swart compared Thole polarizabilities fitted to quantum
chemical calculations for various basis sets [89]. However, their results show large differences
if they are fitted to experimental data or to ab initio calculations. Our parameters compare
well to their parameters fitted to experimental data, but not to their ab initio parameters. By
comparing the SCF molecular polarizabilities, it is clear that the more flexible Sadlej basis set
employed here gives a better description of the molecular polarizabilities than for the series of
basis sets adopted by van Duijnen and Swart. Therefore, we restrict the comparison to the
parameters they obtained by parameterizing experimental data. Especially for F and C, we find
good agreement. The largest relative difference is found for H, where our polarizability is about
20% smaller than the previous values fitted to experimental data [66, 89]. This difference for
αH is in line with the results by van Duijnen and Swart, who also found substantially smaller
polarizabilities for hydrogen when they fitted to quantum chemical calculations, compared to
experimental data. This may imply that αH obtained from experimental data contains large
contributions from vibrational effects. Our N parameters are slightly larger and the O and Cl
parameters slightly lower than the parameters presented previously [66, 89]. Since we find the
expected relative magnitudes of the parameters (for example αC > αN > αO > αF ), and in
general a good agreement with previous work, we may conclude that the Thole polarizabilities
have a physical significance and are not only fitting parameters.

It should be noted that the parameterizations employed here and elsewhere are quite different,
especially with respect to the choice of molecules. If we optimize also cd, we obtain a value of
1.991, a relatively large deviation from the original value of Thole of 1.662 [66], compared to the
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Table 4.1: Atomic parameters fitted to model the static polarizability (in au, 1 au=0.1482 Å3).

Applequist Thole model Modified Thole model

Atom α αa α α αb αc α Φ cd,pp
H 1.61 0.91–1.13 2.84 1.83 3.47 3.50 1.84 2.75 0.965
C 4.20 4.16, 5.92 10.20 12.19 9.46 10.18 11.52 20.99 2.029
N 8.44 3.58 9.03 7.88 7.46 7.60 10.55 26.55 2.349
O 8.78 2.93–3.14 5.18 5.78 5.82 6.39 5.64 12.16 1.959
F 2.44 2.16 2.91 2.54 2.94 2.25 4.78 1.668
Cl 12.65 12.89 14.93 16.21 16.11 16.08 17.64 0.600

cd – 1.662 1.991d 1.662 1.7278

rms 139.44 11.30 8.26 6.67

aSee Ref. [62]
bSee Ref. [66]
cSee Ref. [89]. Fitted to experimental polarizabilities.
dOptimized

recent optimized value of 1.7278 [89]. The improvement of the fit is about 25% which is good
considering that only one extra fitting parameter has been added. The atomic polarizabilities
change quite substantially, even though the trends are the same. Since cd is increasing compared
to the original value of 1.662 [66], it is expected either that αp decreases to maintain the same
damping in Eq. 3.20, or that αp is increasing to compensate for the increased damping in Eq. 3.19.
Actually, we find that the polarizabilities of H, N, and F decrease whereas the polarizabilities
of C, O, and Cl increase. The largest effect is found for H which decrease from 2.84 to 1.83 au.
The damping of the electric field is a consequence of the charge distributions being smeared
out and that they are overlapping. It is then expected that the damping is more due to the
extension of the charge distribution rather than the polarization, even though the electronic
second moment and the polarizability are related to each other. Nonetheless, a fit with an
additional atomic parameter describing the damping only gives a minor improvement (around
20% ) considering that two parameters are used for each element (see Table 4.1). It is also of
interest to rewrite Φp in terms of αp and an atomic damping factor, cd,pp to compare with the
parameters of the other models. From Eqs. 3.20 and 3.21, we get

cd,pp =
Φ

1
2
p

α
1
3
p

(4.3)

which also are presented in Table 4.1. The cd,pp parameters thus describe the relation between
an atomic second order moment and an atomic polarizability. For the second-row elements (C,
N, O, and F), cd,pp are in the range 1.6–2.4 which is about the same size as the general cd values.
It is difficult to deduce a trend and the differences may not be significant. The cd,pp parameter
of H is, however, a factor of two smaller than for the second-row elements which probably is due
to its small second order moment. This result is in line with the distributed multipole moments
and polarizabilities calculated in order to obtain intermolecular potentials [90, 91]. For the Cl
atom, the cd,pp parameter is also much smaller which could be due to its large polarizability.
However, further investigations of third-row elements should be carried out before any definitive
conclusions can be drawn. Perhaps, a suitable partition scheme for the damping factors, cd, is
one parameter for each row of elements in the periodic table. Thus, the various values obtained
for cd in the Thole model are probably due to that different sets of molecules have been used
with different weight for each element.
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Figure 4.2: The static polarizability tensors for the n-alkanes as a function of the chain length.
Quantum chemically calculated and experimental data are presented as dots; the results from
the parameterized electrostatic models as lines. (— , +) and (– – , ×) denote components
perpendicular to the chain. (- - , ∗) denotes the component along the chain. (· · · , ¡) denotes
the isotropic part of the polarizability. (¥) denotes the experimental data taken from Ref. [92].

In Figure 4.2, the static polarizability tensor as function of the length of the molecule is
presented for the n-alkanes. Here, it should be noted that alkanes longer than hexane have
not been included in the parameterization and thus they may be regarded as a test of the
parameters. In all calculations on n-alkanes, we have used completely staggered conformations.
SCF calculations are compared to the modified Thole model. For the components perpendicular
to the chain, we find a linear dependence with the length of the chain which means that these
components can be described with an additive model. For these two components, we also find
an excellent agreement between the parameterized model and the SCF calculations. For the
component along the chain, we find a super linear dependence with increasing length of the
chain. For the parameterized model, this component increases even faster than for the SCF
data, but for the largest molecule, C8H18, the difference is still less than 15%. We also find
a good agreement between the model and the quantum chemical calculations for the isotropic
part of the polarizability. In this case, we can compare to experiment [92] and as displayed in
Figure 4.2 the agreement is excellent. Results for the frequency-dependent polarizabilities of the
n-alkanes show a behaviour almost identical to the static polarizability.

For the frequency-dependence, we have studied three different models: the Unsöld approxi-
mation in Eq. 3.101, a truncation of Eq. 3.100 after the quadratic term (denoted the quadratic
model) and a truncation of Eq. 3.100 after the quartic term (denoted the quartic model). If
all the molecules are included in the parameterization, an rms of 0.809 au is obtained for all
three models (see Table 4.2). In the Unsöld and the quadratic models only one parameter is
used per element, whereas two parameters per element have been used in the quartic model.
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Table 4.2: Parameters describing the frequency-dependence of molecular polarizabilities (in au).

all molecules aliphatic aromatic

Atom Unsöld Quadratic Quartic Unsöld Quadratic Quartic Unsöld Quadratic Quartic
ωp Ap Ap Bp ωp Ap Ap Bp ωp Ap Ap Bp

H 0.6052 3.0366 2.4521 98.9024 0.4140 6.0475 5.3256 122.6902 0.3509 6.4859 5.8306 126.6553
C 0.4446 5.1418 4.5048 107.9280 0.7141 1.9712 1.3768 100.7323 0.3959 7.1876 6.4144 126.5659
N 0.3423 8.7909 8.0585 124.7032 0.4322 5.5416 4.8219 121.8716 0.2232 17.1930 16.0513 202.0394
O 0.5608 3.8037 3.1573 109.3189 0.4299 5.6044 4.8682 124.5673 1.3390 8.7929 8.0042 139.1782
F 0.4039 6.6054 5.9458 112.1713 0.9725 1.6196 0.9918 103.0175 1.0849 -2.3109 -2.6209 69.1134
Cl 0.4413 5.3456 4.6413 119.3990 0.5299 3.6324 2.9841 109.8527 0.4319 5.2235 4.5482 117.7529

rms 0.809 0.809 0.809 0.424 0.424 0.424 0.712 0.689 0.689

Even if the magnitude of the Bp parameters is significant and the Ap parameters are different
in the quadratic and quartic models, the actual contribution from a quartic term of the atomic
frequency-dependence is negligible for the molecules studied here since the fitting has not im-
proved. Hence, the Unsöld and quadratic models can be regarded as identical since we can carry
out a Taylor expansion of Eq. 3.101 and keep only the quadratic term since, as just argued, the
higher order terms would be negligible.
If the molecules are divided into aliphatic and aromatic molecules, we find a significant improve-
ment of the description within each family (see Table 4.2 and Figure 4.3). The rms value is
reduced with a factor of two if only the aliphatic molecules are included and with about 10%
for a parameterization of the aromatic molecules alone. However, the frequency-dependence is
much larger for the aromatic molecules (see Figure 4.3) and thus they will still dominate the
parameterization when aliphatic molecules are included. Nonetheless, it has been demonstrated
that the frequency-dependence of molecular polarizabilities can be described with atom-type
parameters.
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Figure 4.3: Parameterization of the frequency-dependence adopting the Unsöld model. a) all
molecules. b) aliphatic molecules. c) aromatic molecules
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4.4 Conclusions

In this work, we have investigated the parameterization of frequency-dependent molecular po-
larizabilities based on a model for interacting atoms. The study has been carried out for 115
molecules, which is a considerably larger set of molecules than used previously. By adopting
one set of parameters for each element, we find that the Thole model is successful in reproduc-
ing the static molecular polarizability tensor. The modifications discussed here give significant
improvements. Especially the behaviour of the damping at the hydrogen atoms are different
from the other elements and should be treated differently. It is also found that aliphatic and
aromatic molecules can be described with the same set of parameters. Furthermore, it is the first
investigation where an interacting atom model has been extended also to include the frequency-
dependence of the molecular polarizability. It has been shown that the frequency-dependence
of molecular polarizabilities can be described with one parameter for each element.
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Chapter 5

Carbon Nanotubes

Conjugated organic molecules with delocalized electron systems are interesting because of
their potentially large optical properties. The new class of carbon materials, fullerenes and
carbon nanotubes, has an extended π-system and are therefore promising candidates for new
photonic materials. The linear and nonlinear optical properties of C60 and C70 have been
studied extensively, both theoretically [93–99] and experimentally [100–106] since their discovery.
The polarizabiltities of the larger fullerenes and the carbon nanotubes have been studied less
extensively and only in the static limit. The static polarizabilities of the larger fullerens have
been calculated within the atom monopole-dipole interaction (AMDI) theory [68] by Shanker
and Applequist [97]. In the case of the carbon nanotubes Benedict et. al used a tight-binding
model [107] to study the static polarizability of infinitely long tubes.

The basic research on fullerenes and carbon fibers has provided ways to synthesize, to
characterize and to understand carbon nanotubes [108–111]. The work by Kroto et. al on laser
vaporization of graphite giving C60 clusters has lead to the large family of fullerenes [112]. The
synthesis procedure by Kratschmer et. al giving macroscopic amounts of fullerenes was a giant
step forward [100]. Iijima utilized this procedure for making multiple-shell carbon nanotubes
[113]. These nanotubes were much smaller than the ones normally obtained when making
graphite fibers [114].

We investigate the frequency-dependent polarizability of single-walled carbon nanotubes by
a modified version of Thole’s interaction model [66] extended to the frequency-dependent regime
see chapter 4. Both zigzag, (9,0), and armchair, (5,5), nanotubes and the effect of closing one or
two ends are investigated. This is done in order to investigate purely geometric factors involved
in the determination of the polarizability. Here we regard fullerenes as end capped nanotubes.

5.1 Computational Methods

The quantum chemical computations of the polarizability tensors were restricted to the
static regime at the SCF level using the Gaussian 94 program package [115]. A minimal basis
set, STO-3G, was used in order to get the results of the larger carbon nanotubes. The geometry
of the nanotubes were first optimized with a molecular mechanics (MM2) method and afterwards
with a semi-empirical method (PM3). The optimized bond length is between 1.35-1.45Å for the
(9,0) nanotube and between 1.38-1.45 Å (1.23 Å in the ends) for the (5,5) nanotube. The bond
length in C60 is 1.46 Å. The interaction model (IM) parameters used for carbon is (in au) :
αC = 11.52,ΦC = 20.99 and ωC = 0.39. The parameters were taking from table 4.1 and 4.2
assuming a benzene-like dispersion.

37
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Table 5.1: Static isotropic polarizability of C60, C70 and C6H6 (in Å3).

Technique α Reference

C60 C70 C6H6

Experimental
Refractive index of thin filma 86.5 - - [100,102]
Refractive index of liquidb. - - 10.4 [117]
Dielectric constant of thin filmc 91.9 107.2 - [101]
Dielectric constant of thin filmc 80.5 96.8 - [103]
Dielectric constant of thin filmc 87.6 - - [104,105]
Molecular beam deflection 76.5 - - [106]

Theoretical
SCF 6-31++G 75.1 89.8 9.4 [99]
SCF 6-31G + sd 78.8 - - [96]
SCF STO-3G 51.1 57.6 4.8 This work
MNDO/PM3 63.9 79.0 6.8 [94]
LDF 79.9 - 10.12 [95]
INDO-TDCPHF 81.69 - 6.1 [93]
AMDI 60.8 73.8 10.0d [97]
IM 66.2 77.2 9.5 This work

aCalculated using the Lorentz-Lorentz equation and a density of 1.65 g/cm3. [100]
bCalculated using the Lorentz-Lorentz equation and a density of 0.8765 g/cm3

cCalculated using the Clausius-Mossotti equation and the same density as ina.
dThis value is taking from Ref. [68]

5.2 Results

The results for the static mean polarizability of C60, C70 and C6H6 are presented in table 5.1
and they are compared to a collection of experimental and other theoretical studies. The mean
polarizability is defined as α = 1

3(αxx + αyy + αzz). Most of the experiments have been done
on films and they include the determination of the refractive index [100, 102] or the dielectric
constant [101,103–105]. The dielectric constant, ε, has been converted to molecular polarizability
using the Clausius-Mossotti equation [38]

α =
3M

4πNaρ

ε− 1
ε+ 2

(5.1)

where M is the molecular weight, Na is Avogadro’s number and ρ is the density. In the case
of the refractive index, the Lorentz-Lorentz equation (Eq.5.1 with n2 = ε) [38] is used. The
experimental data from films yield polarizabilities between 80.5-91.9 Å for C60, 96.8-107.2 Å for
C70 and a ratio C70

C60
of 1.17-1.20. Recently, a measurement of the polarizability of molecular

C60 using a molecular beam deflection technique [106] was reported yielding a polarizability
of 76.5 ±8 Å. This value indicates that the molecular polarizability is only slightly lower than
the results measured for films. The theoretical polarizabilities are in good agreement with
experiments, yielding polarizabilities of 51.1-81.7 Å for C60, 57.6-89.8 Å for C70 and a ratio C70

C60

of 1.13-1.24.
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Figure 5.1: Static polarizability of the (5,5) nanotube as a function of the number of atoms. (
— , ¦ ) IM and (- - , + ) SCF STO-3G. a) Polarizability along the tube and b) polarizability
perpendicular to the tube.

Our SCF calculation using a STO-3G basis set gives values that are low compared to the previous
results, indicating the need of having polarization functions in the basis set. The IM value of
66.2 for C60 is about 16% lower than the best SCF calculation [96, 99] and 8% higher that the
value of the similar AMDI model [68]. For benzene, which has been included in the original
fitting-set, we find a better agreement with the SCF result but a smaller value compared to the
AMDI value.
In Figure 5.1, we present a comparison of the static polarizability of (5,5) tubes calculated with
SCF and the interaction model (IM) as a function of the number of carbon atoms. We find an
excellent agreement between the two methods. The value of polarizability calculated with IM
is higher than the corresponding SCF value in good agreement with the results of Table 5.1. If
we extend the number of carbon atoms beyond the SCF regime, see Figure 5.2, we observe that
the polarizability along the tube increases rapidly compared to the polarizability perpendicular
to the tube. Both α‖ and α⊥ increase in a non-linear way and can therefore not be described
using an additivity model [54, 55]. The increase of α⊥ slows down whereas for α‖ it continues.
The large difference between the polarizability along the tube and perpendicular to the tube is
also found in the case of infinitely long tubes [107].
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Figure 5.2: IM static polarizability tensors of the (5,5) carbon nanotube. (−− , ×) polarizability
along the tube, (- - , ∗) mean polarizability and (— , + ) polarizability perpendicular to the
tube.
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Figure 5.3: Polarizability of C60 as a function of frequency (au). (· · · , 2) SCF 6-31G + sd [96],
(− − , ∗ ) SCF 6-31G + s [96], (- - , × ) IM with ωC = 0.22 au and (— , + ) IM with ωC = 0.39
au.

The frequency-dependent polarizability of C60 is displayed in Figure 5.3. We have also included
the work by Weiss et. al. [96]. From this we see that if we use a dispersion similar to what
we found for a series of substituted benzenes in Chapter 4 we underestimate the frequency-
dependence. This can be corrected by choosing another value of the frequency parameter ωC .
This has been done by inspection of Figure 5.3, and a reasonable value was found to be ωC = 0.22.
If we interpret ωC as approximately the first electronic excitation energy we get a value of 5.99
eV compared to the value of 5.22 eV in the RPA case [96]. Adopting this value of ωC , in the
case of the carbon nanotubes, we present in Figure 5.4 the frequency-dependent polarizability
of a (5,5) nanotube with 110 carbon atoms. We find that the frequency-dependence along the
tube is larger than that perpendicular to the tube.
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Figure 5.4: The frequency-dependent polarizability of the (5,5) carbon nanotube with 110 atoms,
calculated using IM with ωC = 0.22. (- - , 2 ) Mean polarizability, (—, ¦ ) polarizability along
the tube and (− − , + ) polarizabilty perpendicular to the tube.
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Table 5.2: Static polarizabilities of selected nanotubes (in au).

Nanotubea α κb α‖ α⊥

(5, 5)110
0 987.7 0.187 1357.8 802.6

(5, 5)110
1 936.5 0.173 1260.1 774.7

(5, 5)110
2 886.2 0.159 1168.2 745.2

(5, 5)90
0 792.3 0.141 1015.4 680.7

(9, 0)90
0 791.7 0.122 984.4 695.4

aSuperscript indicates number of atoms and under-script indicates number of closed ends
bThe anisotropy κ is defined as κ2 = [(αxx − α)2 + (αyy − α)2 + (αzz − α)2]/6α2 [116]

The geometric influence on the polarizability is illustrated in Table 5.2. Keeping the total number
of carbon atoms constant we find that closing the ends lowers the polarizability, especially along
the tube. This means that the polarizability of an fullerene is lower that the polarizability of an
nano-tube with the same number of atoms. Also, going from an armchair configuration to a zig-
zag configuration lowers the polarizability along the tube but the polarizability perpendicular
to the tube increases, keeping the mean polarizability almost constant. This trend for the
polarizability perpendicular to the tube is also found by Bendict et. al. [107] and is similar to
that Jiang et. al. found for the static mean hyperpolarizability of C60-derived tubes [119]. From
this we see that the specific symmetry/intramolecular geometry of the tube has great influence
on the molecular polarizability.

5.3 Conclusion

We have successfully used a frequency-dependent interaction model to calculate the frequency-
dependent polarizability of C60, C70, (5,5)-nanotubes and (9,0)-nanotubes. The usefulness of
the interaction model in dealing with systems out of the normal Ab initio regime has been
illustrated. IM provides a straightforward way of dealing with large systems. The inclusion of
new types of atom is also straightforward and opens for the possibility of dealing with other
types of nano-systems. The calculated polarizabilities of C60 and C70 are around 15% lower that
the best SCF calculations. We find excellent agreement between the SCF calculations and our
model calculation of the increase in polarizability when the number of carbon atoms is increased.
It is also found that the symmetry/intramolecular geometry of the tube and caps have great
influence on the polarizability of the tubes.
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Chapter 6

Parametization of the
Charge-Transfer Model

As discussed in chapter 5 it is especially conjugated organic molecules with extended π-systems
that are promising candidates for new materials having large optical properties. The trail set
used in parameterizing the frequency-dependent polarizabililties in chapter 4 only included small
aliphatic and aromatic molecules. A small set of olefines were included but we did not obtain
any reasonable results in line with previous results [63]. The inclusion of atomic capacitances
allows for intramolecular charge transfer and should thereby give better describtion of π-systems.
The Applequist model extended in this way [68, 69] has been used to investigate the molecular
polarizability of fullerenes [97], nitrogen heterocyclic molecules [120] and polyenes [121].

In this work we will use the modified Olson-Sundberg model for calculating the molecular polar-
izability. As described in section 3.6.1 the modification of the model by Olson and Sundberg [67]
is a division of the atomic charge into nuclear charge and a charge due to the electron distibution.
This lead to that also permanent dipole moments can be modelled and that an apparant atomic
capacitance can be defined which is different from the parametrized atom-type capacitances.
Here, we have extended the set of 115 aliphatic and aromatic molecules employed in chapter 4
with 46 olefines and parameterized a capacitance-polarizability model from ab initio molecular
polarizabilities and dipole moments.

6.1 Computational Methods

Quantum chemical calculations of the molecular polarizability tensor and dipole moment of
46 olefines 1 have been carried out, and the molecules have been added to the set used in the
previous investigation of aliphatic and aromatic molecules in chapter 4. The Dalton program
package has been used [82] and response theory has been employed to obtain the molecular
polarizability [83]. The calculations have been performed at the self-consistent field (SCF) level
with the basis set by Sadlej [86]. Furthermore, standard bond lengths and bond angles have
been employed [87,88].

The model parameters have been optimized by minimizing the root mean square of the polariz-
ability, Eq. 4.1, and a similar rms defined for the molecular dipole moments

rms =

√√√√
∑N

i=1

∑3
α=1

(
µmodelα,i − µQCα,i

)2

N − 1
, (6.1)

1A list of the molecules are given in appendix F.
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where µQCα,i is a component of the quantum chemically derived dipole moment, µmodelα,i is the cor-
responding dipole moment derived from an interaction model, and N is the number of molecules
with dipole moment that differs from zero. When both properties are optimized at the same
time, we have simply added the two rms for the polarizability and the dipole moment, respec-
tively.

6.2 Results

The optimized parameters are given in table 6.1 for the different model employed here. The
Olson-Sundberg (OS) model has previously been investigated by Applequist [68]. However,
a detailed comparison with this work is not possible because Applequist invokes anisotropic
atomic polarizability for the carbon atoms. Also, it should be noted that we include damping
of the electric field in this work. The results obtained by the modified Thole (MT) model, the
OS model and the modified Olson-Sundberg (MOS) model are displayed in figure 6.1. Here,
the quantum chemically derived polarizabilities have been plotted against the model polariz-
abilities, including all diagonal polarizability tensor components for the 161 molecules using the
parameters obtained in this work.

If we compare this work with the results from chapter 4 we find that the Thole model and the MT
model gives results similar to that previous obtained. The parameters are slightly different but
the same expected relative magnetudes of the parameters are obtained, e.g. αC > αN > αO >
αF . The parameters in the Applequist model is somewhat different, especially the parameter for
carbon is very different from that previous obtained. Upon adopting the OS model we obtain
the same relative magnetude of the polarizability parameters but it is noted that especially the
damping parameter of N is different from that obtained by the (modified)Thole model.

Table 6.1: Atomic parameters fitted to model the static polarizability (in au, 1 au=0.1482 Å3).

Applequist Thole Modified Thole Olson-Sundberg Modified Olson-Sundberg

Atom α α α Φ α Φ ap α Φ ap
H 3.34 1.24 1.86 3.18 2.55 4.79 0.1186 1.95 4.31 0.0073
C 13.86 14.06 12.05 20.99 14.21 20.32 -0.0491 12.96 20.99 0.0526
N 9.38 9.51 10.94 22.70 8.93 8.34 0.1712 7.33 7.79 0.0615
O 6.15 4.82 5.46 9.75 6.01 7.76 0.1696 4.73 6.59 0.0703
F 1.41 1.53 2.05 4.98 2.13 9.40 0.0827 2.07 3.95 0.0815
Cl 16.42 15.82 15.20 14.64 14.87 15.99 0.0746 15.68 13.17 0.1581

cd – 2.05 – – –

rms 149.40 10.02 8.85 7.72 8.49 (0.85)a

anumber in parantese is rms of the dipole moment
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Figure 6.1: Parameterization of the molecular polarizability. a) The modified Thole model.
b) The Olson-Sundberg model. c) The modified Olson-Sundberg model. (∗) denotes aromatic
molecules, (×) denotes aliphatic molecules and (¡) denotes olefinic molecules.

Also, the capacitance on C is negative which is not physical correct and the relative magnetudes
of the capitance parameters are not the physical expected e.g. aH > aCl. The MOS model gives
identical results as the OS model when the dipole moments are not included in the optimization,
which is expected since the polarizability arises from the external field. Therefore, we only refer
to MOS when the dipole moments have been included in the optimization. The inclusion
of the dipole moments yields a more physical correct set of capacitance parameters. We find
that all parameters are positive and follow the number of electrons in the element. However,
the inclusion of atomic capacitances only yield a very slim improvement of the polarizability
which are illustrated in figure 6.1. For the dipole moments no good fit were obtained even
when only the dipole moments were optimized. Therefore, we tested a model where the internal
fields were calculated without damping but no improvement was found. The MOS model also
predicted the atomic charges of the molecules studied. These were found to have reasonable
magnetude but showing little differences between atoms of the same element although their
chemical environment were different. This indicated that only little charge transfer occurs, even
in molecules like p-nitroaniline.

In line with the work presented in chapter 4 we adopt the OS and MOS models for a series of all
trans n-alkenes. The models with atomic capacitances should improve the description of these
extended π-systems. The results obtained by the different models are displayed in figure 6.2. We
clearly see that no improvement is obtained using either the OS model or the MOS model. In
fact, we obtain an incorrect description of the polarizability component along the chain when the
size of the chain increases. For the polarizability components perpendicular to the chain we find
excellent agreement between the different models and quantum chemical results. Therfore, an
optimization of the MOS parameters using only the n-alkenes were employed. These result are
displayed in figure 6.3 and shows good agreement for all polarizabillity components. However,
the results obtained with the original parameters indicates some fundamental problems with the
charge transfer models and are discussed in more detail in the next section.
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Figure 6.2: The static polarizazbility tensor for the trans-n-alkenes as a function of double
bonds. The parameters were taken from table 6.1. (¡) denotes QM component along(‖) the
chain. (◦,¥) denotes QM components perpendicular (⊥) to the chain. For the modified Thole
model (—), (- -) denotes ‖ and ⊥ components, respectively. Results from the Olson-Sundberg
model is denoted by (•) and (4,N) for ‖ and ⊥ components, respectively. The modified Olson-
Sundberg model is denoted by (+) and (×, ∗) for ‖ and ⊥ components, respectively.
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Figure 6.3: The static polarizazbility tensor for the trans-n-alkenes as a function of double bonds.
The parameters used in the modified Olson-Sundberg model were optimized for the n-alkenes.
(+) denotes QM component ‖ to the chain. (×, ∗) denotes QM components ⊥ to the chain. For
the modified Thole model (· · ·), (· − ·) denotes ‖ and ⊥ components, respectively. The modified
Olson-Sundberg model is denoted by (•) and (4) for ‖ and ⊥ components, respectively.
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Figure 6.4: Polarizability along the bond-axis of HF as a function of the displacement from
equilibrium bondlength. (—) denotes the modified Thole model and (- - -) denotes the Olson-
Sundberg model.

6.3 Size Extensivity and the Interaction Model

Here we investigate the polarizability of the HF molecule as a function of the displacement
from equilibrium. The results are plotted for the MT model and the OS model in figure 6.4.
This is done in order to deduce whether the models are size-extensive or not. Size-extensivety
means that in the limit of large separations the polarizability is given by the sum of the atomic
contributions. From figure 6.4 it is clear that only the MT model is size-extensive. This
explains the incorrect behaviour observed for the n-alkenes. This incorrect behaviour in the
charge transfer models occur because there always is a contribution to the polarizability arising
from the atomic capacitances, even at large separations. We also note that the damping function
employed here is discontinuous, this will be discussed further in chapter 7. However, as indicated
in figure 6.3 an optimization can hide the size-extensivity problem which could explain why this
problem was not observed in the previous studies reported. Since the atomic capacitances gives
the wrong long-range behaviour we will analyse the terms contributing to the induced atomic
charge. This is done by written the energy of an atom p as

W = W0 + q(0)φ+
1
2
apφ

2 +
1
6
dpφ

3 − 1
2
αp,αβEαEβ + · · · , (6.2)

which is an extention of Eq. 2 in Ref. [33]. Here, we have connected the atom to an external
source such that charge may be transfered. φ is the potential difference between the source and
the atom. Thus, the total charge are give by

q =
∂W
∂φ

= q(0) + apφ+
1
2
dpφ

2 + · · · . (6.3)
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Therefore, the term that should be included instead of ap is 1
2dpφ. When considering interacting

atoms the potential, φ, will depend on the atomic charges and the dipole moments and therefore
an interative scheme must be adopted.

6.4 Conclusion

We have parameterized an atomic capacitance-polarizability model for 161 molecules. Also
shown is that a small modification of the existing model a conceptualy new approach is ob-
tained where the dipole moment, atomic charges and molecular polarizabilities can be calcu-
lated. However, it was shown that the atomic capacitances lead to an incorrect description for
large separations of interacting atoms. This failure of size-extensivity of the charge transfer
model gave incorrect behaviour in a series of n-alkens. Therefore, care must be taken when
employing the model on large systems. General agreement with previous investigations were
obtained but only minor improvements was observed. Finally, we discussed a possibly solution
to the size-extensivity problem which hopefully also leads to an improvement in the model.



Chapter 7

Interaction Induced Polarizability in
Dimers

In molecular crystals and polymers the macroscopic polarizability is a result of intermolecular
interaction between individual molecules or single polymer chains. These intermolecular effect
can have great influence on the macroscopic (hyper)polarizability of the material [122, 123].
Therefore, when discussing new materials for nonlinear optics it is important to have an under-
standing of the effects arising from the surrounding medium. As briefly discussed in section 2.5
the effective polarizability has to be calculated such that it takes account of the influence of
the surrounding enviroment. In chapter 4, 5 and 6 we focused on describing the polarizability
of single molecules. Here we investigate the interaction induced polarizability in three different
homo-molecular dimers. The dimers chosen consist of hydrogenfluorid, methane and benzene
molecules. These molecules have been chosen because they represents different kinds of inter-
actions, i.e. hydrogen bonding, weak interactions and interactions between π-systems. The
induced polarizability is studied both by quantum chemical methods and by the modified Thole
model described in chapter 4.

7.1 Computational Methods

We will follow the same approach for the quantum chemical calculations as for the monomers,
i.e using the Sadlej basis set [86] and the Dalton program package [82] at the SCF level. The
geometry were taken as standard bond length and angles from Ref. [87, 88]. The alignment of
the dimers are displayed in figure 7.1. The variable distance for the HF dimer is between F on
molecule A and H on molcule B. For methane it is the distance between C on molecule A on H
on molecules B, and in the benzene dimer it is the distance between the two planer molecules
in the sandwich formation also indicated in figure 7.1.

(a) HF dimer (b) Methane dimer (c) Benzene dimer

Figure 7.1: The alignment of the three dimers.
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In all cases the variable distance will be refered to as the z-axis. The parameters used in
the modified Thole model were taken from table 4.1. The interaction induced polarizability
was calculated as the polarizability of the dimer substracted 2 times the polarizability of the
monomer

∆αind = αdimer − 2αmonomer. (7.1)

This implies that the model used has to be size extensive with respect to the polarizability. As
discussed in section 6.3 the modified Thole model is size-extensive, in contrast to the modified
Olson-Sundberg model which gives an incorrect description at large separations. Also the SCF
method is size extensive [136]. However, in the case of the SCF calculations we have corrected for
Basis Sets Superposition Errors (BSSE). This was done with the counterpoise method advogated
by Boys and Bernardi [124]. BSSE occurs when basis functions at site A compensate for the basis
set incompleteness at site B. Therefore in the counterpoise method the property of molecule A
is calculated with the basis function from molecule B included as ghost atoms (no charge).

7.2 Results

The induced polarizability for the three dimers is displayed in figures 7.2, 7.3 and 7.4 for HF,
methane and benzene respectively. The calculation were performed in the range from 10 au
(20 au for the benzene dimer) to just below their equilibrium distance. For the HF dimer the
equilibrium distance was taken to be around 3.5 au [125], in methane as 5.9 au [126] and for the
benzene dimer as 7.2 au [127]. We find that the BSSE gives minor corrections to the induced
polarizability, i.e the largest corrections was for the HF dimer about 6 %, for methane 5% and
for benzene the largest correction, 14%, was for the polarizability perpendicular to the z-axis.

-2

0

2

4

4 6 8 10

In
du

ce
d 

po
la

ri
za

bi
lit

y 
(a

u)

Distance R_HF (au)

Figure 7.2: Induced polarizability in the HF dimer as a function of the distance between the
HF units. Results from the modified Thole model is represented with lines and SCF results
corrected for BSSE by dots. (- -,∗) denote component along the z-axis and (—,×) denotes the
component perpendicular to he z-axis.
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Figure 7.3: Induced polarizability in the methan dimer as a function of the distance between the
methan units. Results from the modified Thole model is represented with lines and SCF results
corrected for BSSE by dots. (—, ×) denote component along the z-axis and (- -, ∗) denotes the
component perpendicular to the z-axis.

For the three dimers studied we find a very similar picture in spite of there different chemical
composition. The induced polarizability along the z-axis is increased whereas the components
perpendicular to the z-axis is decreased when the distance between the dimers is decreased. The
increasement along the z-axis is caused by the cooperative interaction (head to tail) between
two induced dipoles in the direction of the z-axis. This is also the same behavior that gave the
infinite polarizabilities in the Applequist model described in section 3.5 which was corrected for
in the modified Thole model. However, we still find that the modified Thole model predicts an
induced polarizability along the z-axis which increases exponentialy for short distances. This
indicates that the damping, that we introduced by modifing the interaction tensor, only occurs at
intramolecular distances where as the SCF calculations predict a damping at short intermolecular
distances. This is clearly illustrated in the figures 7.2 and 7.4 of the HF and benzene dimers
at short intermolecular distances. The damping function that we have adopted from Thole [66]
is discontinuos which is seen from figure 6.4, therefore it might be better to use a continous
damping function which Burnham et al [129] also advocates in there aplication of Thole’s model
in molecular dynamics simulations.
We find for all three dimers good agreement between the modified Thole model and the SCF
results when the distance between the dimers is larger than 6-7 au. Especially, the induced
polarizability perpendicular to the z-axis is in very good agreement in the range investigated.
This indicates that the long-range induced polarizability at the SCF level is well described in
terms of dipole-induced dipole (DID) interactions and in good agreement with the results of
Bishop and Dupuis for the He dimer [128]. At the shortest seperation the increasement in the
SCF polarizability parallel to the z-axis is around 7% for all the dimers and perpendicular to
the z-axis the decrease is between 8-16%, largest for the benzene dimer. Hättig et al [130] have
shown that the static interaction induced properties of He dimer is only moderatly sensitive
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Figure 7.4: Induced polarizability in the benzene sandwich dimer as a function of the distance
between the benzene units. Results from the modified Thole model is represented with lines and
SCF results by dots. (- -, ¡, ×) denote component along the z-axis and (—, ∗, +) denotes the
component perpendicular to the z-axis. (×, +) denotes SCF results corrected for BSSE.

to the level of correlation and there findings are in good agreement with that of Bishop and
Dupois [128]. This indicates that the results from this SCF investigation describes to a good
extent the induced polarizability in the dimes. However, further investigation of the correlations
effects on these larger dimers are needed before any definitive conclusions can be drawn.

7.3 Conclusion

In this work we have investigated the interaction induced static polarizability in three dimers
using SCF calculations and a modified dipole interaction model. We have shown that for sep-
arations larger than 6 au the SCF results are reproduced by the modified Thole model. The
difference between the SCF results and the modified Thole model at short separation is due to
the lack of damping at intermolecular distances. We have shown that the induced polarizability
in the dimer is not negliable at distances normal found in polymers and molecular crystals.
Therefore it is very important to account for the pertubation arising from the surrounding
medium when considering new photonic materials.



Chapter 8

Summary and Outlook

In this thesis we have presented an investigation of a classical atomic interaction model for the
parameterization of the frequency-dependent molecular polarizabilities. We have shown that
by adopting one set of parameters for each elements the (modified) Thole model successfully
reproduces the static molecular SCF polarizability tensors of aliphatic and aromatic molecules.
The extension of the interaction model to also include the frequency-dependence of the molecular
polarizability is the first of its kind. It has been shown that the frequency-dependence of the
polarizability well below any electronic absorbtions bands can be described with one parameter
for each element. The model used to describe the frequency-dependence has previously been use
at the molecular level but is here applied at the atomic level. However, the frequency-dependence
of aromatic and aliphatic molecules are somewhat different and are best described with two sets
of parameters.

The usefulness of the frequency-dependent interaction model has clearly been demonstrated in
predicting frequency-dependent polarizabilities of carbon nanotubes. Becourse of the size of the
nanotubes the aplication ofgh level ab initio methods are not feasible due to the massive compu-
tational resources needed. We have in good agreement with other reported studies demonstated
the influence of symmetry/intramolecular geometry, length and caps on the polarizability of the
tubes. The results are also in good agreement with our SCF calculations. The interaction model
presented here provides a straightforward way of dealing with large systems out of the normal
ab initio regime.

In order to improve the description of molecules containing extended π-systems we employed the
concept of atomic capacitances modelling intramolecular charge transfer. By dividing the atomic
charges into a nuclear charge and a charge arising from the electron distribution we modified the
existing capacitance-polarizability model. This is a conceptually new approach which enables
that also permanent molecular dipole moments and atomic charges can be modelled by an
interaction model. However, this approach only gave minor improvement with respet to the
modified Thole model. This could be due to the fact that the capacitance model was shown
not to be size-extensive. The lack of size-extensivity lead to an incorrect description of the
interaction at large seperations, and thereby limiting the model to small systems. A physical
correct solution is to adopt a capacitance which is propertional to the total potential this ensures
that for large distances the capacitance goes towards zero. The total potential needed arises
from the charges and dipole moments and therefore an interative scheme is needed.

All of the above investigation were for isolated molecules and therefore the next step was the
investigation of the interaction induced polarizability in dimers. The interaction between the
dimers was shown to be rather similar in spite of their different chemical composition. For longer
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seperation we found good agreement between the modified Thole model and SCF calculations.
At shortere separations SCF calculations showed that the induced polarizability along the z-
axis was damped. The modified Thole model did not predict this damping of the induced
polarizability at short interaction. This is probably due to that the damping function employed
here is intramolecular and therefore an investigation of a damping function showing the right
intermolecular damping is in it place.

All of the investigation presented in this thesis revolves around the molecular polarizability.
However, as mentioned in the introduction the purpose of this project was the development of
a model capable of calculating both polarizabilities and hyperpolarizabilities. Also, the theory
presented in chapter 3 describes both polarizabilities and hyperpolarizabilities. In fact we also
implemented the procedure for calculating the static polarizabililty and first hyperpolarizaility
using interacting atomic hyperpolarizabilities as described in section 3.7.1 and 3.7.2. The atomic
charges needed in this procedure was calculated using Cioslowski’s [131] Generalized Atomic
Polar Tensor (GAPT) charges at the SCF level. The calculation of the GAPT charges is a
computational expensive method due to that GABT charges are defined as derivatives of the
dipole moment. We were unable to find any reasonabel fit to the first hyperpolarizability of a
small set of aliphatic molecules and no improvement in the polarizability was obtained. This
could indicate that the GAPT charges are not transferable in the sense needed in the interaction
model or that the interaction of atomic hyperpolarizabilities is not the dominate contributions
to the first hyperpolarizability.

Using the concept of interacting atoms, a nonvanishing term arises from the dipole-quadrupole
polarizability, σ [33,79]. Interacing dipole-quadrupole polarizability enables a description of the
molecular first hyperpolarizability in a manner similar to that derived in section 3.7.2 using
atomic hyperpolarizabilities. In this procedure there is no need for the atomic charges and is
therefore a more atractive approach.

This project has clearly shown the usefulness of the interaction model. Also, illustrated was
that there are some short-comings with the interaction model and therefore it should be used
as a suplement to ab initio methods. However, further investigation using this model is still
encouraged. Here we list some further directions and suggestions for further work employing
the interaction model.

• Correction of the size-extensivity problem with the capacitance model. Hopefully this
could lead to a better discription of molecules with extended π-systems which are very
promising candidates for nonlinear optics. An improvement of the capacity model could
also lead to the prediction of atomic charges and molecular dipole moment which may be
used as representation of the electrostatics in Molecular Dynamics simulation.

• Frequency-dependent atomic capacitances. Using a frequency-dependent capacitance model
the description of the frequency-dependent polarizability of aromatic, olefinic and aliphatic
molecules with the same set of parameters could be possible.

• Implementing the dipole-quadrupole model. This could give a model capable of calculating
the first hyperpolarizability without reference to the atomic charges. This opens for the
possibly prediction of the very important SHG hyperpolarizability.

• Atomic capacitances and dipole-quadrupole model. Combining the capacitance and dipole-
quadrupole model could improve the description of the hyperpolarizability where charge
transfer is very important.
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• Calculations on Boron-Nitride (BN) nanotubes [132–134]. The BN-nanotubes are pre-
dicted to have nonlinear optical properties that are larger that the corresponding carbon
nanotubes. Also, such effects as doping the carbon nanontubes with small amounts of BN
leads to an increase in their response properties.

Hopefully, the above-mentioned suggetions will lead to further investigations and improvement
of the interaction model employed in this thesis.



56 CHAPTER 8. SUMMARY AND OUTLOOK



Appendix A

Quantum Mechanics

A.1 The Schrödinger Equation

The world of molecules is governed by the laws of quantum mechanics. Therefore, in non-
relativistic theory, we can obtain all information of a molecule by solving the time-dependent
Schrödinger equation

Ĥ | Ψ(t)〉 = i
∂

∂t
| Ψ(t)〉 . (A.1)

The Scrödinger equation can unfortunately only be solved for very simple systems. Therefore,
when dealing with molecules, we have to use approximate methods. One standard approximation
is the Born-Oppenheimer approximation which will be derived in the following section. This
approximation leads to a separation of the Schrödinger equation into a part dealing with the
electronic wave function and another part describing the nuclear wave function. It is the solution
to the electronic Schrödinger equation which is the topic of appendix B and C.

A.2 Born-Oppenheimer Approximation

The following derivation of the Born-Oppenheimer approximation is based on Ref. [141]. The
molecular Hamiltonian, Ĥmol, can be written as

Ĥmol =
∑

K

1
2MK

P̂ 2
K + Ĥel(R) + Ĥcoupl, (A.2)

where we have introduced the electronic Hamiltonian

Ĥel(~R) =
1

2m

∑

i

p̂2
i −

∑

K

∑

i

ZK
riK

+
∑

j>i

1
rij

+
∑

L>K

ZKZL
RKL

(A.3)

and the molecular coupling operator

Ĥcoupl =
1

2MQ

∑

ji

p̂ip̂j − 1
MQ

∑

K

∑

i

P̂K p̂i. (A.4)

MK , P̂K and ZK are the mass, momentum operator and charge of the K’th nucleus, respectively.
For the i’th electron the mass is m, the momentum operator p̂i. MQ =

∑
KMK is the total

nuclear mass. We are interested in solving the time-independent Schrödinger equation given as

ĤmolΦmol(~r, ~R) = EΦmol(~r, ~R). (A.5)
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Assuming that we have solved the electronic Schrödinger equation corresponding to the Hamil-
tonian in Eq. A.3 for all nuclear position (~R), we can expand our molecular wave function in
terms of these solutions

Φmol(~r, ~R) =
∑
q

∣∣∣Ψel
q (r;R)

〉 ∣∣∣Θnucl
q (R)

〉
, (A.6)

where
∣∣∣Ψel

q (~r; ~R)
〉

is a parametric function of the nuclear positions. Projection of the p’th
electronic wave function and inserting the molecular Hamiltonian gives

〈
Ψel
p (~r; ~R)

∣∣∣∑K
P̂ 2
K

2MK

∣∣∣Ψel
p (~r; ~R)Θnucl

p (~R)
〉

+
〈

Ψel
p (~r; ~R)

∣∣∣ Ĥcoupl
∣∣∣Ψel

p (~r; ~R)Θnucl
p (~R)

〉
+ (Eel

p − E)
∣∣∣Θnucl

p (~R)
〉

=

− ∑
q 6=p

[〈
Ψel
p (~r; ~R)

∣∣∣∑K
P̂ 2
K

2MK

∣∣∣Ψel
q (~r; ~R)Θnucl

q (~R)
〉

+
〈

Ψel
p (~r; ~R)

∣∣∣ Ĥcoupl
∣∣∣Ψel

q (~r; ~R)Θnucl
q (~R)

〉]
. (A.7)

Neglection of the terms on the right hand side, i.e. neglecting the coupling between differ-
erently electronic wave function, and assuming the p’th electronic state nondegenerated yields
the adiabatic approximation




∑

K

P̂ 2
K

2MK
+
∑

K

1
2MK

〈
Ψel
p (~r; ~R)

∣∣∣ P̂ 2
K

∣∣∣Ψel
p (~r; ~R)

〉
+

1
2MQ

〈
Ψel
p (~r; ~R)

∣∣∣
∑

i,j

p̂ip̂j

∣∣∣Ψel
p (~r; ~R)

〉

− 1
MQ

〈
Ψel
p (~r; ~R)

∣∣∣
∑

i,K

P̂K p̂i

∣∣∣Ψel
p (~r; ~R)

〉
+ Eel

p




∣∣∣Θad

p (~R)
〉

= Ead
p

∣∣∣Θad
p (~R)

〉
.(A.8)

Finally, by neglecting the terms that scale by the inverse of the nuclear masses, we obtain the
Born-Oppenheimer approximation

{∑

K

1
2MK

P̂ 2
K + Eel

p

}∣∣∣ΘBO
p (~R)

〉
= EBO

p

∣∣∣ΘBO
p (~R)

〉
. (A.9)

The essence of the B.O. approximation is that the Schrödinger equation can be separated into
an electronic and a nuclear equation. The approximations made is base on the neglection of
the coupling between different electronic states and the great difference in masses between the
electrons and the nuclei. Therefore the B.O. approximation is expected to break down for
close-lying electronic states.

A.3 Second Quantization

In the following appendices we will shift to the second quantization representation. In second
quantization we have a unified description of operators and states in terms of a single set of
elementary creation, a†p, and annihilation, aq, operator. The elementary fermion operators
fulfils the following set of anticommutator relations.

[a†p, aq]+ = δpq, (A.10)

[a†p, a
†
q]+ = 0, (A.11)
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[ap, aq]+ = 0. (A.12)

The wave function is written as a string of creation operators acting on a vacuum state

Ψ = a†1a
†
2· · ·a†N |vac〉 . (A.13)

The antisymmetry of the electronic wave function is build into the operators, which is seen from
the anticommutator relations. The spin-free non-relativistic electronic Hamilton operator is in
second quantization given by

Hel =
∑
pq

hpqa
†
paq +

1
2

∑
pqrs

gpqrsa
†
pa
†
rasaq + hnuc, (A.14)

where

hpq =
∫
φp(x)∗

(
−1

2
∇2 −

∑

i

Zi
ri

)
φq(x)dx (A.15)

gpqrs =
∫ ∫

φ∗p(x1)φ∗r(x2)φq(x1)φs(x2)
r12

dx1dx2 (A.16)

hnuc =
1
2

∑

K 6=L

ZKZL
RKL

(A.17)

This means that the second quantization Hamiltonian, Hel, is the projection of the first quanti-
zations operators onto a one-electron basis, {|φp〉}p=0,···. The advantage of second quantization
is that the antisymmetrizing operator in first quantization is replaced by algebraic rules for the
creation and annihilation operators. Also, the fact that information of the number of electrons
in the system is put in the wave function and therefore the Hamiltonian is independent of the
size of the system [135].



60 APPENDIX A. QUANTUM MECHANICS



Appendix B

Hartree-Fock Theory

When considering the electronic Schrödinger equation in the B.O. approximation, it can only be
solved exactly for a one-electron system. In general we are interested in systems having many
electrons and therefore we have to introduce some approximations. In accordance with the Pauli
principle the total electronic wave function must be antisymmetric with respect to interchange
of any two electron coordinates. This can be achieved by constructing the wavefuntion from
Slater determinants. If we choose a single determinant or more general a single space- and spin-
adapted Configuration State Function |CSF〉 we can derive the Hartree-Fock (HF) equations.
The HF approximation is very important in electronic-structure theory. It is a starting point for
either more approximative or more accurate models. The use of further approximations lead to
semi-empirical methods, whereas the addition of extra determinants improve the solution upon
correction for electron correlation and generates better models, which can be made converge
towards the exact solution of the electronic Schrödinger equation [135]. In this chapter the
Roothaan-Hall equations are derived based on Ref. [136].

B.1 Parametrization of the Wave Function

In Restricted Hartree-Fock (RHF) theory the electronic wave function is approximated by a
single configuration function |CSF〉. Restricted refers to the fact that the wave function is
conditioned to be an eigenfunction of the total and projected spin. This is done by requiring
that the spin orbitals have the samme spatial parts for alpha and beta spins. The wave function
is also required to transform as an irreducible representation of the molecular point group. For a
closed shell configuration, which only consists of occupied (inactive) and empty (vitual) orbitals,
the |CSF〉 can be written as:

|CSF〉 =
∏

i

a†iαa
†
iβ |vac〉 . (B.1)

a†iα and aiα fulfil the fermion algebra and a†iα creates an electron in the i’th orbital with α-spin
wheras aiα annihiletes it. If we consider a real transformation (rotation of the molecular orbitals,
MO’s) of the original |CSF〉

| |CSF(κ)〉 = exp(−κ) |CSF〉 (B.2)

where the orbital rotation operator κ is an antiHermitian one-electron operator given by

κ =
∑
p>q

κpq(Epq − Eqp) =
∑
p>q

κpqE
−
pq, (B.3)
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then the transformation preserves the orthonormality of the MO’s and the spin of the |CSF〉.
In order to preserve the spatial symmetry we only include the rotations among the orbitals that
transform as the totally symmetric representation of the molecular point group. The one-electron
operator Epq is also called the excitation operator and is defined as:

Epq = a†pαaqα + a†pβaqβ (B.4)

Not all of the rotations (κpq) in the orbital rotation operator B.3 are needed in the transformation
of the wave function . The rotations that are not needed are refered to as redundent and are
identified from the condition

E−pq |CSF〉 = 0. (B.5)

If we consider a closed shell configuration only rotations among occupied-virtuel orbitals are
non-redundant.

B.2 The Energy Expansion

The energy of the transformed |CSF〉 is given by the expectation value of the hamiltonian

E(κ) = 〈CSF(κ)|H |CSF(κ)〉 (B.6)

and this can be expanded using the Baker-Campbell-Hausdorff (BCH) series E.1 as

E(κ) = 〈CSF(κ) | H | CSF(κ)〉
= 〈CSF | exp(κ)Hexp(−κ) | CSF〉
= 〈CSF | H | CSF〉+ 〈CSF | [κ, H] | CSF〉

+
1
2
〈CSF | [κ, [κ,H] | CSF〉+ · · · . (B.7)

If we instead use a Taylor expansion of the energy around κ = 0 we can identify the terms in
Eq. B.7

E(κ) = E(0) + κTE(1) +
1
2
κTE(2)κ+ · · · (B.8)

where E(0) is the total energy, E(1) the gradient vector and E(2) the electronic hessian at the
expansion point. If we compare Eq. B.8 with Eq. B.7 we optain explicit expressions for the
gradiant and hessian.

B.3 The Hartree-Fock Wave Function

The HF wave function corresponds to the |CSF(κ)〉 obtained by minimizing the expectation
value of the Hamiltonian, E(κ), with respect to the first order variation in the orbital-rotation
parameters κ

δE(κ) = δ 〈CSF(κ) | H | CSF(κ)〉 = 0. (B.9)

The set of parameters κHF
pq that satisfies Eq.B.9 dfine the HF state. When the electronic gradient

is zero the expectation value of the Hamiltonian is stationary and we can therefore write the
variational condition, Eq. B.9 as
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∂E(κ)
∂κpq

∣∣∣∣
�=0

=
〈
HF | [E−pq,H] | HF

〉
= 2 〈HF | [Epq,H] | HF〉 = 0, (B.10)

where the last equality holds for real wave functions only.

B.3.1 The Brillouin Theorem

The HF variational condition, Eq. B.10, can be written in the form

〈HF | HEpq | HF〉 = 〈HF | HEqp | HF〉 (B.11)

or written in terms of the excitations

〈HF | H | q → p〉 = 〈HF | H | p→ q〉 . (B.12)

Eq. B.12 is called the generalized Brillouin theorem and states that the HF-state is in perfect
balance between excitations and deexcitations. For a closed shell |cs〉 which consist only of
double occupied orbitals, all but single excited states are zero and Eq. B.12 reduces to

〈cs | [Eai,H] | cs〉 = 〈cs | H | i→ a〉 = 0, (B.13)

which is refered to as the Brillouin theorem (BT).

B.4 The Fock-matrix

For a closed shell system the necessary condition for being in a optimized state is

2 〈cs | [Eai,H] | cs〉 = 0, (B.14)

which includes only the non-redundent parameters. If we want to include the redundent param-
eters we have to rearrange the operator in Eq. B.14 in such a way that it can be generalized to
all elements p,q :

〈cs | [Eai,H] | cs〉 =
∑
σ

〈
cs | [a†aσaiσ,H] | cs

〉

=
∑
σ

〈
cs | [a†aσ,H]aiσ | cs

〉

=
∑
σ

〈
cs | [a†aσ,H]aiσ + aiσ[a†aσ,H] | cs

〉

=
∑
σ

〈
cs | [[a†aσ,H], aiσ]+ | cs

〉

= −
∑
σ

〈
cs | [a†aσ, [aiσ,H]]+ | cs

〉
(B.15)

which holds for closed shell states with real wave functions. If we now insert the expression for
the total hamiltonial H, Eq. A.14, we can derive a more explicit expression of Eq. B.15. The
constant nuclear part hnuc makes no contribution and the contribution from the one-electron
operator is
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∑
σ

〈
cs | [a†nσ, [amσ, h]]+ | cs

〉
=

∑
pq

∑
σ

hpq

〈
cs | [a†nσ, [amσ, Epq]]+ | cs

〉

=
∑
pq

∑
σ

hpq

〈
cs | [a†nσ, δpmaqσ]+ | cs

〉

=
∑
pq

∑
σ

hpqδpmδnq

= 2hmn, (B.16)

where we have uses Eq. E.5. In the case of the two-electron operator

∑
σ

〈
cs | [a†nσ, [amσ, ĝ]]+ | cs

〉
=

1
2

∑
σ

∑
pqrs
τυ

gpqrs

〈
cs | [a†nσ, [amσ, a†pυa†rτasτaqυ]]+ | cs

〉
, (B.17)

we first evaluate the inner commutator

1
2

∑
pqrs
τυ

gpqrs[amσ, a†pυa
†
rτasτaqυ] =

1
2

∑
pqrs
τυ

gpqrs

(
[amσ, a†pυ]+a†rτasτaqυ − a†pυ[amσ, a†rτ ]+asτaqυ

)

=
1
2

∑
pqrs
τυ

gpqrs

(
δmpδσυa

†
rτ − δmrδστa†pυ

)
asτaqυ

=
∑
qrs
τ

gmqrsa
†
rτasτaqσ, (B.18)

where we have used the permutational symmetry gpqrs = grspq and Eq. E.4. Inserting this into
Eq. B.17 we can derive the final expression for the two-electron contribution

∑
σ

〈
cs | [a†nσ, [amσ, g]]+ | cs

〉
=

∑
σ

∑
qrs
τ

gmqrs

〈
cs | [a†nσ, a†rτasτaqσ]+ | cs

〉

=
∑
σ

∑
qrs
τ

gmqrs

〈
cs | a†rτasτ [a†nσ, aqσ]+ − a†rτ [a†nσ, asτ ]+aqσ | cs

〉

=
∑
σ

∑
qrs
τ

gmqrs

〈
cs | δnqa†rτasτ − δnsδστa†rτaqσ | cs

〉

=

〈
cs | 2

∑
rs

gmnrs
∑
τ

a†rτasτ −
∑
qr

gmqrn
∑
τ

a†rτaqτ | cs

〉

=
∑
rs

(2gmnrs − gmsrn) 〈cs | Ers | cs〉 , (B.19)

where Eq. E.6 has be utilized. From this we see that we have reduced our original operator
in Eq. B.15 to an one-electron operator. The expectation value of the excitation operator, the
one-electron density matrix, is zero unless p equals q and belongs to the set of occupied orbitals.
When p equals q, the excitation operator becomme equal to the occupation number operator.
This means that we can write our final equations as

−1
2

∑
σ

〈
cs | [a†qσ, [apσ,H]]+ | cs

〉
= hpq +

∑

i

(2gpqii − gpiiq). (B.20)
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The elements in Eq. B.20 are part of a matrix refered to as the Fock-matrix. The Fock-matrix
is by contruction an effective one-electron Hamiltonian, which upon diagonalization yields a
set of orbitals, called the canonical orbitals, from which the optimized HF wave function can
be constructed. We can diagonalize the Fock-matrix with a similarity transformation and by
rearraging we can write it as a pseudo-eigenvalue problem

U−1fU = ε

fU = Uε. (B.21)

Eq. B.21 is an pseudo eigenvalue problem since the Fock-matrix contains contributions from the
occupied canonical orbitals. Therefore, we need an interative scheme in order to solve the HF
problem. From an initial set of orbitals we calculate the Fock-matrix using Eq. B.20, then the
matrix is diagonalized and a new set of orbitals constructed using the transformation matrix
U . The Fock-matrix is now recalculated and the iterative scheme have been established. The
iterations continue until the orbitals from which the Fock-matrix is contructed are the samme
as the ones generated by diagonalization. We now have a solution that is self-consitent and this
approach is referred to as the Self-Consistent Field (SCF) method.

B.5 The Roothaan-Hall Equations

The SCF procedure consist of calculations of the Fock-matrix in the MO basis, an approach
that is computational expensive. Therefore, the MO’s are expanded in terms of a set of known
basis functions. The basis function are choosen as simple analytical functions centered at the
nucleus of the atoms and are referred to as atomic orbitals AO’s. For a description of basis sets
see e.g. Ref. [135, 136]. The expansion of the MO’s can be written in the following way, where
we have arranged the AO’s and MO’s as row vectors χ and φ, respectively

φ = χC. (B.22)

Considering the elements of the Fock-matrix as matrix elements of an one-electron operator f
and inserting the expansion of the MO’s we get

fpg =
∫
dτφ∗pfφq

=
∫
dτ
∑
µ

C∗pµχ
∗
µf
∑
υ

Cυqχυ

=
∑
µυ

C∗pµ

[∫
dτχ∗µfχυ

]
Cυq

=
∑
µυ

C∗pµf
AO
µυ Cυq,

or written as a matrix equation where we have the transformation of the Fock-matrix from the
MO basis to the AO basis

f = CTfAOC. (B.23)

Inserting this transformation into Eq. B.20 we obtain

CTfAOCU = Uε, (B.24)
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where we have used that the coefficient matrix C are real. Using the fact that the MO’s are
orthonormal

1 = φ†φ = CTχ†χC = CTSC, (B.25)

where S is the AO overlap matrix, we can write Eq. B.24 as

fAOCU = SCUε = SC ′ε = fAOC ′. (B.26)

This equation is referred to as the Roothaan-Hall equation, and the elements of the Fock-matrix
in the AO basis can now be evaluated as

fAOµυ = hµυ +
∑

i

(2gµυii − gµiiυ), (B.27)

where the transformation of the integral gµυii is

gµυii =
∫
χ∗µφ

∗
i ĝχυφidτ

=
∑
ρσ

CρiCσi

∫
χ∗µχ

∗
ρĝχυχσdτ

=
∑
ρσ

CρiCσigµυρσ.

Inserting this expansion into Eq. B.27 we get

fAOµυ = hµυ +
∑
ρσ

∑

i

CρiCσi(2gµυρσ − gµρσυ)

= hµυ +
∑
ρσ

Pρσ(gµυρσ − 1
2
gµρσυ) (B.28)

where Pρσ is the one-electron density matrix in the AO basis. We can now establish a very
simple iterative scheme as

1. Calculation of density matrix Pn from Pρσ = 2
∑

iCρiCσi

2. Calculate fAO from Eq. B.28

3. Transform fAO to f using Eq. B.23

4. Generate the n’th errorvector en from the occupied-virtual block of f . See Eq. B.14

(a) if |en| < ε then convergence.

(b) otherwise generate a new set of orbitals Cn+1 by diagonalization of the Fock-matrix
using Eq. B.24 and return to step 1.

This is only a very simple scheme and in real calculation other methods are used in order to
speed up the optimization procedure. [136]



Appendix C

Response Theory

In order to calculate properties of molecules subjected to a time-dependent external pertubation
we adopt quantum-chemical response theory. We restrict the treatment to situations where the
interaction between the external field and the molecular system is considered in the perturbation
limit. In this chapter the response function of an exact and an SCF state is derived, following the
derivations in Ref. [137,138]. The explicit derivation is limited to the linear response functions.

C.1 Response Theory for an Exact State

The time-dependent schrödinger equation A.1 describes the time-development of an exact wave
function

∣∣0(t)
〉
. The total Hamiltonian of the molecular system interacting with an external

field is:

H = H0 + V t, (C.1)

where H0 is the time independent Hamiltonian of the unperturbed system and where V t is the
time dependent perturbation. The perturbation is assumed switched on adiabatically (slowly)
at t→ −∞ and can therefore be represented by its Fourier composition

V t =
∫ ∞
−∞

dωV ωe(−iω+ε)t, (C.2)

where ε is a positive infinitisimal number ensuring that the perturbation is zero at t→ −∞. The
frequency domain function here is continuous, but in many cases only a few discrete frequencies
are involved. It is required that the perturbation is hermitian and therefore (V ω)† = V −ω.
It is assumed that

∣∣0(t)
〉

is an eigenfunction |0〉 of H0 at t → −∞. Let us consider the time-
development of the density operator ρ(t) of the state

∣∣0(t)
〉

: according to the Quantum-Liouville
equation

i
∂ρ(t)
∂t

= [H, ρ(t)], (C.3)

where the density operator is given by ρ(t) =
∣∣0(t)

〉 〈
0(t)

∣∣. Changing to the interaction repre-
sentation the density operator become

ρI(t) ≡ eiH0tρ(t)e−iH0t (C.4)

and the Quantum-Liouville equation can be written as [31]

i
∂ρI(t)
∂t

= i
{

i[H0, ρ
I(t)] + eiH0t∂ρ(t)

∂t
e−iH0t

}
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= i
{

i[H0, ρ
I(t)]− ieiH0t[H0 + V t′ , ρ(t)]e−iH0t

}

= [Vt′(t), ρI(t)] = Lt′(t)ρI(t), (C.5)

where we have introduced the so-called Liouvillian operator, Lt′(t), and

Vt′(t) = eiH0tV t′e−iH0t. (C.6)

Integration of C.5 yields

ρI(t) = ρ0 − i
∫ t

−∞
dt′Lt′(t′)ρI(t′), (C.7)

A solution of Eq. C.7 can be obtained iteratively by using ρ0 as the zeroth order approximation
for ρI [138]. Thus, to first order we get

ρI(t) = ρ0 − i
∫ t

−∞
dt′Lt′(t′)ρ0, (C.8)

which can be rewritten using Eq. C.4 and Eq. C.6 as

ρ(t) = ρ0 − i
∫ t

−∞
dt′Lt′(t′ − t)ρ0. (C.9)

As in time-independent pertubation theory it is the expectation value of an operator more than
the specific wave function that is of interest. Using that the expectation value can be written as
the trace of the corresponding density operator times the operator, we may write to first order

〈
0(t) | A | 0(t)

〉
= Tr(ρ(t)A)

= 〈0 | A | 0〉 − i
∫ t

−∞
dt′Tr(Lt′(t′ − t)ρ0A)

= 〈0 | A | 0〉 − i
∫ t

−∞
dt′Tr[Vt′(t′ − t)ρ0A− ρ0Vt′(t′ − t)A]

= 〈0 | A | 0〉 − i
∫ t

−∞
dt′Tr(ρ0[A, Vt′(t′ − t)])

= 〈0 | A | 0〉 − i
∫ t

−∞
dt′
〈
0 | [A, Vt′(t′ − t)] | 0

〉
, (C.10)

where we have used Eq. C.9 and the cyclic invariance of the trace. We now introduce the
two-time retarded Green’s function or propagator [138,139] defined as

〈〈
A;Vt′(t′ − t)

〉〉
= −iΘ(t− t′) 〈0 | [A, Vt′(t′ − t)] | 0

〉
, (C.11)

where Θ(t − t′) is the Heaviside step function which is equal to one when t′ < t and otherwise
zero. Inserting this into Eq. C.10 and using Eq. C.2 we get

〈
0(t) | A | 0(t)

〉
= 〈0 | A | 0〉+

∫ ∞
−∞

dω

∫ ∞
−∞

dt′
〈〈
A;V ω(t′ − t)〉〉 e(−iω+ε)t′ (C.12)

=
∫ ∞
−∞

dω 〈〈A;V ω〉〉ω e(−iω+ε)t. (C.13)

Continuing the iterative procedure of Eq. C.7 to higher order we can write the expectation value
as
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〈
0(t) | A | 0(t)

〉
= 〈0 | A | 0〉+

∫ ∞
−∞

dω1e
(−iω1+ε)t 〈〈A;V ω1〉〉ω1

+
1
2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2e
(−i(ω1+ω2)+2ε)t 〈〈A;V ω1 , V ω2〉〉ω1,ω2

+ · · · . (C.14)

The functions 〈〈A;V ω1〉〉ω1
and 〈〈A;V ω1 , V ω2〉〉ω1,ω2

are the linear and quadratic response func-
tions, respectively.

C.1.1 The Spectral Representation

Using the definition of the linear response function we can rewrite it in order to extract physical
information. The response function is in the frequency representation given by

〈〈A;V ω〉〉ω = lim
ε→0

∫ ∞
−∞

dt 〈〈A;V ω(t)〉〉 e(−iω+ε)t. (C.15)

Inserting Eq. C.11 and the resolution of the identity 1 =
∑

n |n〉 〈n| gives

〈〈A;V ω〉〉ω = −i lim
ε→0

∫ ∞
−∞

dtΘ(−t) 〈0 | [A, V ω(t)] | 0〉 e(−iω+ε)t

= −i lim
ε→0

∫ 0

−∞
dt
∑
n

e(−iω+ε)t
{〈0 | A | n〉 〈n | eiH0tV ωe−iH0t | 0〉

− 〈0 | eiH0tV ωe−iH0t | n〉 〈n | A | 0〉}

= −i lim
ε→0

∫ 0

−∞
dt
∑
n

e(−iω+ε)t
{〈0 | A | n〉 〈n | V ω | 0〉 eiωnt

− 〈0 | V ω | n〉 〈n | A | 0〉 e−iωnt
}

= lim
ε→0

∑

n6=0

〈0 | A | n〉 〈n | V ω | 0〉
ω − ωn + iε

− 〈0 | V
ω | n〉 〈n | A | 0〉
ω + ωn + iε

, (C.16)

where ωn = En−E0. Eq. C.16 is refered to as the spectral representation of the linear response
function [137,138]. The linear response function has poles at frequency ±ωn, which corresponds
to the excitation energies of the unperturbed system. We also see that the residues at the poles
corresponds to transitions matrix elements.

C.1.2 Time-development of an Exact State

In order to determine the time-development of an exact state we rewrite the time-dependent
Schrödinger equation. We can write the wave function in the phase isolated form as

| 0〉 = e−iF(t) | 0̃
〉
, (C.17)

and introducing this into the Schrödinger equation we can write it as
(
H − i

∂

∂t
− Ḟ(t)

)
| 0̃〉 = 0. (C.18)

Ḟ(t) is denoted the time-dependent quasienergy and can be used to derive the response function
from time-average variational pertubation theory. [140] Projection of Eq. C.18 onto a first-order
variation gives

〈
δ0 |

(
H − i

∂

∂t
− Ḟ(t)

)
| 0̃〉 = 0. (C.19)
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A variation of the complete wave function,
∣∣0〉, can be seperated into

∣∣δ0〉 = e−iF
∣∣δ0̃〉− iδFe−iF

∣∣0̃〉 . (C.20)

This allows us to rewrite Eq. C.19 as

〈
δ0̃ |

(
H − i

∂

∂t
− Ḟ(t)

)
| 0̃〉 = 0. (C.21)

An allowed variation of
∣∣0̃〉 can be written as a variation along

∣∣0̃〉 and along its orthogonal
complement ∣∣δ0̃〉 =

∣∣∣δ0̃⊥
〉

+ iα
∣∣0̃〉 , (C.22)

where
∣∣δ0̃⊥〉 is orthogonal to

∣∣0̃〉 and α is real. The fact that the variation along
∣∣0̃〉 is imaginary

can be seen from the normalization condition on
∣∣0〉 and the allowed variations of

∣∣δ0̃〉

〈
0 | 0〉 =

〈
0̃ | 0̃〉 = 1 (C.23)〈

δ0̃ | 0̃〉+
〈
0̃ | δ0̃〉 = 0. (C.24)

Using this expansion of the variations we see that the variations along
∣∣δ0̃〉 vanish and Eq. C.21

can be written as

〈
δ0̃⊥ |

(
H − i

∂

∂t

)
| 0̃〉 = 0. (C.25)

If we use the fact that iα
〈
0̃ | H − i(∂/∂t) | 0̃〉 is purely imaginary we can reintroduce

∣∣δ0̃〉 and
write Eq. C.25 as

Re
〈
δ0̃ |

(
H − i

∂

∂t

)
| 0̃〉 = 0. (C.26)

For an exact state we have that i
∣∣δ0̃⊥〉 is an allowed variation if

∣∣δ0̃⊥〉 is allowed. This gives us
the following equation

Im
〈
δ0̃ |

(
H − i

∂

∂t

)
| 0̃〉 = 0. (C.27)

Equation C.26 and Eq. C.27 will be used to determine the time-development of the SCF state.

C.2 Response Functions for an SCF Wave Function

The Hartree-Fock wave function is an approximate wave function and therefore the linear re-
sponse function is not equal to Eq. C.16. To obtain the response functions we have to make
some restrictions on how the SCF state evolves in time. The time development of an SCF state
is given by [137]

∣∣0̃〉 = exp[iκ(t)] |0HF〉 , (C.28)

where the reference wave function |0HF〉 is a single CSF which fulfills the Brillouin theorem
Eq.B.13. The orbital rotation operator is given by

κ =
∑

k

[κk(t)q
†
k + κ∗k(t)qk], (C.29)
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where we have introduced the notation q†k = Epq for p > q and qk = Epq for p < q. The index
k runs over the nonredundant orbital operators. The restiction that we will make is that the
allowed variation of the state can be written as

∣∣δ0̃〉 = i
∑

k

(ηkq̃
†
k + η∗kq̃k)

∣∣0̃〉 , (C.30)

where ηk are the varational parameters and q̃k the transformed operators

q̃k = exp[iκ(t)]qk exp[−iκ(t)]. (C.31)

This variation ensures that if
∣∣δ0̃⊥〉 is an allowed variation then also i

∣∣δ0̃⊥〉 is also allowed. The
approach using an SCF reference state and the restictions on the variations, i.e. Eq. C.30, is
referred to as the Random Phase Approximation (RPA). Introducing this approximation into
Eq. C.26 and Eq. C.27 we have

Re
〈
0̃
∣∣ (q̃†k − q̃k)

(
H − i

∂

∂t

) ∣∣0̃〉 = 0, (C.32)

Im
〈
0̃
∣∣ (q̃†k + q̃k)

(
H − i

∂

∂t

) ∣∣0̃〉 = 0. (C.33)

Using that ReA = 1
2(A + A∗) and ImA = 1

2(A − A∗) we expand Eqs. C.32, C.33 and get the
Ehrenfest equations of motion (EOM) for q̃k and q̃†k, respectively

i
d

dt

〈
0̃ | q̃k | 0̃

〉
= i
〈
0̃
∣∣ ∂q̃k
∂t

∣∣0̃〉+
〈
0̃ | [q̃k,H] | 0̃〉 , (C.34)

i
d

dt

〈
0̃ | q̃†k | 0̃

〉
= i
〈
0̃
∣∣ ∂q̃

†
k

∂t

∣∣0̃〉+
〈

0̃ | [q̃†k,H] | 0̃
〉
. (C.35)

Using a more general operator basis we can write the orbital rotation operator, eq. C.29, as

κ = Oα, (C.36)
O = (q†, q)X, (C.37)

α = X−1

(
κ
κ∗

)
, (C.38)

where the transformation matrix, X, has the structure

X =
[

1X 2X∗
2X 1X∗

]
(C.39)

This allows us to rewrite the EOM as a single matrix equation

d

dt

〈
0̃
∣∣ Õ† ∣∣0̃〉− 〈0̃∣∣ ∂Õ

†

∂t

∣∣0̃〉 = −i
〈
0̃
∣∣ [Õ†,H]

∣∣0̃〉 , (C.40)

with the j’th component of Õ given as

Õj = exp[iκ(t)]Oj exp[−iκ(t)] (C.41)

subjectet to the boundary condition κ(t)→ 0 for t→ −∞, ensuring that
∣∣0̃〉→ |0〉 for t→ −∞.

Using Eq. E.3 we can rewrite the left side of Eq. C.40 as
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∞∑

n=0

(−1)n(i)n+1

(n+ 1)!
〈0| [O†j , (κ̂nκ̇)] |0〉 (C.42)

=
∞∑

n=0

(−1)n(i)n+1

(n+ 1)!
〈0|

O†j ,



n+1∏

µ=2

ÔlµOl1




 |0〉 α̇l1

n+1∏

µ=2

αlµ (C.43)

=
∞∑

n=0

inS[n+1]
jl1l2···lnα̇l1

n∏

µ=2

αlµ , (C.44)

where we have shifted the summation and introduced the superoperator defined in Eq. E.2. The
right-hand side of Eq. C.40 can be devided into two terms, one from H0 and another from V t.
Each of these terms can be expanded using the BCH expansion E.1 as

−i 〈0| [Õ†j ,H0] |0〉 =
∞∑

n=0

(−i)n+1

n!
〈0| [O†j , (κ̂nH0)] |0〉 (C.45)

= −
∞∑

n=0

in+1E
[n+1]
jl1l2···ln

n∏

µ=1

αlµ (C.46)

and

−i 〈0| [Õ†j , V t] |0〉 =
∞∑

n=0

(−i)n+1

n!
〈0| [O†j , (κ̂nV t] |0〉 (C.47)

= −
∞∑

n=0

in+1V
t[n+1]
jl1l2···ln

n∏

µ=1

αlµ . (C.48)

Using these expansions the EOM can be written as

∞∑

n=0

inS[n+1]
jl1l2···lnα̇l1

n∏

µ=2

αlµ = −
∞∑

n=0

in+1(E[n+1]
jl1l2···ln + V

t[n+1]
jl1l2···ln)

n∏

µ=1

αlµ . (C.49)

The parameters α determines the response of the SCF state to the pertubation and can be
expanded in powers of the pertubation. Solving the EOM for each order in the perturbations
yields the response functions. Collecting the terms in each order of the pertubations yields a set
of coupled linear inhomogeneous differential equations, which to first order reads

iS[2]
jl α̇

(1)
l (t)−E[2]

jl α
(1)
l (t) = −iV t[1]

j , (C.50)

where the matrices S[2], E[2] and V t[1] are given by

S
[2]
jl = 〈0| [O†j , Ol] |0〉 , (C.51)

E
[2]
jl = −〈0| [O†j , [Ol, H0]] |0〉 , (C.52)

V
t[1]
j = 〈0| [O†j , V t] |0〉 . (C.53)

The differential equations separate in a representation where both E[2] and S[2] are diagonal.
A simultaneous diagonalization of S[2] and E[2] is the same as solving the general eigenvalue
equation
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E[2]
e Xj = λjS

[2]
e Xj . (C.54)

The subscript e referes to the fact that the matrix is in the original basis. This means that the
matrices S[2]

e and E
[2]
e have the structure

E[2]
e =

(
A B
B∗ A∗

)
, S[2]

e =
(

Σ ∆
−∆∗ −Σ∗

)
(C.55)

with submatrix elements defined as

Aij = 〈0| [qi, [H, q†j ]] |0〉 , Bij = 〈0| [qi, [H, qj ]] |0〉 , (C.56)

Σij = 〈0| [qi, q†j ] |0〉 , ∆ij = 〈0| [qi, qj ] |0〉 . (C.57)

In this representation we have E[2]
ij = ωjδij , S

[2]
ij = sgn(j)δij and ωj = ω−j . We have used a

notation where (Oj , O−j) = (q†j , qj) and j > 0. sgn(j) referes to the sign of j. This representation
gives a separated first order equation as

i× sgn(j)α̇(1)
j (t)− ωjα(1)

j (t) = −iV t[1]
j . (C.58)

Inserting the Fourier transform of α(1)
j

α
(1)
j =

∫
dω1 exp[(−iω1 + ε)t]α(1)

j (ω1), (C.59)

in eq. C.58 we get

α
(1)
j (ω1) =

−i× sgn(j)V ω1
[1]

j

ω1 − sgn(j)ωj + iε
. (C.60)

Using the BCH expansion, Eq. E.1, we can expand the time dependent expectation value of a
time-independent operator in the following way

〈
0̃
∣∣A ∣∣0̃〉 = 〈0| exp(−iκ(t))A exp(iκ(t)) |0〉 (C.61)

=
∞∑

n=0

(−i)n

n!
〈0| κ̂nA |0〉 (C.62)

=
∞∑

n=0

(−i)n

n!
〈0|



n∏

µ=1

ÔlµA


 |0〉

n∏

µ=1

αlmu (C.63)

=
∞∑

n=0

(i)nA[n]
l1l2···ln

n∏

µ=1

αlµ . (C.64)

Using the expansion of α in powers of the perturbation one obtains to first order

〈
0̃
∣∣A ∣∣0̃〉 = 〈0|A |0〉+

∑

j

iA[1]
j α

(1)
j + · · · , (C.65)

where
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A
[1]
j = −〈0| [Oj , A] |0〉 . (C.66)

On inserting the Fourier transform of α(1)
j (t) in Eq.C.65 one is able to obtain the linear response

function for the SCF state as

〈〈A;V ω1〉〉ω1
= lim

ε→0

∑

j

iA[1]
j α

(1)
j (ω1) (C.67)

=
∑

j

sgn(j)A[1]
j V

[1]
j

ω1 − sgn(j)ωj
. (C.68)

Eq. C.68 contains a sum over all states in the eigenvalue basis and therefore a complete diago-
nalization of S[2] and E[2] is needed. This is only feasible for small dimensions and it is therefore
necessary to remove the explicit summation. This is done by rewriting the equation in terms
of the orginal basis, denoted by subscript e. Using the Einstein summation convention, i.e.
summation over repeated indices, we can rewrite Eq. C.68 as

〈〈A;V ω1〉〉ω1
=

−A[1]
j V

[1]
j

ωj − sgn(j)ω1
. (C.69)

We note, that Eq. C.54 can be written as

ω − ω1σ = X†(E[2]
e − ω1S

[2]
e )X. (C.70)

Inverting this equation and using that A[1] = A
[1]
e X and V [1] = X†V [1]

e we can write the linear
response function as

〈〈A;V ω1〉〉ω1
= −A[1]

e (E[2]
e − ω1S

[2]
e )−1V [1]

e (C.71)

Thus, in order to evaluate molecular properties we have to solve the set of linear equations

(eE[2] − ω1
eS[2])Z = eV [1], (C.72)

and (or) the generalized eigenvalues problem Eq. C.54. For large systems or large basis set we
have to use an iterative method to solve the equations. This can be done by linear transformation
of S[2]

e and E[2]
e on a set of trial vectors, thereby reducing the dimension of the problem. [84,137,

142,143]



Appendix D

Relay Tensors

D.1 Two-atom Relay Tensor

The defination of the two-atom relay tensor is given by Eq. 3.66 as

Bpq,αβ =

[
∂µind

p,α

∂Eext
q,β

]

Eext
q,β=0

, (D.1)

using the chain rule this can be rewritten as

Bpr,αε =
∂µind

p,α

∂Etot
p,β

[
∂Etot

p,beta

∂Eext
r,ε

]

Eext=0

. (D.2)

The total field at atom p is given by Eq. 3.4

Etot
p,β = Eext

β +
∑

q 6=p
T

(2)
pq,αβµq,β. (D.3)

Thus, the derivative of the total field with respect to the external field is
[
∂Etot

p,β

∂Eext
r,ε

]

Eext=0

= δprδβε +
N∑

q 6=p
T

(2)
pq,βγ

[
∂µind

q,γ

∂Eext
r,ε

]

Eext=0

. (D.4)

Inserting the definition of the two-atom relay tensor, Eq. D.1, in Eq. D.4 we can recast it as

[
∂Etot

p,β

∂Eext
r,ε

]

Eext=0

= δprδβε +
N∑

q 6=p
T

(2)
pq,βγBqr,γε ≡ B̃pr,βε. (D.5)

From Eq. 3.62 the induced dipolmoment is given by

µind
p,α = αp,αβE

tot
p,β +

1
6
γp,αβγδE

tot
p,βE

tot
p,γE

tot
p,δ . (D.6)

If we take the derivative of Eq. D.6 with respect to the total field we get

∂µind
p,α

∂Etot
s,σ

= δpsδβσαp,αβ +
1
6
δpsδδσγαβγδE

tot
p,βE

tot
p,γ +

1
6
δpsδγσγαβγδE

tot
p,βE

tot
p,δ +

1
6
δpsδβσγαβγδE

tot
p,γE

tot
p,δ ,

(D.7)
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which can be rearranged into

∂µind
p,α

∂Etot
s,σ

= δpsδβσ

(
αp,αβ +

1
2
γp,αβγδE

tot
p,δE

tot
p,γ

)
(D.8)

i.e. only ∂µind
p,α

∂Etot
p,β

contributes since we regard all properties in Eq. D.6 as local. We can now

substitute Eq. D.8 and Eq. D.5 into Eq. D.2 an get the final result Eq. 3.73

Bpr,αε =
(
αp,αβ +

1
2
γp,αβγδE

tot
p,δE

tot
p,γ

)
δprδβε +

N∑

q 6=p
T

(2)
pq,βγBqr,γε


 (D.9)

D.2 Three-atom Relay Tensor

The three-atom relay tensor is obtained by combining Eqs. 3.67, D.6 and D.3. We also need
Eqs. D.5 and D.8 and their second derivatives given by

∂2µp,α
∂Etot

t,τ ∂E
tot
s,σ

= δpsδβσδptδγτγp,αβγδE
tot
p,δ , (D.10)

and

C̃prs,βεσ =
∂2Etot

p,β

∂Eext
r,ε ∂E

ext
s,σ

=
N∑

q 6=p
T

(2)
pq,βγ

∂2µq,γ
∂Eext

r,ε ∂E
ext
s,σ

=
N∑

q 6=p
T

(2)
pq,βγCqrs,γεσ. (D.11)

Using the chain rule we obtain the three-atom relay tensor as

Cpqr,αβγ =
∂2µp,α

∂Eext
q,β∂E

ext
r,γ

=
∂

∂Eext
r,γ

(
∂µp,α
∂Etot

p,ε

∂Etot
p,ε

∂Eext
q,β

)

=
[

∂

∂Etot
p,ε

(
∂µp,α
∂Eext

r,γ

)](
∂Etot

p,ε

∂Eext
q,β

)
+
(
∂µp,α
∂Etot

p,ε

)(
∂2Etot

p,ε

∂Eext
q,β∂E

ext
r,γ

)

=

[
∂

∂Etot
p,ε

(
∂µp,α
∂Etot

p,σ

∂Etot
p,σ

∂Eext
r,γ

)](
∂Etot

p,ε

∂Eext
q,β

)
+
(
∂µp,α
∂Etot

p,ε

)(
∂2Etot

p,ε

∂Eext
q,β∂E

ext
r,γ

)

=
(

∂2µp,α
∂Etot

p,ε ∂E
tot
p,σ

)(
∂Etot

p,σ

∂Eext
r,γ

)(
∂Etot

p,ε

∂Eext
q,β

)
+
(
∂µp,α
∂Etot

p,ε

)(
∂2Etot

p,ε

∂Eext
q,β∂E

ext
r,γ

)

= γp,αεσδE
tot
p,δ B̃pr,σγB̃pq,εβ +

(
αp,αε +

1
2
γp,αεγδE

tot
p,δE

tot
p,γ

)
C̃pqr,εβγ . (D.12)

Rearrange Eq. D.12 as

Cpqr,αβγ −
(
αp,αε +

1
2
γp,αεγδE

tot
p,δE

tot
p,γ

) N∑

t6=p
T

(2)
pt,εσCtqr,σβγ = γp,αεσδE

tot
p,δ B̃pr,σγB̃pq,εβ. (D.13)

Using that we can write the unit matrix as, Cpqr =
∑

t δptCtqr, we can rewrite Eq. D.13 as

∑
t

(
δpt −

(
αp,αε +

1
2
γp,αεγδE

tot
p,δE

tot
p,γ

)
T

(2)
pt,εσ

)
Ctqr,σβγ = γp,αεσδE

tot
p,δ B̃pr,σγB̃pq,εβ. (D.14)
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The left hand side of Eq. D.14 can be rewritten using

1− αeffT
(2) = αeff

(
α−1

eff − T (2)
)

= αeffB
−1 =

(
1 + T (2)B

)−1
= B̃−1. (D.15)

Introducing this into Eq. D.14 we arrive at

∑
t

B̃−1
pt Ctqr = γp,αεσδE

tot
p,δ B̃pr,σγB̃pq,εβ . (D.16)

Finally we use the relations for matrix multiplication, in particular that
∑

lAklBlm = Ckm is
equivalent to Akl =

∑
mCkmB

−1
ml , and the desired result is obtained as

Cmqr,στν =
N∑
p

γp,αβγδE
tot
p,δ B̃pr,γνB̃pq,βτ B̃pm,ασ. (D.17)



78 APPENDIX D. RELAY TENSORS



Appendix E

Mathematical Formulars

The Baker-Campbell-Hausdorf (BCH) expansion

e−iABei =
∞∑

n=0

(−i)n

n!
(ÂnB). (E.1)

If A and B are operators then Â is a super-operator defined as

ÂB = [A,B]. (E.2)

Time derivative of a transformed operator B

d

dt
(eiABe−iA) =

∞∑

n=0

in

n!
(ÂnḂ) + eiA

[ ∞∑

n=0

(−1)n(i)n+1

(n+ 1)!
[ÂnȦ, B]

]
e−iA. (E.3)

Commutator relations

[A,B1 · · ·Bn] =
n∑

k=1

(−1)k−1B1 · · · [A,Bk] · · ·Bn (n even). (E.4)

[Emn, apσ] = −δmpanσ. (E.5)

[A,B1 · · ·Bn]+ =
n∑

k=1

(−1)k−1B1 · · · [A,Bk]+ · · ·Bn (n odd). (E.6)
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Appendix F

Molecules used in the
Parametizations

Set 1: 115 aromatic and aliphatic molecules used in chapter 4

1,1,1-trichloroethane 1,1,1-trifluoroethane 1,1,2,2-tetrachloroethane
1,1,2,2-tetrafluoroethane 1,2,3,4-tetrafluorobenzene 1,2,3,5-tetrafluorobenzene
1,2,3-trifluorozbenzene 1,2,4,5-tetrafluorobenzene 1,2-dichloroethane
1,2-difluoroethane 1,3,5-trichlorobenzene 1,3,5-trifluorobenzene
1,3-dichlorotetrafluorobenzene 1-aminobutane 1-aminopropane
1-propanol 1,3-dichlorotetrafluorobenzene 2,3,5,6-tetrafluoro-1,4-dichlorobenzene
2,3-dichlorobutane 2,3-difluorobutane 2,4,6-trifluorochlorobenzene
2,5-difluoro-1,3-dichlorobenzene 2,6-difluoro-1,4-dichlorobenzene 2,6-difluorochlorobenzene
2-aminopropane 2-methylpropane 2-nitropropane
2-propanol 3,4,5-trifluorochlorobenzene 3,5-difluorochlorobenzene
3-pentanone 4,5-difluoro-1,2-dichlorobenzene 4,6-difluoro-1,3-dichlorobenzene
4-heptanone N,N-dimethylformamide N-methylacetamide
N-methylformamide acetaldehyde acetic acid
acetone aminoethane aminomethane
ammonia aniline benzene
biphenyl butanal butane
butanoic acid butanol chlorobenzene
chloroethane chlorofluoromethane chloroformamide
chloromethane cyanobutane cyanoethane
cyanomethane cyanopropane cyclohexane
cyclohexanol cyclopentane cyclopentanol
dichloromethane difluorochloromethane difluoromethane
ethane ethanol ethylamide
fluorobenzene fluoroethane fluoroformamide
fluoromethane formaldehyde formic acid
hexafluorobenzene hexane hydrogenfluoride
m-dichlorobenzene m-difluorobenzene malonic acid
methane methanol nitrobenzene
nitrobutane nitroethane nitromethane
nitropropane o-dichlorobenzene o-difluorobenzene
p-aminoaniline p-dichlorobenzene p-difluorobenzene
p-dinitrobenzene p-fluorochlorobenzene p-nitroaniline
pentafluorobenzene pentafluorochlorobenzene pentanal
pentane pentanol phenol
planer biphenyl propanal propane
propanic acid propionamide tetrachloromethane
tetrafluoromethane toluene trichlorofluoromethane
trichloromethane trifluorochloromethane trifluoromethane
water
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Set 2: 46 Olephines added to set 1 used in chapter 6

ethylene propylene trans-2-butene
1,3-butadiene 1,3,5-hexatriene ethyne
difluoroethyne trans-1,2-difluoroethylene dichloroethyne
trans-1,2-dichloroethylene fluoroethylene chloroethylene
fluoroethyne nitroethylene nitroethyne
trans-1-fluoropropylene 3-fluoropropylene trans-1-chloropropylene
3-chloropropylene trans-1-nitropropylene 3-nitropropylene
1-hydroxyethylene trans-1-hydroxypropylene 3-hydroxypropylene
cyanoethylene trans-3-cyano-2-propene 3-cyano-1-propene
propyne 3-hydroxypropyne 3-nitropropyne
3-chloropropyne 3-fluorpropyne 3-cyanopropyne
butadiyne fluorobutadiyne aminoethylene
aminoethyne trans-1-aminopropylene 3-aminopropylene
3-butenal 3-butenoic acid trans-2-butenoic acid
trans-2-butenal 3-butenon propenal
propenoic acid
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Frequency-dependent molecular polarizability calculated within an
interaction model

Lasse Jensen
Chem. Lab. III, Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK-2100

Copenhagen Ø, Denmark

Per-Olof Åstrand
Condensed Matter Physics and Chemistry Department, Risø National Laboratory, DK-4000 Roskilde, Denmark

Kristian O. Sylvester-Hvid
Department of Electromagnetic Systems, Danish Technical University, DK-2800 Lyngby, Denmark

Kurt V. Mikkelsen
Chem. Lab. III, Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK-2100

Copenhagen Ø, Denmark

Abstract

We have investigated different models for parameterizing the frequency-dependent
molecular polarizability. The parameterization is based on an electrostatic model
for interacting atoms and includes atomic polarizabilities, atom-type parameters
describing the damping of the electric fields and the frequency-dependence. One set
of parameters has been used for each element. The investigation has been carried out
for 115 molecules with the elements H, C, N, O, F, and Cl, for which the frequency-
dependent polarizability tensor has been calculated with ab initio methods. We find
that the static polarizability of aliphatic and aromatic compounds can be described
with the same set of parameters. The conclusion is that a simple electrostatic model
to a good degree can model the essential behaviour of the frequency-dependent
molecular polarizability.

J. Phys. Chem., accepted.
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Static and frequency-dependent polarizability tensors for carbon nanotubes

Lasse Jensen
Chem. Lab. III, Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK-2100

Copenhagen Ø, Denmark

Ole H. Schmidt
Chem. Lab. III, Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK-2100

Copenhagen Ø, Denmark

Per-Olof Åstrand
Condensed Matter Physics and Chemistry Department, Risø National Laboratory, DK-4000 Roskilde, Denmark

Kurt V. Mikkelsen
Chem. Lab. III, Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK-2100

Copenhagen Ø, Denmark

Abstract

We have calculated the static and frequency-dependent polarizability tensor of a
series of (5,5)- and (9,0)-carbon nanotubes. The calculations have been performed
by a dipole-dipole interaction model based on classical electrostatics and an Unsöld
dispersion formula. The model has previously been shown to predict successfully the
frequency-dependent polarizability tensors of both aliphatic and aromatic molecules.
In comparison we have carried out ab initio calculations at the Hartree-Fock level
of the static polarizability of C60, C70 and the smaller carbon nanotubes using the
STO-3G basis set. We find that the interaction model is in good agreement with
the SCF calculations and can be used to predict the polarizability tensors of carbon
nanotubes. In addition, we find that the symmetry/intramolecular geometry of the
tube has great influence on the polarizability.

J. Phys. Chem., submitted.
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An atomic capacitance-polarizability model for the calculation of molecular
dipole moments and polarizabilities

Lasse Jensen
Chem. Lab. III, Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK-2100

Copenhagen Ø, Denmark

Per-Olof Åstrand
Condensed Matter Physics and Chemistry Department, Risø National Laboratory, DK-4000 Roskilde, Denmark

Kurt V. Mikkelsen
Chem. Lab. III, Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK-2100

Copenhagen Ø, Denmark

Abstract

A classical interaction model for the calculation of molecular polarizabilities has been
investigated. The model is described by atomic capacitancies, polarizabilities and a
parameter related to the size of the atom, where one set of parameters have been
employed for each element. The model has been parameterized for the elements H, C,
N, O, F, and Cl from quantum chemical calculations of the molecular polarizability
and dipole moment for 161 molecules at the Hartree-Fock level. The atomic charge
has been divided into a nuclear charge and an electronic contribution, which allows
for modelling also the permanent molecular dipole moment. Results are presented
for polyenes. The deficiency of using atomic capacitancies for large molecules is
discussed.

in preperation.
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