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P. Linse, A. Wallqvist, P.-O. Åstrand, T. M. Nymand, V. Lobaskin, and F. Carlsson

Lund University, Sweden (2000)



I Introduction

The work presented in this thesis is devoted to the theoretical study of liquids and solutions by
the combined efforts of quantum chemical and classical molecular simulation (MS) techniques.
In recognition of chemistry as a fundamentally experimental science, the purpose of theoretical
chemistry in general is to reproduce experimental results, aid the interpretation of these, and,
ultimately, predict the outcome of future experiments. In contrast to many of the very
sophisticated models devised by theoretical chemists, the concept of MS is very simple. But
despite its simplicity, MS results have shown remarkable agreement with the outcome of a
variety of experiments. This has encouraged their use in the process of rationalizing and
interpreting these, a process greatly facilitated by the very rich and detailed information
provided by such simulations.

The theoretical study of liquids and solutions is challenging. In the gas-phase molecules
translate, rotate, and vibrate freely only interrupted by occasional collisions. Intermolecular
interaction is virtually absent and as a consequence, many macroscopic gas properties are
described perfectly adequate by the ideal gas equation. In the crystalline phase, crystal
structure symmetry greatly simplifies the characterization of molecular interaction. Neither
of these descriptions apply completely to the liquid phase; the increased density (relative
to the gas-phase) requires a detailed description of molecular interaction, and the order of
the crystal vanishes upon melting. Nevertheless, from the viewpoint of a chemist, a detailed
understanding of liquids is of great importance, since the bulk of applied chemistry occur in
solution. To that end, an understanding of liquid water in particular is essential.

Water plays the most prominent role in biological systems. Not only is it the solvent in
which all the chemical processes of life occur, it also appears to be very active in the deter-
mination of bio-macromolecular conformation, as well as in the transport processes occurring
through cell membranes. Equally intriguing is the fact that liquid water in a thermo-dynamic
aspect is the most peculiar of solvents. Among many anomalies it exhibits a density maximum
just below 4◦C and 1 atm, it has a negative volume of melting, and when pressure is applied
its viscosity decreases.1 It is perhaps even more interesting that despite the vast amount of
both experimental and theoretical research devoted to the study of liquid water, this utmost
important substance is still far from well understood. In particular, no clear and complete
connection between microscopic properties of the water molecule and the thermo-dynamical
anomalies of the liquid has yet been made. However, there is general consensus that the
hydrogen bonds so abundant in water are very important in the explanation of its anoma-
lous properties. Liquid water has been studied by simulations ever since the birth of the
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methodology,2 and has over time been the subject of numerous publications. In particular,
molecular dynamics simulation has been an important tool in the search of an explanation
of the anomalies of water.3 When studying microscopic solvent models, water is thus often
used as a benchmark: any model performing well for a liquid as strongly associated as water
is highly likely to be useful.

From the most fundamental point of view, a liquid is nothing but a vast number of
electrons and nuclei moving in space and in principle all of its properties can be determined
from the solutions of the Schrödinger equation. The Schrödinger equation is the corner-
stone of quantum mechanics, in the framework of which the liquid would be described by
the interaction energy of the nuclei and electrons and their kinetic energy. Even a numerical
solution to this equation is, however, not attainable for systems comprising more than a few
particles; the solution for larger systems is facilitated only by the introduction of a number
of approximations. For the chemist, the most important of these is the Born-Oppenheimer
approximation,4 the introduction of which leads to a separation of the Schrödinger equation
into a nuclear and an electronic part. The solution of the electronic Schrödinger equation,
which is the primary workhorse of quantum chemistry, provides electronic energies depending
parametrically on the relative positions of the nuclei. Further, the electronic energy takes the
role as the potential energy in the nuclear Schrödinger equation. In other words, the motion of
the nuclei - and hence chemical transitions - occurs on a potential energy surface determined
by the solution of the electronic Schrödinger equation. Since the electronic energy governs
the nuclear motion, it also determines the stable nuclear conformations, the molecules. The
nuclear Schrödinger equation can be solved fully quantum mechanically for small systems or
for larger systems by the application of semi-classical methods. Finally, the nuclear motion
is in many cases approximated by classical mechanics, which is the basic assumption behind
molecular dynamics simulation.

Self-evidently, the most central concept in the methodology of MS is that of the molecule.
This concept is of course also absolutely fundamental in chemistry in general. In that context,
molecules are regarded as consisting of atoms joined by covalent bonds. While the formal de-
scription of covalent bonding is provided by quantum chemistry via the electronic Schrödinger
equation, a covalent bond is often simply characterized by the amount of energy required to
break it; usually about 100 kcal/mol. A covalent bond is formed by an electron pair; each
of the atoms participating in the bonding donate one of their outermost electrons - valence
electrons - to the formation of the bond. The breaking and formation of covalent bonds
thus changes the electron distribution of the molecule dramatically. In a quantum chemical
context, the description of chemical reactions therefore requires a global treatment of the
interacting species. The interactions dominating the liquid phase, are, on the other hand,
of a much weaker character. The strongest type of intermolecular interaction, the hydrogen
bond has a typical strength of ∼20 kJ/mol. These interactions cause only a slight change in
the electronic structure of the participating molecules. Hence, in contrast to the individual
molecule requiring a complete quantum mechanical description accounting for the covalent
bonds, intermolecular interactions may be treated as perturbations.

The development and application of MS methods as well as the construction of the required
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intermolecular potentials, rely heavily on the use of modern computers. Theoretical chemistry
appears to be one of only a handful of research fields in which the need for faster and larger
computers will never be satisfied. The development and use of efficient computer programs
is therefore an important part of the work of a theoretical chemist. In the field of MS it
is particularly fruitful to pursue the development of parallel programs to benefit from the
ongoing progress in the development of parallel architectures.

As I began my Ph.D. work, Kurt V. Mikkelsen encouraged me to investigate the chloride-
methyl-chloride reaction in micro-solution by molecular dynamics simulation, a reaction previ-
ously studied by Billing and Mikkelsen in aqueous solution.5 This work is presented in Paper I
and Chapter IV of the present thesis. In the early phase of that project, I was introduced to
Dr. Per-Olof Åstrand. Asides from offering me outstanding supervision in the field of MS, he
later suggested the application of the entire reaction coordinate method to this reaction. The
outcome of this is described in Section IV.3. He also had a particular interest in attempting
to model solvent effects on molecular properties by the use of perturbation theory, and we
soon embarked on the project addressing nuclear magnetic shielding in liquid water. The
intermolecular perturbation theory (IPT) model used in that work is the topic of Chapter V
and Paper II. The description of the chemical shift was later improved by including an electric
field-gradient contribution, presented in Paper III and Section V.2. We felt encouraged to
further investigate the possibilities of the IPT model, which led to the study of the geometry
of the water molecule in liquid water, treated in Paper IV and Section V.3. At that time I
shared an office with Dr. Kristian O. Sylvester-Hvid, another of Mikkelsen’s students. Along
with Mikkelsen and Åstrand we initiated a study of the refractive index of water, employing
the IPT model as well as other microscopic solvent models. This work is described in Pa-
per V and Section V.4. During the same period I had become increasingly interested in the
development of MS computer programs. Encouraged by Åstrand and Mikkelsen, I started
a project concerning long-range interactions in polarizable systems with Dr. Per Linse, the
primary author of the MOLSIM program.6 This topic is presented in Sections III.4 and VI.1.
During several visits in Lund, Sweden, the fundament ultimately leading to Paper VI and
VII was laid. In the course of this collaboration I also had the opportunity to initiate the
parallelization of the MOLSIM program using MPI, as described in Section III.5. During
that period of time, working with polarizable systems had caused a growing interest in their
more general properties. Ultimately, this lead to the investigation of an effective model for a
polarizable potential, the topic of Paper VIII and Section VI.2.

During the last couple of years I have enjoyed the possibility of collaborating with different
people in the local Laser Chemistry Group, sharing my interest in molecular dynamics of
liquids. A recent project in cooperation with Cecilie Rønne and Dr. Søren R. Keiding
concerning the dielectric loss function of benzene is presented in Paper IX and Section VI.3.

The outline of this thesis is as follows: Chapter II discusses the notion of parameterized
interaction potentials or potential energy surfaces, as these provide the foundation for per-
forming simulations. In Chapter III the basic methodology of MS is presented, along with the
more specialized topics of long-range interactions and parallelism. The study of the chloride-
methyl-chloride reaction is described in Chapter IV. The topic of Chapter V is the modeling
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of molecular properties in solution. Here the IPT solvent model, as well as its applications
are presented. Chapter VI summarizes the work concerning liquid properties.



II Parameterized interaction potentials

The cornerstone of molecular simulation is the interaction potential surfaces upon which
molecular motion occurs. Disregarding the inherent limitations of treating the molecules
classically, the quality of any result extracted from a simulation will ultimately be governed
by the quality of the potential. The theory of intermolecular interaction in general and
of parameterized interaction potentials in particular is essential when employing simulation
methods.

Intermolecular interactions contain four fundamental physical contributions, the electro-
static, induction, dispersion, and exchange contributions. The interaction energy may be
written as a sum of these

Uinter = Uele + Uind + Udisp + Uexch . (II.1)

Electrostatic or Coulombic interactions occur among molecules possessing permanent elec-
tric moments; charges, dipole-, quadrupole-, and higher-order moments. In such a system,
the molecular charge distributions become polarized and interactions between induced and
permanent moments account for the induction energy. Even in systems of particles lack-
ing permanent electric moments instantaneous electric moments arise by fluctuations in the
electron distribution. These moments are stabilized in the presence of other such moments,
giving rise to the dispersion interaction. At short intermolecular distances, interactions from
electron exchange between molecules become significant.

The general form of the potential energy determining the nuclear motion in a system of
N molecules may be written

U = U1 + Uinter = U1 + U2 + U3 + . . .+ UN

=
N∑

i

Ui +
N∑

i>j

Uij +
N∑

i>j>k

Uijk + . . .+ U1...N , (II.2)

where the first equality establishes the connection to Eq. II.1 and the first term on the
right hand side of the last equality describes all intramolecular interactions, the second (two-
body) term all interactions involving exactly two molecules, the third (three-body) term all
interaction involving exactly three molecules, etc.

Since Eq. II.2 represents a solution to the electronic Schrödinger equation (as discussed
in the introduction), the variables in this expression are the nuclear degrees of freedom.
If the total number of atoms is M and M > 2 there are 3M − 6 variables. A discrete
or otherwise general treatment of a potential energy surface of these dimensions would be
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completely intractable in a numerical application. When performing MS the dominating part
of the computational effort is spent on repeating evaluations of the intermolecular energies
and forces and therefore it is desirable to make those as efficient as possible. The interaction
potentials used in simulations therefore approximate Eq. II.2 by a number of parameterized
analytical functions known to have the correct physical form. The collection of such a set of
analytical functions along with their parameters will constitute a complete potential model or
just potential, directly aimed at the use in MS. In this representation the number of variables
is drastically reduced for example by allowing the interaction energy of a given pair of atoms
to depend only on their separation and not on the relative orientation of the molecules they
belong to.

The vibrational motion of the molecules is described by the first term in Eq. II.2. The
energetically strongest contributors are often the stretching modes of covalent bonds, conve-
niently described by Morse-type functions. At room temperature, the characteristic energy
h̄ω can for stretching modes be appreciably larger than kBT causing this motion to display a
strong quantum mechanical character. This renders the inherently classical treatment prob-
lematic and many potential models completely neglect the intramolecular term, or include a
description of bending and torsional motions only. Examples of the latter are the force fields
utilized in simulations of proteins, such as GROMOS96.7

The two-body term is always present in a potential model. Often it is given as a sum
over site-site or atom-atom interactions. Perhaps the most common example is the 1-6-12
potential†

Uij =
∑

a∈i,b∈j

{
qaqb
rab

+ 4εab

[(
σab
rab

)12

−
(
σab
rab

)6
]}

(II.3)

where the notation a ∈ i indicates that site a belongs to molecule i. Here the first term
represents the Coulomb interaction between site charges qa and qb, the second term models
the exchange repulsion, and the third term the dispersion interaction. In comparison to
Eq. II.1 the lack of a term modeling the induction energy is noted. This potential model
dominates the force fields used in simulation programs.8, 9 The combination of the r−6 and
r−12 terms is known as the Lennard-Jones potential.

In many potential models, Eq. II.2 is truncated after the second (two-body) term. Higher-
order terms are occasionally explicitly included but more often, many-body effects are treated
by the inclusion of induction by assuming the molecules or atoms to be polarizable. Induction
is the single most important many-body effect for polar molecules in the condensed phase,
and contributes to all two-body and higher-order terms in Eq.II.2.

II.1 The acquisition of potential parameters

The characteristics of the simulated molecules enter the potential model via the potential
parameters, e.g. qa, σab, and εab in Eq. II.3. The methods available to assess potential
parameters usually fall into either the empirical or the ab initio category distinguished by

†Unless explicitly stated otherwise, atomic units will be used throughout.
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the nature of the information they apply in the determination of the parameters. Often both
sources of data are used, rendering the potential semi-empirical.

Within an empirical approach, potential parameters are determined such that certain
experimental macroscopic liquid properties are reproduced by simulation. A well known
example is the SPC/E potential10 for water which was determined such as to reproduce the
experimental density and vaporization energy at room temperature. Empirical potentials
are often simple two-body potentials (SPC/E is a 1-6-12 potential) that nevertheless may
produce simulation results in excellent agreement with experiments. This is of course self-
evident for properties included in the parameterization but it is also important that the
parameterization procedure allows for the two-body potential to partially model many-body
effects in an average manner. For example, the dipole moment of the water molecule in liquid
water is substantially larger than that of the isolated water molecule (1.8 D) due to induction.
This behavior is imitated in the SPC/E potential in which the (permanent) dipole moment
of the water molecule is 2.35 D. On the other hand, this deems the potential inadequate to
model the behavior of a water surface where the dipole moment is expected to be closer to
that of the gas-phase molecule,11 and further questions its ability to model the solvation of
other polar molecules.12

Alternatively, potential parameters may be obtained from quantum chemical ab initio
data. In doing so, the biasing towards certain liquid properties is avoided and the predictive
value of simulations is improved. Moreover, there should be no reason to expect the potential
model to fail, when simulation conditions such as pressure and temperature extend the range
within which the experimental data was gathered, as is the case for empirical potentials.
Further, the determination of an interaction potential becomes a task completely isolated
from that of improving the quality of simulation methods, e.g. by incorporating the treatment
of long-range interactions (see Sections III.4 and VI.1). This is not the case for empirical
potentials which strictly are only useful under simulation conditions similar to those applied
when the potential parameters were fitted.13

The quantum chemical data applied in the construction of intermolecular potentials usu-
ally originate from either supermolecular or perturbation theory calculations. In the former
approach, the interaction energies of a large number of molecular complexes are calculated
using quantum chemical methods. The interaction energy of a molecular dimer can be calcu-
lated as

U = E − EA − EB (II.4)

where E is the total dimer energy and EA and EB are the energies of molecules A and B.
Subsequently, these energies are fitted to analytical expressions such as Eq. II.3. In principle,
the Uij term of Eq. II.2 can be determined from interaction energies of a number of dimers, the
Uijk term from trimer interaction energies, etc. However, since the interaction energy is very
small compared to the total molecular energies, these must be highly accurate. Due to the
finite basis sets employed, problems are also encountered in terms of basis set super-position
errors.14 Finally, the supermolecular approach provides no information of the magnitude of
the various contributions in Eq. II.1, only the total interaction energy.
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II.2 Intermolecular perturbation theory

The intermolecular perturbation theory (IPT) as developed by Stone et al.15 is a special
case of symmetry adapted perturbation theory,16 and can be used to provide intermolecular
potentials for use in simulations. The use of IPT is well described in the literature17−20 and
will here be demonstrated for the Coulomb interaction.

The total electronic Hamiltonian for two interacting molecules is

H = HA +HB + VAB , (II.5)

where the zeroth-order Hamiltonian is the sum of the Hamiltonians for molecules A and
B, HA +HB, and VAB describes the Coulomb interaction between the two molecules. The
wave functions of the individual molecules in their ground states are assumed to be known,
i.e. HA

∣∣∣ΨA
0

〉
= εA0

∣∣∣ΨA
0

〉
and HB

∣∣∣ΨB
0

〉
= εB0

∣∣∣ΨB
0

〉
. We will consider only the long-range

limit of molecular interaction where the charge distributions of molecules A and B are non-
overlapping. In that case the ground state of the zeroth-order wave function for the component
system (A+B) may be written as a direct product

∣∣∣Ψ(0)
0

〉
=
∣∣∣ΨA

0 ΨB
0

〉
(II.6)

assumed to be properly normalized. Rayleigh-Scrödinger perturbation theory21, 22 can now
be employed to obtain the total energy

E = E(0) +E(1) + E(2) + . . . (II.7)

to various orders in the perturbation VAB. Since the zeroth-order energy is

E(0) =
〈

Ψ(0)
0

∣∣∣HA +HB
∣∣∣Ψ(0)

0

〉
= εA0 + εB0 , (II.8)

the interaction energy of Eq. II.4 can be identified as E(1) +E(2) + . . ., by assuming that the
molecules are in their electronic ground-state, EA = εA0 and EB = εB0 , that is. The interaction
operator describing the Coulomb interaction of electrons in molecules A and B is

VAB =
∑

i∈A

∑

j∈B

1
|Rj −Ri| =

∑

i∈A

∑

j∈B

1
|rj − ri + rAB| , (II.9)

where summations run over electrons. The notation i ∈ A indicates that electron i belongs
to molecule A. Ri is the position of electron i, rAB = rA− rB the vector between the origins
(e.g. center of mass) of the molecules, and ri the position of electron i with respect to the
molecular origin (see Figure II.A). Since ri and rj are assumed to be small compared to rAB,
VAB may be Taylor-expanded in ri and rj around ri = rj = 0. The terms in this series will
contain one factor depending only on the wave function of molecule A, one factor depending
only on molecule B, and one factor depending only on the relative position and orientation
of molecules A and B.
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O

r A

rBrAB

i j

r
i

r j

R Ri
j

Figure II.A. Two interacting molecules A and B with origins rA and rB , respectively.

This means that when the first-order contribution to the energy is calculated according to

E(1) =
〈

ΨA
0 ΨB

0

∣∣∣VAB
∣∣∣ΨA

0 ΨB
0

〉
, (II.10)

the contributions to E(1) also factorize into two molecular factors and an interaction factor.
The molecular terms can be identified as molecular electric moments, and the first-order
energy contribution becomes†

E(1) = qATABqB + qAT
α
ABµB,α − µA,αTαABqB − µA,αTαβABµB,β

+
1
3
qAT

αβ
ABΘB,αβ +

1
3

ΘA,αβT
αβ
ABqB −

1
3
µA,αT

αβγ
AB ΘB,βγ

+
1
3

ΘA,αβT
αβγ
AB µB,γ +

1
9

ΘA,αβT
αβγδ
AB ΘB,γδ + . . . , (II.11)

the multipole expansion of the electrostatic energy.18 Here qA, µA,α, and ΘA,αβ are the charge,
the α-component of the dipole moment, and the αβ-component of the traceless quadrupole
moment of molecule A, respectively, and the interaction tensors for site A and B are

TAB = r−1
AB

TαAB = ∇αTAB = rAB,αr
−3
AB

TαβAB = ∇α∇βTAB =
(
3rAB,αrAB,β − r2

ABδαβ
)
r−5
AB

TαβγAB = ∇α∇β∇γTAB = [15rAB,αrAB,βrAB,γ
−3r2

AB (rAB,αδβγ + rAB,βδαγ + rAB,γδαβ)
]
r−7
AB

TαβγδAB = ∇α∇β∇γ∇δTAB = . . . ,

(II.12)

etc. By introducing the infinitesimal test charge δq at r, the electrostatic potential at r is
defined according to

φ(r) ≡ lim
δq→0

∂U ′

∂δq
, (II.13)

†We will conform to the Einstein summation convention for Greek letter indices throughout.
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where U ′ is the potential energyE(1) of the system consisting of moleculesA, B, and additional
charge-moment terms describing the interaction between the test charge and the molecules.
In turn, the α-component of the electrostatic field at r is defined as

Eα(r) ≡ −∂φ(r)
∂rα

, (II.14)

and the αβ-component of the electrostatic field gradient at r as

Eαβ(r) ≡ ∂Eα(r)
∂rβ

. (II.15)

The result of applying the definitions II.13, II.14, and II.15, and evaluating the results at rA
yields the electrostatic potential

φA = TABqB + TαABµB,α +
1
3
TαβABΘB,αβ + . . . , (II.16)

the field
EA,α = TαABqB + TαβABµB,β +

1
3
TαβγAB ΘB,βγ + . . . , (II.17)

and the field-gradient

EA,αβ = −
(
TαβABqB + TαβγAB µB,γ +

1
3
TαβγδAB ΘB,γδ + . . .

)
, (II.18)

at molecule A due to the presence of molecule B. Eqs. II.16 through II.18 allow the electro-
static energy to be recast as

Uele = qAφA − µA,αEA,α − 1
3

ΘA,αβEA,αβ = qBφB − µB,αEB,α − 1
3

ΘB,αβEB,αβ (II.19)

if moments higher than quadrupolar are neglected.
The second-order contribution to the energy is given as

E(2) =
∑

p+q>0

〈
ΨA

0 ΨB
0

∣∣∣VAB
∣∣∣ΨA

p ΨB
q

〉〈
ΨA
p ΨB

q

∣∣∣VAB
∣∣∣ΨA

0 ΨB
0

〉

εA0 − εAp + εB0 − εBq
, (II.20)

which is readily obtained from the general expression for the second-order energy contribution
of time-independent perturbation theory. The introduction of the dynamic dipole polarizabil-
ity

ααβ (ω) =
∑

p>0

(
1

ωp + ω
+

1
ωp − ω

)∑

i,j

〈Ψ0| ri,α |Ψp〉 〈Ψp| rj,β |Ψ0〉 , (II.21)

where ωp = εp − ε0, of which the static dipole polarizability ααβ is a special case (ω = 0),
allows terms in Eq. II.20 with p = 0 or q = 0 to be identified as the induction energy. These
become

Uind = −1
2
αA,αβEA,αEA,β − 1

2
αB,αβEB,αEB,β (II.22)

provided the interaction operator VAB contains up to linear terms only in either ri,α or rj,α
(the dipole approximation).
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The remaining part of Eq. II.20, which will be identified as the dispersion energy is
not straightforwardly separated into factors of molecular and interaction origin, since the
denominator of terms with both p > 0 and q > 0 contains energies for both molecules.
However, the use of an identity for this denominator yielding the desired factorization18 and
the dipole approximation for VAB allows the dispersion energy to be written as

Udisp = − 1
2π
TαγABT

βδ
AB

∫ ∞
0

dωαA,αβ (iω)αB,γδ (iω) . (II.23)

By introducing the approximation ααβ (iω) ≈ ααβ
ω2

ω2+ω2 , equivalent to the approximation
applied by London,23, 24 we arrive at

Udisp = −1
4

ωAωB

ωA + ωB
TαγABT

βδ
ABαA,αβαB,γδ . (II.24)

Here ωA is interpreted as an average ionization energy of molecule A. When employed in
simulations Eq. II.24 is often approximated by an isotropic term proportional to r−6 as in
Eq. II.3.

It has been demonstrated that when IPT is applied for the Coulomb interaction of the
electrons, the first-order energy contribution is the electrostatic energy and the two second-
order contributions are the induction and dispersion energy terms. The important exchange
repulsion term does not enter due to neglect of intermolecular charge distribution overlap† in
Eq. II.6. However, it can be established by the Heitler-London method of exchange pertur-
bation theory.25

Thus, IPT readily provides the individual fundamental contributions to the interaction
energy in Eq. II.1, thereby allowing for a more detailed analysis of the nature of intermolecular
interactions. The discrimination between a hydrogen-bond and a pure dispersion, exchange
interaction as in Ar· · ·Ar is indeed possible by IPT, but formally not by the supermolecular
approach. Moreover, simulation parameters as obtained by IPT are computed from quantum
chemical calculations on the solute monomer, resulting in a modest computational load as
compared to the supermolecular approach. Furthermore, the obtained parameters such as
charges, dipole moments, and polarizabilities have an unambiguous physical interpretation
which is not the case for parameters fitted to analytical expressions. Finally, the most im-
portant many-body effect, induction, is directly accounted for as shown above. The work
presented in this thesis has greatly relied on potentials derived using intermolecular pertur-
bation theory namely the so-called NEMO potentials.20, 26−29 In particular, the simulations
described in Papers II–V, VII and VIII employ a NEMO potential30 for the description of
liquid water.

†Formally, both exchange repulsion and overlap effects are neglected in this presentation, thus both contri-

butions should be addressed by Uexch.
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III Molecular simulation methods

With a suitable potential at hand we are in principle ready to begin exploring liquids and
solutions by molecular simulation. However, the classical models will provide a vast amount
of information which cannot be measured directly or even measured at all. A molecular
dynamics simulation will for example readily provide instantaneous positions and velocities
of all particles in the system. Conversely, experiments yield information about liquids not
directly available from simulations such as the static dielectric constant of the liquid. The
necessary link connecting microscopic data generated by simulations and macroscopic exper-
imental observables is constituted by statistical mechanics. An introduction to important
statistical mechanical concepts will therefore be given before the presentation of simulation
methodologies.

Molecular simulation is very often realized by the use of either a molecular dynamics
(MD) or a Monte Carlo (MC) method.8, 31 MD has the advantage of offering the possibility
to compute both dynamic and static properties of the simulated system, whereas only static
properties are available from MC simulations. The great flexibility in the choice of the MC
trial move, however, (see below) facilitates efficient simulation of a number of systems, en-
sembles, and processes which cannot easily be simulated by MD. The two techniques thus
supplement each other well, together providing an indispensable tool in the exploration of a
wide range of phenomena occurring in the condensed phase.

III.1 Statistical mechanics

Perhaps surprisingly, the laws of statistical mechanics are more readily derived by the use of
a quantum mechanical formulation rather than a classical one. Here the former approach will
be used to present the fundamentals of statistical mechanics. The presentation is based on
that by Frenkel and Smit31 and Reif.32

If we wish to give a statistical description of a situation, we must consider a very large, but
finite, number N of systems prepared similarly, an ensemble of systems. With respect to that
particular ensemble, we may determine the probability of occurrence of a particular event
simply by evaluating the fraction of systems in the ensemble in which the event occurred.

Suppose we have a macroscopic, quantum mechanical system composed of N particles
enclosed in a container of volume V , and that this system has total energy E. The degeneracy
of this system, i.e. the number of quantum mechanical eigenstates |i〉 satisfying H |i〉 = Ei |i〉
with Ei in the interval between E and E+δE, is denoted Ω (N,V,E). Since N for macroscopic
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systems is of the order of Avogadro’s number, Ω(N,V,E) is very, very large.† Suppose further,
that this system is in equilibrium, i.e. that the probability of finding the system in any one
state is independent of time. Absolutely central to statistical mechanics is the fundamental
postulate of equal a priori probabilities. This states that an isolated system in equilibrium
is equally likely to be in any of its accessible states.32 Consider now the isolated quantum
mechanical system shown in Figure III.A. The system is composed of two subsystems, which
are allowed to interchange thermal energy, but not mechanical energy.

N1, V1, E1 N2, V2, E2

Figure III.A. A quantum mechanical system.

The Hamiltonian of this system can be written

H = H1 +H2 +Hint , (III.1)

where the two first terms are Hamiltonians for subsystems 1 and 2, respectively, and Hint
is the Hamiltonian describing their interaction. For the subsystems to interchange energy,
this latter term must be non-vanishing, but we will assume that it is negligible compared to
H1 +H2. This defines the case of weakly interacting subsystems, for which the total energy
is

E = E1 + E2 . (III.2)

For a given choice of E1, the total energy E may be distributed among the two subsystems
in Ω(E1, E2) = Ω(E1)Ω(E2) ways 32 and the probability of finding the combined system in a
state where subsystem 1 has an energy E1 is proportional to this number, that is

P (E1) ∝ Ω(E1)Ω(E − E1) , (III.3)

where we have used Eq. III.2. Since the system is isolated, E is fixed, and the most likely
value of E1 is that maximizing the probability or, equivalently, its logarithm

ln Ω(E1, E − E1) = ln Ω(E1) + ln Ω(E − E1) . (III.4)

Thus, at equilibrium, E1 will attain the value satisfying ∂ ln Ω(E1,E−E1)
∂E1

= 0. The use of this
condition in Eq. III.4 and the introduction of the notation

β(N,V,E) ≡
(
∂ ln Ω(N,V,E)

∂E

)

N,V
(III.5)

yields
β(N1, V1, E1) = β(N2, V2, E2) . (III.6)

†For an ideal, monoatomic gas described by classical mechanics, Ω (N,V,E) ∝ V NE3N/2. 32
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If we initially put all energy into subsystem 1, energy would be transferred into subsystem 2
until Eq. III.6 is satisfied. Eq. III.6 therefore expresses the condition for thermal equilibrium,
a condition that in thermodynamics is related to maximization of the system entropy, S.
When Eq. III.6 is satisfied, ln Ω(E1, E−E1) is at its maximum, and it is therefore natural to
define the entropy as

S(N,V,E) = kB ln Ω(N,V,E) , (III.7)

where kB is Boltzmann’s constant. Since thermal equilibrium implies the satisfaction of
Eq. III.6, β is expected to be related to the temperature. The use of the thermodynamic
definition of temperature, 1/T =

(
∂S
∂E

)
(N,V )

, along with the definition of β yields

β =
1

kBT
. (III.8)

In the chemical laboratory it is much more convenient to prepare a system at constant
temperature than at constant energy. In MS it is therefore desirable to mimic the latter
situation. To that end, consider the system shown in Figure III.B

EA Ebath
ppppppppppppppppppp
ppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppp

Figure III.B. A quantum mechanical system A weakly interacting with a heat bath.

Assume, that the quantum system A is prepared in one specific eigenstate |i〉 with an energy
Ei determined from the time-independent Schrödinger equation

H |i〉 = (HA +Hbath +Hint) |i〉 = (Ei +Hint) |i〉 ≈ Ei |i〉 (III.9)

by following arguments similar to those leading to Eq. III.2. The probability Pi of finding
the system in state |i〉 will then be determined by the degeneracy of the bath Ωbath(E − Ei)
according to the postulate of equal a priori probabilities as

Pi =
Ωbath(E − Ei)∑
j Ωbath(E − Ej) . (III.10)

Since E − Ei = Ebath À Ei we may approximate ln Ωbath(E − Ei) by its Taylor expansion
around Ei = 0 to first order

ln Ωbath(E − Ei) ≈ ln Ωbath(E)− Ei∂ ln Ωbath(E)
∂E

= ln Ωbath(E)− βEi , (III.11)

where the last equality has been obtained using the definition of β. Inserting in Eq. III.10
gives

Pi =
e−βEi∑
j e
−βEj ≡ Q

−1e−βEi , (III.12)
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by which we define the partition function Q. Now we can calculate the ensemble average
energy of the system A

〈E〉T =
∑

i

EiPi = Q−1
∑

i

Eie
−βEi

= −∂ lnQ
∂β

= −∂kB lnQ
∂1/T

. (III.13)

By comparing to the thermodynamic relationship between the energy and the Helmholtz free
energy (A), E = ∂A/T

∂1/T we find that

A = −kBT lnQ . (III.14)

In general, the average value of an observable B is given as

〈B〉 =
∑
i e
−βEi 〈i|B |i〉∑
i e
−βEi . (III.15)

This expression need be transformed into its classical counterpart, in order to be useful in the
application of the classical simulation methods. This is done by discretization of the classical
coordinate and momenta variable space, the phase space, and observing that the Heisenberg
uncertainty principle puts an upper bound on the granularity of this discrete representation.32

Here, merely the result is quoted8, 31

〈B〉 =
∫
drNdpNe−βH(rN ,pN )B(rN,pN )∫

drNdpNe−βH(rN ,pN )
, (III.16)

where summation over states is turned into phase space integration over the coordinates r
and momenta p of the N particles and H(rN,pN ) is the classical Hamiltonian function. This
is the ensemble average as obtained in the canonical ensemble (constant N , V , and T ).

III.2 Molecular dynamics simulation

When conducting a chemical experiment it is common practice to prepare a sample of the
system subjected to investigation and subsequently measure certain properties of the sample
by collecting data for a period of time. A molecular dynamics (MD) simulation is in many
respects equivalent to the chemical experiment. The model system, which we will here assume
to be atomistic, is prepared in a reasonable configuration, the particles are given initial
velocities and the system is then propagated according to the equations of motion33

ṙi(t) = vi(t)

v̇i(t) = ai(t) = fi(t)/mi = −∇iU/mi , (III.17)

where ri, vi, and ai is the position, velocity, and acceleration of particle i, with mass mi, fi
the total force exerted on it by the other particles of the system, and U a potential model,
as discussed in Chapter II. During the propagation, the desired quantities are sampled and
their statistical accuracy can be improved by extending the propagation time.
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Eq. III.17 is a system of 6N coupled first-order differential equations and is as such a
standard numerical problem usually solved by finite difference schemes.34 However, since
the purpose of an MD simulation is to predict averages rather than computing an accurate
trajectory, the most suitable integrator is not a general purpose algorithm. By far, the
most time consuming task in an MD simulation is the calculation of the forces and it is
therefore desirable that the integrator is able to use long time steps, still yielding good energy
conservation. The time-reversibility of Newton’s equations is also a property which should
be reflected in the integrator. In general, energy conservation can be improved by shortening
the time step which in turn increases the computational effort. Algorithms that show good
compromise between accuracy and economy in terms of computational requirements are the
Verlet8, 35 class of integrators, here exemplified by the velocity form36

r(t+ ∆t) = r(t) + v(t)∆t+
1
2
a(t)∆t2 (III.18)

v(t+ ∆t) = v(t) +
1
2

[a(t+ ∆t) + a(t)] ∆t . (III.19)

If the velocity is eliminated from Eq. III.18, the original coordinate form of the Verlet algo-
rithm is found35

r(t+ ∆t) = 2r(t)− r(t−∆t) + a(t)∆t2 (III.20)

which can be derived by adding the Taylor expansions for r(t + ∆t) and r(t − ∆t). Time
reversibility of this scheme is evident from the symmetric role of r(t + ∆t) and r(t −∆t) in
Eq. III.20.

The usefulness in a statistical mechanical sense of a time averaged property relies on the
ergodic hypothesis. This states that time averaging and ensemble averaging are equivalent,
i.e.

B = 〈B〉 (III.21)

where

B = lim
t→∞

1
t

∫ t

0
dt′B(t′) . (III.22)

This hypothesis will be justified in the following. Note that in Eq. III.22 it is implicitly
assumed that B is independent of the initial conditions Γ(0) ≡ {rN (0),pN (0)}. Therefore,
the time average will not change if we choose to average also over initial conditions as

B =
1
Nic

Nic∑

i

[
lim
t→∞

1
t

∫ t

0
dt′B(Γ(0)i, t′)

]
. (III.23)

In the limit of considering every possible initial state Nic → Ω(N,V,E) we obtain (disregard-
ing a constant factor31)

B =
1

Ω(N,V,E)

∫
drNdpNδ(H − E)

[
lim
t→∞

1
t

∫ t

0
dt′B(Γ(0), t′)

]

= lim
t→∞

1
t

∫ t

0
dt′
〈
B(Γ(0), t′)

〉
NV E , (III.24)
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where the Kronecker δ assures that the integration is only over the part of phase space with
energy E. The second equality is established by interchanging the order of integration and
subsequently recognizing the phase space integral over constant E as the micro-canonical
(constant N , V , and E) ensemble average. Due to the determinism of mechanics there is
complete equivalence between averaging over the set of initial phase space points and the
time-evolved ones; 〈B(Γ(0), t′)〉NV E is independent of t′ and

B = 〈B〉NV E . (III.25)

It is important to realize that even though a system is ergodic in principle there may be
several reasons for it not to be ergodic in practice. This is the case for systems where large
energetic barriers separate important portions of the configuration space as will be discussed
in Chapter IV.

III.3 Monte Carlo simulation

A Monte Carlo (MC) simulation is conceptually very different from an MD simulation. Where
the latter propagates the molecular system according to Newton’s equations of motion and
relies on ergodicity to provide ensemble averages from time averages, an MC simulation
establishes the ensemble averages in a more direct fashion, as will be outlined in the following.

The goal is to compute ensemble averages

〈B〉 =
∫
drNe−βU(rN )B(rN )∫

drNe−βU(rN )
≡ Z−1

∫
drNe−βU(rN )B(rN ) (III.26)

now focusing on the most difficult configurational part of Eq. III.16.† Here Z is the configu-
rational part of the partition function. Eq. III.26 gives the ensemble average of the property
B as a probability weighted integration 〈B〉 =

∫
drNρ(rN )B(rN ) where

ρ(rN ) =
e−βU(rN )

Z
(III.27)

is the probability density. The calculation of the denominator Z using traditional quadrature
is of course exceedingly cumbersome primarily due to the dimensionality of the problem.
However, the Metropolis scheme37 allows for the generation of points in configuration space
distributed according to ρ(rN ), requiring knowledge only of the potential energy U(rN ).
Suppose we start at the point rN = o in configuration space. From o we generate a random
new configuration rN ′ = n and denote the probability of going from o to n by π(o → n). If
this probability can be determined from knowledge only of the configurations o and n, the
successive chain of configurations will constitute a Markov chain. Since these configurations
are drawn from the probability distribution ρ(rN ), they may be viewed as constituents of the
ensemble. Thus, the desired ensemble averages can be calculated as we propagate along the
Markov chain.
†If the property B is independent of pN the kinetic part of Eq. III.16 can be evaluated analytically, since

classically e−βH(rN ,pN ) = e−βK(pN )e−βU(rN ) and the kinetic energy function K(pN ) is merely a 3N dimensional

Gaussian.
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We proceed by evaluating the transition probability. This must obey the condition, that
once an equilibrium distribution is established, it must not be destroyed. Therefore, the
distribution must satisfy a steady state condition, which can be formulated as

... in a very large number of MC simulations on the same system the number of
transitions into state o must equal the number of transitions leaving state o

or
ρ(o)

∑

n 6=o
π(o→ n) =

∑

n 6=o
ρ(n)π(n→ o) . (III.28)

This condition is most certainly fulfilled if each term on the left hand side equals the corre-
sponding term on the right hand side, i.e. if

ρ(o)π(o→ n) = ρ(n)π(n→ o) , ∀n , (III.29)

which is known as the condition of detailed balance. As already implicitly assumed, the
procedure of going to state n from state o consists of two steps; selecting state n as a trial
configuration [with probability α(o→ n)] and subsequently accepting state n [with probability
acc(o→ n)]. The outcome of both steps must be successful for the transition to occur so

π(o→ n) = α(o→ n)acc(o→ n) . (III.30)

In a conventional MC simulation37 α is chosen to be symmetric α(o → n) = α(n → o), and
with this choice the use of Eq. III.30 in Eq. III.29 yields

acc(o→ n)
acc(n→ o)

=
ρ(n)
ρ(o)

= e−β[U(n)−U(o)] , (III.31)

where the last equality follows from Eq. III.27. This condition is trivially satisfied by the
choice

acc(o→ n) =

{
ρ(n)
ρ(o) , ρ(n) < ρ(o)
1 , ρ(n) ≥ ρ(o)

, (III.32)

which yields for the transition probability

π(o→ n) =

{
α(o→ n)e−β[U(n)−U(o)] , U(n) > U(o)
α(o→ n) , U(n) ≤ U(o)

,

π(o→ o) = 1−
∑

n6=o
π(o→ n) .

The MC algorithm consists of three steps which in a simulation undergo repetition

1. Select trial configuration n from current configuration o.

2. Generate a random number σ ∈ [0; 1]. Accept new configuration and replace o by n if
and only if σ < e−β[U(n)−U(o)].

3. Compute averages.
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Before this algorithm can be implemented it is necessary to elaborate on the procedure by
which the trial configuration is selected; the trial move. The only restriction on α is that it
must be symmetric which leaves considerable flexibility in the choice of trial moves. One very
common choice is accomplished by selecting rN ′ = n from rN = o such that

rN ′ =
{
r′1, . . . , r

′
i, . . . , r

′
N

}
= {r1, . . . , ri + ∆, . . . , rN} , (III.33)

where i is picked at random, and ∆ has components ∆α = δ(1− 2σα), where σα are random
numbers satisfying 0 ≤ σα ≤ 1.

III.4 Long-range interactions

The simulation of a macroscopic sample with a number of particles on the order of Avogadro’s
number, is of course not possible. When simulating a liquid, it is thus necessary to impose
some set of boundary conditions on the system in order to mimic bulk behavior. The goal is to
reduce, and ideally remove, the influence of surface effects on the simulated properties. This
is most conveniently done by introducing periodic boundary conditions and using either the
minimum image convention in which each particle interacts with the nearest periodic image
of all other particles or a spherical cut-off. In the latter approach each particle interacts with
the nearest periodic image of all other particles within a sphere of radius rc.
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Figure III.C. Periodic boundary conditions in two dimensions. The simulation box G containing
five particles is replicated in the x and y directions. The minimum image convention and spherical
cutoff are demonstrated by the box centered on particle 1 and the dotted circle centered on particle
5, respectively.
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This is illustrated in Figure III.C. If the minimum image convention is applied for particle
1, it interacts with the periodic image of particles: 4 in box B, 5 in box C, 2 in box F, and 3
in box G. If a spherical cut-off is used for particle 5 it will interact with the image of particles
3 and 4 in box G and that of particle 1 in box K, but not with any image of particle 2.

In the spherical cut-off treatment of an atomistic liquid the amount of neglected pair
potential energy is proportional to

∫∞
rc
r2upair(r)dr if the density is considered to be uniform

for r > rc. For pair potentials upair with an asymptotic behavior as r−n this integral diverges
if n ≤ 3. Interactions with this behavior, among which we find the very important cases
of the Coulomb (n = 1) and dipole-dipole (n = 3) interactions, are commonly referred to
as long-range. The most straightforward way to overcome this problem, would simply be to
replicate the simulation box and compute the pair interaction energy as a so-called lattice
sum

Ulattice =
1
2

∑

|m|≤mcut

∑

i,j

′
Uij (rij + mL) , (III.34)

where L is the simulation box length, m is a vector of integers, and the prime indicates
that the i = j term should be omitted for m = 0. The integer mcut should be increased
until Ulattice satisfies some criterion of convergence. The two-dimensional case is illustrated in
Figure III.C; for mcut = 2 the particles in box G should interact with all images in boxes A
through M except their own image in box G. The direct summation in Eq. III.34 is extremely
demanding in terms of computer resources. However, an efficient scheme for computing the
sum was developed by Ewald38 which was later generalized to dipole interactions.39 The
original expression by Ewald is valid in the case of the infinitely replicated system surrounded
by a conductor, whereas Eq. III.34 holds when the total system is surrounded by vacuum. The
connection between the two schemes was established by deLeeuw et al.40 by the introduction
of the so-called surface term.8, 31 Recently, faster schemes, such as the particle-mesh Ewald
summation 41 have been developed.

An alternative to the Ewald summation (ES) also in widespread use is the reaction field
(RF) method in which the interactions are truncated spherically as when simulating under
spherical cut-off conditions. But instead of assuming that the droplet of radius rc is sur-
rounded by vacuum, the medium beyond the cut-off is treated as a homogeneous and isotropic
dielectric extending to infinity. The dipole moment of the sphere induces a polarization in the
surrounding dielectric, causing a reaction field that interacts with the dipole at the center of
the sphere.8, 42, 43 The magnitude of the reaction field is found by solving Laplace’s equation
for the potential inside and outside the cavity.43 It is given as

Ri,α =
2 (εRF − 1)

(2εRF + 1) r3
c

Mi,α , (III.35)

where εRF is the dielectric constant of the surrounding medium and Mi,α the α-component
of the total dipole moment of the sphere with radius rc centered on particle i. The ES and
RF methods are described in detail in Paper VI, where they are generalized to polarizable
systems.
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III.5 Molecular simulation on parallel computers

The application of MS to the large systems of interest in biochemical science and industry
poses great computational demands. Systems containing tens of thousands of atoms and mil-
lions of pair-interactions must be propagated for several million simulation steps, preferably
in not more than a few days. Modern state-of-the-art computers are parallel, and, in order
to be used efficiently, need parallel programs. Also those with no access to such facilities, can
benefit from parallel computing, since the low cost of PC hardware has motivated the con-
struction of parallel architectures by interconnecting a large number of PC’s or workstations
to form so-called Beowulf systems. These are capable of providing nearly super-computer
CPU power at a very low price.

Parallel computers are often categorized by how the system memory is accessed and are
as such either of the shared memory or distributed memory type. Shared memory machines
have a number of processors connected to a global memory bank through which they can com-
municate. In distributed memory machines each processor is connected to its own memory,
and data must be transferred explicitly by means of a fast inter-connector. Shared memory
computers are fairly easy to program; much of the work is done by the compiler through di-
rectives supplied by the programmer but the design works well only on systems with a small
number of processors. Distributed memory machines can utilize hundreds of processors, the
price, unfortunately, is paid by the programmer who has to explicitly program the parallelism.

To facilitate easy programming of different parallel computers and the writing of portable
programs, sets of useful routines for a distributed memory environment, such as routines to
send data to a particular processor, have been standardized. One such standard, MPI,44, 45

has been implemented on a very large number of platforms - including shared memory com-
puters. By conforming to the MPI interface, code can be produced requiring nothing but
a recompilation in order to function on architectures as different as SGI Origin 2000 shared
memory machines and a group of PC’s connected by a fast switch.

In connection with the work presented in Paper VII the MOLSIM program 6 was paral-
lelized using the MPI interface. The parallelization was targeted at efficiency for the systems
investigated in that work; polarizable systems on the order of a few thousand atoms. When
conducting MD simulations of polarizable systems, the bulk of the computational load is
spent evaluating the electric potential, field, the electric field-gradient and, in turn, the in-
duced dipole moments and intermolecular forces - see Section VI.1 and Paper VII for details.
For efficiency, MOLSIM employs a neighbor list8, 35 in conjunction with a spherical cut-off.
Each entry in the neighbor list represents a pair of molecules, and the list holds at least all
interacting pairs of molecules. Energy and forces are evaluated by looping through all entries
in the neighbor list, computing the contributions from the pairs within the spherical cut-off.
The parallelization was realized by making each processor responsible for computing contri-
butions from a particular portion of the neighbor list. The parallel algorithm consists - in a
simplified version - of six steps:

1. Each processor computes the neighbor list, if necessary.

2. Processor P : compute contribution to potential, field, or field-gradient from pair inter-



III.5. Molecular simulation on parallel computers 27

actions in the P ’th part of the neighbor list.

3. Gather: Processor 1 receives contributions to potential, field, or field-gradient from
processors 2, . . . , nproc and performs a summation of the contributions.

4. Broadcast: Processor 1 sends the summed result to processors 2, . . . , nproc.

5. Each processor computes energy and forces on all particles, and propagates the particles.

6. Processor 1: Produce output and compute averages, if necessary.

It is only in step 2 that the processors perform different tasks. In step 1 and 5 the proces-
sors perform identical operations which is more efficient than computing partial results and
subsequently invoking additional communication. In the actual implementation, step 3–4 are
combined in a single MPI functionality. The trajectory is known to each processor so only a
single processor is involved in producing output and computing averages in step 6.

When the ES is invoked in the simulation of a polarizable system, the potential, field,
and field-gradient all consist of both real-space and reciprocal-space contributions.V I The
real-space contributions are evaluated as pair interactions, and are thus readily parallelized
according to the procedure described above, but a different approach is required for the
reciprocal-space contributions. As indicated by Eqs. II.13–II.15 contributions to the electro-
static potential, field, and field-gradient at atom i are all derivatives of the reciprocal-space
energy contribution with respect to a property of atom i and have the general form V I

Fi =
∑

k6=0

m(i,k)
∑

j

Q(j,k) , (III.36)

where m(i,k) depends on properties of atom i (e.g. its charge, dipole moment, and position)
and the k-vector. In the parallel implementation, the atoms are distributed among the nproc
processors. Each processor, P , is responsible for the calculation of Fi, i ∈ P , hence the
scheme

1. Processor P : Calculate QP (k) =
∑
j∈P Q(j,k) for every value of k.

2. Gather and broadcast of QP (k) - each processor now holds the sum over j in Eq. (III.36)
for each k.

3. All processors: Compute the final sum over k.

A certain amount of overhead is, however, involved since factors eik·ri enter both m(i,k) and
Q(i,k)V I and thus have to be evaluated in both the first and last step. For the purpose of
serial computation it is therefore more efficient to maintain another algorithm in which the
eik·ri factors are evaluated only once.
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IV Chemical reactions in solution

Since the bulk of applied chemistry occurs in solution, it is highly desirable to understand in
detail how the solvent influences the reacting system. The role of the solvent is this respect is
many-sided. It will alter the potential energy surface upon which the reaction takes place, e.g.
through stabilization of polar or ionic species by a polar solvent. It will act as both an energy
source and an energy sink, typically as the former when the reaction barrier is ascended and as
the latter when the reaction barrier is descended. It will also directly influence the dynamics
of the reaction by enhancing or impeding the motion of the reaction complex.

For a chemical reaction to be tractable by classical molecular dynamics simulation, non-
adiabatic coupling, tunneling, and other quantum phenomena must be unimportant. The
potential energy surface must account for the breaking and formation of bonds, deeming a
global quantum mechanical description of the reaction system necessary in its construction.
Given a suitable potential for the reaction system and solvent, the investigation of the reaction
may be pursued by initiating trajectories in the reactant channel and following their path to
the product channel. Unfortunately, this simple approach is not feasible since a chemical
reaction, on the time scale normally considered by MD simulations, is a very rare event.
That is, the majority of these trajectories will remain in the reactant region for a very long
time. However, should unlikely fluctuations bring the system to the transition state, through
which the reaction is assumed to proceed, the reaction will occur quickly. To that end, it is
the formation of the transition state that is a rare event.

The solution to this problem is provided by non-equilibrium statistical mechanics. This
formulation allows the reaction rate to be determined as the product of the probability of
finding the reaction system at the transition state and the rate by which the transition state
configuration is decomposed. 46, 47 The former factor is an equilibrium property which can
be calculated by MS methods; all dynamics of the reaction enter via the decomposition rate.
And since the reaction occurs readily once the transition state is reached, the decomposition
rate is also available from MD simulation.

IV.1 Reaction rate constants described by non-equilibrium

statistical mechanics

In this Section, a brief presentation of non-equilibrium statistical mechanics applied to chem-
ical kinetics, based on that by Chandler,46, 47 is given. Consider the isomerization reaction

A ⇀↽ B (IV.1)

29
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described by the phenomenological rate equations

dcA
dt

= − kA→BcA(t) + kB→AcB(t)

dcB
dt

= kA→BcA(t)− kB→AcB(t) , (IV.2)

where cA, cB, kA→B, and kB→A are the concentrations of A and B and the rate constants for
the forward and backward reaction, respectively. For a closed system, the sum of these rates
is zero, and at equilibrium ċA = ċB = 0, implying

kA→B
kB→A

=
〈cB〉
〈cA〉 ≡ K , (IV.3)

by which the equilibrium constant K is defined. Suppose the equilibrium is perturbed at
time zero by increasing the concentration of A by ∆cA, such that cA(t) = 〈cA〉+ ∆cA(t) and
cB(t) = 〈cB〉−∆cA(t). Inserting these expressions in Eq. IV.2 and the use of Eq. IV.3 allows
the rate of decay of the perturbation to be determined as

d∆cA(t)
dt

= − (kA→B + kB→A) ∆cA(t) (IV.4)

with the solution

∆cA(t) = ∆cA(0)e−(kA→B+kB→A)t ≡ ∆cA(0)e−t/τR , (IV.5)

which defines the reaction time constant τR.
We proceed by considering the microscopic perspective in the framework of linear response

theory. The idea is to apply a perturbation at t = −∞ which will shift the equilibrium
concentrations. At t = 0 the perturbation is instantaneously turned off, allowing us to
monitor the decay of the system toward equilibrium. We imagine that the progression of the
reaction can be described by a reaction coordinate s, for which the reactant state A, product
state B, and the transition state are characterized by s < 0, s > 0, and s = 0, respectively.
The microscopic analogy of increasing the concentration of A is to add to the Hamiltonian
H0 a term favoring A, i.e. states with s < 0, as

H = H0 − λθ(−s) , (IV.6)

where λ is a parameter measuring the strength of the perturbation and θ(t) is the Heaviside
step function, θ(t) = 1 for t > 0 and θ(t) = 0 otherwise. For convenience, we will define
θA ≡ θ(−s) and θB ≡ θ(s). The connection to the macroscopic formulation is now established
by observing that

∆cA = 〈cA〉λ − 〈cA〉 = 〈θA〉λ − 〈θA〉 , (IV.7)

where subscript λ indicates ensemble averaging in presence of the external perturbation. The
change in concentration is characterized by the static response of the concentration to the
perturbation, i.e.

∂∆cA
∂λ

=
∂ 〈θA〉λ
∂λ

=
∂

∂λ

∫
dΓe−β(H0−λθA)θA∫
dΓe−β(H0−λθA)

, (IV.8)
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where we use the shorthand notation Γ for all coordinates and momenta introduced in Sec-
tion III.2. Differentiation yields

(
∂∆cA
∂λ

)

λ=0
= β 〈θA〉 (1− 〈θA〉) = β 〈cA〉 〈cB〉 , (IV.9)

so to first order in λ

∆cA = βλ 〈cA〉 〈cB〉 . (IV.10)

Consider now the situation when the perturbation is removed at t = 0. Since the perturbation
was applied at t = −∞, the non-equilibrium distribution experienced now in the absence of the
perturbation, is the equilibrium distribution when the perturbation in turned on. Therefore,
the time evolution of ∆cA for 0 < t¿ τR is given as

∆cA(t) = 〈∆θA(t)〉λ =
∫
dΓe−β(H0−λθA)∆θA(t)∫

dΓe−β(H0−λθA)
, (IV.11)

where ∆θA(t) = θA(t) − 〈θA〉. The time evolution of θA(t) should be governed by the un-
perturbed Hamiltonian H0 since the perturbation was turned off at t = 0. By expanding
e−β(H0−λθA) as a Taylor series around λ = 0 and considering terms to first order in λ only
yields

∆cA(t) = βλ 〈∆θA(0)∆θA(t)〉 = βλ
(
〈θA(0)θA(t)〉 − 〈θA〉2

)
, (IV.12)

where we have used that 〈∆θA〉 = 0. Elimination of λ by the use of Eq. IV.10 gives

∆cA(t) = ∆cA(0)
〈θA(0)θA(t)〉 − 〈θA〉2

〈cA〉 〈cB〉 . (IV.13)

By comparing to the macroscopic result, Eq. IV.5, it is evident that

e−t/τR =
〈θA(0)θA(t)〉 − 〈θA〉2

〈cA〉 〈cB〉 . (IV.14)

However, at times so short that the system is still in the transition state region this equation
is not expected to hold, since the right hand side definitely will not decay exponentially
according to τR. Only for times long compared to the barrier crossing time, will the equation
hold. By taking the time-derivative of Eq. IV.14 we obtain

−τ−1
R e−t/τR =

〈
θA(0)θ̇A(t)

〉

〈cA〉 〈cB〉 = −
〈
θ̇A(0)θA(t)

〉

〈cA〉 〈cB〉 . (IV.15)

For times longer than the barrier crossing time, but much shorter than τR, e−t/τR ≈ 1. The
use of Eq. IV.3 and 〈cA〉 + 〈cB〉 = 1 gives τ−1

R = kA→B/ 〈cB〉 and inserting this result in
Eq. IV.15 yields

kA→B =

〈
θ̇A(0)θA(t)

〉

〈cA〉 , (IV.16)

where the numerator may be elaborated on noting that

θ̇A = θ̇(−s) = ṡ
∂θ(−s)
∂s

= −ṡδ(s) . (IV.17)
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Inserting in Eq. IV.16 yields

kA→B(t) =
〈−ṡ(0)δ [s(0)] θA(t)〉

〈cA〉 =
〈ṡ(0)δ [s(0)] θB(t)〉

〈θA〉 , (IV.18)

where the last equality follows from 〈ṡ(0)δ [s(0)]〉 = 0. Since limt→0+ θ [s(t)] = θ(ṡ), we may
obtain the initial rate constant as

kA→B(0) =
〈ṡ(0)δ [s(0)] θ(ṡ)〉

〈θA〉 . (IV.19)

The property averaged in the numerator of Eq. IV.18 can be characterized as the reactive flux
crossing the transition state, where reactive means that the trajectory ultimately ends in the
product region as determined by the factor θB(t). In Eq. IV.19 all trajectories initially directed
toward the product region are considered reactive. This is equivalent to the assumption in
transition state theory of no recrossing of the barrier,† and Eq. IV.19 is indeed equivalent
to the rate constant obtained from transition state theory. Recrossings will, as discussed
above, occur on a time scale much faster than τR, causing kA→B(t) to display an initial fast
decay followed by a plateau, determining the phenomenological rate constant. Assuming the
plateau is reached after ∆t, the observed rate constant is given as kA→B(∆t). To that end,
we may define the transmission factor as

〈η〉 =
k(∆t)
k(0)

, (IV.20)

where the subscript on the rate constant has been omitted. The transmission factor can be cal-
culated as the fraction of trajectories initiated at the transition state leading to reaction,49, 50

and combined with the transition state theory result to yield the exact rate constant.

IV.2 Simulation of an SN2 reaction in aqueous micro-solution

The nucleophilic, bimolecular substitution (SN2) reaction mechanism and its uni-molecular
counterpart SN1 are among the most studied in chemistry. Comparative studies of SN2 reac-
tions in gas-phase and in liquid phase have revealed reaction rates differing by several orders
of magnitude,51 and theoretical investigations of SN2 reactions have dealt with accounting for
these differences.

The subject of Paper I is the SN2 reaction

Cl− + CH3Cl′ ⇀ ClCH3 + Cl′− (IV.21)

occurring in clusters of water molecules. The chemical reaction was described by a com-
plete potential energy surface for the [ClCH3Cl]− system including the C-H motion,52 and a
flexible, polarizable model was used for the water molecules. Chemical rate constants were cal-
culated as a function of cluster size and temperature using the dynamical model of Eq. IV.20.

†The original paper of Eyring48 does in fact discuss the possibility of recrossing, taken into account in his

rate equations by a transmission factor.
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Moreover, MD simulations were carried out to investigate the structure and dynamics of the
reaction clusters.

The rate constant and reaction barrier as functions of the number of solvent molecules
was found to follow a rather irregular pattern from the gas-phase values to the values for the
reaction in bulk aqueous solution. This irregularity was found to be related to the enhanced
stabilization of the ion-dipole reactant complex at certain cluster sizes. MD simulations
showed that the chloride ion of the reactant complex as in aqueous solution is able to coor-
dinate a large number of water molecules, whereas the chlorine atoms in the transition state
complex coordinate a lower number of water molecules in their first solvation shell. This
causes a stronger stabilization of the reactant complex compared to that of the transition
state complex. Further, the water clusters were found to be weaker coordinated to Cl− than
in the liquid state related to the lack of acceptors for the kinetic energy gained by these water
molecules in close proximity of the chloride ion.

IV.3 An entire reaction coordinate method

The model utilized in Paper I provides information only about a very limited part of reac-
tion coordinate space. Essentially only two points are considered, the reactant state and the
transition state. Although knowledge of these two configurations is sufficient to obtain the re-
action rate constant, it is of substantial interest to probe the entire reaction coordinate space.
As discussed above, direct simulation will fail to establish adequate sampling of the transition
region, but this may be remedied by so-called umbrella sampling.53 In this technique an ad-
ditional artificial potential term, referred to as an umbrella potential, is introduced by which
the reaction coordinate is restricted to a particular interval. The reaction coordinate space is
thus split into discrete intervals, and an umbrella sampling simulation is performed on each
interval. Subsequently, the combined effort of these simulations provide the full probability
distribution or potential of mean-force (PMF) along the reaction coordinate. However, it is
difficult to decide, a priori, the form of the umbrella potential.

An improved procedure has been suggested by Engkvist and Karlström.54 They introduce
a modified MC procedure, in which an umbrella potential is constructed as the simulation
progresses. Thus, the entire reaction coordinate (ERC) space is sampled during a single
simulation. Consider the one-dimensional probability distribution of the reaction coordinate
s, which can be calculated from the probability density in the canonical ensemble, Eq. III.26,
as

P (s) =
∫
drNδ

(
s′ − s) ρ(rN ) =

∫
drNδ (s′ − s) e−βU(rN )

∫
drNe−βU(rN )

. (IV.22)

If an umbrella potential U ′(s) depending solely on the reaction coordinate is added to the
potential energy, a different probability distribution is obtained as

P ′ (s) =
∫
drNδ (s′ − s) e−β[U(rN )+U ′(s)]
∫
drNe−β[U(rN )+U ′(s)] . (IV.23)

This new probability distribution can be expressed in terms of the original distribution up to
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a normalization constant as
P ′ (s) = P (s)e−βU

′(s) . (IV.24)

The most effective sampling of the reaction coordinate space occurs when P ′ (s) is uniform,
i.e. when U ′ is chosen to be proportional to β−1 lnP (s). In that case U ′ efficiently cancels
the PMF defined as

W (s) = W0 − β−1 lnP (s) , (IV.25)

where W0 defines the arbitrary zero-point. However, from Eq. IV.25 we note that knowledge
of P (s) is required to calculate W (s). Since P (s) is the result of the simulation, this is not
immediately a feasible approach. As mentioned, a solution is offered by modifying U ′ as
the simulation advances ensuring that U ′ ultimately converges toward W . The modification
procedure is constructed to force the MC algorithm to move away from the region populated at
equilibrium, and thereby cause the ascending of reaction barriers. In a discrete representation
of s, U ′ is updated as

U ′(si)new = U ′(si)old + β−1 ln [1 + u(M)] , lim
M→∞

u(M) = 0 , (IV.26)

where si is the current value of the reaction coordinate and the positive update function,
u(M), depends on the number of performed simulation steps, M . Unfortunately, this simula-
tion procedure is not a valid MC simulation as described in Section III.3 since the potential
is altered in each step violating the symmetry requirement on the α matrix (Eq. III.30).
However, when the simulation potential has converged, the limit u(M) = 0 is reached, and α
becomes symmetric. Thus, the subsequent part of the simulation satisfies the formal require-
ment for an MC simulation. Therefore, the number of simulation steps must be much larger
than the number of steps required to converge U ′.
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Figure IV.A. Gas-phase probability distribution for the reaction coordinate of the chloride-methyl-
chloride reaction system obtained using both a traditional MC (TMC) simulation and an entire reaction
coordinate MC (ERC-MC) simulation.
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Figure IV.A shows the probability distribution P (s) for the chloride-methyl-chloride reaction
system in gas-phase at two different temperatures. The potential energy surface and the
reaction coordinate used is the same as in Paper I; s = rCl1C − rCl2C . The form chosen for
the update function in Eq. IV.26 was u(M) = M3/maxi

{
eβU

′(si)old
}

and the number of steps
used in each simulation 2·107. It is evident that the traditional MC simulation probes only the
reactant region, whereas the ERC-MC method correctly determines the symmetric probability
distribution. The maximum of P (s) corresponds to the ion-dipole complex Cl− · · ·CH3Cl. The
decreasing probability as |s| is increased beyond the maximum shows that the breaking of
this complex requires a substantial amount of energy, and therefore is unlikely.

Preliminary results from studying the same system in aqueous solution are also available.
During the course of these solution studies, it became apparent that MC sampling of the
solvent motion was inadequate to model the relatively rapid structural changes experienced
by the water molecules close to the reaction complex. This was improved upon, ad hoc, by
employing a combined ERC-MC/MD procedure allowing an MD description of the solvent.

Simulations were performed by immersing the chloride-methyl-chloride system in a cavity
formed by removing water molecules from an equilibrated system of 64 molecules.† After
equilibration the system was propagated for 1·107 combined steps consisting of two ERC-MC
steps followed by a single MD step. The intramolecular potential described in Paper I was
used in conjunction with the SPC water potential.55
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Figure IV.B. PMF for the chloride-methyl-chloride reaction system. Results are shown for the solvated
system with an external electric field (dotted) of E=0.01, 0.004, and 0.001 a.u. from top to bottom,
no external field (full), and for the system in gas-phase (dashed).

The PMF for the reaction system in solution and in the gas-phase is shown in Figure IV.B.
The weak bumps in the upper part of the barrier for the gas-phase PMF is an artifact of the

†This number of water molecules is generally much too low to account properly for the solvation.
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applied potential energy surface. Ideally, the PMF in solution should reflect the symmetry of
the reaction, and the deviations from reflection symmetry in s of the PMF is caused by inade-
quate statistical convergence. Upon solvation, the stabilization of the ionic reactant/product
species is enhanced compared to that of the transition state complex. This causes the reaction
barrier to increase from ∼60 kJ/mol in the gas-phase to ∼115 kJ/mol in solution. This is
in good agreement with both the experimental result of 111 kJ/mol56 and other theoretical
estimates of 116 5 and 110±2 kJ/mol 57 despite the low number of solvent molecules used in
the present study. Apart from increasing the barrier height, the solvent also causes a dra-
matic change in the shape of the barrier. At about |s| = 0.6 Å the gas-phase barrier flattens
appreciably, whereas the barrier in solution continues to increase as |s| decreases, resulting
from weaker solvent interaction due to lowering of the dipole moment of [ClCH3Cl]− as |s|
tends to zero. The minimum for the ion-dipole complex in the gas-phase is absent in aque-
ous solution; the energetic cost of breaking the ion-dipole attraction, is compensated for in
solution by stronger solvation of the separated chloride and methyl-chloride fragments.

The reaction system has also been studied under the influence of an external, static electric
field Eex = Eexk̂. Within the electric dipole approximation, the interaction energy is given
as

Uex = −M ·Eex , (IV.27)

where M =
∑N
i µi, is the total dipole moment of the system and µi is the dipole moment of

particle i. The presence of an external field thus promotes the alignment of particle dipole
moments in the k̂ direction. If the reaction system was fixed with k̂ parallel to the Cl−-C-
Cl axis, the chemical equilibrium would be controlled by the sign and magnitude of Eex, a
mechanism that has been studied for proton transfer reactions.58

Figure IV.B also presents the PMF exhibited by the system in an external, static field
field at different field strengths. The field strengths should be compared to the internal field
experienced by the molecules in a water simulation, discussed in Paper II and V, and in
Section VI.1.1. The electric field experienced by the oxygen atom in a water simulation is
∼ 0.05 a.u. In comparison, the strength of the fields applied here range from medium to very
strong. The presence of an external field is observed to further enhance the barrier height
by a few kJ/mol for the weakest field and by almost 100 kJ/mol for the strongest. This is
caused by enhanced stabilization by the external field of the most dipolar conformation, i.e.
the reactant system. However, disregarding convergence problems which are substantial for
the strongest field, the symmetry of the PMF is maintained. Although the external field
favors population of one particular channel, this does not prevent the ERC-MC procedure
from ascending the, now larger, reaction barrier. Once the barrier is crossed, the positive
interaction with the external field will cause the entire system to rotate, thereby switching
the role of the reactant/product states.

The solvation as a function of reaction coordinate has also been investigated. Figure IV.C
shows the number of water molecules in the first solvation shell of the Cl atoms as function
of the reaction coordinate. A water molecule is regarded as a member of the first solvation
shell of Cl if rOCl < 4 Å as in Paper I.
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Figure IV.C. The number of water molecules in the first solvation shell of the two chlorine atoms as
as function of the reaction coordinate s.

At the transition state, each Cl atom is coordinated to about 4.5 water molecules. As the
reaction proceeds toward product or reactant channel, one Cl atom gains charge and separates
from the methyl-chloride fragment, and is therefore able to coordinate a larger number of water
molecules - about 6.5. The corresponding numbers found in Paper I were about 1.5 and 4
water molecules for the transition state and ion-dipole complex, respectively. The chlorine
atom in CH3Cl coordinates 3 water molecules when no external field is applied. When an
external field of 0.001 a.u. is applied, the situation remains almost unchanged. However,
when the field strength is increased to 0.004 a.u. the solvation is altered. The number of
solvent molecules for Cl− is increased by less than 0.5 for |s| <∼ 1.5 Å and decreased by 0.5
for the covalently bonded chlorine. It thus appears that the solvation shell around ClCH3

attains a less dense but more dipolar conformation when the external field is applied.
For a reaction such as Eq. IV.21 involving charged species, the most important role of

a solvent is that of stabilizing these. This process will completely govern the gas-to-liquid
shift of the rate constant for the reaction, as evident from the substantial deviation of the
corresponding activation barriers of ∼50 kJ/mol. As such, the ERC method facilitates the
study of such reactions by providing the effective reaction barriers, although it appears that
the number of simulation steps required to achieve convergence is considerable. The ERC
method should be particularly useful in multi-barrier systems, where conventional umbrella
sampling becomes increasingly cumbersome.
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V Properties of solvated molecules

The investigation of the changes in a molecule occurring upon solvation requires the introduc-
tion of a solvent model. This concept is a rather broad one but the models can nevertheless
usually be characterized as of either microscopic or macroscopic nature. In a microscopic
model, solvation is treated at the molecular level by incorporating the perturbation from
the solvent into the quantum mechanical description of the molecular properties of the so-
lute. Conversely, a macroscopic model provides macroscopic properties from effective solute
molecular properties assumed to be given. In the present work, the focus has been on the
microscopic modeling of solvation.

The attempts to include solvation in current, accurate ab initio methods can, more or less,
be characterized as being either continuum, supermolecular, or semi-continuum approaches.
In the continuum solvent models, the molecular monomer is envisioned as enclosed in a
cavity of a linear, homogeneous and isotropic dielectric, and solvation is modeled by the
polarization of this medium. This is to a large extent analogous to the reaction field method
briefly described in Section III.4, which is a special case of the continuum model. In the
supermolecular approach, solvation is modeled by the explicit inclusion of - at least - the
first solvation shell in the ab initio calculation. The semi-continuum approach combines
the continuum and supermolecular approaches by including solvent molecules explicitly and
immersing the entire supermolecular system in a dielectric medium. In most continuum and
semi-continuum studies, the cavity is chosen to be spherical and thus is described by its radius
only. This reduces the number of considered parameters, but nevertheless cavity size effects
must be considered in these models.59

Although semi-continuum models in general perform well, all these three methods possess
inherent problems or limitations. It has been established that pure continuum models fail
to give a satisfying description of solvent effects since neither local, short-range interactions
nor inhomogeneous environments such as hydrogen bonding are properly accounted for. The
supermolecular model, on the contrary, does not account for long-range interactions, unless
a very large number of solvent molecules are included. The semi-continuum models formally
include both short- and long-range interactions, but it is still an inherent requirement, that
a representative structure of the solvent shell included in the calculation can be established.
Even when this criterion is met solvation is still considered from a static viewpoint and in
doing so, it is difficult to account for the temperature-dependence of the liquid property of
interest.

Attempts have been made to combine MS and supermolecular methods. Subsystems, con-
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sisting of a molecule and its first solvation shell, have been generated from MD simulations and
then subjected to supermolecular or semi-continuum calculations.60−62 This overcomes the
requirement of a single representative solvent structure since the simulations can be performed
at a particular temperature. In this way the temperature effect of the molecular property
is explicitly accounted for. However, the large number of supermolecular or semi-continuum
calculations required renders the method computationally very expensive. Moreover, the
inclusion of concentration effects would require a tremendous amount of work since the gen-
erated subsystems would have to encompass all relevant dimer, trimer, etc. configurations.

V.1 A microscopic, perturbational solvent model

An alternative way to combine statistical mechanical simulations with ab initio quantum
chemical calculations to model solvation is by the use of intermolecular perturbation theory
(IPT). The work described in Papers II–V was devoted to exploring solvation effects on
different molecular properties by invoking an IPT solvent model. The gas-to-liquid shift of
a molecular property can be expanded as a perturbation series, which contains products of
property derivatives with respect to the perturbation and the magnitude of the perturbation.
The task of computing the gas-to-liquid shift of a molecular property according to the IPT
method is thus separated into two parts:

• Quantum chemical calculations of molecular property derivatives for the unperturbed
molecule. These properties have to be calculated once for each molecule. No concerns
regarding the solvent enter this part of the calculation.

• Statistical mechanical simulations for calculating the ensemble average of the magnitude
of the perturbation, e.g. electric field or geometry distortion. All properties of the
solvent, temperature, concentration etc., is taken into account here but the results may
then be used for the calculation of the solvent effects on any molecular property.

Consequently, concentration effects, which are very difficult (if not impossible) to handle in
semi-continuum and supermolecular models, can also be determined, simply by performing
the simulations at the concentration of interest. Further, since the two parts are independent,
it is possible to increase the quality of either part separately.

Inherent to the IPT solvent model is the assumption that a given molecular property
under the influence of a solvent, Bliq, may be expressed as a sum of the vacuum value and a
solvation term

Bliq = Bvac +Bsol . (V.1)

This expression is merely a consequence of regarding solvation as a perturbation of the solute
molecule. Since solvation is manifested via intermolecular interactions, according to Eq. II.1
the solvation term should be composed as

Bsol = Bele +Bdisp +Bexch . (V.2)

Since the electrostatic perturbation is caused by the polarization of the solute arising from the
electric field and field-gradient impinging on it, the induction contribution must be included
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in Bele - see below. In addition, an indirect geometry distortion term will arise, since the
molecular geometry of the solute is altered compared to the gas-phase geometry. At normal
densities, exchange and overlap effects are expected to be small,63, 64 and will not be treated
here. Finally, when connection is made to a particular experiment, additional terms may
arise. For example, when a chemical shift is measured, the magnetic field experienced by the
solute molecule is modified by the anisotropy of the magnetizability of the solvent molecules.65

This effect is corrected for by an additional term in the expression for the gas-to-liquid shift
for nuclear magnetic shielding.II

In polar liquids such as water, the electrostatic term is the most important. It may be
expanded as66, 67

Bele = B′αEα +
1
2
B′′α,βEβEα + . . .+

1
3
B′αβEαβ +

1
6
B′′αβ,γδEγδEαβ + . . . , (V.3)

where Eα and Eαβ defined by Eqs. II.17 and II.18 are components of the electric field and
the electric field-gradient, respectively, arising from the presence of the solvent. B′α and B′′α,β
are derivatives of B with respect to the electric field and B′αβ and B′′αβ,γδ are derivatives
with respect to the electric field-gradient. Since these derivatives are monomer properties the
ensemble average of the electrostatic contribution is

〈Bele〉 = B′α 〈Eα〉+
1
2
B′′α,β 〈EβEα〉+

1
3
B′αβ 〈Eαβ〉 , (V.4)

where Eq. V.3 has been truncated after the three most important terms. Induced electric
moments in the solvent contribute to the electric field and field-gradient, thereby accounting
for induction effects, as mentioned above. To obtain an accurate description of the electro-
static environment, the interaction potential utilized in the simulation must correctly describe
the charge distribution of the molecule. This would not be the case for an empirical poten-
tial for which the charge-like parameters are provided by fitting to experimental properties.
Such demands are better suited by the use of a potential model obtained from intermolecular
perturbation theory such as NEMO.

So far, the issue of which centers to include in the expansion has not been addressed.
Some properties, such as the nuclear shielding, which primarily depend on the local electronic
structure around a particular nucleus calls for an atomic expansion. Hence, derivatives of the
nuclear shielding tensor with respect to the electric field and the electric field-gradient should
be carried out for the nucleus of interest in the solute molecule, and combined with fields and
field-gradients at that nucleus obtained from MS. Other properties, such as the molecular
polarizability, will depend upon the global electronic structure making it natural to allow the
molecular polarizability to depend on the electrostatic environment of the entire molecule.

The term accounting for the dispersion interaction contribution to the solvent effect is
given as

〈Bdisp〉 =
1
2

∑

i

B′′iα,β〈E2
0〉iαβ , (V.5)
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where an atomic expansion has been adopted. The fluctuation potential 〈E2
0〉iαβ is assessable

from molecular simulation and is closely related to the dispersion energy,68 Eq. II.24

Udisp = −1
4

∑

i

αi,αβ〈E2
0〉iαβ . (V.6)

For the NEMO potential,26 the fluctuation potential may be approximated as

〈E2
0〉iαβ =

√
C

ωAωB

ωA + ωB

∑

j

αj,γδT
αγ
ij T

βδ
ij , (V.7)

where αj,αβ is a component of the polarizability tensor on atom j,69 Tαγij is defined in Eq. II.12,
and ωA is the average ionization potential introduced in Eq. II.24. C is a scaling factor for
the local polarizabilitiesII of 1.89 calibrated to the H2 −H2 system.70

V.1.1 Molecular property derivatives

The property derivatives, entering Eqs. V.3 and V.5, can be computed by quantum chemical
methods as properties of the solute molecule in vacuum. The solvent effects considered by
the present model arise from the inertial or nuclear degrees of freedom in the liquid, and it is
thus the static response of the solute molecule that need be addressed.

Ideally, the derivatives in Eqs. V.3 and V.5 would be calculated by response theory in
quantum chemical programs. In practice, finite difference methods could be applied. In
the latter case the molecular property of interest is calculated in the presence of a uniform
external electric field or field-gradient. By calculating the property at different magnitudes of
the field, first- and higher-order derivatives can be computed. This method has for example
been used to calculate nuclear shielding derivatives.71

Finite difference methods do, however, become inadequate when it is desirable to calculate
the simultaneous dependence of a molecular property on field and field-gradient at different
nuclei. In that case we have employed a point charge method. Analogously to Eq. V.1 the
property B calculated for a molecule interacting with a set of point charges, i, is given as the
sum of the molecular property in vacuum and a difference term, arising from the presence of
the charges

Bi = Bvac + ∆Bi . (V.8)

If assumed that the electrostatic interactions alone are responsible for the difference, then, in
analogy with Eq. V.4, for a single configuration we may expand ∆Bi as

∆Bi = B′αE
i
α +

1
2
B′′α,βE

i
βE

i
α +B′αβE

i
αβ . (V.9)

The electric field Eiα and field-gradient Eiαβ arising from the set of charges i are readily
available from Eqs. II.17 and II.18. Since ∆Bi can be obtained from quantum chemical
calculations in which the point charges i are explicitly included, the derivatives B′α, B′′α,β,

and B′αβ can be obtained from least squares fitting to the set
{

∆Bi, Eiα, E
i
αβ

}
. That is, the

derivatives are determined as to reproduce the computed set of values ∆Bi. This point charge
method has been employed in other contexts. 72−75
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V.2 Chemical shifts of liquid water

Nuclear Magnetic Resonance (NMR) techniques are among the most important to the inves-
tigation of structure and dynamics of chemical compounds. NMR is extensively used in the
study of biomolecules, in which it is widely used to characterize hydrogen-bonding. These
studies have revealed that the gas-to-liquid shift of the donor hydrogen chemical shielding is
strongly correlated to the strength of the hydrogen bond.76 To that end, an understanding of
the origin of these shifts is desirable. Nuclear magnetic resonance parameters have also been
extensively studied in quantum chemistry.77

In Papers II and III the temperature dependent gas-to-liquid chemical shifts of water
were examined using the IPT approach described above. In Paper II the chemical shift was
modeled by electrostatic and dispersion contributions according to Eqs. V.3 and V.5, the elec-
trostatic contribution, however, was truncated after the linear and quadratic field terms. The
electric field ensemble averages and distributions were obtained from MD simulation using a
polarizable NEMO potential,30 whereas shielding polarizabilities and hyperpolarizabilities of
Rizzo et al.71 were used. The distributions of non-vanishing electric field components were
found to be almost completely described by Gaussian functions. All contributions to the
gas-to-liquid shift were found to decrease with increasing temperature. The model was able
to reproduce both the experimental chemical shift and its temperature-dependence for hydro-
gen, but neither for oxygen. Further, the effect arising from the distortion of the molecular
geometry upon solvation was estimated by calculating the gas-phase chemical shift at two
experimental molecular geometries of liquid water. The effect was found to be substantial for
oxygen (-10 and -5 ppm) but modest for hydrogen (-1.4 and -0.7 ppm).

In Paper III the model was improved by extending the electrostatic contributions to in-
clude the linear field-gradient term of Eq. V.3. To calculate the required quadrupole shielding
polarizabilities the point charge method described in Section V.1.1 was employed. Shield-
ing polarizabilities, hyperpolarizabilities, and quadrupole shielding polarizabilities were cal-
culated at both the Hartree-Fock (HF) and Complete Active Space Self-Consistent Field
(CASSCF) levels of theory. MD simulations using the same potential as in Paper II provided
ensemble averages and distributions of the non-vanishing electric field-gradient components.
The linear field-gradient contribution was found to be substantial for oxygen (-9.7 ppm) and
its inclusion improved the correspondence with experiment both with respect to magnitude
and temperature-dependence. For hydrogen the contribution was small, -0.7 ppm, leaving
the proton shift in good agreement with experiment.

In summary, IPT performs well for the proton shift, whereas the modeling of the oxygen
shift is substantially more problematic. In the work of Buckingham and Tantirungrotechai75, 78

a very similar approach is applied to nuclear magnetic shielding changes in HF upon the for-
mation of Ar· · ·HF and HF· · ·CO2, and compared to results from supermolecular calculations
on the complexes. In accordance with our findings, they conclude that their model provides a
very good description of the proton shift, whereas the results for F are much less encouraging.
It is therefore evident that more work must be done to address these difficulties, the origin of
which, at present, is unclear.
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V.3 The geometry of the water molecule in liquid water

It is thought-provoking, that many of the most popular rigid potential models applied for
liquid water use the gas- or solid-phase geometry although their purpose is the modeling of
liquid water. Moreover, in the framework of the present IPT solvent model it is interesting
to estimate the liquid phase geometry, and thereby assess the indirect geometry distortion
contribution mentioned in Section V.1 in a more consistent manner.

Paper IV describes an investigation of the temperature dependent gas-to-liquid shift of
the molecular geometry of water by means of the IPT method. The solvent effect on the
molecular gradient and Hessian was assumed to depend on the electrostatic and van der
Waals interactions with the solvent. Since these properties were considered in the normal-
coordinate representation, all gradient and Hessian components were allowed to depend on the
electrostatic environment of all three atoms. Gradient and Hessian derivatives with respect
to the electric field and field-gradient were thus obtained using the point charge method at
both the HF and CASSCF level. Equipped with the molecular gradient and Hessian of the
solvated water molecule we used a single Newton-Raphson optimization step

x = xvac − (Hvac + Hsol)−1gsol (V.10)

to obtain the estimated liquid phase molecular geometry x. Here, Hsol is the solvent shift of
the molecular Hessian relative to the gas-phase Hessian Hvac. The molecular gradient was
assumed to be zero in the gas-phase causing the liquid phase gradient to consist of only the
solvent shift gsol. The gas-to-liquid shift (∆rOH ≈ 1 pm and ∆α ≈ 2◦) was found to be of
similar accuracy as both other theoretical and experimental estimates.

Since the potential energy surface in Eq. V.10 is expanded around the gas-phase geometry
no direct calculation of the normal modes in the liquid phase was possible. However, the
solvent effect on the vibrational frequencies was estimated from the available data and were
found to be in reasonable agreement with experimental results.

V.4 The refractive index of liquid water

The frequency-dependent refractive index of a material to a large extent determines its po-
tential use in the fabrication of fiber-optics. An understanding on a microscopic basis of
refractivity would greatly facilitate the development of such devices.

Paper V presents the results from employing different solvent models in calculating the
refractive index of liquid water. The IPT method was used to calculate the dynamic polariz-
ability of the water molecule in the liquid phase as a function of temperature and frequency.
The gas-to-liquid shift of the molecular polarizability was assumed to be caused solely by
electrostatic and van der Waals interactions at all three atomic sites, and it was therefore as-
sumed that the molecular polarizability can be represented by a sum of atomic contributions.
This has been shown to be an appropriate assumption.69, 79, 80 Due to the atomic distributed
model, we calculated the necessary polarizability derivatives by the point charge method at
both the HF and CASSCF level for different basis sets.

Polarizabilities for the solvated water molecule were also obtained from more conventional
microscopic solvent models; the supermolecular and semi-continuum approaches, the latter
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utilizing the recent Iterative Self-Consistent Reaction Field (ISCRF) method.81 Refractivities
n(ω) were subsequently† calculated using two different macroscopic models; either as

n(ω) =
√

1 + 4πNα(ω) , (V.11)

where N is the number density of the liquid and α(ω) the effective, average molecular polar-
izability at frequency ω, or by the Lorentz-Lorenz82 model

n(ω) =

√
3 + 8πNα(ω)
3− 4πNα(ω)

. (V.12)

Comparisons were also made to simpler models, in which correlated gas-phase polarizabilities
were used in Eqs. V.11 and V.12, complying to the conventional use of these equations.43, 83

In general it was found that the use of gas-phase polarizabilities in conjunction with
Eq. V.12 worked surprisingly well in explaining both the dispersion and the temperature-
dependence of the refractive index. Eq. V.12 is, however, well known to exaggerate the optical
polarization of the continuous medium present in its derivation.43, 83 It was found necessary to
account for electron correlation in the quantum chemical point charge calculations required by
the IPT model. However, for strongly perturbing point charge configurations at the CASSCF
level, the absorption edge was observed to move into the frequency range under consideration
which in turn lead to an artificially high dispersion. The IPT model was found to give
an improved description of the temperature-dependence of nD as compared to the use of
Eq. V.11 with gas-phase polarizabilities, making it evident that the temperature-dependence
of the refractivity cannot be explained solely by the temperature dependence of the number
density.

V.5 Summary

The abilities of the IPT microscopic solvent model have been tested for different properties.
Bearing in mind the computational efficiency of the model, its performance has been satis-
factory. Especially the modeling of the gas-to-liquid proton shift has been successful. The
solvent effect of this property was found to be governed by the electrostatic contribution, a
contribution dominated by the linear field term. In the light of these results, it should be
prosperous to extend the study of proton shifts to other liquids and solutions.

The nuclear magnetic shielding may be regarded as a ’local’ property depending mostly
on the electron distribution around a particular nucleus. On the other hand, the molecular
gradient, Hessian, and polarizability are ’true’ molecular properties, depending on the entire
electron distribution of the molecule. The gas-to-liquid shift of the latter properties will
therefore depend on solvent interactions occurring throughout the molecule, whereas for the
nuclear shielding it is reasonable to consider only interactions at the nucleus of interest. In
the IPT model we have chosen the atomic positions as a representative set of interaction sites

†The ISCRF method uses Eq. V.12 to establish self-consistency between α(ω) and n(ω). By requiring the

experimental nD = n(589nm) reproduced by the model the cavity radius is eliminated as a free parameter.

See Paper V for details.
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for the former properties, thereby establishing a need for the point charge method. But it
may be argued that this set of centers be extended to include e.g. bond centers. In any case
the procedure of determining field- and field-gradient derivatives is cumbersome by the use
of the point charge method. As any fitting procedure operating with a modest number of
parameters, dependencies among these are likely to interfere. Moreover, in order to give a
proper determination of the second-order field derivatives (hyperpolarizabilities), a substantial
field strength must be applied, but conversely, care must be taken of not perturbing the
molecule too strongly, as experienced in Paper V. Analytical derivatives are therefore highly
desirable, but currently not available, since the anisotropic electric fields and field-gradients
experienced in liquids must be taken into account.
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VI.1 Long-range interactions in polarizable liquid water

The problem of long-range interactions in MS has drawn much attention. It is well estab-
lished that to model even qualitatively the dielectric properties of polar liquids, long-range
interactions must be addressed. Further, free energies of solvation are also sensitive towards
the correct treatment of long-range interactions.

In Paper VI the ES and RF methods described in Section III.4 were generalized to a
system possessing polarizabilities in addition to atomic charges and dipole moments. The
induced dipoles are determined by a minimization of the total interaction energy with respect
to the induced dipole moment {µindi,α } according to response theory.84 The result is

µindi,α = αi,αβE
tot
i,β , (VI.1)

where Etoti,α is the α-component of the electrostatic field on atom i arising from charges,
permanent, and induced dipole moments of atoms in other molecules

Etoti,α =
∑

j 6=i
Tαijqj + Tαβij

(
µindj,β + µpermj,β

)
. (VI.2)

Since µindi,α enters the right hand side of this equation, the induced dipole moments must be
determined by iterating Eqs. VI.1 and VI.2 to self-consistency. The induction energy is given
as

Uind = −1
2

∑

i

µindi,αEi,α = −1
2

∑

i

αi,αβEi,αE
tot
i,β , (VI.3)

where Ei,α is the α-component of the electrostatic field at atom i arising from charges and
permanent dipoles only and Eq. VI.1 has been used to arrive at the last equality. When this
expression is compared to Eq. II.22 it is noted to contain additional terms. These have their
origin in higher-order perturbation terms.85

The procedure in a numerical application for calculating the electrostatic and induction
part of the energy, forces, and virial consists of the following steps (details are given in
Paper VI).

1. Calculate the electrostatic potential (required to calculate the energy) and field from
charges and permanent dipole moments.

2. Calculate induced dipole moments by self-consistent iteration (or by prediction86).
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3. Calculate electrostatic and induction energies.

4. If induced dipole moments were predicted, calculate electric field from induced dipole
moments.

5. Calculate electrostatic field-gradient (required to calculate the forces).

6. Calculate forces.

7. Calculate virial.

When long-range interactions are included in the simulation the expressions for the interac-
tion energy, electrostatic potential, field, field-gradient, force, and virial are all changed, i.e.
modifications occur in all steps of the algorithm above. Paper VI gives these expressions for
both ES and RF conditions along with numerical results facilitating the implementation of
these methods for polarizable molecules.

In Paper VII the theoretical results of Paper VI have been implemented in the MOLSIM
program6 and subsequently utilized to simulate liquid water under ES and RF conditions
using the polarizable NEMO potential.30 The paper presents various structural, dynamic, and
dielectric properties obtained from trajectories of several ns. The results have been compared
with those obtained by a simple spherical cut-off and using the unpolarizable SPC/E potential
model.10 It was found that the use of the simple spherical cut-off tends to exaggerate the
polarization of the system, in turn leading to an overestimated interaction energy, a sharper
liquid structure, and slower dynamics compared to ES and RF methods. Further, the RF
method was found to exhibit a more substantial system size sensitivity as compared to ES.

VI.1.1 The effect of boundary conditions on electric field and field-gradient

In connection to the IPT solvent model presented in Chapter V it is interesting to examine
the effect of including long-range interactions in the simulations providing the electric field
and field-gradient, entering Eq. V.4. Table VI.A quotes the electric field calculated for a
spherical cutoff (SC), RF, and ES conditions for systems composed of 64, 216, and 512 water
molecules. The results were obtained from simulations (a)–(h) in Paper VII except for the
smallest system and SC conditions which were obtained from a recent 3 ns simulation.

Table VI.A. Total electric field in liquid water at different boundary conditions and system sizes.
Units are 10−3 a.u. Error estimates are calculated by averaging over 20 ps blocks.

System size 64 216 512 64 216 512
Oxygen Hydrogen

SCa 49.45(8) 48.66(7) - 53.03(4) 52.29(4) -
RF 45.38(4) 46.08(2) 46.58(2) 48.96(3) 49.84(2) 50.37(2)
RFe - 46.17(2) - - 49.94(1) -
ES 46.71(7) 46.76(3) 46.79(3) 50.49(4) 50.53(2) 50.59(2)

First of all, the effects are modest which is not surprising, considering the results for the
induced dipole moment reported in Table III of Paper VII. The differences for a system of
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216 water molecules are within 6%. For both oxygen and hydrogen, SC yields the highest
values for the field and the RF method the lowest.

When the system size effects are examined it is striking that ES gives the same result
for oxygen, considering error bars, for all three system sizes. For hydrogen only the smallest
and largest systems differ, the difference is however less than 0.2%. The RF results display
a substantial system size dependence. As the system size increases, the RF results approach
the ES result, but even for the largest system the deviation between RF and ES is larger than
the deviation between ES(512) and ES(64). System size effects appears to be even larger for
SC although difficult to assess from only two points. Also SC appears to approach ES as the
system size is increased.

The effect of changing εRF of the dielectric medium entering the RF model (Eq. III.35),
has also been considered. Table VI.A (results denoted RFe) shows that if εRF is changed to
the experimental value the results for the field are brought closer to those obtained by ES,
but the effect reduces the difference between RF(216) and ES(216) by less than 20%.
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Figure VI.A. Relative errors in (a) the electric field components, (b) the electric field-gradient on
oxygen, and (c) the electric field-gradient on hydrogen. Results are shown for SC (open symbols),
RF (filled symbols), and ES (+), except for Ezz designated (×). The designations of the different
components are as follows. (Square): EO,z, Exx, (circle): EH,x, Eyy, (triangle): EH,z, Ezz, and
(diamond): EH,xz.

These trends are clarified in Figure VI.A in which relative errors compared to the ES results
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for the largest system of the non-vanishing Cartesian components of the electric field and
field-gradient are displayed. The relative error is thus defined as

∆ =
E −EES(512)

EES(512)
. (VI.4)

The relative errors are also small for the field-gradient, although somewhat larger for the
field-gradient components on oxygen. For the medium sized system all errors are within
±5%. As noted above the ES errors are very small - all below 1% except the zz field-gradient
component. This component is in error by about -3% for both oxygen and hydrogen in the
smallest system, and slightly overestimated for oxygen in the medium sized system.

For SC, the field and field-gradient components are systematically overestimated. How-
ever, it is striking that the EO,yy component almost reproduces the ES result, whereas EO,zz
is in error by 10% for the smallest system. This could be related to the qualitative differences
observed in the dielectric properties of SC and ES. For the RF method all components are
underestimated but the errors are reduced when the system size in increased. Moreover, the
error reduction is more pronounced and systematic than for SC. Further, in contrast to the
SC results the errors for the different components at a given system size are almost the same,
the exception being EH,xz for which the error is slightly larger than for the other hydrogen
field-gradient components. For the largest system all RF errors are below 2%.

In summary, the ES procedure is preferred in the calculation of electrostatic properties.
Even for the smallest system ES performs surprisingly well. The RF method underestimates
all field and field-gradient components, but the errors are fairly constant and are substantially
reduced when the system is increased. For SC the field and field-gradient components are
generally overestimated. The SC errors are larger than for the RF method, display a large
variation, and their reduction upon increasing system size is less significant than for the RF
method. From a computational perspective, the electrostatic properties of water should thus
be calculated from an ES simulation for a system of 64 water molecules. In doing so, the
accuracy of the properties is slightly improved compared to a medium sized system using SC
or RF conditions and the computational effort is reduced by a factor of three.V II

VI.2 A comparative study of effective and polarizable poten-

tials.

Paper VIII describes a comparative, temperature dependent study of a polarizable NEMO
potential30 and an effective two-body potential derived from that. The motivation of the
study was to improve the understanding of the connection between explicitly polarizable
potentials and two-body potentials, which represent polarization in an average or effective
sense, as discussed in Section II.1. This study was undertaken using water as a test case. In
the polarizable NEMO potential, the electrostatics are represented by atomic charges, dipole
moments, and anisotropic polarizabilities. A parameterized potential is obtained from this
by replacing the permanent dipole moment on atom i, µpermi by µpermi + λ

〈
µindi

〉
. Here〈

µindi

〉
is the average induced dipole moment obtained from a simulation using the explic-

itly polarizable potential and λ a scalar, temperature dependent parameter. The effective
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potential is obtained at λ = λ∗, the value of which was determined by conducting several sim-
ulations for different values of λ. This procedure ensures that the effective potential bears the
strongest possible resemblance to the polarizable potential. The value of λ∗ was determined
such that the effective potential as far as possible yields the same height of the first peak in
the oxygen-oxygen radial distribution function gmaxOO (r) and the same diffusion coefficient D
as the polarizable potential. At all three temperatures studied, λ∗ was found to be close to
0.8, i.e. the dipole moment which models the polarizable potential the best is somewhat lower
than the average dipole moment found when conducting a simulation using the polarizable
potential. It was found that the effective potential in addition to gmaxOO (r) and D reproduced
the molecular rotational relaxation times and the hydrogen bonding properties of the polar-
izable potential, whereas the dielectric properties and the velocity autocorrelation function
were less well reproduced.

VI.3 The dielectric function of benzene

The recent rapid development of powerful and tunable lasers has revolutionized optical spec-
troscopy, and has been accompanied by the provision of a number of techniques exploiting
these devices. One such technique, THz time domain spectroscopy,87−89 yields information of
the far infrared spectral region dominated by intermolecular interactions. Since such interac-
tions are appropriately investigated by simulation methods, the interpretation of far infrared
spectra is often aided by MD simulation results.

The work presented in Paper IX was devoted to the study of the dielectric function of
benzene and its temperature and density dependence. The dielectric function is related to
the Fourier transform of the total dipole moment time correlation function CM (t), which was
determined from MD simulation and found to agree well with experimental results obtained
from THz spectroscopy. To investigate the origin of the dielectric function in detail, advantage
was taken from two different partitioning schemes of CM (t). In (a) the correlation function
was partitioned into its contributions from two-, three-, and four-body interactions, and in
(b) into a component arising from the correlation of the induced dipole moment of a single
molecule and a component arising from the correlation among distinct induced dipole mo-
ments. The latter procedure was refined by (c) projecting the induced dipole moments on the
molecular axes and subsequently studying the correlation in terms of in-plane, out-of-plane,
and cross contributions. The n-body partitioning (a) showed that the temperature depen-
dence of the two- and three-body correlation functions at time zero can be explained solely by
density change arguments. Moreover, the ratio of the spectra of these correlation functions
in the frequency range 1.8–3.8 THz was found to be constant and temperature independent,
indicating that the underlying molecular motion is approximately temperature independent,
in contrast to the behavior at lower frequencies. The molecular projection scheme (c) led to
concluding that the dielectric loss could be attributed to (i) an out-of-plane libration con-
tributing at all frequencies, completely governing the spectrum above 2 THz, (ii) a small
contribution from an in-plane libration below 2 THz, and finally (iii) diffusion below 1 THz.
The role of diffusion was, however, found to be very different than that observed for polar
liquids. The temperature dependence of the spectra was interpreted in terms of the tempera-
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ture dependence of each of these three contributions. The analysis of absorption spectra has
elsewhere been conducted in terms of simple molecular reorientation correlation functions Cx
and Cz and their pseudo-absorption spectra.90 It was established that this method could not
be applied in the analysis of the dielectric loss for two reasons: The in-plane libration was
found to be exaggerated in the Cx correlation function, and axial correlation was found to
persist in Cz after the corresponding dipole moment correlation has vanished.

The extension of these studies, and in particular the novel (c) partitioning scheme, to other
liquids should be rewarding. Hexafluorobenzene has almost the same molar density and polar-
izability as benzene, but the quadrupole moments of hexafluorobenzene and benzene although
of similar magnitude have opposite signs. Nevertheless, the absorption of hexaflourobenzene
in the far infrared region is significantly lower than that of benzene. Moreover, since the
molecular symmetry of benzene is central to the analysis applied here it would be of sub-
stantial interest to investigate liquids of similar molecules, but with a different point group
symmetry such as p-difluorobenzene.
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[20] P.-O. Åstrand, Hydrogen bonding as described by perturbation theory Ph.D. thesis, Uni-
versity of Lund, 1994.

[21] B. H. Bransden and C. J. Joachain, Physics of atoms and molecules (Longman, Essex,
1983).

[22] S. Gasiorowicz, Quantum physics (Wiley, New York, 1974).

[23] F. London, Z. Physik 63, 245 (1930).

[24] F. London, Z. Physik. Chem. B 11, 221 (1930).

[25] M. Margenau and N. R. Kestner, Theory of Intermolecular Forces (Pergamon, Oxford,
1969).

[26] A. Wallqvist and G. Karlström, Chem. Scr. 29A, 131 (1989).

[27] A. Wallqvist, P. Ahlström, and G. Karlström, J. Phys. Chem. 94, 1649 (1990), Erratum
in J. Phys. Chem. 95, 4922 (1991).

[28] O. Engkvist, Flexible molecular systems studied by quantum chemistry and statistical
mechanics Ph.D. thesis, University of Lund, 1997.

[29] S. Brdarski, Modeling of intra- and intermolecular potentials Ph.D. thesis, University of
Lund, 1999.
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[80] J. G. Ángyán, G. Jansen, M. Loos, C. Hättig, and B. A. Heß, Chem. Phys. Lett. 219,
267 (1994).

[81] K. O. Sylvester-Hvid, K. V. Mikkelsen, and M. A. Ratner, J. Phys. Chem. A 103, 8447
(1999).



Bibliography 59

[82] H. A. Lorentz, The Theory of Electrons, 2nd ed. (Dover, New York, 1952).
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