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Preface 
 
My work includes all steps in a rational drug design process, from protein structure prediction with 
homology modelling, to the actual construction and ranking of drug candidate structures from 
proposed active functional groups. In this thesis, I have tried to give a brief overview of the 
methods that are most relevant to my work, as well as a summary of the most important results 
presented in the papers. The topics of the thesis are:  
 

1. Protein structure modelling and prediction of homology model accuracy. 
2. Mapping of the properties of protein binding sites and identification of interaction sites for 

selective inhibitors. 
3. De novo ligand design. 
4. Molecular docking and estimation of binding energies between proteins and small-molecular 

ligands. 
 

First, a brief introduction to rational drug design is given, followed by an introduction to the 
computational methods used in this work. For some of the methods, books or reviews are cited 
instead of the original publications. Some background information about the molecular systems 
studied in this work is also given. Following this introduction to the background theory, I give an 
overview of my work and show how the different parts of my work are linked together. Then a 
short presentation of each part of the work is given. In order to give the reader a more coherent 
reading of the text, I have chosen to write the thesis as a complete manuscript, independent of the 
papers. This makes it possible for the reader to get an overview of the work and the main results 
without having to read all the details in the papers. The papers are given at the end of the thesis, and 
give a more detailed description of each part of the work. In this way, I aim to increase the number 
of interested readers, because those who are not interested in the details, but just an overview, can 
skip reading the papers. Some parts of the text are therefore given both in the papers and in the 
thesis. In the text, the papers included in the thesis are referred to as Paper I-VII. These are not 
included in the list of references. The results presented in Figure 4 and 8 in Paper I are shown in 
more detail in Appendix 3 and 4. All results except the results presented in Chapter 5.3.3 and 
Appendix 1 and 2 and the docking results presented in Table 5.1 (page 57) are published in the 
papers. All scripts written in the present work can be obtained upon request. Some of the scripts are 
written in Scientific Vector Language (SVL). This is the scripting language contained in the 
commercial software package Molecular Operating Environment (MOE), provided by the 
Chemical Computing Group, Inc. Hence, usage of these scripts requires access to this software 
package. 
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Summary 
 
Cancer cells utilise signalling cascades involving protein kinases for their growth and survival. 
Hence, design of protein inhibitors that block the function of these signalling proteins is interesting 
for the development of new cancer therapies. This can be achieved through rational drug design. 
The purpose of this work was to develop drug design methods that can aid the discovery of 
selective drugs and to utilise these methods to design drugs that block the function of proteins 
involved in cancer development. This work has focused on development of drug design methods 
that can be used with protein structure models made by homology modelling, since this will 
significantly increase the number of protein targets for which the methods can be used. In this 
context, a review about the use of homology-based modelling in rational drug design was published. 
The design part has focused on design of selective inhibitors of protein kinases, in particular 
Tyrosine kinase 2 (Tyk2), a member of the Janus kinase (Jak) family of protein kinases. The 
interactions between the receptor kinase fibroblast growth factor receptor 1 (FGFR1) and a known 
inhibitor have also been studied, and several improvements of the inhibitor have been suggested, 
based on results from computational sensitivity analysis. Both in the case of Tyk2 and FGFR1, 
focus has been on inhibiting the binding of adenosine triphosphate (ATP) to the tyrosine kinase 
domain of the proteins. The interactions between E-selectin and a set of carbohydrates and peptide 
ligands were also studied with computational docking. The results from this study provide insight 
into some of the limitations of docking methods. 

In order to analyse the relationship between the target-template similarity and the accuracy of 
the obtained homology model, a large number of homology models for protein kinase structures 
were generated, and the accuracy of the homology models was evaluated by comparison to 
available experimental structures of the targets. Based on the obtained data, a new method for 
prediction of homology model accuracy with multivariate regression was developed, that predicts 
the model accuracy directly from the amino acid sequence alignment. This method can be used to 
assure that the optimal templates are chosen, and for identification of regions of the protein 
structure that are difficult to model, as well as errors in the alignment of the proteins. Here, this 
method has been applied to the protein kinase family, but the same approach can be used for other 
protein families.  

A new method for analysis of protein binding site properties, called Protein Alpha Shape 
Similarity Analysis (PASSA), and a new gaussian-based docking method suitable for use with 
homology modelled protein structures have been developed. Both methods use gaussian functions 
to represent atomic properties. This smooth representation makes them relatively robust against 
small structural errors. PASSA has been shown to be a useful method for identification of regions in 
a protein binding site that can be utilised to achieve selective binding of ligands to the protein. 
Interaction sites identified by PASSA to be important for selectivity have been shown to correspond 
to functional groups of known, selective inhibitors. The gaussian-based docking method developed 
here is relatively fast, and well suited for virtual screening, where the purpose is to seek out a set of 
promising drug candidates from a large amount of ligand structures. However, the accuracy of our 
docking method cannot be compared to that of other methods that use fewer approximations. In 
contrast to many other docking methods, our docking method predicts hydrophobic interactions 
better than hydrophilic interactions.  

PASSA was used to suggest functional groups for a selective inhibitor of Tyk2. The results 
from this study were used further in a screening of the database of the National Cancer Institute 
(NCI) for possible Tyk2 inhibitors. The proposed functional groups were also combined into drug 
candidates by de novo ligand design. The gaussian-based docking method developed here was 
applied to rank the drug candidate molecules resulting from the database screening and de novo 
ligand design according to binding to Tyk2. The selectivity of the compounds was tested by 
computational docking in seven other protein kinase structures. The results from the docking of the 
compounds from the NCI database were compared to the results obtained using another docking 
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method, MOE-Dock. The two docking methods ranked the structures differently, but produced the 
same conclusion, namely that none of the compounds in the NCI database can inhibit Tyk2 
selectively. One compound was found to inhibit Tyk2 and insulin receptor tyrosine kinase 
selectively, and five of the drug candidates from the de novo ligand design seem promising as 
selective Tyk2 inhibitors. These results have to be verified experimentally, of course.  

PASSA has also been used to model selectivity within the protein kinase family. In this way, 
the PASSA method may be used quantitatively to predict activities for a number of ligands within a 
set of closely related protein targets. This makes PASSA a promising method in screening for side 
effects. This method also allows for effective visualisation of the molecular basis for selectivity.  

The results presented here indicate that methods utilising gaussian functions to describe 
molecular properties have many applications in structure-based drug design, and will be useful 
supplements to other methods. These methods seem especially useful in the initial stages of a drug 
design process, when computational efficiency and robustness are most important.  
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1 Introduction 
 
Rational drug design has been shown to have a large potential as a tool for the pharmaceutical 
industry, saving both time and money, compared to the conventional “trial and error” approach 
(Sawyer, 2001). The purpose is to design a drug (normally a small molecule) that moderates the 
normal function of a target (usually a protein) in a selective and normally reversible way, using 
computational methods. In addition to this, several physical criteria have to be met, related to 
production, uptake, degradation, etc. The large amount of data from large-scale genome oriented 
projects, such as the human genome project (McPherson et al., 2001), eases both the identification 
of suitable targets and the actual drug design process. Information about genome sequences, 
regulatory networks and metabolic pathways, combined with biological and medical data creates 
the basis for identifying optimal drug targets (Burley et al., 1999). Access to high-quality three-
dimensional (3D) structures of these targets is a good starting point for rational drug design. In 
addition to the traditional experimental methods for generating models of protein 3D structures (X-
ray crystallography and nuclear magnetic resonance (NMR) spectroscopy), fast and efficient 
computational methods, such as homology modelling, have been developed. This increases the 
number of possible targets that can be analysed by rational drug design significantly. However, 
since most existing drug design methods are trained on and developed for use with experimental 3D 
structures of proteins, there is a need for more robust methods that account for the additional error 
resulting from using homology models of the protein structures. Methods that include protein 
flexibility in the calculations are more robust against small errors in the protein structure models 
than methods that treat the receptor as a rigid structure. The fact that ligand binding can induce 
conformational changes in the protein structure also makes the development of efficient methods to 
account for protein flexibility important.  

In general, computational drug design can be divided into two main approaches. One class of 
methods, the Quantitative Structure-Activity Relationship (QSAR) methods, starts from a set of 
known drug molecules, and tries to predict the activities of new compounds based on the 
relationship between the properties and the activities of these known drugs (Nikolova and Jaworska, 
2003). Another main approach starts from a structural model of the system under consideration 
(typically a target protein) and tries to design new drugs based on analysis of this protein structure 
and its interactions with various drug candidates. The work presented here has focused on the 
second category of drug design methods, and in this text the terms “rational drug design” and 
“virtual drug design” refer to this approach.  

QSAR methods use variables representing the properties of known drug molecules (two-
dimensional or three-dimensional), and correlate these to known activities of these molecules using 
data analysis tools like multivariate regression. The obtained regression models can be used to 
predict the activities of new drug candidates. Comparative molecular field analysis (CoMFA) 
(Cramer et al., 1988) and comparative molecular similarity index analysis (CoMSIA) (Klebe et al., 
1994) are examples of widely used 3D-QSAR methods.  

The virtual drug design process can be divided into four main steps:  
 

1. Analysis of protein binding site properties and identification of possible interaction sites 
for drug candidates. 

2. Suggestion of ligand functional groups that can utilise the identified interaction sites. 
3. Database screening for existing drugs having the desired properties and de novo design 

of ligands containing the suggested functional groups. 
4. Ranking of drug candidates by computational docking and binding affinity prediction. 

 
In order to design a ligand for a given target, the first step is to analyse the properties of the protein 
binding site and identify possible interaction sites for ligands. A variety of methods exist for 
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mapping the properties of protein binding sites. Most of these methods utilise calculations of 
interaction energies between the protein and small, molecular probes (Sotriffer and Klebe, 2002). 
Once possible interaction sites for a selective inhibitor have been identified, databases of already 
existing drugs can be searched in order to find a drug molecule that fits the receptor binding site 
(Miller, 2002). A number of such databases exist, such as the Cambridge Structural Database (Allen 
et al., 1983), the database of the National Cancer Institute (NCI) (http://cactus.nci.nih.gov/), the 
Available Chemicals Directory (MDL Information Systems) and PDBsum 
(http://www.biochem.ucl.ac.uk/bsm/pdbsum/), which includes a database of ligands from the RCSB 
Protein Database (PDB) (Berman et al., 2000). Drug candidate molecules can also be generated 
from proposed ligand functional groups by a process called de novo ligand design. Several different 
approaches to linking the functional groups together, or “growing” ligand structures from one or 
more “seed” fragments have been developed (Schneider and Böhm, 2002; Anderson, 2003). The 
ligand structures are typically fitted into the protein binding site using an energy function. 
Promising drug candidates resulting from database searching or de novo ligand design are then 
ranked according to success of binding to the target protein by estimating binding affinities. This 
can be done with computational docking (Bajorath, 2002; Halperin et al., 2002; Lyne, 2002; Taylor 
et al., 2002; Brooijmans and Kuntz, 2003).  

Considering only the target protein may be a mistake. Side effects have led to the withdrawal of 
many drugs from late stage testing (Smith, 2002). Hence, to achieve selectivity and avoid side 
effects, analysis of related binding sites and estimation of binding affinities between the drug 
candidates and proteins related to the target is also important. Homology modelling (modelling of a 
protein structure based on an experimental structure of a related protein) (Bajorath et al., 1993; 
Sánchez and Sali, 1997; Marti-Renom et al., 2000) makes this possible, since a large number of 
protein structure models can be obtained. Databases of protein structures can also be searched for 
proteins that have structural similarities to the target, even though they are not evolutionary related 
(Holm and Sander, 1993; Murzin et al., 1995; Holm and Sander, 1997; Holm and Sander, 1998 a, b; 
LoConte et al., 2000; Pearl et al., 2000). In this way, possible side effects due to structural 
similarities to the target protein can be detected. Homology modelling is also useful in the 
development of personalised drugs, that is, drugs especially suited for individuals with a specific 
mutation in the genes coding for a target protein. The fact that several different variants of a target 
protein are possible implies that the same drugs may not be optimal for all individuals. Since 
experimental determination of the structures of all variants of a protein is impractical, homology 
modelling becomes an important tool. 

Because of the many approximations to the real biological system used in rational drug design, 
the results from a rational drug design process have to be verified experimentally before reliable 
conclusions can be drawn about the activities of these compounds. In particular, the solvent effect 
and the effects of target and ligand flexibility are often imprecisely described. High accuracy is 
usually associated with a high computational cost. The computational time required for reliable 
results increases dramatically with increasing size and number of rotatable bonds of the ligand. The 
receptor is usually treated as a rigid structure in rational drug design methods. Some approaches 
include protein flexibility, but these methods are usually very time consuming. Protein flexibility in 
drug design has recently been reviewed (Carlson and McCammon, 2000; Carlson, 2002; Teodoro 
and Kavraki, 2003; Wong and McCammon, 2003). 

Computational docking involving large and flexible compounds, such as peptides and complex 
carbohydrate ligands, represents a great challenge. In addition, empirical methods are sensitive to 
deviations between the target system and the structures used to train the methods. For example 
projects involving membrane proteins suffer from the low number of available X-ray structures 
caused by the difficulties in crystallising the proteins (Dahl et al., 2002). However, in spite of these 
limitations, rational drug design is showing an increasing importance in pharmaceutical research, 
and much research effort is devoted to the development of new and more effective methods. Several 
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reviews on rational drug design are available (Apostolakis and Caflisch, 1999; Finn and Kavraki, 
1999; Klebe, 2000; Bajorath, 2001; Sawyer, 2001; Stahura and Bajorath, 2002; Anderson, 2003). 
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2 Computational methods 
 
Rational drug design includes both molecular modelling and multivariate data analysis. Some 
background theory on these disciplines will therefore be given, prior to a more detailed description 
of the methods used in rational drug design. 
 

2.1 Basic principles of molecular modelling 

2.1.1 Molecular mechanics  
 
Molecular mechanics (MM) is a method for calculation of the structure and energy of molecules 
based on force field models. In a very simplified sense, MM treats a molecule as a collection of 
weights connected by springs, where the weights represent the nuclei and the springs represent the 
bonds. 

A force field consists of a collection of atom types that define the atoms in a molecule, 
parameters for bond lengths, bond angles, etc. and equations for calculation of the energy of a 
molecule. In a force field, a given element may have several atom types, depending on what kind of 
functional group it is a part of. 

The total energy of a molecule is a sum of several energy terms that are calculated 
independently. Examples of energy terms include energies associated with bond stretching, bond 
bending, torsional strain, van der Waals interactions (vdW) and electrostatic interactions (ele). 
These equations define the potential energy, Epot, of a molecule: 
 
Epot = Estretch + Ebend + Etorsion + EvdW + Eele  (2.1) 
  
The different terms of Equation 2.1 are illustrated in Figure 2.1. Sometimes additional terms, such 
as stretch-bend coupling terms, are added to Equation 2.1 (Leach, 2001). 
 

 

 
 

Figure 2.1. Illustration of the different energy terms used in molecular mechanics. 
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When using MM, the goal is often to find the optimal conformation of a molecule, by 
minimising the potential energy. Two commonly used minimisation techniques are the steepest 
descent method and the conjugate gradient method. The steepest descent method chooses the 
descent direction based on the energy gradient (the derivative of the energy with respect to the 
atomic positions) of the current step, and makes a single step in this direction. The conjugate 
gradient method starts along the steepest descent direction, continues along this direction until a 
minimum in this direction is reached, and then proceeds along a direction perpendicular (conjugate) 
to this direction. This is continued until a preset threshold is reached. While the steepest descent 
method and the conjugate gradient method use only the first derivative of the energy with respect to 
the atomic positions, the Newton-Raphson method also includes the second derivative. As 
calculation of the inverse of the second derivative leads to a high computational cost for large 
molecular systems, the Quasi-Newton and the Truncated Newton methods have been developed, 
giving approximate solutions to the problem (Jensen, 1999; Leach, 2001).  

A variety of different MM force fields exist (Cramer, 2002). In this work, MMFF94 (Halgren, 
1996), AMBER94 (Weiner et al., 1984) and CHARMM (CHARMm22 and CHARMM27) 
(MacKerell et al., 1998 a, b) have been used. The MMFF and CHARMm force fields have 
parameters for both small-molecular organic compounds and biomolecules, while AMBER and 
CHARMM are most suitable for use with biomolecules. CHARMm is an extended, commercial 
version of CHARMM (available through Accelrys Inc.). 

Use of MM to predict the 3D structure of macromolecules like proteins is very time consuming, 
and although widely used, usually does not give reliable results within reasonable time (Baker and 
Sali, 2001; Leach, 2001). More approximate methods, such as homology modelling, are more 
suitable for this purpose. More detailed descriptions of molecular modelling can be found elsewhere 
(Rappé and Casewit, 1997; Jensen, 1999; Leach, 2001; Cramer, 2002; Forster, 2002). 

 

2.1.2 Conformational searching 
 
Because of the complexity of molecular structures, there may be more than one combination of 
atomic positions that give a minimum on the potential energy surface. Hence, several local minima 
exist in addition to the global minimum having the lowest potential energy. In particular, 
simulations on protein structures are multiple-minimum problems. Minimisation techniques can 
only guide the molecule from the starting conformation to the closest minimum on the potential 
energy surface. This is often not the global energy minimum. In addition to assessing discrete 
molecular structures, MM can be used to systematically determine the number of minima and the 
energetic differences between these minima. Since the global minimum problem has not yet been 
solved analytically, many conformational searching techniques have been developed, for example 
grid searching, molecular dynamics (MD), Monte Carlo (MC) simulation, simulated annealing and 
Tabu search (Allen and Tildesley, 1989; Rappé and Casewit, 1997; Leach, 2001; Frenkel and Smit, 
2002).  

Grid search methods vary each of several geometric variables in a molecule by some 
increment, while keeping the remaining variables fixed. Without a procedure to select in advance 
those conformations that are likely to have relatively low energy, this method becomes 
computationally expensive. In MD, successive configurations of the system under consideration are 
generated by integrating Newton’s law of motion. This results in a trajectory that specifies how the 
positions and velocities of the particles in the system vary with time. In a Monte Carlo simulation, 
the statistical mechanical behaviour of a molecule is simulated by making random changes to the 
system, such as random changes in dihedral angles. The energy of a trial conformation is calculated 
and the changes are accepted if the energy has decreased or meets the requirement of a particular 
algorithm, e.g. the Metropolis criterion (Metropolis et al., 1953). According to the Metropolis 
criterion, changes that decrease the energy of the system are always accepted, while changes that 
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increase the energy are accepted according to a probability distribution. Simulated annealing 
mimics the process of slowly reducing the temperature of a substance until it reaches thermal 
equilibrium. Simulated annealing is often coupled with an MC simulation. 

A procedure used in this work, Tabu search (Glover and Laguna, 1993; Baxter et al., 1998), is a 
stochastic searching algorithm, used e.g. in conformational searching. From the current 
conformation, a specified number of new conformations are constructed by adding random numbers 
to all coordinates in the current conformation. The new conformations are ranked according to an 
energy function. Tabu search maintains a list of previously visited conformations. These 
conformations are forbidden (tabu) for future moves. A new conformation is compared to the 
conformations in the list by calculating the root mean square deviation (RMSD) between the 
Cartesian coordinates of the new conformation and those of every entry in the list. If the RMSD 
value is below a specified value, the conformations are considered to be the same, and the move is 
rejected (tabu). The highest ranked conformation is always accepted (even if it is tabu) if the energy 
is lower than the lowest energy obtained so far in the search. Otherwise, the algorithm chooses the 
best non-tabu conformation. When a new current solution has been found, a new set of coordinate 
transformations is carried out, and the search procedure continues with the next iteration.  
 

2.1.3 Protein structure prediction 
 
There are four levels of protein structure: primary, secondary, tertiary and quaternary structure. The 
primary structure consists of the amino acid sequence, the secondary structure is built up of e.g. α-
helices and β-sheets, while the tertiary structure is determined by how the different elements of 
secondary structure are folded. Protein quaternary structure refers to the spatial relation between 
different domains of tertiary structure. While α-helices and β-sheets are stabilised mostly by 
hydrogen bonds, protein tertiary structure is held together primarily by hydrophobic interactions 
(Branden and Tooze, 1999). This hydrophobic core is often well conserved within a protein family 
(Lesk and Chothia, 1980; Branden and Tooze, 1999). Creation of this hydrophobic core and a 
hydrophilic surface by packing the hydrophobic side-chains into the interior is the main driving 
force for folding of water-soluble globular proteins. Since the main-chain is hydrophilic, formation 
of α-helices and β-sheets is necessary to create the hydrophobic core. Formation of hydrogen bonds 
“neutralises” the polar groups of the main-chain (Branden and Tooze, 1999). Folding of a protein 
into its native structure is a complex process, which is not yet fully understood. The existence of 
chaperone proteins that assist in the folding process further complicates the problem (Creighton, 
1993; Branden and Tooze, 1999). Much research is devoted to prediction of protein secondary 
structure, and a variety of methods exist for this purpose (Leach, 2001). However, in the following, 
the terms “protein structure prediction” and “3D structure prediction” refer to prediction of protein 
tertiary structure.  

The conformational space of a macromolecule, such as a protein, is very complex, containing a 
large number of local energy minima separated by high free energy barriers. The conventional 
search methods such as molecular dynamics may sample only a small part of the conformational 
space due to their difficulties of overcoming high-energy barriers (Tappura et al., 2000). Hence, 
such methods are not suitable for model building without additional information or constraints. A 
variety of other ab initio or first-principles methods for protein structure prediction also exist, such 
as lattice models (Chan and Dill, 1993), where the protein is modelled as a sequence of hydrophobic 
and hydrophilic monomers, and the energy of a conformation is calculated by summing interactions 
between pairs of monomers that occupy adjacent lattice sites but are not covalently bonded. Other 
methods use knowledge-based rules for packing of different secondary structure elements to arrange 
α-helices and β-sheets into a low-energy structure (Cohen et al., 1982). 

At the present time, homology modelling (also called comparative modelling) (Bajorath et al., 
1993; Sánchez and Sali, 1997; Marti-Renom et al., 2000) is usually the fastest way to generate an 
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approximate model of a protein structure when 3D structures of related proteins are available to be 
used as templates. Homology modelling is based on the observation that proteins having related 
primary structure (proteins that have diverged from a common ancestor protein during evolution) 
share segments of similar conformation. It is assumed that if the amino acid sequences are closely 
related, then the 3D structure of a protein can be predicted from the known 3D structures of other 
proteins within the same family. However, even for closely related proteins there are unique 
regions, which can differ significantly both in sequence and conformation (Tappura et al., 2000). 
Such regions are generally surface loops connecting the regular secondary structures. 
Unfortunately, such surface loops are often important for biological activity and diversity of a 
binding site. Protein structure prediction and homology modelling have recently been reviewed (Al-
Lazikani et al., 2001; Baker and Sali, 2001; Schonbrun et al., 2002). 
 
The homology modelling methodology can be divided into four main steps:  
 

1. Identification of one or more suitable template structures. 
2. Generation of an alignment between the target and template amino acid sequences.  
3. Generation of a structural model based on the sequence alignment.  
4. Validation of the model.  

 
Different homology modelling methods are described in detail in Chapter 2.3.1. 

The quality of homology models is highly dependent on the choice of template structures. A 
protein structure can provide a close general model for other proteins with which its sequence 
similarity is higher than 50% (Chothia and Lesk, 1986). If the sequence similarity drops to 20%, 
there will be large structural differences. It has been indicated that in general, a sequence similarity 
of about 45-60% is needed for the homology models to be used for virtual screening (Shoichet et 
al., 2002). However, the active sites of distantly related proteins can have very similar geometries 
(Lesk and Chothia, 1980; Chothia and Lesk, 1982). A weakness of using structures predicted by 
homology modelling as basis for the design of selective drugs is that to achieve selectivity one has 
to utilise variable regions of the proteins. These are the regions predicted with the lowest reliability 
by homology modelling techniques (Read et al., 1984). 

In domain modelling, the positions of any atoms forming an interface to a missing domain 
should be fixed during energy minimisation. Free movement in these regions can lead to side-chain 
conformations that are preferable energetically, but not possible in the real protein structure due to 
interactions with the missing parts of the protein.  

In cases where no template structure of sufficient sequence similarity exists, a method called 
fold recognition (or “threading”) can be used (Torda, 1997). Fold recognition is based on 
knowledge that most proteins fold into one of a limited number of stable folds. In fold recognition, 
databases of known protein folds are searched to find the fold that the query sequence is most likely 
to adopt, using a “pseudo-energy” function. 

 

2.1.4 Binding free energy estimation 
 
To evaluate how strongly a ligand, such as a drug molecule, binds to its receptor, the binding free 
energy (the binding affinity) is estimated. When activity is directly associated with ligand binding, 
this provides a measure of how effective the ligand is in affecting the activity of the receptor. This 
is important in drug design, where the goal is to identify or construct a ligand with as high affinity 
towards the target receptor as possible.   

Gibbs free energy change (at a temperature T) associated with binding of a ligand to a receptor 
is defined as 
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( ) lnbinding complex receptor ligand binding binding iG G G G H T S RT K∆ = − + = ∆ − ∆ = −         (2.2) 
 
where Gcomplex is the free energy of the ligand-receptor complex and Greceptor and Gligand refer to the 
free energy of the ligand and the receptor, respectively, prior to binding. The enthalpic contributions 
(∆Hbinding) result from interatomic forces such as electrostatic and van der Waals forces, while 
∆Sbinding represents the entropy. Ki is the binding constant, and R is the gas constant. Numerous 
methods exist for estimation of the binding free energy (Leach, 2001; Cramer, 2002).   

The free energy contains a solvation term (Gsolv), representing the free energy change 
accompanying the transfer of a molecule from vacuum to solvent, a Coulombic term (Gcoul), 
representing attractive and repulsive forces between charged particles in the system and a van der 
Waals term (GvdW_solute) representing repulsive and dispersive forces between the particles in the 
solute. The free energy may be calculated as 
 
G=Gsolv+Gcoul+GvdW_solute=Gsolv_ele+Gsolv_vdW+Gcav+Gcoul +GvdW_solute=Gele+Gsurf+GvdW_solute (2.3) 
 
where Gsolv_ele represents the electrostatic contribution to the solvation free energy, Gsolv_vdW is the 
van der Waals interaction between the solute and the solvent and Gcav is the free energy required to 
form the cavity within the solvent containing the solute molecule. Gele is the total electrostatic 
contribution. Gsolv_vdW and Gcav can be computed together using the total solvent-accessible surface 
area (Aacc):  
 
Gsurf = Gsolv_vdW + Gcav = γ Aacc + b (2.4) 
 
where γ and b are constants. For systems with hydrogen bonding between the solute and the solvent, 
an additional hydrogen-bonding term may be added to Equation 2.3 (Leach, 2001). A term 
representing the internal energy of the solute molecule(s) may also be added. 

For binding of a ligand to a receptor to be favourable, the energy of the solvated ligand-
receptor complex has to be lower than the energy of the solvated ligand and receptor prior to 
binding. Hence, the solvation energy is an important factor in ligand binding. Several different 
approaches exist for estimating the solvation free energy (Leach, 2001). One approach to account 
for solvation effects is addition of explicit water molecules to the system prior to MM or MD 
calculations. This approach is time consuming, and not applicable to large molecular systems. An 
alternative is to use continuum solvation models, which treat the solvent as a continuous medium 
having the average properties of the real solvent. The solvent surrounds the solute, beginning at or 
near its van der Waals surface (Qiu et al., 1997).  

The electric field at a given point in space is the gradient of the electrostatic potential φ(r) at 
that point, and the work required to create the charge distribution can be determined from the 
interaction of the solute charge density ρ(r) with the electrostatic potential from the surroundings 
according to Equation 2.5 (Cramer, 2002). 
 

( ) ( )1
2

G dρ φ= − ∫ r r r  (2.5) 

 
An approach to estimate the electrostatic contribution to the solvation energy that has been 

particularly useful for biological macromolecules such as proteins is based on solving the Poisson 
equation (Leach, 2001). The Poisson equation relates the variation in the potential φ within a 
medium of uniform dielectric constant ε to the charge density ρ: 
 

( ) ( )
ε

πρφ rr 42 −=∇   (2.6) 
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∇2 is defined by  
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The Poisson equation is valid under conditions of zero ionic strength. If mobile electrolytes are 
present in the solvent, the Poisson-Boltzmann (PB) equation applies instead. The Poisson equation 
can be considered a special case of the PB equation (Cramer, 2002). In the Poisson-Boltzmann 
surface area (PB/SA) method, the Coulombic term is calculated explicitly:  
 

_ele solv ele coulG G G= +   (2.8) 
 
Gsolv_ele is obtained by solving the Poisson-Boltzmann equation (or the Poisson equation) and Gcoul 
is the Coulombic energy associated with ligand binding to the protein. For a system of particles 
with interparticle distances rij and charges qi, the Coulombic energy is calculated as 
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where ε is 1 in gasphase and approximately 78 in water. 

In order to solve the Poisson equation, numerical methods are needed, since the Poisson 
equation has not yet been solved analytically for an arbitrary shape of the molecule. An alternative 
is to use the Generalised Born (GB) equation, which is an approximation to the Poisson equation 
that can be solved analytically (Cramer, 2002). In the Generalised Born surface area (GB/SA) 
method, Gele is estimated as 
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The following form for the function ),( ijij arf has been proposed (Qiu et al., 1997): 
 

 )(),( 22 ijD
ijijijij eararf −+=  (2.11) 

 
where )( jiij aaa =  and 22 )2( ijijij arD = , and ai represents the radii of the particles. Hence, for 

large interparticle distances rij, ),( ijij arf is approximately equal to rij.  
 

2.1.5 Surface area calculations 
 
As discussed in the previous section, calculated surface areas can e.g. be used to estimate non-
covalent interactions between molecules. The van der Waals surface areas, the molecular surface 
areas and the solvent accessible surface areas are commonly used for this purpose (Leach, 2001). 
The van der Waals surface is constructed from the overlapping van der Waals spheres of the atoms 
(Figure 2.2).  
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Figure 2.2. Calculation of surface areas of molecules. The molecular surface consists of the contact surface and the re-
entrant surface. 
 

Surface areas are usually calculated by rolling a probe of a specified radius over the van der 
Waals surface of the given atom or molecule, tracing the centre of the probe. The molecular surface 
is traced out by the inward-facing part of the probe sphere, and contains two different types of 
surface element, the contact surface and the re-entrant surface. The contact surface corresponds to 
the regions where the probe is actually in contact with the van der Waals surface of the molecule. 
The re-entrant surface regions occur where there are crevices that are too narrow for the probe 
molecule to penetrate. The molecular surface is usually estimated using a water molecule, 
represented by a sphere of radius 1.4 Å, as the probe. The solvent accessible surface area is the 
surface that is traced by the centre of the probe molecule. The centre of the probe can thus be placed 
at any point on the accessible surface and not penetrate the van der Waals spheres of any of the 
atoms in the molecule. Several algorithms for calculating molecular and accessible surface areas 
have been published (Connolly, 1983; Richmond, 1984; le Grand and Merz Jr., 1993).  
 
 

2.2 Multivariate regression  
 
Regression analysis is the process of relating a set of independent variables (called the X-matrix) to 
one or more dependent variables, or response variables (the Y-matrix), through a matrix of 
regression coefficients (B): 
 

FXBY +=  (2.12) 
 
F is the residual matrix, that is, the part of Y that is not described by the regression model. The 
purpose of the regression analysis is to train a regression model that can be used to predict the 
response for new samples. In Partial Least Squares (PLS) regression, a decomposition of X and Y 
into a latent variable space is carried out, where the purpose is to maximise the covariance between 
X and Y (Martens and Martens, 2000; Høy, 2002). This is in contrast to Ordinary Least Squares 
(OLS) regression, where the correlation between X and Y is maximised. PLS is superior to OLS for 
example in cases where the X-variables are correlated. In PLS, X and Y are related through a 
common score matrix (T), as shown in Figure 2.3 and Equations 2.13 and 2.14.  
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Figure 2.3. Decomposition of X and Y into latent variable space in PLS regression. n represents the number of samples, 
m and k are the number of X- and Y-variables, respectively, and A is the number of principal components (PCs). 
 

ETPX += T  (2.13) 
 

FTQY += T  (2.14) 
 
The matrices P and Q represent the X- and Y-loadings, respectively, while E and F are the residual 
matrices. Columns of T, P and Q corresponding to insignificant PCs are not used. Hence, E and F 
depend on the number of PCs used. The number of significant PCs is usually chosen based on the 
explained Y-variation from a validation of the regression model. A commonly used technique is 
leave-one-out cross-validation, where each sample is kept out of the regression analysis in turn, and 
the response is predicted using the remaining samples. This gives a measure of the predictive power 
of the regression model. The loading weights (W) are defined by  
 

( ) 1T −
= WPXWT  (2.15) 

 
X-variables for new samples can be used to predict the response (Y) using the regression 
coefficients from the PLS regression: 
 

( ) TQWPWB
1T −

=  (2.16) 
 

BXY newpredicted =  (2.17) 
 
More complete revisions of PLS regression can be found elsewhere (Manne, 1987; Høy, 2002). 
 
 

2.3 Rational drug design methods 

2.3.1 Homology modelling methods 
 
Homology modelling methods can be divided into three main groups: Rigid body superposition 
methods, methods based on distance geometry and segment matching methods. In rigid body 
superposition, a model is constructed from a few core sections defined by the average of the Cα 
atoms in the conserved regions. Distance geometry uses spatial restraints obtained from the 
alignment, while in segment matching, a database of short segments of protein structure is used, 
together with energy or geometry rules. Examples of available homology modelling programs 
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include SwissModel (Peitsch, 1995; Peitsch, 1996; Guex and Peitsch, 1997; Guex et al., 1999; 
Schwede et al., 2003), WHAT IF (Vriend, 1990), MODELLER (Sali and Blundell, 1993; Fiser et 
al., 2000; Marti-Renom et al., 2000) and LOOK (Levitt, 1992). 

SwissModel is a popular implementation of the rigid body approach. A model framework is 
first generated by ProModII (Peitsch, 1996), based on the topological arrangement of corresponding 
atoms to the given templates. The backbone is rebuilt based on the positions of Cα atoms, using a 
library of backbone elements derived from high quality X-ray structures. Incomplete loops and 
incomplete or lacking side-chains are rebuilt prior to an energy minimisation with molecular 
mechanics. 

The homology modelling procedure in WHAT IF starts with copying the backbone of the 
template structure. The side-chains of the different residues are then placed in order according to the 
narrowness of the position-specific rotamer distribution (Chinea et al., 1995). The side-chains of the 
residues having the narrowest rotamer distribution are placed first. The rotamer distribution is 
determined by extracting from a database of non-redundant protein structures all suitable fragments 
of five or seven residues. Suitable fragments are those that have a local backbone conformation 
similar to the one around the evaluated position, and have the same residue type at the actual 
position. Rotamers are rejected if they lead to severe van der Waals clashes when placed in the 
model.  

In MODELLER, restraints on distances and dihedral angles are generated based on the target-
template alignment. Corresponding distances and angles between aligned residues in the template 
and the target structures are assumed to be similar. Restraints on bond lengths, bond angles, 
dihedral angles and non-bonded atom-atom contacts are derived from the CHARMM force field 
and from statistical analysis of the relationships between Cα atoms, solvent accessibilities and side-
chain torsion angles in known protein structures. The restraints are expressed as probability density 
functions (pdfs). These pdfs are combined to give a molecular function, which is optimised by 
combining energy minimisation with molecular dynamics and simulated annealing. 

LOOK uses Segment Match Modelling (SegMod) to generate homology models by fragment-
based assembly (Kolodny et al., 2002). SegMod uses a fragment-matching algorithm to find the 
appropriate structural segments derived from known 3D structures. Both backbone and side-chain 
information from the fragments are utilised to obtain the model, which is energy minimised using 
molecular mechanics. SegMod models insertions and deletions by searching for compatible 
fragments. 
 

2.3.2 Methods for verification of the accuracy of protein structure models  
 
An inaccurate protein structure model may be misleading, and relatively small structural errors may 
lead to large errors in e.g. binding energy calculations. Hence, it is important to be able to predict 
the reliability of protein structure models prior to applying them in e.g. drug design. The homology 
model accuracies are comparable for most modelling methods when the methods are used optimally 
(Koehl and Levitt, 1999). However, automatic methods will not always find the optimal alignments 
or loop predictions, especially when the sequence identity falls below 40% (Marti-Renom et al., 
2000; Qian and Goldstein, 2002). Misalignments and errors in the loop modelling are the largest 
sources of errors in comparative modelling (Fiser et al., 2000; Marti-Renom et al., 2000). Several 
methods exist for prediction of the reliability of sequence alignments (Cline et al., 2002; Tress et 
al., 2003) 

Models of protein 3D structures can be evaluated according to a variety of criteria, such as 
stereochemistry, bond lengths, bond angles, torsion angles, packing, formation of a hydrophobic 
core, residue and atomic solvent accessibilities, spatial distribution of charged groups, distribution 
of atom-atom distances, atomic volumes and main-chain hydrogen bonding. Large deviations from 
the most likely values have been interpreted as indicators of errors in the model structure. Examples 
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of such methods include PROCHECK (Laskowski et al., 1993), AQUA (Laskowski et al., 1996), 
SQUID (Oldfield, 1992) and WHATCHECK (Hooft et al., 1996). Methods based on 3D profiles 
and statistical potentials of mean force also exist, that take many of these criteria into account 
implicitly. These methods evaluate the environment of each residue as seen in the model, compared 
to the expected environment as observed in experimental structures. Examples of programs utilising 
such methods include VERIFY3D (Lüthy et al., 1992), PROSAII (Sippl, 1993), HARMONY 
(Topham et al., 1994) and ANOLEA (Melo and Feytmans, 1998). WHATCHECK reports have also 
been used in the refinement of homology models with restricted molecular dynamics (Flohil et al., 
2002). For each residue, the probability that it is modelled correctly is determined. During the MD 
simulation, correctly modelled residues are restrained, while those likely to be wrongly positioned 
are allowed to move unrestricted. Recently, analysis of backbone deviations between pairs of 
homologous proteins was used to predict local backbone structural deviation in homology models 
(Cardozo et al., 2000). This method may be used to evaluate the utility of a preliminary homology 
model for e.g. drug design or to provide an improved starting point for loop prediction. 

The accuracy of protein structure models can also be evaluated by comparison to experimental 
structures of the targets (Venclovas et al., 1997; Cristobal et al., 2001; Moult et al., 2001; Moult et 
al., 2003). A common method is to use RMSD values between the positions of corresponding atoms 
in the two protein 3D structures. However, the geometric measures only provide meaningful results 
when the entire extent of the proteins is comparable. For example, a set of partially correct 
structures cannot be ranked because the incorrect portions will dominate the RMSD value. When 
restricting the comparison to certain parts of the structure, the definition of relevant parts is also not 
always obvious. An alternative is to compare the surface areas of residue contacts in the protein 
structures. This procedure does not require a superpositioning of the structures that are being 
compared.  

When estimations of surface areas of residue contacts are used to evaluate the accuracy of a 
protein structure model, the contact areas between all pairs of residues in the model structure are 
calculated and compared to the results obtained for a reference structure. How well the residue-
contacts in the model correspond to the same contacts in the reference structure is then used as a 
measure of the model accuracy. The contact area Aij between residues i and j of a protein is 
calculated by identifying the part of the surface area of residue i that is occluded by van der Waals 
surfaces of atoms of residue j. The matrix containing Aij for each pair of residues in a protein 
structure is referred to as the contact area matrix. When two protein structures are compared, the 
difference between the contact area matrices for the two structures is calculated. The elements in the 
resulting matrix are negative for incorrectly occurring and overestimated contacts, zero for correct 
contacts and non-contacting residue pairs, and positive for underestimated or missing contacts in the 
model structure. In the following, this matrix will be referred to as the inter-residue contact area 
error matrix. This contact area error matrix can be summed over all elements to give a single value 
representing the model error, the Contact Area Difference (CAD) number. The CAD number for a 
reference structure R and a model structure M is given by Equation 2.18 (Abagyan and Totrov, 
1997). 
 

( )
,

R M
ij ij

i j
CAD A A= −∑  (2.18) 

 
The CAD number can be normalised to make it independent of e.g. protein size, shape and amino 
acid content (Abagyan and Totrov, 1997). 

Recently, a new surface area based comparison method has been developed (Liu et al., in 
preparation). This method is similar to the CAD number calculation described above (Abagyan and 
Totrov, 1997), but differs in both calculational details and in the normalisation of the CAD number. 
Here, the normalised CAD number is calculated as  
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where N is the number of residues considered. The surface areas are calculated using a Boolean 
logic based algorithm (le Grand and Merz Jr., 1993). Analysis of residue-residue contacts has been 
used to evaluate structure predictions (Göbel et al., 1994), and the conservation of side-chain 
interactions in homologous proteins (Russell and Barton, 1994). Contact-based measures have also 
been applied to study protein folding using simplified protein descriptions (Gou and Thirumalai, 
1995). 
 

2.3.3 Methods for mapping protein binding site properties  
 
A variety of methods exist for localisation of protein binding sites by detecting cavities in the 
structures. Examples include Putative Active Sites with Spheres (PASS) (Brady and Stouten, 2000), 
Automatic PROtein Pocket Search (APROPOS) (Peters et al., 1996) and CAST (Liang et al., 1998). 
These methods use sphere-based approaches to detect grooves or pockets in the protein structure. 
LIGSITE (Hendlich et al., 1997) recognises binding sites by evaluating the degree of surface 
depression burial for each point of a 3D grid surrounding the protein structure. In the present work, 
we focus on methods for analysis of the properties of an already known binding site, and 
identification and characterisation of possible interaction sites for ligands. 

Numerous methods for analysis of binding site properties are available (Sotriffer and Klebe, 
2002). Most of these methods identify favourable binding locations by placing atom probes, 
molecular fragments or small molecules at various points in the binding site and evaluating their 
interactions with the protein. Protein flexibility is usually not accounted for in these calculations. 
One class of methods is based on using a discrete 3D grid to position the probe atoms or groups 
within the binding site, and using an energy function to compute the interaction energies between 
the protein and the probes. One of the most common methods in this class is GRID (Goodford, 
1985).  

An alternative to the grid-based approaches is the multiple copy simultaneous search (MCSS) 
method (Miranker and Karplus, 1991). This method identifies favourable interaction sites in a 
protein cavity by placing a large number of copies of one or more probe molecules into the active 
site of the target protein. These probes are placed randomly around the active site atoms. The probe 
groups are then subjected to energy minimisation along with a molecular dynamics simulation. The 
receptor atoms may be kept fixed, or be subject to the average forces of the probes (Stultz and 
Karplus, 1999). Each probe is subject to the full force of the receptor but not forces from the other 
probes. Hence, interactions between the probes are not considered. Favourable interaction sites for 
drug candidates can then be identified based on the distribution of the different types of molecular 
fragments in the protein binding site. 

Compared to the grid-based approaches, MCSS has the advantage that the positions of the 
fragments are not restricted to predefined grid points, but free to move to a more optimal location. 
However, the fixed grids have a major advantage with respect to comparability. Many related 
proteins can be superpositioned and the same grid used for all of them. Interesting differences 
between related binding sites can be identified by comparing energy maps. Thus, using e.g. GRID 
on multiple proteins can aid the development of ligands selective for a particular protein target. The 
data from the GRID computations can be analysed with e.g. Principal Component Analysis (PCA) 
(Johnson and Wichern, 1998) to find the most important structural differences to take into 
consideration in the design of a selective inhibitor (Pastor and Cruciani, 1995).  
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A useful approach for visual inspection of binding site properties is mapping of 
physicochemical properties such as the electrostatic potential onto molecular surface 
representations. The electrostatic potential is most commonly calculated by solving the Poisson-
Boltzmann equation. This can be done with programs such as the University of Houston Brownian 
Dynamics (UHBD) program (Davis et al., 1991; Madura et al., 1995). An example of a method 
utilising this approach is GRASP (Nicholls et al., 1991). GRASP contains a Poisson-Boltzmann 
solver in addition to visualisation routines. Methods for generation of hydrophobicity maps of 
protein binding sites have also been developed (Scarsi et al., 1999). Here, a non-polar probe is 
rolled over the protein surface and the binding energy is calculated based on the van der Waals 
interaction and the electrostatic desolvation energy of the protein. 

Rule-based or knowledge-based methods for mapping of protein binding site properties also 
exist. These methods use rules for preferred protein-ligand interaction patterns derived from 
statistical analysis of the structural data stored in databases of experimental structures of protein-
ligand complexes. The program LUDI makes use of such statistical rules to calculate interaction 
sites suitable for hydrophobic contacts or for hydrogen bond formation (Böhm, 1992 a, b). A 
program called SUPERSTAR (Verdonk et al., 1999; Verdonk et al., 2001) identifies interaction 
sites in proteins based on the information stored in the database ISOSTAR (Bruno et al., 1997). 
Here, 3D maps showing the propensities of different probes at different positions in the protein 
binding site are generated. Gaussian functions have been used to obtain smoother propensity maps 
from ISOSTAR (Nissink et al., 2000).   
 

2.3.4 Computational docking methods 
 
Property maps of protein binding sites can be used to search databases for known drugs having 
properties that match the binding site properties. The hits from for example database searching can 
be evaluated further by molecular docking. Maps of protein binding site properties are also utilised 
directly in many computational docking methods. In computational docking, the ligand structure is 
placed in the protein binding site, and the most favourable binding conformation is sought. This is 
done by maximising the complementarity between a description of the protein binding site and the 
properties of different ligand conformations (Figure 2.4). Sometimes receptor flexibility is also 
taken into account in the calculations. 

Docking methods use a conformational search method to optimise the bound ligand 
conformation, and a score function to guide the conformational search by estimating the binding 
affinity for the different conformations. Available search methods range from rigorous search 
methods such as simulated annealing (Kirkpatrick et al., 1983) to faster methods such as Tabu 
search (Baxter et al., 1998) and genetic algorithms (Terfloth and Gasteiger, 2001; Halperin et al., 
2002). Commonly used docking programs include DOCK (Ewing and Kuntz, 1997), AutoDock 
(Morris et al., 1998), Molecular Operating Environment (MOE)-Dock (Hart and Read, 1992; Baxter 
et al., 1998) and FlexX (Rarey et al., 1996). Existing docking and virtual screening methods have 
recently been reviewed (Bajorath, 2002; Halperin et al., 2002; Lyne, 2002; Taylor et al., 2002; 
Brooijmans and Kuntz, 2003).  
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Figure 2.4. Illustration of computational docking of a ligand into a protein binding site. The ligand (blue) and the 
protein binding site (red) are rendered as “space filling”. Based on a conformational search algorithm, a large number of 
ligand conformations are evaluated for binding to the receptor.  
 

DOCK describes the ligand and the receptor cavity as two sets of spheres, and orients the 
ligand to maximise the complementarity between the ligand and receptor spheres. An 
intermolecular score is calculated based on the AMBER force field, where the receptor terms are 
calculated on a grid (Meng et al., 1992). In DOCK 4.0, ligand flexibility is included by 
incorporating an intramolecular score for the ligand into the score function (Makino and Kuntz, 
1997). Further extensions of DOCK have included protein flexibility using ensembles of protein 
structures (Knegtel et al., 1997) and a GB/SA continuum model into the score function (Still et al., 
1990; Zou et al., 1999; Liu et al., 2004).  

Early implementations of AutoDock used Monte Carlo simulated annealing with a grid-based 
evaluation of the energy based on the AMBER force field, to dock flexible ligands into the binding 
pocket of a rigid receptor (Goodsell and Olson, 1990; Morris et al., 1996). A more recent version 
uses a genetic algorithm combined with an energy minimisation for the conformational search 
(Morris et al., 1998). The score function includes five terms: van der Waals energy, desolvation 
energy, a directional hydrogen bonding term, a term representing the Coulombic electrostatic 
energy and a term proportional to the number of sp3 bonds in the ligand, representing unfavourable 
entropy of ligand binding due to the restriction of conformational degrees of freedom. Protein and 
ligand parameters are taken from the AMBER force field.  

With MOE-Dock, two different docking procedures are possible; one using Monte Carlo 
simulated annealing for the conformational search (Hart and Read, 1992), and one using Tabu 
search (Baxter et al., 1998). The score function is a sum of the electrostatic and the van der Waals 
interaction energy between the ligand and the target protein, and the intramolecular energy of the 
ligand. To calculate the interaction energies, MOE uses a grid-based method where the interaction 
energy is calculated using electrostatic and van der Waals fields that have been sampled on a grid 
overlaying the docking box inside which the ligand is allowed to move. Hence, this grid-based 
method calculates the potential energy grids only once, at the beginning of the docking procedure. 
The energy fields are interpolated at the atom positions by tri-linear interpolation. The van der 
Waals parameters are taken from the currently active force field (several different force fields are 
possible, for example MMFF and AMBER), and the electrostatic energy is calculated in a 
Coulombic manner (MOE, 2002).  
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FlexX is a fragment-based docking method that builds up the ligand using an incremental 
construction algorithm (Rarey et al., 1996). Following an initial base fragment selection, different 
ligand conformations are formed based on the MIMUMBA torsion angle database (Klebe and 
Mietzner, 1994). Intramolecular and intermolecular overlaps are removed, and the conformations 
are ranked using an empirical score function that accounts for hydrogen bonds, ionic interactions, 
the lipophilic protein-ligand contact surface and the number of rotatable bonds in the ligand (Böhm, 
1994). A recent version of FlexX includes explicit water molecules into the binding site using pre-
computed water positions (Rarey et al., 1999). A version of FlexX suited for combinatorial library 
docking, FlexXc, has also been developed (Rarey and Lengauer, 2000).  

Recently, a docking program called EasyDock has been developed, that makes use of quantum 
stochastic tunnelling for conformational searching (Todorov et al., 2003; Mancera et al., 2004). The 
method combines the use of multiple ligand copies with a non-linear transformation of the potential 
energy surface that allows for the positions of the local minima to be retained while the sizes of the 
transition barriers connecting them are significantly reduced. This reduces the probability of getting 
trapped in local minima with high-energy transition-state barriers, a problem associated with e.g. 
simulated annealing.  

SLIDE (Screening for Ligands by Induced-fit Docking, Efficiently), is a fast docking method 
that is suitable for virtual screening (Schnecke and Kuhn, 1999 a, b; Schnecke and Kuhn, 2000). 
Templates with hydrogen bonding and hydrophobic interaction points for the protein binding site 
and for the ligand candidates are first generated, where an interaction point is a hydrogen bond 
donor or acceptor, or a hydrophobic ring centre. The best matches between triplets of interaction 
points on the ligands and triplets of receptor template interaction points are calculated based on 
chemical properties and geometry. Template triangles for triplets of ligand interaction points are 
docked into the binding site by least squares fit of the ligand triangles onto the receptor template 
triangles. Rigid anchor fragments for the ligands are then generated based on matched interaction 
point triangles, flexible bonds in the ligands are identified, and collisions between ligand anchor 
fragments and the protein are resolved by iterative ligand translations. Side-chain collisions are 
resolved by directed rotations. The protein-ligand complexes are then scored based on the number 
of intermolecular hydrogen bonds and hydrophobic complementarity. SPECITOPE (“Specific 
Epitope”) is an earlier version of this program (Schnecke et al., 1998). 

Recently, new docking methods especially suited for use with homology modelled protein 
structures have been developed. Gaussian functions have been used to represent the 
physicochemical properties of the receptor and the ligand in computational docking (Schafferhans 
and Klebe, 2001). This method optimises the overlap between the functional description of the 
receptor binding site and the ligands. Ligand information is also incorporated into the protein 
structure modelling procedure (Schafferhans and Klebe, 2001; Evers et al., 2003). A gaussian-based 
docking method that is meant to act as a filter to reduce the search space for other docking methods 
has recently been developed (McGann et al., 2003). This method accounts only for shape, and 
minimises steric clashes between the receptor and ligand atoms. Another docking method suitable 
for homology models uses a discretisation of the structural models, together with an averaging of 
the structural details and a smoothing of the potential energy surface to compensate for structural 
errors (Wojciechowski and Skolnick, 2002). Both steric and chemical complementarity between the 
ligand and the receptor is sought using a grid-based search.  

To increase computational efficiency, protein flexibility has traditionally been ignored in 
docking calculations. This is a severe approximation, since it is well known that in many cases the 
ligand induces conformational changes in the protein structure, a process called induced fit (Ishima 
and Torchia, 2000; Ma et al., 2002; Teague, 2003). When using protein structure models built by 
homology modelling, it is especially important to allow for protein flexibility, since this can reduce 
the impact of small structural errors. Ligands present in the X-ray structures used as templates in the 
homology modelling may also have induced conformational changes in the protein. Using a fixed 
protein structure might thus hinder identification of the correct binding modes for other ligands. 
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Examples of methods that use side-chain flexibility include SLIDE (Schnecke and Kuhn, 1999 a, b; 
Schnecke and Kuhn, 2000), the method reported by Leach (1994), which includes side-chain 
flexibility using information from analysis of high-resolution protein structures, and the “Mining 
Minima Optimiser” method (Kairys and Gilson, 2002), where rotatable bonds in selected protein 
side-chains can be treated as continuous degrees of freedom during the docking procedure. An 
algorithm for identifying regions where conformational adaptation to a ligand is likely to occur has 
also been developed (Anderson et al., 2001). During the docking simulations the side-chains of 
these residues are allowed to move. Rotamer libraries have also been used to include side-chain 
flexibility (Schaffer and Verkhivker, 1998). 

One approach to include protein flexibility in docking calculations is to use soft docking. In 
soft docking, the high energy penalty for overlap between ligand and receptor atoms is relaxed. This 
can be done by reducing the van der Waals contributions to the total energy score. An example of a 
soft docking method is the method developed by Jiang et al. (1991), where the molecular volumes 
and surfaces are represented as cubes that are first matched geometrically and then scored according 
to the favourable energetic interactions between the buried surface areas. The majority of the 
methods that take protein backbone flexibility into account utilise multiple protein structure models 
in the calculations. In the “Relaxed Complex Method” (Lin et al., 2002; Lin et al., 2003) a long 
molecular dynamics simulation of the unliganded receptor is carried out, followed by a rapid 
docking of candidate ligands to a large ensemble of the receptor’s MD conformations. The use of 
statistical analysis of conformational samples from short-run protein molecular dynamics has also 
been combined with grid-based docking by generation of a composite interaction weight-averaged 
grid (Broughton, 2000). Experimental protein structures have also been used to generate combined 
interaction grids by averaging with respect to energy and geometry (Knegtel et al., 1997). The 
FlexE approach (Claussen et al., 2001), a variant of FlexX, is based on a united protein description 
generated from an ensemble of protein structures. Discrete alternative conformations are explicitly 
taken into account for varying parts of the protein. These conformations can be combinatorially 
joined to create new protein structures. Structural water heterogeneity has also been incorporated 
into docking simulations, in addition to protein flexibility, using an ensemble of protein structures 
(Österberg et al., 2002). Recently, a hybrid approach where the first component is ligand docking to 
a rigid receptor, and the second step is an MC simulation including the GB/SA continuum solvent 
model has been developed (Taylor et al., 2003). A rotamer library is also used to direct some of the 
protein side-chain movements along with large dihedral moves, and a softening function is used for 
the non-bonded force field terms.  

A novel algorithm called IFREDA (Internal coordinate mechanics (ICM)-flexible receptor 
docking algorithm) generates an ensemble of receptor conformations by performing flexible ligand 
docking of selected known binders to a flexible receptor (Cavasotto and Abagyan, 2004). This 
ensemble is then used to perform flexible ligand-rigid receptor docking. Docking of known binders 
has also been used to select a minimal subset of receptor conformations that provides a strong 
correlation between the experimental binding affinities and the docking scores (Yoon and Welsh, 
2004). This subset is then used for multiple-conformation docking. 
 

2.3.5 Score functions for computational docking 
 
As previously mentioned, docking methods use score functions to guide the conformational search 
and to estimate the binding energies between the receptor and the ligand. Existing score functions 
can be divided into three main categories: force field based, empirical and knowledge-based score 
functions. The use of score functions in drug design has recently been reviewed (Böhm and Stahl, 
2002).  

Force field based scoring methods estimate the binding affinity using non-bonded energies of 
molecular mechanics force fields. Force field based score functions are often slow and sensitive to 
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errors in the protein structure models, partial charges and protonation states. Examples of force field 
based methods include the score function implemented in the AutoDock program (Morris et al., 
1998) which utilises parameters from the AMBER force field and MM PB/SA (Massova and 
Kollman, 1999) which includes a solvation term calculated by the Poisson-Boltzmann equation 
(Honig and Nicholls, 1995) in addition to the electrostatic interactions. The OWFEG (one window 
free energy grid) method (Pearlman and Charifson, 2001) is an approximation to the 
computationally expensive free energy perturbation method (Meirovitch, 1998). In OWFEG, a 
molecular dynamics simulation is carried out with the ligand-free, solvated receptor site. Solvent 
effects are represented explicitly. The energetic effects of probe atoms on a regular grid are 
collected and averaged during the simulation. Three simulations are run with three different probes: 
a neutral atom, a negatively charged and a positively charged atom. This results in three energy 
fields, containing information about the score contributions of neutral, positively and negatively 
charged ligand atoms located in various positions of the receptor site. The advantages of the 
OWFEG method are the consideration of entropic and solvent effects, and the inclusion of some 
protein flexibility in the simulations. This is achieved by allowing weakly restrained motion of the 
region of the protein near the active site and free movement of solvation water molecules. 

Empirical score functions are generally faster than force field based methods. It is assumed that 
the binding free energy can be interpreted as a weighted sum of localised interaction terms, 
representing hydrogen bonds, ionic interactions, hydrophobic interactions, entropy change 
associated with binding, etc. In addition, penalty functions for e.g. steric clashes can be added. The 
interaction terms are usually calculated using experimental 3D structures of receptor-ligand 
complexes, and the weights are estimated by multiple linear regression using experimental binding 
affinities. This makes the empirical score functions very dependent on the set of experimental 
structures used to train the parameters. Usually, between 50 and 100 complexes are used to train the 
score functions, but recently it was shown that more than 100 complexes are needed for 
convergence (Wang et al., 1998). A disadvantage with empirical score functions is that pH, salt 
concentration and temperature can influence the measured binding constants significantly. This is 
often ignored when the datasets used for training the score functions are derived (Brooijmans and 
Kuntz, 2003). Examples of empirical score functions showing some promise include PLP (Gelhaar 
et al., 1995; Gelhaar et al., 1999), ChemScore (Eldridge et al., 1997) and X-Score (Wang et al., 
2002). PLP uses a sum of pairwise linear potentials between ligand and protein heavy atoms with 
parameters dependent on interaction type. Each pair of interacting atoms is assigned one of three 
interaction types: donor and acceptor hydrogen bonding, repulsive donor-donor and acceptor-
acceptor interactions and dispersion contacts. The ChemScore function includes hydrogen-bonding 
terms, terms accounting for coordinate bonding between the ligand and metal ions placed in the 
protein binding pocket, hydrophobic effects and the number of rotors, while the X-Score function 
contains a van der Waals interaction term, a hydrogen bonding term, a term representing the 
hydrophobic effect and a torsional entropy penalty.  

Knowledge-based score functions are derived by statistical analysis of structural data alone, 
without reference to experimentally determined binding affinities. The frequency of occurrence of 
individual contacts is used as a measure of their energetic contribution to binding. The frequencies 
are compared to frequencies from a random or average distribution. A high frequency indicates an 
attractive interaction, while a low frequency indicates a repulsive interaction. The Potential of Mean 
Force (PMF) score function (Muegge and Martin, 1999; Muegge, 2000; Muegge, 2001) is an 
example of a knowledge-based score function. The PMF score function is a sum of distance-
dependent interaction potentials for atom pairs, where both enthalpic and entropic effects are 
assumed to be included implicitly. In the DrugScore equation (Gohlke et al., 2000), individual 
potentials for protein and ligand atoms that are dependent on the size of the solvent-accessible 
surfaces of the protein and the ligand that become buried upon complex formation are also included.  

Recently, eleven score functions were compared using the same set of experimental structures 
(Wang et al., 2003). X-Score and DrugScore were found to be the score functions most suited for 
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use with conformational sampling, since they produce a funnel-shaped energy surface for protein-
ligand complexation. This leads to a relatively fast convergence to the global minimum. This study 
also indicated that a combination of several different score functions might be advantageous. X-
Score, DrugScore and PLP were the score functions showing most promise, but only a moderate 
correlation was obtained between the predicted (using the experimentally determined conformation) 
and the experimental binding affinities for the 100 complexes included in the study. Most of the 
eleven tested score functions predict hydrophilic interactions better than hydrophobic interactions. 
 

2.3.6  De novo ligand design  
 
If a drug molecule with the desired properties cannot be found by virtual screening of structural 
databases, an alternative is to use de novo ligand design to construct drug candidate structures from 
a set of proposed functional groups. There are three main approaches to de novo ligand design: 
linking, growing and random connection (Figure 2.5). Molecular fragments placed at possible 
interaction sites in the receptor binding pocket can be used as starting points for all three 
approaches. Most of the random connection methods start from an initial “pool” of molecular 
fragments and construct ligands by making and breaking connections between the fragments. 
Random connection methods include methods using genetic algorithms. In the same way as in 
computational docking, score functions are used to guide the building of the ligand structures, and 
to estimate the binding affinity. Examples of de novo ligand design methods include DycoBlock 
(Liu et al., 1999), which uses the linking approach, SPROUT (Gillet et al., 1993; Gillet et al., 
1994), where the growing approach is used, LigBuilder (Wang et al., 2000), where both growing 
and linking are possible, and ADAPT (Pegg et al., 2001), which uses a genetic algorithm. Available 
de novo ligand design methods are listed elsewhere (Schneider and Böhm, 2002; Anderson, 2003). 
 

 
Figure 2.5. The three main categories of de novo ligand design methods (figure from Paper III). a) In the linking 
approach, molecular fragments placed close to important residues of the protein are connected to obtain a ligand. b) The 
growing approach starts from one fragment and connects fragments sequentially to it. c) Most of the random connection 
methods start from an initial “pool” of fragments and construct ligands by making and breaking connections between 
the fragments.  
 



Rational design of protein inhibitors using molecular modelling and multivariate analysis 
________________________________________________________________________________________________________________________ 

 

  31

Few de novo ligand design methods exist that take factors such as synthetic accessibility, 
bioavailability and metabolic properties into account. Many ligand suggestions produced by these 
methods have large and complex structures. Recently, some programs have been developed that 
attempt to take such factors into account. An example is LigBuilder (Wang et al., 2000), which uses 
a filter to make sure that the produced structures have reasonable ADMET (Absorption, 
distribution, metabolism, excretion and toxicity) properties. LigBuilder starts by analysing the 
protein binding pocket using three different probes, an ammonium cation (hydrogen donor), a 
carbonyl oxygen (hydrogen acceptor) and methane (hydrophobic group). The interaction energies 
between the probes and the protein are calculated using an empirical score function accounting for 
van der Waals interactions, hydrogen bonding, hydrophobic interactions and entropy loss due to 
freezing of rotatable bonds in the ligand. LigBuilder builds up ligands iteratively by using a library 
of organic fragments. Both growing and linking strategies are possible, and the construction process 
is controlled by a genetic algorithm.    

Leads produced by a de novo ligand design method can also be evaluated for their likelihood of 
being orally bioavailable using the “Rule of five” (Lipinski et al., 1997), which suggests upper 
limits for the number of hydrogen donors and acceptors, the molecular weight and the octanol/water 
partition coefficient. Rigidifying the lead can also produce a lower binding constant by decreasing 
the conformational entropy in the unbound state, and thereby decreasing the difference in entropy 
between the bound and the unbound state (Anderson, 2003). 

In the same way as in molecular docking, protein flexibility is often ignored by de novo ligand 
design methods. However, a few methods exist that account for fluctuations in the protein structure. 
A recent version of DycoBlock, F-DycoBlock (Zhu et al., 2001) uses multiple-copy stochastic 
molecular dynamics, while in the “Dynamic Pharmacophore Method” (Carlson et al., 1999), 
pharmacophore models are determined for a large number of MD snapshots.  

De novo ligand design has contributed to the development of several important drug leads 
(Sawyer, 2001). An important example is the discovery of STI-571, a selective inhibitor of Abelson 
(Abl) kinase, which is being used as a therapeutic agent against chronic myelogenous leukaemia 
(Schindler et al., 2000; Capdeville et al., 2002). Other examples include the development of 
antifungal agents (Ji et al., 2003) and the design of aspartyl protease inhibitors. The aspartyl 
protease inhibitors were verified experimentally (Ripka et al., 2001). 
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3 Molecular systems 
 
The present work has focused on development of selective inhibitors for proteins that are involved 
in cancer development and metastasis. In this chapter, an introduction to the structure and function 
of the proteins that have been studied here will be given. 
 

3.1 Protein kinases 
 
The protein kinase superfamily is one of the largest protein families known to date. The protein 
kinases constitute a family of signalling proteins that is involved in a wide variety of biological 
functions. Protein kinases contribute to regulation and coordination of e.g. metabolism, gene 
expression, cell growth, cell motility, cell differentiation and cell division (Johnson et al., 1996). 
The protein kinases are divided into two main groups: non-receptor protein kinases and receptor 
protein kinases.  

Tyrosine protein kinases constitute a sub-family of the protein kinases, and are usually 
regulated by tyrosine phosphorylation (Hubbard and Till, 2000). Most protein kinases contain an 
activation segment that is about 25 residues long (Johnson et al., 1996). This activation segment 
begins with a highly conserved DFG motif, and ends with a conserved APE motif. The region 
between the DFG and APE motifs is called the activation loop. With few exceptions, 
phosphorylation of tyrosine residues in the activation loop of tyrosine kinases leads to an increase in 
enzymatic activity (Hubbard and Till, 2000). Phosphorylation of tyrosines outside of the activation 
loop can negatively regulate kinase activity.  

As illustrated in Figure 3.1, receptor tyrosine kinases (RTKs) consist of an extracellular portion 
that binds polypeptide ligands, a transmembrane helix, and a cytoplasmic portion that possesses 
tyrosine kinase catalytic activity (Hubbard and Till, 2000). The non-receptor protein kinases contain 
only a cytoplasmic part. The majority of RTKs are monomeric in the absence of ligand. Ligand 
binding to RTKs leads to receptor oligomerisation and tyrosine autophosphorylation. 
Autophosphorylation of tyrosine residues leads to increased kinase catalytic activity, and generation 
of docking sites for protein substrates. The RTKs catalyse the transfer of the γ phosphate of 
adenosine triphosphate (ATP) to the hydroxyl group of a tyrosine in a substrate protein. This 
triggers signalling cascades that participate in a large number of biological processes.   
 

 
Figure 3.1. Illustration of the RTK structure. 

 
Tyrosine phosphorylation in the activation loop of tyrosine kinases causes conformational 

changes in the activation loop (Pautsch et al., 2001). Pautsch et al. describe the conformational 
changes of insulin-like growth factor 1 (IGF1) upon kinase activation. According to their work, the 
global conformational changes caused by kinase activation are triggered by the degree of 
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phosphorylation and are dependent on the conformation of the kinase activation loop. Crystal 
structures of the insulin receptor tyrosine kinase in both the active and the inactive form have also 
been determined (Hubbard et al., 1994; Hubbard, 1997), and the conformational differences in the 
activation loop have been described. In the inactive form, the activation loop (residues G1149-
L1170) occupies the active site, and thereby occludes substrate binding, while the triphosphorylated 
activation loop of the active form permits access to the binding sites for both ATP and protein 
substrates (Hubbard, 1997). The active conformation of the activation loop is very similar in all 
known structures of active kinases, but there is a large diversity in the conformations of this loop in 
inactive protein kinases (Schindler et al., 2000). Several structural intermediates might exist 
between the inactive, dephosphorylated and the fully active, phosphorylated forms of protein 
kinases (Pautsch et al., 2001). 
 

3.1.1 Janus kinases 
 
The Janus kinase (Jak) family consists of four known non-receptor tyrosine kinases (Tyk2, Jak1, 
Jak2 and Jak3) that play a critical role in initiating signalling cascades of a large number of cytokine 
receptors (van der Geer et al., 1994; Ihle et al., 1995; Pellegrini and Dusanter-Fort, 1997; Richter et 
al., 1998). All Jak family kinases possess a carboxyl-terminal tyrosine kinase catalytic domain, a 
central pseudo-kinase domain, and a large amino-terminal region, which has been subdivided into 
five Jak homology regions (JH7 to JH3) based on sequence conservation (Harpur et al., 1992; 
Richter et al., 1998). The structure of the Jaks is illustrated in Figure 3.2. The pseudo-kinase 
domain is enzymatically non-functional, but may participate in regulation of kinase activity 
(Pellegrini and Dusanter-Fort, 1997; Hubbard and Till, 2000). Recently, homology modelling has 
been utilised to predict the structural mechanism by which this pseudo-kinase domain contributes to 
regulation of the Janus kinases (Lindauer et al., 2001). In contrast to most other cytoplasmic protein 
tyrosine kinases, the Janus kinases have no Src homology (SH) domains (Ihle et al., 1995).  

 
Figure 3.2. Illustration of the structure of the Janus kinases. The JH domains are shown in grey, the pseudo-kinase 
domain is shown in blue, and the kinase catalytic domain is shown in red. 
 

Ligand binding to cytokine receptors activates the Janus kinases through the specific and non-
covalent association of these kinases to the intracellular region of the receptors (Pellegrini and 
Dusanter-Fort, 1997). The Jak activation is mediated by ligand-induced receptor oligomerisation 
(Schlessinger and Ullrich, 1992; Heldin, 1995; Hubbard and Till, 2000). The JH domains have been 
shown to be the parts of the Jaks that are associated with the cytoplasmic domains of cytokine 
receptors (Pellegrini and Dusanter-Fort, 1997; Richter et al., 1998; Yan et al., 1998). The Janus 
kinases are activated by e.g. the type I interferons (IFNα/β and γ), the interleukins (IL2-7, IL-10 
and IL-12), growth hormone (GH), erythropoietin (Epo), granulocyte-specific colony-stimulating 
factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), leukaemia 
inhibitory factor (LIF), ciliary neurotrophic factor (CNTF) and prolactin (Ihle et al., 1995; Carter-
Su and Smit, 1998; Richter et al., 1998). 

Activated Janus kinases autophosphorylate (Pellegrini and Dusanter-Fort, 1997), and 
phosphorylate the cytokine receptors with which they are associated. This provides binding sites for 
the Signal Transducers and Activators of Transcription (STAT) transcription factors (Hubbard and 
Till, 2000). The Jaks catalyse phosphorylation of the STAT proteins (Xuan et al., 2001). Seven 
STAT isoforms, STAT1-4, STAT5A-B and STAT6, are known. Following phosphorylation on 
tyrosine residues, the STATs form homo- or heterodimers (Heldin, 1995), which are translocated 
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into the cell nucleus. The STAT proteins then bind to DNA (deoxyribonucleic acid), and activate 
gene transcription (Ihle et al., 1995). The Jak-STAT signalling cascade has been shown to 
contribute to growth and survival of e.g. human multiple myeloma cells (Anderson, 1999), acute 
lymphoblastic leukaemia (Meydan et al., 1996) and a variety of other malignancies (Wang et al., 
1999; Lindauer et al., 2001). This makes the Janus kinases potential targets for new cancer 
therapies. Inhibiting binding of ATP to the kinases is one way to interrupt these signalling cascades. 
ATP analogues are generally non-selective, but the development of inhibitors like STI-571 
(Schindler et al., 2000) shows that ATP binding sites can be used as targets for selective drugs. At 
the present time none of the Janus kinases have experimentally determined 3D structures (Berman 
et al., 2000). It is therefore interesting to predict the 3D structures of these tyrosine kinases, and 
especially the ATP binding regions.  
 

3.1.2 Fibroblast growth factor receptor 
 
Fibroblast growth factor receptor (FGFR) is a receptor protein kinase that is involved in e.g. 
angiogenesis, the process by which new capillaries are formed from pre-existing vessels. 
Angiogenesis is involved in embryo development, ovulation and wound repair. The normal 
regulation of angiogenesis is governed by a fine balance between factors that induce the formation 
of blood vessels and those that halt or inhibit the process (Gray et al., 1998). Numerous factors that 
regulate angiogenesis have been identified, including members of the fibroblast growth factor 
(FGF) family, vascular endothelial growth factor (VEGF), angiogenin, transforming growth factor 
(TGF) α and β, platelet-derived growth factor (PDGF), platelet-derived endothelial cell growth 
factor (PDECGF), tumour necrosis factor (TNF) α, interleukins, chemokines and angiopoietins 
(Folkman and D’Amore, 1996; Gray et al., 1998). 

Angiogenesis is also essential for growth and metastasis of tumours (Hanahan and Folkman, 
1996; Kumar and Fidler, 1998). In the same way as normal cells, cancer cells are dependent on 
blood supply for survival. Pathological angiogenesis (abnormal rapid proliferation of blood vessels) 
is also involved in a large number of other diseases, such as diabetic retinopathy, atherosclerosis, 
rheumatoid arthritis, age-related macular degeneration and psoriasis (Klagsbrun and Edelman, 
1989; Klagsbrun and D'Amore, 1991; Pepper, 1996; Kuiper et al., 1998; Szekanecz et al., 1998; 
Tolentino and Adamis, 1998). This makes the angiogenic factors and their receptors potential 
targets for development of new therapeutic agents.  
 
 

3.2 Lectins 
 
The lectins constitute a class of specific carbohydrate-binding proteins distinct from both sugar-
specific enzymes and antibodies, which contributes to regulating many biological processes 
(Gabius, 1988). The natural ligands of lectins include the sugar moieties of cell glycoproteins, 
glycolipids and proteoglycans. The specific protein-sugar interaction between lectins and 
carbohydrates constitutes a reciprocal recognition system, utilised e.g. for information storage and 
signal passage by the immune system. Lectins are previously known to be overexpressed by 
mammalian malignant cells compared to normal ones (Gabius, 1988; Raz et al., 1990; Vodovozova 
et al., 2000). This overexpression can e.g. be used for targeting of anticancer drugs coupled to 
macromolecular carriers to tumours with help of specific carbohydrate ligands (Vodovozova et al., 
2000; David et al., 2004).   

Selectins contain lectin domains essential for carbohydrate binding (Revelle et al., 1996; Stahn 
et al., 1998). Sialyl Lewis x (SiaLex) is a terminal unit of cell-surface glycoproteins and glycolipids, 
and has been identified as a common ligand for E-, P- and L-selectin (Huwe et al., 1999). Binding 
of SiaLex to E- or P-selectin mediates the early stage of the inflammatory response, leading to the 
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rolling of neutrophil cells on the endothelium, followed by the recruitment of these cells to inflamed 
tissue (Huwe et al., 1999). Inhibition of neutrophil adhesion to endothelium is an attractive 
approach to controlling inflammation-mediated diseases such as rheumatoid arthritis and psoriasis 
(Robinson and Stephens, 1992). The selectins are also known to mediate the adhesion of cancer 
cells to endothelium (Klopocki et al., 1998). This suggests that inhibition of the binding of SiaLex 
to selectins might be utilised in cancer therapy, as well. 
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4 Summary of the papers  
 
First, a brief overview of the presented work will be given, and the different papers will be placed 
into context. How the different topics are linked together is also shown. The different parts of the 
work are dealt with in more detail in section 5. 

The first step in a drug design process is generation of a structural model of the target system. 
Homology modelling of protein structures has achieved increasing attention, since the amount of 
sequence data increases much faster than the amount of available structural data (Berman et al., 
2000; Marti-Renom et al., 2000). The development of new methods that can utilise the structural 
information that is present in the homology models without being misled by the structural errors can 
significantly increase the effectiveness of a rational drug design process, as well as the number of 
possible drug targets that can be considered. The use of homology modelled protein structures in 
drug design is reviewed in Paper III. The accuracy of the homology models is an important issue, 
determining to a large extent the reliability of the results from the drug design process. Even the 
most robust drug design methods are dependent on a certain level of accuracy of the structural 
models used. Hence, it is important to assure that in each case, the best homology model possible is 
being used. It is therefore interesting to examine the quality of homology models, and to be able to 
predict the quality of future homology models. In Paper I, the accuracy of homology models has 
been evaluated, and a method for prediction of model quality based on the sequence alignment 
between the target and template has been developed. A large number of homology models of 
protein kinase structures were generated, and the accuracy of the homology models was evaluated 
by comparison to available X-ray structures of the targets. Based on this homology model quality 
data, a method for prediction of homology model accuracy with multivariate regression was 
developed. This method predicts the model accuracy directly from the amino acid sequence 
alignment of the target sequence to the template used for the homology modelling. Hence, no 
information about the 3D structure is needed to predict the model quality for new homology 
models. This method can be used to assure that the optimal templates and alignments are chosen, so 
that the best possible homology model is generated. It is also useful for identification of regions of 
the protein structure that are difficult to model, as well as errors in the alignment. This method has 
been applied to the protein kinase family, but can easily be extended to other protein families. 

Given a reliable model of the 3D structure of a protein, the binding site properties have to be 
analysed, in order to find drug candidates with matching properties. As described in Chapter 2.3.3, 
numerous methods exist for analysis of protein binding sites and detection of possible interaction 
sites for drug candidates. However, few drug design methods exist that are robust against the 
additional structural error that is introduced as a result of using homology modelled protein 
structures instead of the more accurate experimental structures that have been used traditionally. 
This work has focused on the development of drug design methods utilising gaussian functions to 
represent atomic properties. This gives a smoothing of the molecular descriptions, and the idea is 
that this smoothing will give a more robust representation of the molecular properties and 
interactions than methods that utilise more detailed descriptions of the protein binding sites 
(McGann et al., 2003). Detailed information requires accurate structural models, otherwise it will 
be misleading. Our goal was to describe the most important factors involved in protein-ligand 
interaction, using as few variables as possible. In Paper II, a new method for mapping of protein 
binding site properties, called Protein Alpha Shape Similarity Analysis (PASSA) is introduced. 
Once a map of the protein binding site is generated, this information can be used to search databases 
of already existing drugs to find structures that match the protein binding site properties, and to 
generate new structures having the desired properties using de novo ligand design. With PASSA, 
structural regions that can be utilised to inhibit proteins selectively can be identified. PASSA is 
especially useful when combined with for example MCSS, which can be used to suggest small 
molecular fragments that can bind at the identified selective interaction sites in the protein binding 
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pocket. PASSA is an effective method for comparison of the binding sites of several related 
proteins, since the same grid can be used to map the binding sites of all proteins, and multivariate 
data analysis tools can be used to analyse the results. This allows for effective identification of the 
interaction sites that can be utilised to achieve selectivity. Using knowledge about already identified 
selective ligands, binding site descriptions generated with PASSA can also be used to model 
selectivity within a protein family, and to identify the protein-ligand interactions that are important 
for selectivity. This information can then be used to design new selective ligands for other proteins 
in the family. The PASSA method has been used to suggest functional groups for a selective 
inhibitor of Tyrosine kinase 2 (Tyk2) (Paper II), and to model selectivity within the protein kinase 
family (Paper VII). The results presented in Paper VII demonstrate that the PASSA method may be 
used to predict the activities of a number of ligands towards a set of closely related protein targets. 
This makes PASSA a promising method in screening for side effects. The suggested functional 
groups from Paper II have been used further in Paper VI, where the NCI database was searched for 
existing drugs having Tyk2 inhibitory activity. The proposed functional groups were also utilised to 
construct inhibitor candidate molecules by de novo ligand design.  

When a set of possible drug candidates is found, their affinity to the target receptor has to be 
estimated, in order to identify the most active compounds. In this work, two different approaches to 
estimation of the binding energy between a receptor and a ligand were used. In Paper IV, the 
binding free energy was calculated from “first principles”, using the sum of the electrostatic 
contribution to the solvation energy, the Coulombic energy and a term representing the hydrophobic 
effect, estimated by calculation of solvent-accessible surface areas. This PB/SA approach is too 
time-consuming to be effective in large-scale virtual screening, but is a useful tool for optimisation 
of the functional groups of a known drug lead. In Paper IV, the interactions between the receptor 
kinase fibroblast growth factor receptor 1 (FGFR1) and a known inhibitor were studied by 
computational sensitivity analysis, and several improvements of the inhibitor were suggested. The 
results show that computational sensitivity analysis is an effective method for gaining insight into 
which ligand groups that have the largest contributions to binding, and which groups that should be 
modified in order to increase binding affinity. A comparative database analysis of almost 400 
protein kinases was also carried out in order to identify groups on the inhibitor that should be 
modified to increase selectivity. In Paper V, a new docking method is introduced, that utilises 
gaussian property distributions to describe the receptor and ligand properties. This docking method 
uses an empirical score function to estimate the binding affinity. The score function was trained on 
218 X-ray structures of protein-ligand complexes for which the binding affinity is known, and 
evaluates the match between the lipophilicity and hydrophilicity of the receptor and the ligand, in 
addition to describing van der Waals effects. For the ligand, information about hydrogen donors and 
acceptors was also included. By using gaussian functions representing hydrophilicity and 
lipophilicity, in addition to describing van der Waals effects, we aim to describe protein-ligand 
interactions better than methods that only account for steric clashes. The use of gaussian property 
distributions also makes this docking method suitable for use with homology models. This docking 
method has been shown to work well for ligands that bind in a well-defined cavity in the protein, 
but may fail for ligands forming interactions with the outer protein surface. Hydrogen atom 
positions and partial charges are not taken into account in the calculations, so the binding affinity 
might be underestimated for ligands forming many hydrogen bonds or ion bonds with receptor 
atoms. Solvent effects are also ignored. The accuracy of our docking method is lower than that of 
more time consuming methods that use fewer approximations. However, this docking method has 
been shown to be fast, and is therefore well suited for virtual screening, where the main purpose is 
to rank a large number of ligands according to binding, and identify a small set of promising drug 
candidates that is worth working with further. In Paper V, the performance of our gaussian-based 
docking method was compared to that of MOE-Dock, using Tabu search for conformational 
searching in both cases. MOE-Dock performed better than our method in reproducing ligand X-ray 
structures, but our method used only 10% of the computational time compared to MOE-Dock. 
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MOE-Dock succeeded in identifying the correct conformation for a larger number of ligands than 
our method, but except for the absolutely correct predictions, the results were comparable for the 
two methods. 

The interactions between a set of carbohydrate ligands and E-selectin were studied with 
computational docking. The results obtained with our docking method were compared to those 
obtained using the much more time consuming simulated annealing approach in MOE-Dock. Both 
methods failed in reproducing experimental binding affinities for the carbohydrates. This is not 
surprising, since the carbohydrate ligands are very flexible. This leads to a high probability of 
getting trapped in local minima. The carbohydrate ligands also bind to the outer surface of E-
selectin, through a large number of hydrogen bonds. This makes our docking method unsuitable in 
this case. The high flexibility of the carbohydrates and the large number of possible carbohydrate 
receptors might make them unsuitable as selective drugs. Other ligands, such as peptides, might 
therefore be more interesting. A set of peptide ligands was also docked in E-selectin using our 
docking method. The results clearly demonstrate that our method only works in cases where the 
ligand binds in a cavity in the protein structure. 

The gaussian-based docking method developed here was applied in the design of selective 
inhibitors of Tyk2 in Paper VI. Here this docking method was used to dock both structures resulting 
from screening of the NCI database, and drug candidate molecules generated by de novo ligand 
design. The selectivity of the compounds was tested by computational docking in seven other 
protein kinase structures. The results from the docking of the compounds from the NCI database 
were compared to the results obtained with MOE-Dock. The two docking methods ranked the 
structures differently, but produced the same conclusion, namely that none of the compounds in the 
NCI database can inhibit Tyk2 selectively. One compound was found to inhibit Tyk2 and insulin 
receptor tyrosine kinase selectively, and five of the drug candidates from the de novo ligand design 
seem promising as selective Tyk2 inhibitors. 

The different parts of the present work and how they are linked together are illustrated in 
Figure 4.1. 
 

 
 

 
Figure 4.1. Overview of the presented work. 
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5 Case studies 
 

5.1 Verification and prediction of homology model accuracy 
 
A new method for prediction of homology model quality with multivariate regression has been 
developed (Paper I). This method predicts the model accuracy directly from the amino acid 
sequence alignment of the target sequence to the template used for the homology modelling. Hence, 
no 3D structure information is needed for prediction of the accuracy of new homology models, once 
the regression model has been trained. Here, this method has been applied to the protein kinase 
family, but it can easily be extended to other protein families. Prediction of the model quality that 
can be expected, given a specific relationship between the primary structure of the target and 
template proteins is useful for evaluating whether a homology model can be generated that can 
provide useful information. Depending on the specific project, different levels of accuracy are 
needed. A large variety of methods and programs exist for predicting homology model quality, most 
of which operate on the 3D structure models (Chapter 2.3.2). Few methods exist that predict the 
model quality prior to the actual model building. Hence, the method presented here provides a new 
way to predict homology model accuracy. Using this method, time can be saved compared to using 
methods that predict the model accuracy after the homology model has been generated, since 
generation of low-quality models can be avoided. One can also find out in advance, whether it is 
possible to generate a model with the required accuracy. With this method, insight into possibilities 
for improving the model quality by modelling different domains separately and correcting 
alignment errors can also be gained. This information can also be obtained using other methods, 
such as methods based on 3D profiles, but with these methods, the homology model has to be 
generated before any information about the expected accuracy can be obtained. A method for 
prediction of local backbone structural deviation in homology models has been developed, that can 
be used to evaluate the quality of a preliminary homology model (Cardozo et al., 2000). This 
method is useful for optimising a homology model by providing information about for example 
loop boundaries. While our method provides a quick estimate for the expected overall homology 
model accuracy based on the sequence alignment, this method provides a more detailed description 
of the probability that a given backbone segment is predicted accurately. Our method is most useful 
in the initial stages of the modelling, to evaluate e.g. whether it is possible to generate a useful 
homology model for a given application.  

The results from the regression analysis (see Paper I and Appendix 3-4) show that the residuals 
from prediction of the model quality for new homology models can be used to identify proteins that 
are difficult to model with homology modelling due to large deviations from the other members of 
the protein family, as well as provide useful information about alignment errors. The regression 
coefficients from the analysis can also be used to identify problem regions in the protein structure 
and alignment errors. Hence, the method presented here can be used to assure that the optimal 
templates and alignments are chosen, so that the best possible homology model is generated. Using 
the method developed here, the model quality can be predicted based on a sequence alignment, 
possible problem regions can be identified using for example the residuals from the regression 
analysis, and corrections to the sequence alignment can be made. The impact of the alignment 
corrections on the expected homology model accuracy can then be tested by predicting the accuracy 
for the new alignment. Hence, this method is an effective tool for optimising the sequence 
alignment prior to generating the homology model. Different homology modelling methods may 
also perform differently for a given sequence alignment. Using the approach developed in this 
work, regression models can be made that can predict the homology model quality resulting from 
several different homology modelling methods. This can guide the choice of modelling method, and 
assure that the best possible homology model is generated, given a certain sequence alignment. This 
method can also be used to determine in what cases several templates should be utilised for the 
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homology modelling, and in what cases a single template provides sufficient information. In Paper 
I, possibilities for improving the model quality by combination of several homology models are 
discussed. 

A set of 292 homology models of protein kinases for which experimental structures are 
available in the PDB was generated with WHAT IF (Vriend, 1990), using a modelling pipeline for 
automatic homology modelling (Liu et al., in preparation). The target-template sequence identities 
ranged from 14 to 80%. The resulting homology models were verified by comparison to the 
experimental structures of the targets. RMSD values (separate overall Cα, Cβ and heavy atom 
RMSDs) between the model structures and experimental structures of the target proteins, and 
differences in inter-residue contact areas between the models and the target X-ray structures 
(unnormalised CAD numbers) were used as measures of the model quality. To describe the 
sequence alignment between the target and template proteins, a matrix of alignment score profiles 
was generated. Each element in this alignment score matrix contains the value of the Point 
Accepted Mutation (PAM) 250 similarity matrix (Schwartz and Dayhoff, 1978) for a pair of amino 
acids that correspond to each other in the sequence alignment (Figure 5.1).  
 
 

 
 

Figure 5.1. Generation of alignment score profiles. 
 
 

The model quality dataset was analysed with PLS regression using alignment score profiles, 
sequence identity and number of non-modelled residues as independent variables, as illustrated in 
Figure 5.2. The results for the contact area error are shown in Figure 5.3. 
 

 
 
Figure 5.2. Multivariate analysis of the model quality data using alignment scores, sequence identity and number of 
non-modelled residues as independent variables.  
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Figure 5.3. Predicted (from cross-validation) versus calculated contact area error (Å2) for the 292 homology models. 
 
 
Figure 5.3 shows a good correlation between the predicted and the calculated contact area error for 
the 292 homology models. The correlation coefficient (q) is 0.88. Hence, the alignment score 
profiles generated from the PAM250 similarity matrix provide sufficient information about the 
similarity between the targets and templates to predict the homology model accuracy. 
 
 

5.2 Mapping protein binding site properties 
 
A new method for protein binding site analysis based on gaussian functions, called Protein Alpha 
Shape Similarity Analysis (PASSA), has been developed in Paper II. The use of gaussian functions 
to describe the atomic properties makes PASSA especially suited for use with homology models, 
since this gives a smoothing of the molecular surface representation. PASSA focuses on design of 
protein inhibitors that are selective. PASSA starts by identifying the positions of geometrical 
objects known as alpha spheres. An alpha sphere is a sphere that contacts four atoms on its surface 
and has no atoms in its interior. Alpha spheres are determined geometrically, using only the 
positions and radii of the protein heavy atoms, and are classified as hydrophobic or hydrophilic 
depending on the protein atoms they contact. Large alpha spheres are present on the outer protein 
surface, while the very small alpha spheres are placed in small crevices in the protein structure. The 
middle-sized alpha spheres are most interesting in drug design, since they are typically placed in 
cavities large enough to hold a drug molecule. Hence, only the middle-sized alpha spheres are used 
in PASSA. Centres of middle-sized alpha spheres have been found to correspond well with the 
placement of atoms in bound ligands (Liang et al., 1998). 

In PASSA, gaussian functions are centred at dummy atoms placed at each alpha sphere centre, 
and at all protein atoms. A 3D grid is placed around the binding site of the protein, and in each grid 
point the sum of the contributions from all gaussian functions is computed. The contributions from 
gaussian functions centred at alpha spheres classified as hydrophobic define the hydrophobicity 
field, while the hydrophilicity field is defined by gaussian functions centred at hydrophilic alpha 
spheres. Ligand inaccessible volume is defined by the gaussian functions centred at protein atoms.  

The use of gaussian functions with a very simple partitioning according to the hydrophilic or 
hydrophobic nature of the alpha spheres reduces some of the problems associated with force field 
models, like GRID (Goodford, 1985). The potential energy functions used in most force field 
models have steep derivatives close to atomic nuclei and singularities in the atomic nuclei, since the 
van der Waals interactions are estimated using the Lennard-Jones potential, ELJ (Equation 5.1), and 
the calculation of the electrostatics is based on Coulombs law (Goodford, 1985; Leach, 2001).  
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rij represents the interparticle distance, while A and B are constants depending on the depth of the 
potential well and the interparticle distance for which the energy is zero. Steep derivatives and 
singularities are not associated with gaussian functions. In molecular dynamics, soft-core potentials 
have been utilised to overcome these problems (Huber et al., 1997; Tappura et al., 2000; Hornak 
and Simmerling, 2003).  

Analysis of data from gaussian fields typically produces contour plots that are less fragmented 
and easier to interpret than those produced using force field models (Böhm et al., 1999). PASSA is 
also more computationally efficient than most force field methods and methods based on solving 
the Poisson-Boltzmann equation. Rule-based methods for mapping protein binding sites have the 
disadvantage that their performance is dependent on the similarity of the target protein to the 
proteins included in the dataset used to derive the statistical rules. This is not the case for PASSA.  

In the same way as with GRID, the data produced with PASSA can be compared for a large 
number of related proteins since a regular grid is used to compute the data. This is a great advantage 
when the purpose is to design inhibitors that are selective. In PASSA, the structural regions that can 
contribute to selectivity are identified directly, using discriminant partial least squares regression 
(DPLSR). In DPLSR, the dependent variables are indicator variables, and the regression seeks to 
describe the separation of the samples into classes defined by these indicator variables, using the 
data contained in the X-matrix. In PASSA, the X-matrix contains the gaussian property field data. 
The protein structures included in the analysis are divided into classes, one containing the target 
protein, and one or more classes containing related proteins for which a low affinity is desired. 
When protein structures built by homology modelling are used, it is advantageous to use more than 
one model of each protein, particularly if several templates of comparable sequence identity are 
available. In this case, several alternative homology models of comparable accuracy are possible, 
and including more than one model might give a better representation of the properties of the 
protein. The regression coefficients from the DPLSR indicate structural regions where each class of 
proteins has properties that separate these proteins from the other proteins included in the analysis. 
Interactions between the protein and inhibitor groups placed in areas of high regression coefficients 
can contribute to selectivity. The regression coefficients can be visualised as contours in the original 
3D space of the protein structures. The results from PASSA can be combined with for example 
MCSS, to identify functional groups that can contribute to selective inhibition of the target protein. 
The PASSA method is illustrated in Figure 5.4.  

Other methods also exist that utilise sphere-based approaches to analyse protein structures. 
Examples of such methods include PASS (Brady and Stouten, 2000), APROPOS (Peters et al., 
1996) and CAST (Liang et al., 1998). However, these methods focus on localisation of the protein 
binding site, not on identification and characterisation of interaction sites for selective ligands, like 
PASSA. These methods use distributions of spheres to detect cavities in the protein structure. They 
do not use gaussian functions and summation over a 3D grid to obtain a continuous description of 
the binding sites, and provide no direct way to compare the properties of several proteins to single 
out the interaction sites that can contribute to selective binding of an inhibitor. A knowledge-based 
method for mapping protein binding sites has been developed, that utilises gaussian functions to 
generate smooth propensity maps from scatter data stored in the ISOSTAR database (Nissink et al., 
2000). The propensity maps reflect the probability of finding an interacting group close to a given 
central group. The main disadvantage of this method compared to PASSA is the dependency on 
structural data for parameterisation. An advantage with this method is that propensity maps for a 
large number of different molecular fragments can be generated. PASSA generates only two 
different property maps, one for hydrophilicity and one for hydrophobicity. 
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Figure 5.4. Illustration of the PASSA method. The values of the gaussian property fields are used as independent 
variables in a DPLSR using a protein class matrix as dependent variables. DPLSR represents differences between the 
target protein and the other proteins in the study as a vector of regression coefficients that can be visualised in the 3D 
space of the protein structures. The distribution of the protein structures in the score plot shows the separation of the 
proteins according to class memberships. 

 
The performance of PASSA was verified by testing whether residues known to interact with 

selective inhibitors are among the residues identified by PASSA to have properties that are unique 
to the target protein. STI-571 is a selective inhibitor of Abl kinase (Zimmermann et al., 1997; 
Schindler et al., 2000). In Figure 5.5, the regression coefficients for Abl kinase are visualised 
together with the X-ray structure of STI-571 in complex with Abl kinase (PDB entry 1IEP).  

 
 
Figure 5.5. Plot of the regression coefficients for the hydrophilicity (blue) and the hydrophobicity (green) from the 
DPLSR mapped back onto the grid surrounding the ATP binding pocket of Abl kinase in complex with STI-571 (PDB 
entry 1IEP). Residues of Abl kinase known to be important for selectivity are shown. STI-571 is rendered in “ball and 
stick”, while the protein residues are rendered in “stick”. The phenyl-moiety of STI-571 interacting with T315 in Abl 
kinase is numbered “1”, the carbonyl group of STI-571 is numbered “2”, while the nitrogen atom interacting with M318 
is indicated by the number “3”. 
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Figure 5.5 shows that the areas of high regression coefficients for the hydrophobicity 
correspond well with the hydrophobic parts of STI-571. The phenyl-moiety of STI-571 known to 
interact with T315 in Abl kinase (Schindler et al., 2000) is placed in an area where Abl kinase is 
particularly hydrophobic compared to the other proteins. The interaction between T315 and STI-
571 is known to be important for selectivity (Schindler et al., 2000; Gorre et al., 2001). According 
to our results, Abl kinase is particularly hydrophilic in the region close to the carbonyl group of 
STI-571, and around the nitrogen interacting with M318. A similar analysis was carried out using a 
homology model of Jak2 in complex with a docked conformation of AG490. AG490 inhibits Jak2, 
but none of the other proteins included in this analysis (Meydan et al., 1996; Bright et al., 1999; 
Kirken et al., 1999; Wang et al., 1999; Xuan et al., 2001). The regions where Jak2 is particularly 
hydrophobic according to our PASSA results correspond well with the hydrophobic parts of 
AG490, and likewise for the hydrophilicity. The fact that the interactions between Abl kinase and 
STI-571, and between Jak2 and AG490 were identified by PASSA indicates that this approach is 
well suited for identification of interaction sites that can contribute to selectivity. This makes 
PASSA a useful method in the design of selective drugs.  

Figure 5.6 shows the results from the PASSA for Tyk2. According to our results, Tyk2 has 
three unique hydrophobic pockets that can be utilised to achieve selectivity towards Tyk2 (shown in 
Figure 5.6 A, B and C, respectively). Similar analysis for the hydrophilicity identified useful 
hydrogen acceptors and donors close to these pockets. Here, the results from PASSA have been 
combined with MCSS.  

According to our results, interactions with hydrogen acceptors or donors on Y955, E1053, 
D1062 and S1063 can be utilised to achieve selectivity towards Tyk2. Fragments from MCSS 
placed in regions of high regression coefficients were used to indicate possible functional groups for 
a selective Tyk2 inhibitor. These results can be used as a starting point for combinatorial library 
generation, database searching and de novo ligand design. 
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A: B:  

 
 
 
C:    
 D: 

 
 
Figure 5.6. A-C: Plots of the regression coefficients for the hydrophobicity (green) from the DPLSR mapped back onto 
the grid surrounding the model of the ATP binding pocket of Tyk2. Residues identified by PASSA to be unique to Tyk2 
are shown, together with selected fragments from MCSS. Possible hydrogen bonds between MCSS fragments and 
hydrogen acceptors and donors on Tyk2 identified to be unique are shown as blue lines. D: The residues from Fig. 5.6 
A (green), 5.6 B (blue) and 5.6 C (yellow) shown together with the result from computational docking of ATP in the 
Tyk2 model. 
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5.3 Modelling interactions between proteins and drug candidates 
 

5.3.1 Computational analysis of the interactions between the angiogenesis inhibitor PD173074 
and fibroblast growth factor receptor 1 

 
The effects of the potent angiogenic factors FGF and VEGF are mediated through the cell surface 
receptors fibroblast growth factor receptor and vascular endothelial growth factor receptor 
(VEGFR), that possess intrinsic protein tyrosine kinase activity (Mohammadi et al., 1998). A 
compound of the pyrido[2,3-d]pyrimidine class (PD173074) has been reported, that selectively 
inhibits the tyrosine kinase activity of FGFR and VEGFR (Mohammadi et al., 1998). This inhibitor 
contains a dimethoxyphenyl group that occupies a pocket in the ATP-binding cleft that is not 
utilised by ATP.  Mohammadi et al. suggest that this group is important for the selective binding of 
this inhibitor. In Paper IV, the interactions between the angiogenesis inhibitor PD173074 and 
FGFR1 were studied using computational sensitivity analysis, and functional groups of the inhibitor 
that are important for binding affinity and selectivity were identified. Several improvements of the 
inhibitor were also suggested. 

The basic idea of computational sensitivity analysis is similar to mutational analysis of 
recombinant proteins, in which one examines whether a particular feature of an amino acid affects a 
protein property by mutating the amino acid into another one that no longer contains the feature. In 
a computational sensitivity analysis, one “mutates” parameters of a molecular model, such as 
atomic partial charges and dipole moments of functional groups, to examine the significance of 
these features in affecting binding affinity (Wong et al., 1998). In Paper IV, information from 
computational sensitivity analysis was utilised to identify the parts of a drug lead being most 
important for binding and the parts that should be modified to increase the binding affinity. This 
approach has been applied earlier to study the binding of balanol and a peptide inhibitor to protein 
kinase A (Wong et al., 2001; Gould and Wong, 2002), and has been shown to be an effective tool 
for optimising a drug lead. Information from computational sensitivity analysis can also guide the 
design of focused chemical libraries that may produce more useful new hits, and the parts of a drug 
lead that have been identified to be useful for binding can guide the construction of pharmacophore 
models for mining new drug leads from small-molecule libraries.  

The significance of a model parameter in affecting binding energy was analysed by calculating 
derivatives of the form d∆G/dλi estimated by 
 
d∆G/dλi = (∆Gbinding(mutant)-∆Gbinding(wildtype))/∆λi  (5.2) 
 
where ∆Gbinding(wildtype) represents the binding free energy between PD173074 and FGFR1, and 
∆Gbinding(mutant) is the corresponding quantity when the collective charge or dipole moment of an 
atom or functional group is changed by ∆λi. This is referred to as a “mutation”. The collective 
charge equals the charge of an atom if only one atom is involved or the sum of the charges within a 
group if a group of atoms is involved. To analyse the effect of a “mutation”, we calculated 
(d∆G/dλi)λi, where λi represents the collective charge or dipole moment of an atom or a group of 
atoms. A negative (d∆G/dλi)λi indicates that the “mutation” leads to an improvement of the binding 
affinity. We also estimated the effects of pairwise interactions on binding by calculating second 
derivatives of the form (d2∆G/dλidλj)λiλj. These second derivatives estimate pairwise interactions 
as in double mutagenesis experiments.  

Computational sensitivity analysis utilises much more accurate predictions of the binding 
affinities between the protein and the ligands than what is utilised in most docking methods. In this 
work, a PB/SA approach was applied. No conformational search was used, the functional groups of 
the X-ray structure of the FGFR1 inhibitor were “mutated”, and the ligand conformation was kept 
fixed. Energy minimisation was used only in cases where new groups were introduced. This 
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approach is useful for fine tuning the activity of a known drug lead, but it is inefficient in a docking 
study where a large number of different ligands are evaluated, and the correct binding modes are 
not known in advance. In this case, more approximate methods for estimating the binding affinity 
have to be applied. One advantage of using this method is that the binding affinity is calculated 
from “first principles”, that is, without reference to experimental data. The performance of 
empirical and knowledge-based score functions is dependent on the size and diversity of the set of 
structures used to derive the equations. This is not the case for first-principles methods. The 
predictive ability of our computational model was tested by comparing the calculated results to 
experimental binding affinities to FGFR1 for eight ligands, including the angiogenesis inhibitor 
PD173074. The correlation between the estimated binding affinities and the experimental IC50 
values was quite good, with a correlation coefficient of 0.8. This indicates that this method can 
provide useful information about groups of the inhibitor PD173074 that should be kept and parts 
that should be modified to improve binding affinity. 

When designing drugs targeting the ATP binding pocket of protein kinases, specificity is 
especially important to consider, since the ATP binding pocket is a common feature of all protein 
kinases. A comparative database analysis of almost 400 protein kinases was carried out to gain 
insight into how PD173074 may be modified to improve selectivity. The results from this study and 
the computational sensitivity analysis are summarised in Figure 5.7.  

 
 

 
 
Figure 5.7. Summary of the results from the computational sensitivity analysis and the comparative database analysis. 
A: Changes that may increase binding affinity. The functional groups that should be modified are indicated in red, 
while the suggested modifications are shown close to these groups. A hydrophobic group should replace the positively 
charged diethylammonium group, while the carbonyl group should be replaced by e.g. CH(COCH3) to push out the 
carbonyl oxygen. B: Changes that may increase selectivity. The CH2-group at C7 should be replaced by an NH-group, 
and an OH-group should replace the CH3-group at C1.  

 



Rational design of protein inhibitors using molecular modelling and multivariate analysis 
________________________________________________________________________________________________________________________ 

 

 48

The positively charged diethylammonium group was found to diminish binding. Unless it is 
important to use this group to improve aqueous solubility, it may be better to replace this positively 
charged ammonium group with a hydrophobic group. The polarity of the NH-group closest to the 
pyrido[2,3-d]pyrimidine (at N6) seems useful, but the carbonyl group should be replaced with e.g. a 
CH(COCH3) group to improve binding affinity. In addition, the CH2-group at C7 (Figure 5.7) 
should be replaced by an NH-group, and an OH-group should replace the CH3-group at C1 to 
improve selectivity. Our analysis also indicated that the dimethoxyphenyl ring should be modified 
in order to improve binding affinity. It seems favourable to keep the oxygens of the methoxyl 
groups but the methyl groups may be replaced with other non-polar groups. According to the 
database analysis, selectivity may also be achieved by modifying this part of the molecule. The 
results from the database analysis suggested that introducing functional groups ortho to the 
pyrido[2,3-d]pyrimidine ring might improve selectivity.  
 

5.3.2 A new gaussian-based docking method suitable for use with homology modelled proteins  
 
A new empirical score function for estimation of binding affinities to a receptor using gaussian 
property distributions for both the protein and the ligands has been developed (Paper V). The score 
function evaluates the match between the lipophilicity and hydrophilicity of the receptor and the 
ligand, in addition to describing van der Waals effects. For the ligand, information about hydrogen 
acceptors and donors was also included. The protein binding site was described using gaussian 
property fields calculated in the same way as in PASSA (Paper II), while the ligand properties were 
described using gaussian property fields similar to those used in the 3D-QSAR method CoMSIA 
(Klebe et al., 1994). The match between the protein and ligand properties was evaluated by 
calculating the products between the protein and ligand fields in each grid point. The product values 
were summed over all grid points, to give the parameters used in the score function. The score 
function was trained on 218 X-ray structures of protein-ligand complexes for which experimental 
binding affinities are available, using PLS regression. While most existing docking methods use the 
same score function both in the conformational search and for binding affinity prediction, we use a 
faster version of the score function in the conformational search to limit the computational time 
(Paper V). 

Hydrogen atom positions and partial charges are not described by our score function. This is of 
course a significant limitation of the method, but we wanted a fast score function that could be used 
for virtual screening, and that is robust against the structural errors present in homology models. 
Including information about e.g. hydrogen atoms and partial charges requires accurate protein 
structures. Hence, we had to balance between robustness and accuracy. Our goal was to capture the 
main features of binding, and omit variables that are sensitive to errors in the structural models.  

This method only works for ligands that bind in a well-defined binding pocket, since the 
properties of the protein are described using alpha spheres that are placed in cavities in the protein 
structure. However, when the purpose is to design highly specific ligands, deep pockets in the 
protein structure are more interesting than interactions on the outer protein surface (Zavodszky et 
al., 2002). A sufficiently large interaction surface is needed to achieve high affinity, and specificity 
is more easily obtained within a cavity, which already imposes geometric constraints (Sotriffer and 
Klebe, 2002). Hence, it is easier to construct a ligand that binds selectively in a small, well-defined 
pocket. A large variety of compounds can attach to the outer surface of a protein, due to the large 
number of possible interaction sites. Hence, to achieve selectivity, one has to construct ligands large 
enough to interact with several different interaction sites simultaneously. The size and flexibility of 
these compounds complicate the use of computational docking to predict their activities, and the 
suitability of these compounds as drugs might be low due to factors such as bioavailability.  

Since we include no information about hydrogen atom positions, we are unable to represent 
direction-specific hydrophilic interactions. Hydrophobic interactions are not direction-specific. 
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Hence, our score function predicts hydrophobic interactions better than hydrophilic interactions. 
Many other score functions for computational docking predict hydrophilic interactions better than 
hydrophobic interactions (Wang et al., 2003). Hence, it would be interesting to combine our score 
function with other score functions to improve the predictive ability. 

The fact that our score function is based on gaussian property distributions makes it relatively 
robust against small structural errors. As mentioned earlier, gaussian functions give a smoother 
representation than e.g. force field models. Gaussian functions have neither steep derivatives nor 
singularities (Paper III). Since this score function is robust against small structural variations, 
including protein flexibility is less important than in many other docking methods.  

As described in Chapter 2.3.4, other gaussian-based docking methods also exist, that are suited 
for use with homology models. The method reported by McGann et al. (2003) only accounts for 
shape, and is trained on a much smaller set of protein-ligand complexes than our docking method. 
By including hydrophilicity and hydrophobicity in addition to van der Waals effects, and by using a 
larger training set, we aim for an improved description of protein-ligand interactions. Another 
gaussian-based method that also accounts for hydrophilicity and hydrophobicity in addition to shape 
has been reported (Schafferhans and Klebe, 2001). As for our method, gaussian functions are used 
to represent the physicochemical properties of the receptor and the ligand, and the overlap between 
the functional descriptions of the receptor binding site and the ligand is optimised. This method uses 
interaction sites identified by the de novo ligand design program LUDI (Böhm, 1992 a, b) to 
generate a description of the protein binding site. As the method developed by McGann et al. 
(2003), this docking method is also trained on a relatively small set of complexes. Hence, this 
method is sensitive to deviations between the target system and the training set. It is also indicated 
that this method predicts both hydrophobic interactions and electrostatics insufficiently 
(Schafferhans and Klebe, 2001). Their results indicate that gaussian functions are too soft to model 
electrostatics sufficiently. In contrast to our docking method, this method is dependent on 
assignment of charges and protonation states. This information is not trivial to generate, especially 
not for protein models with potential inaccuracies, such as homology models. One advantage with 
this method is that it can take several different homology models into account simultaneously by an 
averaging of the property densities of the models. This increases the robustness of this method. 

Because of the very simplified description of the protein-ligand interactions, the accuracy of 
our new score function can not be compared to that of score functions that take e.g. electrostatics 
into account. However, the speed of our calculations makes this method an effective tool for pre-
screening for virtual drug design. In virtual screening, the purpose is to identify a set of promising 
drug candidates from a large collection of ligand structures. Hence, the binding affinity has to be 
estimated for a large number of structures. This makes computational efficiency an important factor 
to consider. In virtual screening, the purpose is not necessarily to predict the absolutely correct 
binding modes for all ligands, or predict the binding affinity with a high level of accuracy. It is most 
important to effectively separate the active compounds from the non-active ones. The correct 
ranking of the promising drug candidates and the correct binding conformations can be found with 
more accurate and time consuming methods, once the number of structures to consider has been 
reduced.  

Figure 5.8 shows an example of a gaussian property description of a known protein-ligand 
complex. Only the hydrophilicity field for the protein is shown, together with the ligand structure. 
As seen from the figure, the hydrophilic groups of the ligand and the hydrophilicity field of the 
protein match to a high degree for this complex. The hydrophilic phosphate groups are for example 
surrounded by the contours of the hydrophilicity field of the protein. This indicates that gaussian 
property fields generated by PASSA provide useful descriptions of the protein binding site 
properties that can be used in computational docking, where the purpose is to maximise the 
complementarity between the protein and the ligand in a conformational search.   
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Figure 5.8. The gaussian hydrophilicity field for the protein in PDB entry 1AGP shown together with the ligand X-ray 
structure. The hydrophilicity field is indicated by the blue mesh. The ligand is rendered in “ball and stick”, while the 
protein binding site residues are rendered in “stick”. 
 

The performance of our new empirical score function was verified in a docking analysis using 
all protein-ligand complexes in the training set. The ability of our method to reproduce the 
experimental structures and binding affinities was tested. The results were compared to the results 
obtained with MOE-Dock (MOE, 2002). Tabu search was used for the conformational search with 
both methods. The results are given in Figure 5.9. The predicted binding affinities for the docked 
conformations resulting from docking with our gaussian-based score function are plotted against the 
experimental binding affinities in Figure 5.10.  
  
 

 
Figure 5.9. Left: Histogram over RMSD values between the X-ray ligand structures in the training set and the ligand 
structures resulting from 10 Tabu runs of 1000 iterations each using our gaussian-based score function. The fraction of 
the complexes having experimental binding affinities below –40 kJ/mol is shown in red. This docking procedure used 
~5 minutes per molecule, on average. 
Right: Histogram over RMSD values between the X-ray ligand structures in the training set and the ligand structures 
resulting from 10 Tabu runs of 1000 iterations each with MOE-Dock. The fraction of the complexes having 
experimental binding affinities below –40 kJ/mol is shown in red. This docking procedure used ~50 minutes per 
molecule, on average. 
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The histograms in Figure 5.9 show that MOE-Dock performs better than our docking method. 
Using our score function we were able to get 102 of the 218 ligand conformations within 2 Å 
RMSD of the X-ray structure, while docking with MOE-Dock resulted in 120 of the ligand 
conformations within 2 Å RMSD. However, the two histograms showing the distribution of 
obtained RMSD values for the two docking methods are almost identical, except for the first 
column, representing the number of structures within 0.6 Å RMSD of the X-ray structure. Hence, 
the main difference in accuracy between the two methods is in the prediction of the absolutely 
correct conformations. In virtual screening, the main goal is to identify possible drug candidates. 
Hence, a reasonable prediction of the bound conformation might be sufficient. The histogram to the 
left in Figure 5.9 indicates that our docking method performs best for ligands having high affinity 
for the receptor (shown in red). For MOE-Dock, this relationship is not that clear. This indicates 
that our score function is well suited for virtual screening, where the purpose is to separate high 
affinity compounds from non-active ones, and to find a reasonable ligand conformation for a large 
number of protein-ligand complexes. 

Our method is much more computationally efficient than MOE-Dock. Our method used 
approximately 5 minutes per molecule, while MOE-Dock used 50 minutes per molecule, on 
average. The level of accuracy of our score function might not be sufficient to give reliable results 
alone, but since our docking method is very fast, it is well suited for pre-screening and generation of 
starting conformations for more accurate docking. This docking method might also be 
complementary to other docking methods, since our results show that our method predicts 
hydrophobic interactions better than hydrophilic interactions. The opposite is true for many other 
docking methods (Wang et al., 2003). Since combination of several score functions for 
computational docking has been shown to improve the results (Wang et al., 2003), a combination of 
our score function with other score functions that predict for example hydrogen bond formation 
better might be advantageous. The fact that MOE-Dock and our method did not succeed in 
reproducing the X-ray structures for the same ligands indicates that the two methods are 
complementary to a certain degree.  

 
 
Figure 5.10. Predicted binding affinities for the ligand structures resulting from the docking analysis with our gaussian-
based score function plotted against the experimental binding affinities. The docking analysis of the X-ray structures 
with PDB entries 1STP, 6CPA, 7CPA and 1EBG resulted in false negatives. 
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The correlation between the experimental and the predicted binding affinities obtained using 
our gaussian-based docking method is only 0.6. This is probably caused by the low number of 
variables included in the score function, and the simplified molecular representation used. In our 
score function, neither partial charges, nor hydrogen atom positions are taken into account. Solvent 
effects are also ignored. We wanted a robust score function including only the variables that are 
most important for binding. A higher correlation could probably have been obtained by including 
more variables in the score function, but this would make the method less robust against structural 
errors. Including information with large errors might be worse than leaving the variables out. The 
false negatives shown in the lower, right hand part of Figure 5.10 result from underestimation of the 
strength of ion bonds (1EBG) and hydrogen bond formation (1STP) between the ligand and the 
receptor. Since information about partial charges and hydrogen atoms is not included in our score 
function, the binding affinity is underestimated in cases where the ligand makes ion bonds to the 
receptor and when hydrogen bond formation is very important for ligand binding. Hydrogen bond 
formation is dependent on the directions in which hydrogen atoms point, and even though we 
include information about hydrophilicity and hydrogen donors and acceptors, we are not able to 
fully represent hydrogen bond formation using our simplified molecular description. The ligands in 
PDB entries 6CPA and 7CPA contain groups that protrude towards the solvent. Our description of 
the protein binding site is based on the positions of alpha spheres. Alpha spheres can only represent 
ligand atoms bound in a protein cavity. Hence, interactions on the outer surface of the protein are 
ignored, and the contributions from the protruding groups to the binding affinity are not included. 
This, combined with the exclusion of solvent effects probably causes the underestimation of the 
binding affinities of 6CPA and 7CPA.  

Our score function is trained on a large and diverse set of protein-ligand complexes. Most 
existing score functions have been trained on smaller and more homogenous sets of structures. Our 
training set includes both small, rigid ligands, and relatively large and flexible ligands such as 
peptides. Predicting the binding modes of peptides has been a great challenge in computational 
docking. However, our method was for example able to reproduce the experimental conformations 
of three different peptides containing seven, eight and nine amino acids, respectively (PDB entries 
8HVP, 1HHK and 1HHH). The RMSD values between the docked and the experimental 
conformations of these three peptides were 0.94 Å, 0.99 Å and 1.5 Å, respectively. This indicates 
that our method will be a useful supplement to existing docking methods, and can make important 
contributions to structure-based drug design.  
 

5.3.3 Computational docking of carbohydrate ligands and peptides in E-selectin 
 
Computational docking methods use many approximations to the system under consideration, and 
clearly have their limitations. The three computational docking examples presented here 
(unpublished results) did not give satisfying results, and illustrate some of the limitations of these 
methods. In these examples flexible carbohydrates and peptides binding to the outer surface of the 
protein were used. The presented results illustrate that methods based on calculation of alpha sphere 
positions are only suitable for ligands that bind in cavities in the protein structure. Carbohydrates 
bind to their receptors through a large number of hydrogen bonds. Hence, docking methods that 
predict hydrogen bond formation insufficiently (such as our gaussian-based docking method) are 
not suitable for use with these compounds. Compounds like peptides, with many rotatable bonds, 
are also known to represent a challenge in computational docking. The computational details and 
experimental binding affinity data are given in Appendix 1 and 2, respectively, and the results from 
the docking calculations are also given in Appendix 2. 

A set of 34 fluorescent carbohydrate probes has been tested for binding to mammary 
adenocarcinoma cells (Vodovozova et al., 2000). This analysis revealed the tetrasaccharide SiaLex 
as the ligand with the highest affinity to the cancer cells. We contacted Vodovozova and co-
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workers, and obtained the original dataset from their lab. In this dataset a discontinuous scale from 
zero to five was used to rank the carbohydrates according to their affinity to the mammary 
adenocarcinoma cells. The affinity of the carbohydrates to the cancer cells was estimated by 
microscopic evaluation of fluorescence emitted from the bound carbohydrate ligands. We have 
docked this set of carbohydrate ligands in E-selectin, a receptor that is overexpressed on various 
cancer cell lines (Gabius, 1988). Two different docking methods were used: docking by simulated 
annealing in MOE (Hart and Read, 1992), and our gaussian-based docking method presented in 
Paper V. The results from the docking calculations were compared to the experimental affinities of 
the ligands to the cancer cells. 

The estimated docking energies (the sum of the electrostatic and the van der Waals interaction 
energy between the ligand and the target and the intramolecular energy of the ligand) from the 
simulated annealing docking of the 34 carbohydrates in E-selectin are plotted against the observed 
binding affinities to the mammary adenocarcinoma cells in Figure 5.11. 
 

 
 
Figure 5.11. Docking energy from docking with simulated annealing in MOE plotted against the experimentally 
determined binding affinity. The correlation between the estimated and the observed affinities is 0.66. 
 

The results in Figure 5.11 show that there is a significant correlation between the estimated and 
the experimental affinities, but a high experimental affinity should be associated with a low docking 
energy. The results here show the opposite. The main reason is that the values of the ligand 
intramolecular energies are very high for some of the compounds, especially for SiaLex and Sialyl 
Lewis a (SiaLea). For most of the tri- and tetrasaccharides, the ligand intramolecular energies have 
values larger than 200 kcal/mol. These energies are lower for the ligands containing fewer ring 
structures. The values of the electrostatic and van der Waals interaction energies are comparable for 
all ligands studied here. The electrostatic energies typically have values around –200 kcal/mol, 
while a typical value for the van der Waals energy is 10 kcal/mol. This leads to positive docking 
energies for some compounds. This is probably caused by the high flexibility of these compounds. 
This docking method does not seem to be suitable for this kind of compounds, since it only 
separates the large, flexible ligands from the smaller ones. For carbohydrates containing up to four 
saccharide rings, a large number of local energy minima exist. As mentioned earlier, getting trapped 
in local minima with high-energy transition-state barriers is a common problem with simulated 
annealing. This might have caused the high intramolecular energies for these ligands. Recently, 
docking methods based on stochastic tunnelling have been developed to overcome some of these 
problems (Wenzel and Hamacher, 1999; Todorov et al., 2003).  

Since only interactions with E-selectin were considered in the docking experiments, some of 
the deviations between the estimated and the observed affinities might be due to binding of the 
carbohydrates to other receptors, such as P- and L-selectin. It is difficult to model binding to a 
complete cell system by modelling only one receptor-ligand interaction. During the simulated 
annealing calculations, solvent effects and receptor flexibility were not taken into account. Hence, 
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this model uses many approximations to the real system. The experimental affinities are also just a 
sensoric ranking of the compounds regarding to microscopic evaluation of fluorescence. 

The fact that we were not able to reproduce the ranking between the carbohydrate ligands in 
this docking study was one of the reasons why we decided to develop a new docking method, based 
on gaussian property distributions like those used in PASSA (Paper II) and CoMSIA (Klebe et al., 
1994). Our hypothesis was that gaussian-based methods would work better on flexible structures, 
because of their robustness against small structural errors. The docking calculations with the 
gaussian-based docking method were performed in the same way as described in Paper VI, and the 
results are shown in Figure 5.12. Lately, the X-ray structures of E-selectin and P-selectin in 
complex with SiaLex have been published (Somers et al., 2000). These structures were not available 
when these docking calculations were done. A comparison of our docking results to the structure in 
PDB entry 1G1T showed that we were not able to find the correct binding mode for SiaLex with 
either MOE-Dock or our gaussian-based docking method.  

 
 

 
 
Figure 5.12. Estimated binding affinities from docking with the gaussian-based docking method plotted against the 
experimentally determined binding affinities. The correlation between the estimated and the observed affinities is 0.45. 
 

The results in Figure 5.12 show that we were not able to reproduce the ranking of the 
carbohydrate ligands using our gaussian-based docking method. A large fraction of the ligands (for 
example the high-affinity ligand SiaLex) is predicted to have a binding affinity of zero to E-selectin, 
which indicates that they are placed outside the binding site on E-selectin, that is, outside the grid 
used to estimate the binding affinities. This illustrates that our docking method is not suitable for 
use with these compounds. One reason might be that hydrogen bond formation is important for 
binding of carbohydrates to their receptors. As mentioned earlier, our docking method does not 
include information about hydrogen atom positions. In addition to this, these carbohydrate ligands 
bind on the surface of the protein, not in a well-defined binding pocket (Graves et al., 1994; Ng and 
Weis, 1997; Somers et al., 2000; PDB entry 1G1T). The X-ray structure of E-selectin in complex 
with SiaLex is shown in Figure 5.13. As discussed earlier, our docking method uses alpha spheres 
placed in cavities in the protein structure to represent the protein binding site, and interactions on 
the surface of the proteins are not taken into account. Solvent effects are also ignored. 
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Figure 5.13. The X-ray structure of E-selectin in complex with SiaLex (PDB entry 1G1T). The ligand is rendered in 
“ball and stick”, while the residues of E-selectin within 3 Å distance of SiaLex are rendered in “stick”. 
 

The high flexibility of the carbohydrates and the large number of possible carbohydrate 
receptors might cause selectivity problems. Other ligands, such as peptides, might therefore be 
better suited as selective drugs. A set of 25 peptides consisting of from ten to eighteen amino acids 
has been tested for binding to E-selectin (Martens et al., 1995). In the same way as the carbohydrate 
ligands described above, these 25 peptides were docked in the X-ray structure of E-selectin, using 
our gaussian-based docking method. The predicted binding affinities are plotted against the 
experimental IC50 values (Martens et al., 1995) in Figure 5.14. 

 
 
Figure 5.14. Predicted binding affinities for the peptides vs. logaritmised IC50 values. Peptide number 25 was kept out 
of the plot due to the very high predicted binding affinity compared to the other samples (Appendix 2). 
 



Rational design of protein inhibitors using molecular modelling and multivariate analysis 
________________________________________________________________________________________________________________________ 

 

 56

The results in Figure 5.14 show that there is no correlation between the predicted and the 
experimental activities for these peptides. Since it has been shown that peptides also bind on the 
outer surface of lectins (Somers et al., 2000; PDB entry 1G1S), the main problem is probably that 
these peptides do not bind in a well-defined cavity of the protein. However, our method has been 
shown to reproduce experimental binding modes for peptides consisting of up to nine amino acids 
(RMSD values below 1.0 Å between the experimental and docked conformations), provided they 
bind in a well-defined binding pocket (Paper V). Hence, the development of this method may be a 
step forward when it comes to docking of flexible ligands such as peptides.  
 
 

5.4 Design of selective inhibitors of Tyrosine kinase 2   
 
The above examples illustrate some of the limitations with computational docking methods. 
However, the performance of these methods is highly dependent on the target system, and these 
methods are most suitable in cases where the ligand binds in a deep pocket or cleft in the protein 
structure. This is the case for ATP binding to protein kinases. In Paper VI, virtual drug design has 
been applied to design selective inhibitors that block the binding of ATP to Tyk2.    

5.4.1 Method testing and verification of the structural model  
 
To test the influence of the choice of template on the homology models, three alternative homology 
models were made for the tyrosine kinase domains of Tyk2 and Jak2, using only one template for 
each model, in addition to homology models made using several templates simultaneously (Paper 
II). The latter models were assumed to be the most reliable, and were used for drug design. 
SwissModel (Peitsch, 1995; Peitsch, 1996; Guex and Peitsch, 1997; Guex et al., 1999; Schwede et 
al., 2003) was used for the homology modelling. Details about the homology modelling of the Tyk2 
and Jak2 tyrosine kinase domains can be found in Paper II. Structure superpositioning of the models 
in Swiss-PdbViewer (Guex and Peitsch, 1997; Swiss-PdbViewer, 2001) gave an RMSD value 
(average of the pairwise RMSDs) of 1.31 Å between the α-Carbons of the three models of Tyk2, 
while an RMSD value of 1.18 Å was obtained for the α-Carbons of the three models of Jak2. The 
Cα RMSD between the model of Tyk2 and the model of Jak2 obtained using five different 
templates was only 0.75 Å. Hence, the difference between three different models of the same 
protein made using only one template for each model is larger than the difference between the 
models of two homologous proteins made using five different templates simultaneously. The 
relatively high RMSD values between the homology models obtained using a single template 
indicate that the accuracy of the models is highly dependent on the choice of template. This is a 
strong argument for using several templates simultaneously in homology modelling. Possibilities 
for improving the homology model accuracy by combination of several homology models of the 
same protein are discussed in Paper I.  

A set of eleven tyrphostins was docked into the homology model of Jak2, using MOE-Dock 
(Paper II). One of the tyrphostins was the Jak2 inhibitor AG490, while the other ten tyrphostins 
were known not to inhibit Jak2. This docking study identified AG490 as the most active compound. 
This indicates that our homology models are accurate enough to be used for virtual drug design.  

For comparison, these eleven tyrphostins were also docked into the homology model of Jak2 
using our new gaussian-based docking method presented in Paper V. The same starting 
conformations as reported in Paper II were used, and the docking analysis was done in the same 
way as described in Paper VI. The results are given in Table 5.1 (unpublished results). 
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Table 5.1. Results from docking of the eleven tyrphostins in 
the homology model of Jak2 using the gaussian-based 
docking method* (unpublished results). 
Tyrphostin Predicted binding 

affinity (kJ/mol) 
AG490 -38.3 
AG1007 -36.9 
AG370 -32.2 
AG1112 -30.8 
AG1478 -26.6 
AG294 -24.0 
AG126 -20.6 
AG18 -19.5 
AG30 -18.3 
AG879 -3.41 
AG1295 -2.90 

*The tyrphostins were docked 100 Tabu runs of 1000 
iterations each, with a docking box of 3 Å padding around 
the protein structure. 

 
The results in Table 5.1 show that our docking method is also able to identify AG490 as the 

most active compound. The estimated binding affinity for AG1007 is however almost as low as for 
AG490, and AG1007 thus represents a false positive. However, the structures of these two ligands 
are very similar (see Paper II). MOE-Dock was able to discriminate between these two ligands, but 
our method uses a much less detailed ligand description than MOE-Dock does. However, the results 
indicate that our method is suitable for initial screening, where the main purpose is to identify 
promising compounds. At this stage, it is more important to avoid false negatives than false 
positives. Though this is a very small testset, the results also indicate that our docking method is 
suitable for use with homology models, since we were able to identify AG490 as the most active 
Jak2 inhibitor using a homology model of Jak2.  
 

5.4.2 Database screening and de novo ligand design 
 
The Tyk2 pharmacophore model found by mapping the binding site properties of the homology 
model of Tyk2 with PASSA (described in Paper II) was used to screen the NCI 3D structure 
database from August 2000 (http://cactus.nci.nih.gov/) for possible Tyk2 inhibitors (Paper VI). This 
database contains 250241 structures. The selected molecular fragments from the MCSS (Paper II) 
defined the pharmacophore (Figure 5.15).  

The GROW function of LigBuilder (Wang et al., 2000) was used to design new structures 
having the proposed functional groups. Structures were built using selected molecular fragments 
from the MCSS results presented in Paper II as “seed” fragments. The inhibitor binding pocket of 
Tyk2 was defined by the MCSS fragments that also define the Tyk2 pharmacophore (Figure 5.15). 
Binding affinities for the resulting structures were estimated using the gaussian-based score 
function reported in Paper V. Details about the drug design process are given in Paper VI. 
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Figure 5.15. The Tyk2 pharmacophore used for the database search and de novo ligand design. The pharmacophore was 
defined by fragments from the MCSS (Paper II).  
 

The hits from the pharmacophore search and the most promising structures from the de novo 
ligand design were docked in the homology model of Tyk2 presented in Paper II, with MOE-Dock 
(Baxter et al., 1998; MOE, 2002) and with the new gaussian-based docking method introduced in 
Paper V. In both methods, Tabu search (Baxter et al., 1998) was used for the conformational search. 
The two docking methods did not identify the same compounds as the most active ones, but they 
both produced the same conclusion, namely that there are no promising Tyk2 inhibitors in the NCI 
database. However, our analysis provides useful information about parts of the structures that may 
be used as functional groups of a selective inhibitor of Tyk2. The main purpose of docking methods 
is to identify the most active compounds. Most docking methods (as these two) are also trained 
using X-ray structures of protein-ligand complexes. Hence, internal ranking of inactive compounds 
is bound to fail, and not interesting for drug design purposes. This may be the reason why the two 
docking methods ranked the compounds in the NCI database differently. Another explanation might 
be that the training sets used to derive the score functions in these two methods are different. 
Treating the receptor as a rigid structure increases the sensitivity to deviations between the system 
under consideration and the structures in the training set, since ligand-induced conformational 
changes in the protein structures will have different effects on the results for different types of 
ligands. 

In order to test the promising drug candidates from the pharmacophore search and the de novo 
ligand design for selectivity towards Tyk2, the compounds were docked in the following kinase 
structures, in addition to the homology models of Tyk2 and Jak2 presented in Paper II: PDB entries 
1IR3 (insulin-receptor tyrosine kinase), 1BYG (C-terminal Src kinase), 1FGK (tyrosine kinase 
domain of fibroblast growth factor receptor 1), 1FPU (Abl kinase), 1QCF (haematopoetic cell 
kinase, Hck) and 1QPC (lymphocyte-specific kinase, Lck). The gaussian-based docking method 
was used for this docking study, since it is developed especially for use with homology models. 
Homology models of both Tyk2 and Jak2 were used here. The results from our docking analysis 
indicated that none of the structures present in the NCI database can be used to inhibit Tyk2 
selectively, but one compound was found to inhibit Tyk2 and insulin receptor tyrosine kinase 
selectively. However, this study indicated that five of the structures generated by de novo ligand 
design are potential selective inhibitors of Tyk2. The structures of these compounds are shown in 
Figure 5.16. According to descriptors calculated in MOE, these compounds satisfy Lipinski’s “Rule 
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of five” (Lipinski et al., 1997). The docked structures of these compounds in complex with Tyk2 
are shown in Paper VI. 
 

 
 
 

 
 
 

 
 
Figure 5.16. The docked conformations of the most promising structures resulting from the de novo ligand design.  
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Figure 5.16 (cont.). The docked conformations of the most promising structures resulting from the de novo ligand 
design.  
 

As the results presented in the previous sections clearly demonstrate, the docking methods used 
in this study have many limitations. However, in this study they are applied to protein kinases, 
which have a very well-defined binding pocket. Hence, our docking method should be well suited 
for use with these protein structures. Promising drug candidates could have been missed due to 
insufficient representation of hydrogen bond formation. However, the fact that neither MOE-Dock 
nor our gaussian-based docking method identified any promising Tyk2 inhibitors in the NCI 
database indicates that we can trust the results. Many hydrophobic groups are present among the 
functional groups proposed for a selective Tyk2 inhibitor. This indicates that hydrophobic 
interactions are important for binding of an inhibitor in this binding pocket. This gives additional 
confidence in the results since our docking method has been shown to predict hydrophobic 
interactions quite well (Paper V).   
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5.5 Application of Protein Alpha Shape Similarity Analysis (PASSA) in modelling 
selectivity 

 
When promising compounds have been identified, it is important to test the selectivity by predicting 
their affinity to a number of related proteins, in addition to the target. In Paper VII, the binding sites 
of two sets of protein structures were mapped using PASSA, and empirical models were trained by 
relating the structural properties of the protein binding sites to the affinity of different ligands 
towards the proteins. These empirical models can be used to predict the affinity of the ligands 
towards related proteins based on the gaussian property fields for the protein binding sites. This is 
useful for detection of possible side effects of the drug candidates. 3D-QSAR methods predict the 
activities of new ligands towards a protein using a regression model that relates the structural 
properties of known ligands to their experimental affinities. Here we relate the structural properties 
of the protein binding sites of several proteins to the activities of ligands towards these proteins. 
The activities of these ligands towards related proteins can then be predicted using the obtained 
regression model. 

In Paper II, it was shown that with PASSA, interactions known to be important for the 
selectivity of STI-571 towards Abl kinase could be identified. This indicates that PASSA is a useful 
tool for modelling selectivity, making it a useful supplement to virtual screening with computational 
docking. Empirical docking methods are trained on diverse sets of compounds and are meant to be 
as general as possible. Hence, the results for a certain protein-ligand complex depend on the 
similarity of the complex to the structures used to train the method. Using PASSA to model 
selectivity within a protein family, as in this work, allows for more detailed and family-specific 
modelling of protein-ligand interactions. This method also allows for effective visualisation of the 
molecular basis for selectivity.  

In Paper VII, PASSA has been used to model selectivity of ligands towards two sets of protein 
kinase structures. Dataset 1 contains a set of eight protein kinase C (PKC) isozymes (Jirousek et al., 
1996), while dataset 2 consists of a set of structures of the kinase domains of Abl kinase, epidermal 
growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), c-Src, protein 
kinase A (PKA) and two isozymes of PKC (Zimmermann et al., 1997).  

The PLS regression used to model the experimental IC50 values produces loading weights and 
regression coefficient vectors containing elements for every grid point. Hence, they can be mapped 
back onto the grid points used to compute the gaussian property fields, and structural regions that 
contribute to selectivity may be identified. By selecting interesting regions in a plot of the loading 
weights, the corresponding interaction sites in the proteins can be identified. An example of this is 
given in Figure 5.17, where the selected loading weights from the regression model made for the 
PKC isozymes (dataset 1) are shown in the upper part of the figure, while the corresponding regions 
in the protein binding site are shown below.  

As illustrated in Figure 5.17 A, one interesting set of loading weights is protruding towards 
proteins ‘1‘ (PKC-α) and ‘4’ (PKC-γ), and another towards protein ‘7’ (PKC-ζ). Figure 5.17 B 
shows that the loading weights spanning the direction of protein ‘7’ correspond to a well-defined 
hydrophobic region in the structure of PKC-ζ.  
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A: 

 
B: 

 

 
Figure 5.17. A: Scores and loading weight bi-plot. The PLS scores of each protein are shown as red spheres and the 
PLS loading weights of the grid variables are shown as blue dots. The selected loading weights are rendered as blue 
spheres. B: The structural origin (in PKC-ζ) of the selected loading weights. Hydrophobic sites are shown in green. 

 
Since experimental structures are available for several of the protein-ligand complexes in 

dataset 2, we are able to test whether the results produced by our method correspond to the 
structural properties of the actual ligands. This can be used as a test on how well the results from 
PASSA overlap with the properties of known, selective inhibitors. In Figure 5.18, the regression 
coefficients for the selective Abl kinase inhibitor STI-571 are plotted together with the X-ray 
structure of Abl kinase in complex with this inhibitor (PDB entry 1IEP).  
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Figure 5.18. The regression coefficients for the hydrophobicity (green) for STI-571 plotted together with the X-ray 
structure of Abl kinase in complex with STI-571 (PDB entry 1IEP). STI-571 is rendered in “ball and stick”. 
  

The results in Figure 5.18 show that the regression coefficients for the hydrophobicity for STI-
571 correspond well with the positions of the hydrophobic groups of STI-571. This indicates that 
PASSA is a useful method for identification of regions in a protein binding site that can be utilised 
to achieve selective binding of ligands to the protein. The results presented in Paper VII also 
demonstrate that the PASSA method may be used quantitatively to predict IC50 values for a number 
of ligands towards a set of closely related protein targets. This makes PASSA a promising method 
in screening for side effects.  
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6 Discussion 
 
With the large amount of data resulting from the human genome project (McPherson et al., 2001), 
homology modelling of protein structures has received increasing attention in drug design. 
However, this method uses many approximations, and improvements of existing methods are 
required for reliable results. A comparison of three alternative homology models of Tyk2 and Jak2 
showed that the deviation between three different models of the same protein made using a single 
template for each model was larger than the deviation between the models of Tyk2 and Jak2 made 
using five different templates simultaneously. This indicates that the accuracy of the models is 
highly dependent on the choice of template, and is a strong argument for using several templates 
simultaneously in homology modelling. 

Most drug design methods are trained on more accurate protein structure models resulting from 
X-ray crystallography and NMR experiments. Hence, few methods exist that are suitable for use 
with homology modelled protein structures. The development of new computational methods that 
can deal with small structural inaccuracies like those found in homology models is therefore 
becoming more and more important. Methods that ignore receptor flexibility are especially sensitive 
to errors in the protein structure models. The work presented in this thesis has focused on 
development of methods utilising gaussian functions to describe molecular properties. These 
methods are regarded to be more suited for use with homology modelled protein structures than e.g. 
force field based methods. The gaussian functions introduce a smoothing of the molecular surface 
descriptions, which decreases the sensitivity to errors in the structural models used. The results 
presented here indicate that drug design methods utilising gaussian functions to describe molecular 
properties have many applications and a great potential in structure-based drug design. These 
methods are relatively fast, and well suited for the initial stages of a drug design process, when the 
goal is to identify the main features of ligand binding. However, the results produced with these 
methods may be less accurate than results obtained using more time consuming methods that use 
more variables and detailed information to represent the protein-ligand interactions. The smooth 
molecular description used by our docking method might also lead to an overestimation of the 
binding affinity for ligands having many similarities to the real drug lead. However, the results 
indicate that our method is suitable for initial screening, where the purpose is to identify promising 
compounds, and false negatives are more important to avoid than false positives. Even the most 
accurate methods use crude approximations to the real system, and can not always represent the 
many factors involved in the complex process of ligand binding. The results from a computational 
docking study using flexible carbohydrates and peptide ligands binding to the outer surface of E-
selectin clearly illustrate the many limitations these methods have. Hence, in spite of the many 
applications and the proven usefulness of docking methods in pharmaceutical research, it is 
important to realise their limitations. It is important to compare the results produced by several 
different methods, since otherwise one can easily be misled, and important drug leads can be 
missed.  

In general, computational docking methods perform best on small ligands with few rotatable 
bonds. Compounds such as large carbohydrates and peptides, and especially those that bind to the 
outer surface of the protein are difficult to model. The main reason is that most empirical score 
functions are not trained on this class of compounds, but on smaller ligands binding in well-defined 
cavities in the protein structure. This is probably caused by the bias in the datasets available for 
training score functions. The same is true for the knowledge-based score functions, although the 
bias is lower here, since the development of these functions is not dependent on binding affinity 
data to derive the rules. The methods used to describe the protein binding site properties may also 
be more suitable for well-defined binding pockets than for the highly hydrophilic outer surface of 
the protein. Force field based score functions suffer from being time consuming, but may give 
better results for example for ligands binding to the outer protein surface, since they are not affected 
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by the bias in the available X-ray structures. However, as the number of rotatable bonds increases, 
the computational time required to obtain reliable results also increases enormously. Many force 
field based methods substitute the free energy of binding in solution by an estimate of the gas-phase 
enthalpy of binding. Hence, both solvent and entropic effects are ignored. Getting trapped in local 
minima is also a common problem with these methods. Methods based on gaussian functions have 
advantages when it comes to speed and robustness against small structural errors, but they are most 
suitable for the initial screening stages of a drug design process. These methods have for example 
been shown to model electrostatics and hydrogen bond formation insufficiently. For reliable 
prediction of binding affinities and active conformations, more accurate methods have to be 
applied. Hence, a virtual drug design process is most likely to succeed if a combination of several 
methods with different levels of accuracy is used.  

Due to induced fit, development of methods that include protein flexibility in the calculations is 
important. To date, few computationally efficient methods have been developed to handle this 
problem, but this is one of the major research areas in rational drug design. In spite of their many 
limitations, computational drug design methods have made important contributions to 
pharmaceutical research, and given a suitable model system, and when used with some critical 
sense, they are effective tools that speed up the drug design process.    
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7  Conclusions  
 
In this work, a new method for prediction of homology model accuracy with multivariate regression 
has been developed. This method predicts the model accuracy directly from the amino acid 
sequence alignment and can be used to assure that the optimal templates and alignments are utilised, 
so that the best possible homology model is generated. It is also useful for identification of 
structural regions that are difficult to model, as well as errors in the sequence alignment. Here, the 
method has been applied to the protein kinase family, but it can easily be extended to other protein 
families. 

A gaussian-based method for mapping protein binding site properties and identification of 
possible interaction sites for selective inhibitors, and a gaussian-based computational docking 
method have also been developed. These methods have been shown to be fast, and suitable for 
virtual screening. The gaussian-based docking method runs ten times as fast as for example MOE-
Dock, and has been shown to perform well on relatively large and flexible ligands, such as peptides, 
provided they bind in a well-defined binding pocket. This method was able to reproduce the 
experimental conformations of peptides containing up to nine amino acids. Since we include no 
information about hydrogen atom positions and partial charges, our score function is unable to 
represent direction-specific hydrophilic interactions and formation of ion bonds between the protein 
and the ligand. 

PASSA, the gaussian-based method for mapping protein binding sites presented here, has been 
tested on protein kinases bound to known, selective inhibitors. The results indicate that ligand 
properties and interaction sites in the protein binding pocket that are important for selectivity can be 
identified with PASSA. PASSA and the gaussian-based docking method developed here have been 
utilised in a rational drug design process, resulting in suggested structures for five selective Tyk2 
inhibitors and one inhibitor of Tyk2 and insulin receptor tyrosine kinase. In this work, PASSA and 
the gaussian-based docking method were combined with database screening, MCSS and de novo 
ligand design. PASSA has also been used to model the activities of a number of ligands towards 
protein kinases, and has been shown to be a promising method in screening for side effects.  

In addition to the design of Tyk2 inhibitors, the interactions between the receptor kinase 
FGFR1 and a known inhibitor have been studied, and several improvements of this inhibitor have 
been suggested by computational sensitivity analysis and comparative database analysis. 
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8 Future perspectives 
 
Our gaussian-based score function predicts hydrophobic interactions better than hydrophilic 
interactions, while many other score functions for computational docking predict hydrophilic 
interactions better than hydrophobic interactions (Wang et al., 2003). Hence, it would be interesting 
to combine our score function with other score functions to improve the predictive ability. We plan 
to develop a new version of the gaussian-based docking method that can better represent hydrogen 
bonds and ion interactions. Until now, the main focus has been on method development. Hence, the 
performance of the docking method has to be verified further, and compared to other docking 
methods. We have only tested our gaussian-based score function using Tabu search for the 
conformational searching. It would be interesting to test the performance of the score function using 
a different conformational search algorithm as well, for example a genetic algorithm. We also plan 
to develop new versions of both PASSA and the gaussian-based docking method that are 
independent of commercial software packages, in order to make these methods more available to 
the research community. It would also be interesting to test the robustness of our new gaussian-
based docking method against small structural errors, by docking ligands of known activity into 
homology models of the target proteins. We also plan to test the robustness by perturbing the X-ray 
structures of the proteins in the training set, and docking the ligands into ensembles of protein 
structure models. 

In the work presented here, five candidate structures for a selective Tyk2 inhibitor were 
suggested. We plan to test the activity of these compounds further, in a cell assay. 

PASSA has been shown to identify properties corresponding to active groups of inhibitors that 
are known to be important for the selectivity of these inhibitors towards their target proteins. Hence, 
an idea would be to develop a de novo ligand design program based on gaussian property 
descriptions for both the protein and for molecular fragments from e.g. MCSS. Gaussian property 
fields could then be generated for different combinations of these fragments. One could also think 
of a method using the growing-approach to design the ligand, where ligand groups are added 
incrementally, and new ligand property fields are generated and compared to the receptor fields. It 
would also be interesting to test the performance of PASSA further, on all PDB entries holding 
selective protein inhibitors. 

PASSA combined with DPLSR may be a suitable method for diminishing the dependency of 
homology models upon the applied template structures, since this approach has been shown to be 
able to single out unique properties of proteins. The residuals from DPLSR using ensembles of 
homology models of each protein might contain information about properties that are common to all 
homology models of a given protein. The dependent variables in the DPLSR should then be 
indicator variables indicating the template structures used for the homology modelling.  

In general, including solvent effects and protein flexibility efficiently, and increasing the 
suitability of the methods for homology modelled proteins are the major challenges in the 
development of new rational drug design methods to date. Accomplishing this will increase both the 
hit-rate and the number of targets that can be considered significantly.    
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Appendix 1. Computational details of the docking of carbohydrate 
ligands and peptides in E-selectin  
 
The crystal structure of the lectin and epidermal growth factor (EGF)-like domains of E-selectin 
was obtained from PDB entry 1ESL. Hydrogen atoms were added to the X-ray structure in MOE, 
and the structure was energy minimised with AMBER94 (Weiner et al., 1984) until convergence 
with an RMSD gradient of 0.1.  

Since the conformation of SiaLex has been shown to change upon binding to E-selectin (Cooke 
et al., 1994), the bioactive conformation was manually reproduced based on experimental data for 
atom distances and dihedral angles (Scheffler et al., 1995). This conformation was used as starting 
conformation in the docking study. Starting conformations for the remaining carbohydrate ligands 
in the set (Vodovozova et al., 2000) were generated by manual alignment to SiaLex. Two different 
docking methods were used: docking by simulated annealing in MOE (Hart and Read, 1992), and 
our gaussian-based docking method presented in Paper V. Both docking calculations were 
performed using MMFF94 (Halgren, 1996) with a smooth non-bonded cut-off of 10-12 Å.  

Each simulated annealing run consists of a sequence of Monte Carlo cycles, each consisting of 
a number of random changes of the atom coordinates (Hart and Read, 1992). The temperature is 
held constant during each cycle, and is systematically reduced from one cycle to the next. Each 
cycle after the first cycle begins with the lowest energy conformation from the previous cycle. Each 
cycle continues until either the number of accepted changes or the number of rejected changes 
reaches the iteration limit. The initial simulated temperature (the simulated temperature maintained 
during the first cycle of each run) was 1000 K. For each carbohydrate ligand, 80 docking runs of 30 
cycles each were performed. The iteration limit was 8000, and a docking box with 2 Å padding 
around the set of aligned carbohydrate ligands was used.  

Both the carbohydrate ligands and 25 E-selectin binding peptides (Martens et al., 1995) were 
docked 100 Tabu runs of 1000 iterations each in the X-ray structure of E-selectin, using our 
gaussian-based docking method. The docking analysis of the carbohydrates was carried out in the 
same way as described in Paper VI, using the starting conformations described above. The peptides 
were docked from a random starting conformation, using a docking box with 3 Å padding around 
the receptor and the aligned structures of all peptides. The AMBER94 force field (Weiner et al., 
1984) was used for the peptides. 
 



Rational design of protein inhibitors using molecular modelling and multivariate analysis 
________________________________________________________________________________________________________________________ 

 

  69

Appendix 2. Results from the docking of carbohydrate and peptide 
ligands in E-selectin 
 
The docking results and experimental binding affinity data for the carbohydrate and peptide ligands 
are given in Table A2.1 and Table A2.2, respectively. 
 
Table A2.1. Docking results and experimental binding affinity data for the carbohydrate ligands.  

Carbohydrate ligand Experimental 
binding affinity 
(0-5)* 

Docking energy 
from MOE-Dock 
(kcal/mol)  

Predicted 
binding affinity 
(kcal/mol) 

1 3'-HSO3Lex 1 59.8 0 
2 α-Neu5Ac 1 -177.8 -0.33 
3 α-L-Fuc 1 -94.2 -0.61 
4 α-L-Rha 1 -83.2 -0.55 
5 Lea-trisaccharide 2-3 66.7 -0.50 
6 3'-HSO3Lea 1-2 -62.5 -0.51 
7 α-D-Man 0-1 -86.7 -0.61 
8 α-D-Man-6-phosphate 0-1 -333.5 -0.51 
9 A-trisaccharide 3 -7.44 0 
10 6-Sia-Lac 1-2 5.81 -0.38 
11 (Neu5Acα2-8)3 1 29.3 0 
12 Galα1-3GalNAcα 0-1 -6.68 -0.077 
13 (Neu5Acα2-8)2 1 -94.3 -0.19 
14 α-D-glucose 0 -89.6 -0.61 
15 Neu5Acα2-3Galβ1-4Glc 1 -0.68 -0.21 
16 SiaLea 2 249.9 0 
17 SiaLex 5 309.4 0 
18 Led (H type 1) 2 1.05 0 
19 β-D-glucose 0 -102.2 -0.60 
20 Bdi 2 -61.0 0 
21 β-GlcNAc 1 -128.6 0 
22 β-D-galactose 1 -106.7 -0.58 
23 Adi 2-3 -85.6 0 
24 B-trisaccharide 3 17.5 0 
25 Lex 2 -20.2 -0.42 
26 Ley 1 44.9 -0.56 
27 β-GalNAc 1 -132.0 0 
28 α-GalNAc 1 -121.8 -0.81 
29 β-D-GlcNAc-6-sulfate 0 -196.5 -0.21 
30 Galβ1-3GalNAc 1 -107.7 -0.39 
31 6HSO3LactNAc 1 -100.4 -0.010 
32 HSO3Gal 1 -183.6 -0.55 
33 Neu5Acα2-6GalNAcα 1 -62.9 -0.025 
34 GlcNAcβ1-4GlcNAc 0-1 -79.3 -0.40 

*The affinity of the carbohydrates to the cancer cells was estimated by microscopic evaluation of fluorescence emitted 
from the bound carbohydrate ligands (Vodovozova et al., 2000). In cases where the experimental binding affinity lies 
between two values, the lowest value was chosen. The affinity for SiaLex was originally given as “Very bright 
fluorescence”. We assumed that this corresponds to the value 5, compared to the other samples. 
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Table A2.2. Docking results and experimental binding affinity data for the E-selectin binding peptides. 
Nr. Peptide Experimental 

IC50 (nM)* 
Predicted binding 
affinity 
(kcal/mol) 

1 H2N-TWDQLWDLMK-COOH 2500 -1.20 
2 H2N-ITWDQLWDLMK-COOH 11 -1.49 
3 H2N-DITWDQLWDLMK-COOH 4 -1.63 
4 H2N-TWDQLWDLMK-CONH2 4 -1.06 
5 Ac-TWDQLWDLMK-CONH2 9 -2.26 
6 H2N-DITWDQLWDLM-COOH 460 -1.77 
7 H2N-DITWDQLWDL-COOH 150000 -2.02 
8 H2N-DYTWFELWDMMQ-COOH 11 -1.92 
9 H2N-DITWDELWKIMN-COOH 4.4 -1.71 
10 H2N-DYSWHDLWEMMS-COOH 57 -1.14 
11 H2N-QITWAQLWNMMK-COOH 16 -2.17 
12 H2N-HITWDQLWRIMT-COOH 83 -1.67 
13 H2N-HVSWEQLWDIMN-COOH 76 -1.15 
14 H2N-DMTWHDLWTLMS-COOH 23 -0.040 
15 H2N-EITWDQLWEVMN-COOH 67 -1.24 
16 H2N-DISWDDLWIMMN-COOH 620 -1.32 
17 H2N-QITWDQLWDLMY-COOH 910 -1.44 
18 H2N-HRAEWLALWEQMSP-COOH 47 -0.061 
19 H2N-KKEDWLALWRIMSV-COOH 71 -0.73 
20 H2N-RNMSWLELWEHMK-COOH 5.4 -1.32 
21 H2N-AEWTWDQLWHVMNPAESQ-COOH 23 -2.87 
22 H2N-KRKQWIELWNIMS-COOH 1200 -2.22 
23 Ac-WKLDTLDMIWQD-CONH2 >30000 -0.038 
24 H2N-HITWDQLWNVMN-COOH 420 -1.60 
25 H2N-HITWDQLWNVMLRRASLG-COOH >11000 240.2 

*Data from (Martens et al., 1995). 
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Appendix 3. Multiple sequence alignment and alignment score profiles 
for the kinases studied in Paper I 
 
The multiple sequence alignment and alignment score profiles for alignment position 1-150, 150-
300 and 300-450 are shown in Figure A3.1, A3.2 and A3.3, respectively (data from Figure 4 in 
Paper I). 

 
Figure A3.1. Multiple sequence alignment and alignment score profiles for alignment position 1-150 (data from Figure 4 in 
Paper I).  
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Figure A3.2. Multiple sequence alignment and alignment score profiles for alignment position 150-300 (data from 
Figure 4 in Paper I).  
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Figure A3.3. Multiple sequence alignment and alignment score profiles for alignment position 300-450 (data from 
Figure 4 in Paper I). 
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Appendix 4. Multiple sequence alignment and regression coefficients 
from Paper I 
 
The multiple sequence alignment and regression coefficients for alignment position 1-150, 150-300 
and 300-450 are shown in Figure A4.1, A4.2 and A4.3, respectively (data from Figure 8 in Paper I). 

 
Figure A4.1. Multiple sequence alignment and regression coefficients for alignment position 1-150 (data from Figure 8 
in Paper I).  
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Figure A4.2. Multiple sequence alignment and regression coefficients for alignment position 150-300 (data from Figure 
8 in Paper I).  
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Figure A4.3. Multiple sequence alignment and regression coefficients for alignment position 300-450 (data from Figure 
8 in Paper I).  
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Abstract 
 
A new method has been developed for prediction of homology model quality directly from the 
sequence alignment, using multivariate regression. Hence, the expected quality of future homology 
models can be estimated using only information about the primary structure. This method has been 
applied to protein kinases, and can easily be extended to other protein families. Prior to the 
multivariate regression analysis, a set of homology models was verified by comparison to 
experimental structures. The homology model quality was evaluated by calculation of root mean 
square deviations (RMSDs) and comparison of inter-residue contact areas. The homology model 
quality measures were used as dependent variables in a Partial Least Squares (PLS) regression, 
using a matrix of alignment score profiles found from the Point Accepted Mutation (PAM) 250 
similarity matrix as independent variables. The method presented here can be used to effectively 
choose the correct templates to use for the homology modelling, and to identify regions of the 
protein structure that are difficult to model, as well as alignment errors. Hence, this method is a 
useful tool for assuring that the best possible homology model is generated. 
 
Key Words: Homology modelling, homology model quality prediction, inter-residue contact areas, 
modelling templates, multivariate regression 
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1 Introduction 
 
During the last decade, homology modelling of protein structures has become a commonly used 
technique. Homology modelling is the procedure of generating a model of a protein using an 
experimental structure of a related protein as a template.1, 2, 3, 4 Many different programs are 
available for this purpose, and homology models of proteins are currently used in a wide variety of 
disciplines, ranging from drug design, to studies of mutations and protein engineering.1 With the 
user-friendly modelling programs available, constructing a homology model of a protein is 
straightforward, but the quality of the results may vary a lot since automatic methods not always 
find optimal alignments or loop predictions, especially when the sequence identity is below 40%.1, 5 
An inaccurate homology model may be misleading, because relatively small structural errors may 
lead to large errors in e.g. binding energy calculations. Accuracies of the various homology model 
building methods are relatively similar when used optimally.1, 6 Other factors such as template 
selection and alignment accuracy usually have a larger impact on the model accuracy. Even 
homology models generated from very high quality sequence alignments might contain severe 
errors.7 Hence, it is important to evaluate the quality of homology models made from high quality 
sequence alignments, and to be able to predict the model quality for a given target-template pair. 
This is important both in order to select the correct template structures to use for the homology 
modelling, and to evaluate whether useful information can be extracted from a future homology 
model. In this way, we can avoid spending time on generation of low-quality homology models. 

Models of three-dimensional (3D) protein structures can be evaluated according to a variety of 
criteria, such as stereochemistry (bond lengths, bond angles, torsion angles etc.), packing, formation 
of a hydrophobic core, residue and atomic solvent accessibilities, spatial distribution of charged 
groups, distribution of atom-atom distances, atomic volumes and main-chain hydrogen bonding.8, 9, 

10, 11 Large deviations from the most likely values have been interpreted as indicators of errors in the 
model structure. Methods based on 3D profiles and statistical potentials of mean force also exist, 
that take many of these criteria into account implicitly.12, 13, 14, 15 These methods evaluate the 
environment of each residue as seen in the model, compared to the expected environment as 
observed in experimental structures.  
 
The accuracy of protein structure models can also be evaluated by comparison to experimental 
structures of the targets.16, 17, 18, 19 The most common method for comparison of two 3D structures is 
calculation of root mean square deviations (RMSDs) between corresponding atoms in the 
structures. However, the geometric measures only provide meaningful results when the entire extent 
of the proteins is comparable. For example, a set of partially correct structures cannot be ranked 
because the incorrect portions will dominate an RMSD value. When restricting the comparison to 
certain parts of the structure, the choice of relevant parts may also be somewhat arbitrary. An 
alternative is to use the surface area of residue contacts, which does not require a superpositioning 
of the structures that are being compared. A new surface area based comparison method has been 
developed.7 This method is similar to the Contact Area Difference (CAD) number,20 but differs in 
both technical details and in the definition of a single scalar value to quantify the similarity. The 
surface areas are calculated using a Boolean logic based algorithm.21 A two-dimensional matrix is 
constructed by calculating every pairwise contact surface area between the residues in each protein 
structure. When two protein structures are compared, the difference between the contact area 
matrices for the two structures is calculated. The elements in the resulting matrix are negative for 
incorrectly occurring and overestimated contacts, zero for correct contacts and non-contacting 
residue pairs, and positive for underestimated or missing contacts in the model structure. In the 
following, this matrix will be referred to as the inter-residue contact area error matrix. Analysis of 
residue-residue contacts has been used to evaluate structure predictions,22 and the conservation of 
side-chain interactions in homologous proteins.23 Contact-based measures can also be applied to 
simplified protein descriptions.24 
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All methods mentioned above for evaluation of the quality of protein structure models operate on 
the 3D models themselves. No methods exist that predict the model quality prior to the actual model 
building. Sequence identity between the target and template above 30% is a relatively good 
indicator of the expected homology model accuracy, but when the sequence identity is below 30% it 
becomes unreliable as a measure of the expected model quality.1 Predicting homology model 
quality is a difficult task, and can only be done within a specific protein family, since the effective 
mutation rate, the number and size of insertions and deletions, the number of surface loops, etc. 
vary between protein families.25 Even within a specific protein structure, some regions can be 
modelled with high accuracy, while others are more difficult to model. Loop modelling is known to 
be a difficult task, and much research is devoted to this part of the homology modelling procedure.1, 

26, 27 Loop modelling techniques range from searching databases of known protein structures for 
loops having similar end points, to molecular dynamics simulations.1, 28  
 
Prediction of the expected homology model quality, given a specific relationship between the 
primary structure of the target and template proteins, is useful for evaluating whether a homology 
model can be generated that suits the needs of the specific task. In some cases a model of very high 
accuracy is needed, while in other cases a model of lower quality can provide sufficient 
information. Misalignments are the largest source of errors in comparative modelling.1 In this work, 
a new method for prediction of homology model accuracy has been developed, that operates only 
on the target-template sequence alignment. Hence, no information about the 3D structure is needed, 
and the homology model quality can be predicted for a wide range of sequence identities. This 
method has been applied to the protein kinase family, but can easily be extended to other protein 
families. RMSD values between the homology model structures and experimental structures of the 
same proteins, and differences in inter-residue contact areas between the models and the target X-
ray structures are used as measures of the model quality. The method presented here can be used to 
assure that the correct templates and alignments are chosen, so that the best possible homology 
model is generated. It is also useful for identification of regions that are difficult to model, as well 
as errors in the alignment. Possibilities for improving the homology model quality by combination 
of several homology models are also discussed. 
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2 Methodology 
 
A regression model has been developed for prediction of the accuracy of homology models of 
protein structures. This regression model was trained on 292 homology models of proteins for 
which experimental structures were available for comparison. Calculated RMSDs and differences in 
inter-residue contact areas between the homology models and the target X-ray structures were used 
as measures of the accuracy of the homology models. The homology model quality data were used 
as dependent variables (Y) in the Partial Least Squares (PLS) regression analysis. 
 
A matrix of alignment score profiles describing the similarity between the target and template 
amino acid sequences for each homology model was used as independent variables (X) in the 
regression analysis. Each element in this alignment score matrix contained the value of the Point 
Accepted Mutation (PAM) 250 similarity matrix29 for a pair of amino acids that correspond to each 
other in the sequence alignment. Hence, for each homology model, a score value (corresponding to 
the PAM250 matrix value) for each pair of residues aligned in the sequence alignment used for the 
modelling was found, resulting in a matrix of alignment scores, as illustrated in Figure 1. This 
describes how similar the target and template amino acid sequences are in each position in the 
alignment.    
 

 
 

Figure 1. Generation of alignment score profiles. 
 
The PLS regression analysis is illustrated in Figure 2. In this model, the sequence identity between 
the target and the template and the number of non-modelled residues (caused by gaps in the 
sequence alignment) are also added to the matrix of independent variables (X-matrix). A gap in the 
sequence alignment appears when an insertion or deletion has occurred during evolution, so that 
there is a region where the target and template structures differ in length. This often occurs in 
surface loops where the effective mutation rate is high, meaning that an increased fraction of 
mutations are leading to functional genes. Gaps in the sequence alignment lead to inaccuracies in 
the homology modelling, and represent a great challenge when developing homology modelling 
methods. However, the effective mutation rate in active sites of protein structures is often relatively 
low,25 so a homology model might be useful even though a part of the structure (e.g. a surface loop) 
is not modelled correctly.  
 
Any other available information about the similarity between the target and template structures can 
also be added to the X-matrix to improve the predictive ability of the obtained regression model.  
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Figure 2. Multivariate analysis of the homology model quality data using alignment scores, sequence identity and 
number of non-modelled residues as independent variables.  
 
This regression model can be used to predict the accuracy of new homology models. Prior to 
constructing a new homology model, alignment score profiles can be generated from the sequence 
alignment between the target and the template. The regression model developed in this work can 
predict the homology model quality for new homology models from such alignment score profiles. 
This model can only be used within the protein family for which it has been trained, but similar 
regression models can be made in the same way for other protein families.   
 
Outliers that should be kept out of the regression analysis can be identified by inspection of 
influence plots, that is, plots of the residual Y-variance against the leverage. Outliers that have a 
large effect on the results from the regression analysis will be placed in the upper, right hand part of 
the influence plot. This can be used to identify members of a protein family that are difficult to 
model with homology modelling due to large deviations from the other proteins in the family. 
 
The regression coefficients can be used to identify regions that are difficult to model, as well as 
alignment errors. Regions of the sequence alignment that contain many gaps (regions where the 
sequence alignment is of low quality) correspond to regions with large variations in the regression 
coefficients. Comparison of the residuals (for each alignment position) from prediction for a new 
homology model to the residuals for the homology models included in the regression analysis can 
also reveal errors in the sequence alignment. Such alignment errors will lead to deviations in the 
residual pattern. 
 

2.1 Data sets  

2.1.1 Protein kinase structures 
 
Two sets of protein kinase structures from the RCSB Protein Data Bank (PDB)30 were selected for 
the homology modelling. One set (A) contained fourteen structures with pairwise sequence 
identities between 14% and 40% (Table 1). This set is a representative set of all protein kinase 
structures in the PDB. To maximise the structural diversity in the set, all pairs of structures in this 
set have sequence identity lower than 40%. Only structures with resolution better than 3 Å were 
selected. 
 
The other set (B) consists of eleven protein kinase structures with pairwise sequence identities of 
35-80% (Table 2). This is the sequence identity range where homology modelling is most 
frequently used. These eleven structures belong to the receptor tyrosine kinase (RTK) family. The 
RTK family was chosen because it is of great interest in e.g. drug design, and one of the families 
where experimental structures with the widest range of sequence identities are available in the PDB. 
The PDB holds 25 entries corresponding to protein kinases in the RTK family. To leave out 
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multiple X-ray structures of the same proteins, only structures having lower sequence identities than 
90% to each other were chosen. This resulted in ten kinase structures, which provide a good 
representation of the structural diversity in the RTK family. In the interest of exploring the effects 
of conformational change, the apo-structure of the human insulin receptor protein kinase (HIRPK) 
was added to the set, so that the set now contained two copies of HIRPK.  
 
For both sets of kinase structures, structures with a ligand in the adenosine triphosphate (ATP)-
binding site and high-resolution structures were preferred when multiple structures of the same 
protein were present in the PDB.  
 
The X-ray structures were superposed using the CE algorithm.31 Pairwise sequence identities and 
RMSD values for the two sets of protein kinase structures are given in Table 1 and 2. 
 

Table 1. a) Pairwise sequence identities (%) and b) Cα and Cβ RMSD values (Å) for the fourteen protein kinases in set A*.  
a) 

PDB entry 1csn__ 1b6c_b 1fgi_a 1ir3_a 2src__ 1a6o__ 1f3m_c 1hck__ 1jnk__ 1kob_a 1tki_a 1cdk_a 1phk__ 1a06__

1csn__ 100 21.4 17.6 19.1 19 16.2 18.3 19.7 18.5 17.8 14.1 20.7 17.6 15.9
1b6c_b 21.4 100 30.4 28.8 27 20.4 23 23.6 23.2 21.6 18.3 21.4 23 19.4
1fgi_a 17.6 30.4 100 37 39.8 18.5 23.8 25.5 26.7 22.4 20.1 21.9 19.6 25.4
1ir3_a 19.1 28.8 37 100 40.8 17.7 25 21.9 21.8 20.8 19.7 21.1 20.8 20
2src__ 19 27 39.8 40.8 100 18.9 23.4 28.2 22.7 22.4 19.9 22 22.7 21.4
1a6o_ 16.2 20.4 18.5 17.7 18.9 100 26.5 32.7 26.5 24 25.3 23.3 26.2 25.4

1f3m_c 18.3 23 23.8 25 23.4 26.5 100 32.2 27.9 29.8 26.5 28.1 30.4 31.2
1hck__ 19.7 23.6 25.5 21.9 28.2 32.7 32.2 100 37.8 27.6 26.5 29.7 30.6 27.8
1jnk__ 18.5 23.2 26.7 21.8 22.7 26.5 27.9 37.8 100 27.2 23.1 26.8 28.5 29.9
1kob_a 17.8 21.6 22.4 20.8 22.4 24 29.8 27.6 27.2 100 43.1 28.1 32.5 33.5
1tki_a 14.1 18.3 20.1 19.7 19.9 25.3 26.5 26.5 23.1 43.1 100 25.4 32.7 32.4

1cdk_a 20.7 21.4 21.9 21.1 22 23.3 28.1 29.7 26.8 28.1 25.4 100 34.6 32.4
1phk__ 17.6 23 19.6 20.8 22.7 26.2 30.4 30.6 28.5 32.5 32.7 34.6 100 36.3
1a06_ 15.9 19.4 25.4 20 21.4 25.4 31.2 27.8 29.9 33.5 32.4 32.4 36.3 100

 
b) 
PDB 
entry 1csn__ 1b6c_b 1fgi_a 1ir3_a 2src__ 1a6o__ 1f3m_c 1hck__ 1jnk__ 1kob_a 1tki_a 1cdk_a 1phk__ 1a06__

CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB
1csn__ 0.00 0.00 3.25 3.68 3.28 3.60 3.08 3.43 3.26 3.61 2.80 3.21 3.56 3.88 2.96 3.36 3.15 3.53 3.07 3.34 3.13 3.32 2.58 2.98 2.62 2.92 3.30 3.53
1b6c_b 3.25 3.68 0.00 0.00 2.74 3.04 2.57 2.70 2.62 2.94 2.86 3.29 3.55 3.89 3.07 3.42 2.96 3.25 3.02 3.41 3.12 3.45 2.69 3.03 2.58 2.96 3.12 3.50
1fgi_a 3.28 3.60 2.74 3.04 0.00 0.00 2.04 2.25 2.77 2.96 2.95 3.36 2.98 3.34 3.02 3.24 3.07 3.38 3.07 3.42 3.03 3.37 3.35 3.66 2.96 3.19 2.57 2.83
1ir3_a 3.08 3.43 2.57 2.70 2.04 2.25 0.00 0.00 3.01 2.89 2.87 3.23 3.22 3.60 3.42 3.57 2.72 2.95 3.15 3.50 3.06 3.31 2.85 3.13 2.60 2.81 2.99 3.24
2src__ 3.26 3.61 2.62 2.94 2.77 2.96 3.01 2.89 0.00 0.00 2.99 3.30 3.60 3.71 2.61 2.77 3.41 3.67 3.19 3.42 3.21 3.34 2.87 3.25 2.75 3.03 3.09 3.27
1a6o__ 2.80 3.21 2.86 3.29 2.95 3.36 2.87 3.23 2.99 3.30 0.00 0.00 3.26 3.63 2.21 2.61 2.42 2.89 2.56 2.86 2.66 2.97 2.29 2.67 2.17 2.54 2.81 3.21
1f3m_c 3.56 3.88 3.55 3.89 2.98 3.34 3.22 3.60 3.60 3.71 3.26 3.63 0.00 0.00 3.37 3.55 3.43 3.66 2.54 2.83 2.57 2.79 3.46 3.69 3.07 3.16 2.59 2.79
1hck__ 2.96 3.36 3.07 3.42 3.02 3.24 3.42 3.57 2.61 2.77 2.21 2.61 3.37 3.55 0.00 0.00 3.07 3.28 2.81 3.06 3.01 3.26 2.70 2.80 2.48 2.60 2.85 2.97
1jnk__ 3.15 3.53 2.96 3.25 3.07 3.38 2.72 2.95 3.41 3.67 2.42 2.89 3.43 3.66 3.07 3.28 0.00 0.00 3.07 3.36 3.17 3.42 2.75 3.08 2.68 2.86 2.97 3.32
1kob_a 3.07 3.34 3.02 3.41 3.07 3.42 3.15 3.50 3.19 3.42 2.56 2.86 2.54 2.83 2.81 3.06 3.07 3.36 0.00 0.00 1.25 1.50 2.68 2.87 2.12 2.20 2.01 2.27
1tki_a 3.13 3.32 3.12 3.45 3.03 3.37 3.06 3.31 3.21 3.34 2.66 2.97 2.57 2.79 3.01 3.26 3.17 3.42 1.25 1.50 0.00 0.00 2.83 3.00 2.12 2.22 1.96 2.22
1cdk_a 2.58 2.98 2.69 3.03 3.35 3.66 2.85 3.13 2.87 3.25 2.29 2.67 3.46 3.69 2.70 2.80 2.75 3.08 2.68 2.87 2.83 3.00 0.00 0.00 1.55 1.83 2.83 2.99
1phk__ 2.62 2.92 2.58 2.96 2.96 3.19 2.60 2.81 2.75 3.03 2.17 2.54 3.07 3.16 2.48 2.60 2.68 2.86 2.12 2.20 2.12 2.22 1.55 1.83 0.00 0.00 2.45 2.56
1a06__ 3.30 3.53 3.12 3.50 2.57 2.83 2.99 3.24 3.09 3.27 2.81 3.21 2.59 2.79 2.85 2.97 2.97 3.32 2.01 2.27 1.96 2.22 2.83 2.99 2.45 2.56 0.00 0.00

*The entries are coloured according to the similarity between the two proteins in each pair.  
Red: Sequence identity < 30%, Cα RMSD > 2.75 Å, yellow: 30% ≤ Sequence identity < 40%, 2.0 Å < Cα RMSD ≤ 2.75 Å, 
green: 40% ≤ Sequence identity < 50%, 1.5 Å < Cα RMSD ≤ 2.0 Å, white: Sequence identity ≥ 50%, Cα RMSD ≤ 1.5 Å. 
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Table 2. a) Pairwise sequence identities (%) and b) Cα and Cβ RMSD values (Å) for the eleven protein 
kinases in set B*.  
a) 

PDB 
entry 1byg_a 1fgk_a 1fvr_a 1iep_a 1ir3_a 1irk__ 1k3a_a 1qcf_a 1qpc_a 1vr2_a 2src__

1byg_a 100 38.7 35.9 45.2 37.4 37.4 36.2 42.2 44 39.4 43.6
1fgk_a 38.7 100 40.4 38.1 36.1 36.8 36.7 35.2 36.8 53 37.1
1fvr_a 35.9 40.4 100 41.2 34.9 34.9 35.8 35.8 36.4 38.6 35.7
1iep_a 45.2 38.1 41.2 100 39.8 40.2 43 48.1 48.1 38.5 48.3
1ir3_a 37.4 36.1 34.9 39.8 100 100 80.4 36.4 37.5 38.3 38.8
1irk__ 37.4 36.8 34.9 40.2 100 100 79.4 36.7 37.1 38.3 39.1
1k3a_a 36.2 36.7 35.8 43 80.4 79.4 100 35.8 37 37.3 36.7
1qcf_a 42.2 35.2 35.8 48.1 36.4 36.7 35.8 100 75.7 41.5 66.4
1qpc_a 44 36.8 36.4 48.1 37.5 37.1 37 75.7 100 40.7 66.3
1vr2_a 39.4 53 38.6 38.5 38.3 38.3 37.3 41.5 40.7 100 35.5
2src__ 43.6 37.1 35.7 48.3 38.8 39.1 36.7 66.4 66.3 35.5 100  

 
b) 

PDB 
entry 1byg_a 1fgk_a 1fvr_a 1iep_a 1ir3_a 1irk__ 1k3a_a 1qcf_a 1qpc_a 1vr2_a 2src__

CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB CA  CB
1byg_a 0.00 0.00 2.04 2.27 1.97 2.20 1.84 2.01 2.30 2.47 2.25 2.38 2.62 2.48 2.30 2.53 2.17 2.32 2.25 2.47 2.17 2.41
1fgk_a 2.04 2.27 0.00 0.00 2.12 2.50 1.84 1.93 2.21 2.39 2.03 2.17 2.17 2.23 2.87 3.24 1.88 2.12 1.25 1.45 2.85 3.19
1fvr_a 1.97 2.20 2.12 2.50 0.00 0.00 2.33 2.59 2.72 3.20 2.57 2.72 2.61 2.93 2.87 3.11 2.00 2.36 2.02 2.39 3.21 3.46
1iep_a 1.84 2.01 1.84 1.93 2.33 2.59 0.00 0.00 2.55 2.70 1.79 2.04 2.38 2.66 2.53 2.71 2.20 2.22 1.58 1.67 2.65 2.84
1ir3_a 2.30 2.47 2.21 2.39 2.72 3.20 2.55 2.70 0.00 0.00 2.63 2.66 1.14 1.20 2.52 2.66 1.83 1.91 2.56 2.57 2.58 2.71
1irk__ 2.25 2.38 2.03 2.17 2.57 2.72 1.79 2.04 2.63 2.66 0.00 0.00 2.40 2.86 3.34 3.40 2.95 3.40 1.95 2.29 3.12 3.22
1k3a_a 2.62 2.48 2.17 2.23 2.61 2.93 2.38 2.66 1.14 1.20 2.40 2.86 0.00 0.00 3.07 3.27 1.68 1.76 2.18 2.17 3.12 3.30
1qcf_a 2.30 2.53 2.87 3.24 2.87 3.11 2.53 2.71 2.52 2.66 3.34 3.40 3.07 3.27 0.00 0.00 2.13 2.25 3.04 3.33 1.96 2.13
1qpc_a 2.17 2.32 1.88 2.12 2.00 2.36 2.20 2.22 1.83 1.91 2.95 3.40 1.68 1.76 2.13 2.25 0.00 0.00 2.01 2.13 2.30 2.41
1vr2_a 2.25 2.47 1.25 1.45 2.02 2.39 1.58 1.67 2.56 2.57 1.95 2.29 2.18 2.17 3.04 3.33 2.01 2.13 0.00 0.00 3.10 3.48
2src__ 2.17 2.41 2.85 3.19 3.21 3.46 2.65 2.84 2.58 2.71 3.12 3.22 3.12 3.30 1.96 2.13 2.30 2.41 3.10 3.48 0.00 0.00  

*The entries are coloured according to the similarity between the two proteins in each pair.  
Red: Sequence identity < 30%, Cα RMSD > 2.75 Å, yellow: 30% ≤ Sequence identity < 40%, 2.0 Å < 
Cα RMSD ≤ 2.75 Å, green: 40% ≤ Sequence identity < 50%, 1.5 Å < Cα RMSD ≤ 2.0 Å, white: 
Sequence identity ≥ 50%, Cα RMSD ≤ 1.5 Å.  

 

2.1.2 Homology model construction  
 
A modelling pipeline has been developed for automatic all-against-all homology modelling from a 
multiple sequence alignment.7 Two different homology modelling tools, WHAT IF (simple and 
advanced version)32 and MODELLER,33, 26, 1 can be used with this pipeline. This modelling pipeline 
has been used with the two sets of protein kinases described above. A multiple sequence alignment 
of the protein kinases in set A was created for another, separate research project.34 This sequence 
alignment was based on a structural alignment made with the CE program,31 and manually edited 
based on prior knowledge about the functionality of different regions of the protein kinase 
structures. A multiple sequence alignment of the protein kinases in set B was first made using 
ClustalX.35 This alignment was then aligned manually to the alignment of set A. For both sets of 
kinase structures, homology models were constructed for each sequence in the multiple sequence 
alignment of the set using, in turn, each of the other structures as template. This resulted in 292 
homology models, made using templates having between 14 and 80% sequence identity to the 
target.  
 
The advanced version of WHAT IF (WI-advanced) was used for the homology modelling in this 
work. WHAT IF advanced maintains the backbone conformation of the template structure 
unchanged, and models side-chains using a backbone-dependent rotamer library.36 Insertions (gaps 
in the sequence alignment) are not modelled, and the resulting homology models thus frequently 
contain structural gaps.  
 
Phosphate groups were removed from phosphorylated tyrosine residues prior to homology 
modelling, and crystallographic water molecules, ligands and ions were also purged from the 
template structures. 
 



8 

2.1.3 Calculation of the homology model accuracy 
 
The homology models were verified by comparison to the experimental structures of the targets. 
Two different measures of the homology model quality were used: RMSD values (separate overall 
Cα, Cβ and heavy atom (HA) RMSD) and difference in the inter-residue contact areas between the 
target X-ray structure and the model structure. 
 
 
2.1.3.1 RMSD calculations  
 
The target and template X-ray structures were superposed using the CE algorithm.31 Separate 
overall Cα, Cβ and heavy atom RMSD values between targets and homology models were 
calculated using the rotation and translation matrices from the CE superpositioning of the target-
template pair for the homology model.  
 
 
2.1.3.2 Calculation of differences in the inter-residue contact areas 
 
In this work, a 1.4 Å probe was used, along with a default set of van der Waals radii derived from 
the CHARMM27 force field,37 to calculate the surface areas. Hydrogen atoms were ignored in the 
work presented here. 
 

2.1.4 Generation of alignment score profiles 
 
As a measure of the similarity between the target and template primary structures in each position in 
the sequence alignment, the value of the PAM250 similarity matrix29 for that particular pair of 
amino acids was used. As mentioned above, separate multiple sequence alignments of each of the 
two sets of protein kinase structures were used for the homology modelling. In order to analyse the 
homology model quality for both sets of kinases simultaneously, the two sequence alignments used 
in the homology modelling were aligned to each other as described above. The alignment scores 
were generated based on this common multiple sequence alignment (shown in Figure 4). To 
separate non-modelled residues (caused by gaps in the sequence alignment) from modelled 
residues, the score value for a non-modelled residue was set to –100. 
 

2.2 Multivariate regression analysis of the homology model quality data 
 
PLS regression was used to analyse the homology model quality data. Cα, Cβ and heavy atom 
RMSD were analysed together with PLS2, while a separate PLS1 model was made for the contact 
area error. The data set was centred prior to the regression analysis, and random leave-ten-out cross-
validation was used. No variable selection was carried out. Outliers were detected by inspection of 
influence plots, and removed from the analysis. The number of principal components (PCs) used 
was chosen by inspection of the explained Y-variation from the cross-validation. 
 

Only cases where the target and template X-ray structures were in the same conformation (either 
active or inactive conformation) were considered, since a homology model made using a template 
structure in an active conformation can not be compared to a target structure in an inactive 
conformation and vice versa. 
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2.3 Validation of the method 
 
The predictive ability of the regression model was validated by cross-validation, as described 
above. The ability of the regression coefficients to identify regions of the protein structures that are 
difficult to model was verified by comparison of the regression coefficient pattern with the multiple 
sequence alignment of the 23 kinases used to train the regression model. 
 

In order to test whether this method can be used to detect alignment errors, an alternative alignment 
between two randomly chosen sequences from the multiple sequence alignment of protein structure 
set B, 1byg and 1fvr, was generated with ClustalX.35 A new regression analysis of the contact area 
error similar to that described above was carried out, with 1byg and 1fvr kept out of the analysis. 
Using this alternative regression model, the contact area error for a homology model of 1fvr made 
using 1byg as template was predicted based on alignment scores generated from the alternative 
sequence alignment. The X-residuals from the prediction were calculated, and compared to the 
mean residuals for all homology models included in the regression analysis (± two standard 
deviations). 
 
To get an idea of whether a combination of different homology models might improve the model 
quality, the average backbone Cα atom positions between all homology models of each protein was 
calculated. This resulted in an average backbone conformation for each protein, based on all 
homology models of that protein. For each homology model, the distance from this average model 
was calculated for all residue positions. To test whether the average model would perform better 
than the individual homology models, the average (over all residues in the model) distance of each 
model from the average model was correlated to the model quality. 
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3 Results  
 

3.1 Data sets 

3.1.1 Calculated homology model accuracy  
 
Histograms over the obtained RMSD values and contact area differences between the homology 
models and the target X-ray structures are given in Figure 3. 
 

a) b) 
 

  
 
c) d) 
 

  
 
Figure 3. Histograms over a) Cα, b) Cβ and c) heavy atom RMSD values (Å) and d) contact area differences (Å2) 
between the homology models obtained with WI-advanced and the target X-ray structures. Results for both kinase 
structure sets are shown in all histograms. 
 
The histogram in Figure 3 a) shows that most of the homology models have Cα RMSD values 
between 2.5 and 4 Å. The relatively high RMSD values are probably caused by the wide range of 
sequence identities between the targets and templates used for the homology modelling.  
 

3.1.2 Alignment score profiles 
 
Figure 4 shows the sequence alignment that was used to generate the alignment scores for the 23 
proteins studied, together with the alignment score profiles for all homology models.         
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Figure 4. Multiple sequence alignment of the 23 protein kinases studied. This sequence alignment was used to generate the 
alignment score profiles shown below the alignment. The values on the horizontal axis correspond to the alignment 
positions. Score profiles for all homology models are shown. 
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3.2 Regression model for prediction of homology model quality  
 
The homology model quality dataset was analysed with PLS regression. The predicted (from cross-
validation) Cα, Cβ and heavy atom RMSD for the homology models are shown in Figure 5. The 
predicted contact area error from the cross-validation is shown in Figure 6. The PLS score plots 
from the regression analysis show a separation of the samples according to sequence identity 
between the target and template. Statistical data from the regression analysis are given in Table 3 
and 4.  
 
Table 3. Statistical data for the PLS2 regression model for Cα, Cβ and heavy atom (HA) RMSD*. 
Principal 
components   

q  
(Cα RMSD) 

q 
(Cβ RMSD) 

q 
(HA RMSD) 

Explained  
Y-variation (%) 

13 0.73 0.75 0.76 55.6 
*The statistical data are from the cross-validation results. 
 
Table 4. Statistical data for the PLS1 regression model for the 
contact area error*. 
Principal 
components 

q 
 

Explained  
Y-variation (%) 

13 0.88 77.3 
*The statistical data are from the cross-validation results. 
 
The results from this multivariate regression analysis show that the prediction of the contact area 
error is better than the RMSD value prediction. Inter-residue contact area errors are not affected to 
that extent by one single loop conformation and are not dependent on structural superposition.7  
 

a) b) 
 

   
c) d) 
 

   
 
Figure 5. Predicted (from cross-validation) versus calculated values for a) Cα RMSD (Å), b) Cβ RMSD (Å) and c) 
heavy atom RMSD (Å) for the homology models made using WHAT IF advanced. The PLS score plot d) of PC1 vs. 
PC2 is also shown. The samples are coloured according to sequence identity between target and template. 
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a) b) 
 

   
 
Figure 6. a) Predicted (from cross-validation) versus calculated contact area error (Å2) for the homology models made 
using WHAT IF advanced. b) The PLS score plot of PC2 vs. PC3. The samples are coloured according to sequence 
identity between target and template. 
 
The results presented in Figure 5 and 6 show that the homology model quality can be predicted with 
relatively high accuracy for the protein kinase family. Hence, the quality of future homology 
models can be predicted from alignment score profiles generated from substitution matrices. Similar 
regression models can be made for other protein families. 
 

3.3 Validation of the method 
 
Figure 7 shows the regression coefficients from the regression analysis. The regression coefficients 
from the regression model for the contact area error are shown together with the multiple sequence 
alignment used to generate the alignment score profiles in Figure 8. A comparison of the regression 
coefficients with the multiple sequence alignment shows that regions of the sequence alignment that 
contain many gaps (regions where the sequence alignment is of low quality) correspond to regions 
with large variations in the regression coefficients. Hence, the regression coefficients can be used to 
identify regions that are difficult to model, as well as alignment errors. 
 

a) b) 
 

  
 
Figure 7. Regression coefficients from the regression analysis of a) the heavy atom RMSD values and b) the contact 
area error. The numbers on the horizontal axis correspond to the alignment positions. 
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Figure 8. Regression coefficients from the regression analysis of the contact area error shown together with the multiple 
sequence alignment used to generate the alignment score profiles. The numbers on the horizontal axis correspond to the 
alignment positions. 
 
 
The residuals from prediction of the model quality for new homology models can be used to 
identify proteins that are difficult to model with homology modelling due to large deviations from 
the other members of the protein family. As explained earlier, such outliers can be identified by 
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inspection of influence plots. The influence plots in Figure 9 show that no outliers that have a large 
effect on the results are present. The kinase structures with PDB entries 1f3m and 1b6c were 
previously removed from the PLS regression analysis because they were outliers. 
 

a) b) 
 

  
 
Figure 9. Influence plots (residual Y-variance versus leverage) from the regression analysis of a) the RMSD values and 
b) the contact area error. 
 
Comparison of the residuals (for each alignment position) from prediction for a new homology 
model to the residuals for the homology models included in the regression analysis can e.g. reveal 
errors in the sequence alignment. Such alignment errors will lead to deviations in the residual 
pattern. To test this hypothesis, an alternative alignment between 1byg and 1fvr was generated. This 
alignment is shown together with the original alignment in Figure 10. Comparison of these two 
alignments reveals that the new alignment contains several deviations from the original alignment. 
Since the original alignment was corrected based on prior knowledge about the functionality of 
protein kinases, that alignment is more likely to be correct than the alternative one. Based on the 
alternative alignment, new alignment scores were generated, and the X-residuals from prediction of 
the contact area error were calculated using a regression model that had not been trained on 1byg 
and 1fvr. These residuals were compared to the residuals for all homology models for which the 
regression model was trained. The results are shown in Figure 10. Comparison of the two 
alignments of 1byg and 1fvr and the curves in Figure 10 shows that in regions where the two 
alignments differ, the residuals for 1byg and 1fvr have large deviations from the mean residuals for 
the homology models included in the regression analysis. Hence, the X-residuals can provide useful 
information about alignment errors. As seen from Figure 10, there are a couple of regions where the 
residuals for 1byg and 1fvr have large deviations from the mean residuals even though the 
alignments are identical. Hence, such deviations from the mean can also be caused by other factors 
than alignment errors, and can only be used to identify regions where a closer look at the alignment 
might be necessary.  
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Figure 10. Alternative alignment between 1byg and 1fvr (last two sequences), aligned to the original alignment (first two 
sequences) from the multiple sequence alignment in Figure 4. The X-residuals from the prediction of the contact area error 
based on the alternative alignment of 1byg and 1fvr (red curve) are compared to the mean X-residuals for all homology 
models included in the regression analysis ± two standard deviations (blue curve). The numbers on the horizontal axis 
correspond to the alignment positions. 
 
 
To test whether an average model would perform better than the individual homology models, the 
average (over all residues in the homology model) distance of each homology model from the 
average model was correlated to the model quality. Only the data for the proteins in kinase structure 
set B (sequence identities of 35-80%) gave meaningful results. The results are shown in Figure 11.  
 
 

 
 
Figure 11. Contact area error (Å2) for the homology models of the proteins in kinase structure set B versus the average 
(over all residues in the homology model) distance of each homology model from the average backbone conformation 
(Å) (2src_1qcf means the homology model of 2src made using 1qcf as template, and likewise for the other homology 
models). 
 
The fact that the homology model quality is correlated with the distance from the average backbone 
conformation indicates that using a combination of several homology models might improve the 
model quality. Keeping the four marked outliers in Figure 11 out gives a correlation of 0.64 
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between the model error and the average distance from the mean model. Generation of plots like the 
one shown in Figure 11 can be used to identify cases where a single template performs better than a 
combination of several templates. An example of a target-template pair where using a single 
template gives the best result is 1k3a and 1ir3. These two structures are so similar, that using 
multiple templates in combination would probably introduce errors to the homology model. The 
sequence identity between 1k3a and 1ir3 is 80.4%. Such target-template pairs are placed in the 
lower, right hand part of the plot in Figure 11, since the homology model quality will be high even 
though the homology model differs a lot from the average model. Hence, when the similarity 
between the target and template structures is high, using a single template is probably better than 
using an average model, since the template structure is more similar to the target than an average 
model will be. The other templates will make the average model differ more from the target. 
 
 
4 Discussion 
 
The method presented here provides a new way to predict the quality of homology models directly 
from the sequence alignment between the target and template sequences. This method can be used 
prior to the actual homology model generation. This is new, since existing methods for model 
quality prediction work on the protein structure models. Hence, the time spent generating the 
homology models can be saved by using this method to rule out cases in which homology 
modelling is likely to fail, and when it may succeed. The correct templates to use for the homology 
modelling can thereby more effectively be found. Since separate regression models can be made for 
different protein families and different homology modelling methods, homology model quality 
prediction can also guide the choice of modelling method. 
 
Combination of several template structures in the homology modelling is widely used. The 
underlying idea is that multiple template structures provide more information than a single structure 
does. If the correct template structures are chosen, this is probably true. However, including 
structural information from template structures that do not have the required similarity to the target 
may introduce errors in the final homology model. In this case, using a single template with high 
similarity to the target is better than using this template in combination with other templates of 
lower similarity. The method presented here can be used to find the optimal combination of 
templates, and in which cases using a single template may give the best result.  
 
In some cases it is best to model different domains of the protein structure separately. Homology 
model quality prediction is useful for identifying what domains to model separately, and what 
templates to use for the different domains. Plots of the regression coefficients from the regression 
analysis can be used to identify regions that are difficult to model, and X-residuals from the 
prediction can be used to detect alignment errors. Influence plots can be used to detect members of 
the protein family that will be difficult to model due to large deviations from the other members of 
the family. 
 
One problem with most homology modelling methods that use a combination of multiple template 
structures is that a primary template (typically the one having the highest sequence identity to the 
target) is chosen, and information from the other template structures is often only used in gap 
regions. This makes the homology model very dependent on the primary template, and often this 
results in a model that is more similar to the primary template than to the target. This is, however, 
only the case when there are errors in the target-template alignment used for the homology 
modelling.1 Hence, this technique is most useful in cases where a template structure of relatively 
high sequence identity is available. It is also difficult to obtain a correct sequence alignment in 
cases where the templates have low sequence identity to each other and to the target. In cases where 
only template structures of low sequence identity are available, including structural information 
from all templates along the entire sequence might be better than choosing one of them as a primary 
template. A reasonable question is therefore: Is it possible to combine several homology models of 
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low overall quality by using e.g. a weighted average of the backbone positions for each residue? 
The weights for each homology model should vary according to the similarity to the target sequence 
in that region. In this way, each homology model would contribute differently in different regions 
according to the local similarity to the target. One way to weight this average would be to use 
alignment score profiles like those generated here. Different homology modelling methods might 
also perform differently in different regions of the protein. Hence, a combination of homology 
models generated using several modelling methods might improve the model quality. One problem 
with this procedure is that averaging the side-chain positions does not make sense. Hence, the side-
chain conformations have to be determined after the backbone average is calculated.  
 
 
5 Conclusions 
 
A new method for prediction of homology model quality has been presented, which is a useful tool 
both for selection of template structures for the homology modelling, and for detection of alignment 
errors. This method can also be used to identify problem regions of a protein structure, as well as 
proteins that are difficult to model with homology modelling due to large deviations from the other 
members of the protein family. It will also be a useful tool for improving the homology model 
quality by combination of several homology models. This method has been applied to protein 
kinases, and can easily be extended to other protein families. 
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Summary

We have developed a method that we have called Protein Alpha Shape Similarity Analysis (PASSA), that identifies
interaction sites that can be utilised to achieve selectivity towards a protein. We have shown that this method is
able to identify residues of tyrosine kinases that interact with known selective inhibitors using the following test
cases: Abelson (Abl) kinase in complex with STI-571 and Janus kinase 2 (Jak2) in complex with AG-490. The 3D
structures of the tyrosine kinase domains of Tyrosine kinase 2 (Tyk2) and Jak2 have been predicted by homology
modelling. Computational docking of AG-490 and a set of tyrphostins known not to inhibit Jak2 indicated that our
homology models are able to separate inhibitors from non-inhibitors. PASSA has also been used to identify unique
properties of Tyk2. According to our results, interactions with hydrogen acceptors and donors on the following
residues can be utilised to achieve selectivity towards Tyk2: Y955, E1053, D1062 and S1063. These residues are
placed close to non-conserved hydrophobic pockets. The PASSA results, together with results from Multiple Copy
Simultaneous Search (MCSS) were used to suggest functional groups of a selective Tyk2 inhibitor.

Introduction

Protein kinases contribute to regulation and coordina-
tion of e.g. metabolism, gene expression, cell growth,
cell motility, cell differentiation and cell division [1].
The Janus kinase (Jak) family of non-receptor tyrosine
kinases consists of four known mammalian proteins
(Jak1-3 and Tyk2) that play a critical role in initiating
signalling cascades of a large number of cytokine re-
ceptors [2–5]. Tyrosine kinases are usually regulated
by phosphorylation of tyrosine residues in the acti-
vation loop, located between the conserved DFG and
APE motifs [6]. This tyrosine phosphorylation causes
conformational changes in the activation loop, that al-
low ATP and protein substrates to access the active site
[7].

∗To whom correspondence should be addressed.
E-mail: kristito@phys.chem.ntnu.no

The Jaks catalyse phosphorylation of the Signal
Transducers and Activators of Transcription (STAT)
family of transcription factors [6]. After phosphory-
lation on tyrosine residues, the STAT molecules form
homo- or heterodimers [8], which are translocated into
the nucleus. The STAT proteins then bind to DNA,
and activate gene transcription [2]. The Jak-STAT
signalling cascade has been shown to contribute to
growth and survival of e.g. human multiple myeloma
cells [9], acute lymphoblastic leukaemia [10] and a
variety of other malignancies [11,12]. This makes the
Jaks potential targets for new cancer therapies. One
way to block the function of the Jaks is to inhibit
ATP binding. ATP competitive inhibitors are generally
non-selective, but the development of inhibitors like
STI-571 [13] shows that ATP binding sites can be used
as targets for selective drugs. Since none of the Jaks
have experimentally determined 3D structures at the
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present time [14,15], we have made homology models
[16] of the tyrosine kinase domains of Tyk2 and Jak2.
A selective inhibitor of Jak2 has been reported [10].
We have therefore focused our design work on Tyk2,
and used the model of Jak2 for method testing.

The quality of homology models is highly depen-
dent on the choice of template structures. According
to Chothia and Lesk [17], templates with sequence
identity > 50% to the target proteins are likely to give
reasonable models. If the sequence identity drops to
20%, there will be large structural differences. How-
ever, the active sites of distantly related proteins can
have very similar geometries [18,19]. A weakness of
using structures predicted by homology modelling as
basis for the design of selective drugs is that to achieve
selectivity one has to utilise variable regions of the
proteins. These are the regions predicted with the
lowest reliability by homology modelling techniques
[20]. The ability of our homology models to separate
inhibitors from non-inhibitors was tested by compu-
tational docking of the Jak2 inhibitor AG-490 and 10
other tyrphostins known not to inhibit Jak2 [10].

To design a selective inhibitor for Tyk2, we need
to identify interaction sites that can form the basis
for selectivity. We have developed a method that we
have called Protein Alpha Shape Similarity Analysis
(PASSA), which identifies residues that are unique to
one protein compared to several others. A number
of methods exist to map protein binding sites. Some
force field based methods, such as GRID [21] and
Multiple Copy Simultaneous Search (MCSS) [22], use
calculated interaction energies between probe mole-
cules and the protein. In GRID the interactions are
estimated by placing a probe atom at a number of fixed
grid points in the protein. MCSS does not use a fixed
grid. Instead, a geometry optimisation is performed on
a large number of probe molecules placed randomly
in the binding site. The probe molecules that bind
strongly to the protein can then be taken as a basis
for placement of functional groups in e.g. combina-
torial library design. Other methods use the shape of
the protein to find potential binding sites, without en-
ergy calculations. An example is alpha sphere-based
methods [23]. Alpha spheres are geometrical repre-
sentations of protein cavities. Alpha sphere centres are
often found close to atoms of docked ligands [24].

In order to determine which sites can contribute to
selectivity, a number of proteins must be mapped and
the binding sites compared. GRID has been used to re-
veal structural differences between proteins [21]. The
proteins are aligned prior to GRID calculations, and

the data is analysed by Principal Component Analysis
(PCA) [25]. MCSS and methods using alpha shapes
are less suitable for direct comparison of proteins, be-
cause of the free movement of probe molecules and
the absence of a fixed frame of reference, such as
a grid. Force field methods can give spurious results
due to errors in alignment or structures. The Lennard-
Jones- and electrostatic terms of force fields are very
steep close to atomic nuclei. Small changes in atomic
positions can therefore lead to large changes in the
calculated energy.

To avoid some of the problems mentioned above,
we have combined Gaussian property distributions
(similar to those used in Comparative Molecular Sim-
ilarity Index Analysis (CoMSIA) [26]) and alpha
shapes [23] in order to compare proteins. The value
of a property field at each point of a grid on the
aligned proteins is computed as a weighted sum of
property Gaussians. The resulting similarity fields
can be analysed by e.g. PCA or Discriminant Partial
Least Squares (DPLS) regression [25]. In DPLS, the
response matrix contains binary indicator variables in-
dicating memberships in different classes. When the
purpose is to differentiate between known classes of
proteins, DPLS has the advantage that the most rel-
evant differences are extracted and summarised as a
single vector of regression coefficients. The regression
coefficients can be displayed as isosurfaces on the 3D
structures of the proteins. Such visualisations can be
combined with the results from MCSS. This combines
information about binding of functional groups and
potential for selectivity.

STI-571 is a selective inhibitor of Abelson (Abl)
kinase, platelet-derived growth factor (PDGF) recep-
tor and c-kit [13,27]. We have tested whether the
residues identified by PASSA to be unique to Abl ki-
nase match the residues that interact with STI-571.
The same test was carried out using the homology
model of Jak2 in complex with the lowest docking
energy conformation of AG-490. AG-490 has been
reported to also inhibit Jak1 [28] and Jak3 [11,29],
but not Tyk2 [30]. This test is valid, since neither
Jak1 nor Jak3 were included in this analysis. We have
utilised PASSA to identify unique properties of the
Tyk2 tyrosine kinase domain. The results from this
analysis, together with results from MCSS runs, have
been used to suggest positioning of functional groups
of a selective Tyk2 inhibitor.
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Methods

Homology modelling

Homology models for the kinase domains of Tyk2
(F892-Q1177) and Jak2 (S833-N1129) were made
using five templates simultaneously in SwissModel
[31–34]. Suitable templates were found using the
SwissModel Blast search [31,32]. In cases where more
than one file were available in the RCSB Protein Data
Bank (PDB) [14,15] for the same protein, the struc-
ture with the best resolution was used. All templates
have sequence identities of 35%–45% to the target.
SwissModel estimates the model reliability (Model B-
factor) [32] for each atom in the model, based on the
similarity between the target protein and the templates.

Hydrogens were added to the model structures
in Molecular Operating Environment (MOETM) [35],
and the structures were energy minimised to an RMS
gradient of 0.01 using the AMBER94 force field [36]
with a smooth non-bonded cut-off of 10–12 Å. The
calculations were carried out in vacuum, using a
distance-dependent dielectric to approximate the sol-
vent screening effects. The energy minimisations were
performed with fixed positions for backbone atoms of
high reliability regions and heavy atoms of residues
in inter-domain contact regions, because it is gener-
ally known that with extensive refinement, homology
models tend to get worse [37]. In domain modelling,
positions of atoms forming an interface to a missing
domain should be fixed during energy minimisation.
Free movement in these regions can lead to sidechain
conformations that are preferable energetically, but not
possible in the real protein structure because of inter-
actions with the missing parts of the protein. The qual-
ity of the structures was verified by WHAT_CHECK
[38,39]. The residues for which the WHAT_CHECK
routines reported unusual conformations were relaxed,
and the models were again optimised to an RMS
gradient of 0.01.

For comparison, three homology models were
made for both Tyk2 and Jak2 using only one tem-
plate for each model in SwissModel. The hydrogens
of the structures were optimised as described above.
All non-hydrogens were held in fixed positions during
this optimisation. A structure superpositioning of the
α-carbons of these models was carried out in Swiss-
PdbViewer [31,40], and the Cα Root Mean Square
Distance (RMSD) was calculated.

Multiple Copy Simultaneous Search (MCSS)

We have carried out MCSS [22] runs in MOE to
identify binding sites for acetamide, acetaldehyde, wa-
ter, methane and benzene in the ATP binding pockets
of Tyk2 and Jak2. MMFF94 [41] with implicit sol-
vent electrostatic corrections [42–44] were used for
the energy minimisations. 500 copies of each probe
molecule were used.

Docking analysis

In addition to WHAT_CHECK verification, the model
quality was tested by computational docking. All
docking calculations were carried out using Tabu
search [45] in MOE [35]. Tabu search is a stochastic
searching algorithm that maintains a list of previously
visited conformations, to guide the searching towards
better conformations. The MMFF94 force field [41]
was used, and the calculations were done in vacuum,
with a distance-dependent dielectric and a smooth
non-bonded cut-off of 10–12 Å. MMFF94 was chosen
because it has more parameters for small molecules
[46] than AMBER94. The AMBER force fields are
more suited for calculations on proteins. Grid-based
potential fields [35] were used for estimation of the
interaction energies. Hence, the potential energy grids
were calculated only at the beginning of the docking
procedure.

The model of Tyk2 was aligned in MOE to the
structure of human cyclin-dependent kinase 2 (CDK2)
present in PDB [14,15] entry 1HCK. Sequence align-
ments were carried out using a modified version of the
Needleman and Wunsch approach [47] with a struc-
tural correction and the Gonnet similarity matrix [48].
The 3D structures were superposed as described in
[49]. ATP was docked 10 runs of 25 000 iterations
using the experimentally determined ATP structure
present in 1HCK as the starting position.

All fragments from the MCSS run on Jak2 having
negative interaction energies with the receptor were
combined into a ‘molecular cluster’. The structures
of the tyrphostins were aligned onto this cluster us-
ing flexible alignment [50] in MOE. This generated
a set of starting conformations for each tyrphostin.
All starting conformations were docked in the ho-
mology model of Jak2, using the same docking box
(150×150×150 grid points with 0.15 Å spacing).
1000 iterations were used for each starting conforma-
tion.
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Figure 1. Predicted structures of the tyrosine kinase domains of Tyk2 and Jak2. The residues are coloured according to the Model B-factor [32]
computed by SwissModel.

PASS Analysis

Property Gaussians were used to analyse the protein
structures. Alpha-spheres [23] were used to identify
potential hydrophobic and hydrophilic binding sites.
‘Dummy’ atoms placed at each alpha-sphere centre
were assigned similarity field weights (ω) of +1 for ei-
ther the hydrophobic or the hydrophilic field. In order
to include steric effects, protein atoms were assigned
a field weight of −1 for both fields (Equation (1)).

F(q, j) =
n∑

i=1

ωik

(σi

√
2π)3

· e
−r2

iq

2σ2
i (1)

F is the value of the similarity field in grid point q

of molecule j, ωik is the value of the physicochemical
property k of atom i, riq is the distance between grid
point q and atom i and σi corresponds to the atomic
radii of atom i. PASSA works as follows:
1. Structural alignment of the proteins.
2. Placement of a grid surrounding the active sites of

the proteins.
3. Determination of alpha-sphere positions.
4. Calculation of the value of the molecular similarity

field in each grid point.
5. The molecular similarity field is taken as input to

DPLS regression [25].
The regression coefficients from the DPLS regression
can be mapped back onto the grid. This gives us the
opportunity to visualise the regions having properties
that are unique to a specific protein. All scripts were
written in Scientific Vector Language (SVL) [35], and
are available from the authors upon request.

The five- and one-template models of Tyk2 and
Jak2, the structures used as templates in the homol-
ogy modelling and PDB entries 1JST, 3LCK, 1VR2,
1IRK, 2SRC, 1AD5 and 1IEP were included in the

Table 1. Docking energies for the 11 tyrphostins
used for verification of the model qualitya

Tyrphostin Docking energy (kJ/mol)

AG-490 −32.75

AG-30 −23.35

AG-18 −17.47

AG-126 11.19

AG-1295 19.73

AG-294 34.20

AG-370 40.29

AG-1112 47.23

AG-1007 56.52

AG-1478 69.41

AG-879 101.44

aAG-490 is an inhibitor of Jak2 [10], while all the
other tyrphostins are non-active.
AG-1007 resembles AG-490 in structure (Figure 4).

PASS Analysis. Indicator variables for the following
classes were used: Tyk2-models, Jak2-models, struc-
tures of non-Janus kinases and Abl kinase structures.
The structures were superposed in MOE [35] using the
same approach as mentioned in the previous section.
A 3D grid was centred at the nucleotide-binding loop
of Tyk2 (L903-V911). 50×50×40 grid points were
used with a grid spacing of 0.75 Å. The DPLS regres-
sion was done in MATLABTM [51], using the PLS
Toolbox� [52]. All columns with standard deviation
< 10−4, or three or less nonzero entries were removed
from the PASSA data. The data for each physicochem-
ical property was set to equal variation by dividing
each data point by the sum of the singular values of the
data for this property. The resulting matrix was used as
regressor data in the DPLS regression.
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Figure 2. SwissModel multiple sequence alignment of Tyk2 (F892-Q1177) with the templates used for homology modelling. The se-
quence identities between the templates and the Tyk2 tyrosine kinase domain are shown together with the PDB [14,15] identifiers. The
nucleotide-binding loop and the DFG motif are given in alignment positions 13–46 and 176–179, respectively.

Figure 3. SwissModel multiple sequence alignment of Jak2 (S833-N1129) with the templates used for homology modelling. The sequence iden-
tities between the templates and the Jak2 tyrosine kinase domain are shown together with the PDB [14,15] identifiers. The nucleotide-binding
loop and the DFG motif are given in alignment positions 24–58 and 176–178, respectively.
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Figure 4. The structures of AG-490 and the other two tyrphostins
with negative docking energies, together with the structure of
AG-1007.

Results and discussion

Homology modelling

Figure 1 shows that the estimated reliability of our
models of Tyk2 and Jak2 is high in large areas of the
structures. Most of the nucleotide-binding loop and the
activation loop of Tyk2 are predicted with relatively
high reliability, but we have some problem areas with
large gaps in the sequence alignment (Figure 2). The
reliability of the structure prediction of the nucleotide-
binding loop and the activation loop of Tyk2 seems
to be somewhat higher than for Jak2. The sequence
identity between the modelled domains of Tyk2 and
Jak2 is 47.9%.

The influence of the choice of template was veri-
fied by comparing three different one-template models
for both Tyk2 and Jak2. 1QPCA, 1QCFA and 1IR3A
were used as templates for Tyk2, while 1BYGA,
1QPCA and 1IR3A were used as templates for Jak2.
The other individual templates did not contain suffi-
cient information to construct reasonable homology
models when used alone. Structure superpositioning
gave a Cα RMSD of 1.31 Å between the three models
of Tyk2, and a Cα RMSD of 1.18 Å between the mod-
els of Jak2. The Cα RMSD between the five-template
models of Tyk2 and Jak2 was 0.75 Å, and increased
to 0.77 Å after geometry optimisation. The relatively
high RMSD values between the homology models
made using one template illustrates the importance of
the choice of templates.

Figures 2 and 3 show the multiple alignments of
Tyk2 and Jak2, respectively, with their templates.

SwissModel makes a structural correction of the align-
ments. Conformational differences between the tem-
plates therefore lead to gaps in the DFG motifs and in
the nucleotide-binding loop of Jak2. Figure 2 shows
that 1QPCA and 1IR3A, which are both crystal struc-
tures of activated kinase domains, give the best align-
ments with Tyk2 in the activation loop. Hence, Tyk2
is modelled in its active conformation. We see from
Figure 3 that 1FPUA and 1QCFA give the best se-
quence alignments with Jak2 in these regions. Since
both 1FPUA and 1QCFA are structures of inactive
kinases, Jak2 is modelled in its inactive conformation.

As described by Schindler et al. [13], the selective
inhibitor STI-571 binds to the inactive conformation
of Abl kinase. We assume that the greater diversity in
inactive kinases makes them better targets for selective
drug therapy. Attempts to make a model of the inac-
tive conformation of Tyk2 have not yet given reliable
results. The model of the active conformation of the
Tyk2 tyrosine kinase domain was therefore used.

Docking analysis

As the purpose of the structure modelling of Tyk2 is
inhibitor design, the ability of the models to distin-
guish inhibitors from non-inhibitors is essential. Ta-
ble 1 shows the results from the computational dock-
ing of the 11 tyrphostins in the Jak2-model. Table 1
shows that AG-490 is identified as the most potent
inhibitor of Jak2. All the other tyrphostins are pre-
dicted to be less potent than AG-490. The separation
of AG-1007 from AG-490 is especially interesting,
since their structures are very similar. In AG-1007 the
carbonyl oxygen of AG-490 is replaced with a sulphur
atom. The structures of AG-490 and the other two tyr-
phostins with negative docking energies are shown in
Figure 4, together with the structure of AG-1007. The
Model B-factors of the Tyk2 and Jak2 models from
SwissModel (see Figure 1) and the WHAT_CHECK
report indicate that the model of Tyk2 is at least as
good as the model of Jak2. Hence, we assume that the
Tyk2-model may be used in inhibitor design.

PASS Analysis

The score plot from the DPLS regression (Figure 5)
indicates that the PASSA data is able to predict the
correct memberships for the Tyk2- and Jak2 mod-
els, and the other kinases. Since 1IR3 and 1QPC are
crystal structures of activated kinases, JAK2-1IR3 and
JAK2-1QPC lie closer to the Tyk2-models than the
other models of Jak2. The models of Tyk2 and Jak2
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Figure 5. Score plot of the two first principal components (PCs) from the DPLS regression. JAK2-1BYG = Model of Jak2 made using
only 1BYGA as template (likewise for the other one-template models). Postfix ‘HM’ means five-template homology model before geometry
optimisation. Postfix ‘opt’ means the final optimised model made using five templates.

Figure 6. Plot of the regression coefficients for the hydrophilic-
ity (blue) and the hydrophobicity (green) from the DPLS analysis
mapped back onto the grid surrounding the ATP binding pocket of
Abl kinase in complex with STI-571 (PDB entry 1IEP).

made using five different templates are the most reli-
able models of these two enzymes. These models are
most widely separated from each other and from the
other kinases in the score plot. This indicates that these
models have properties that are more characteristic to
Tyk2 and Jak2, respectively, than the models made
using only one template.

The regression coefficients from the DPLS analy-
sis indicate areas where each class of proteins has
properties that separate them from the other proteins.

Figure 7. Plot of the regression coefficients for the hydrophilic-
ity (blue) and the hydrophobicity (green) from the DPLS analysis
mapped back onto the grid surrounding the model of the ATP
binding pocket of Jak2 containing the lowest docking energy con-
formation of AG-490.

Interactions between the protein and inhibitor groups
placed in areas of high regression coefficients can con-
tribute to selectivity. We have verified the performance
of PASSA by testing whether residues known to in-
teract with selective inhibitors are among the residues
identified to be unique. STI-571 is a selective inhibitor
of Abl kinase [13,27]. The regression coefficients for
Abl were mapped back onto the grid on the X-ray
structure of this protein present in PDB entry 1IEP.
We see from Figure 6 that the areas of high regression
coefficients for the hydrophobicity correspond well to
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Figure 8. A–C: Plots of the regression coefficients for the hydrophobicity (green) from the DPLS analysis mapped back onto the grid
surrounding the model of the ATP binding pocket of Tyk2. Residues identified by PASSA to be unique to Tyk2 are shown, together with
selected fragments from the MCSS. Possible hydrogen bonds between MCSS fragments and hydrogen acceptors/donors of Tyk2 identified to
be unique are shown as blue lines. D: The residues from Figure 8A (green), 8B (blue) and 8C (yellow) shown together with the result from the
computational docking of ATP in the Tyk2 model.

the hydrophobic parts of STI-571. The phenyl-moiety
of STI-571 known to interact with T315 in Abl [13] is
placed in an area where Abl is particularly hydropho-
bic compared to the other proteins. The interaction
between T315 and STI-571 is known to be important
for selectivity [13,53]. According to our results, Abl
kinase is particularly hydrophilic in the areas around
the carbonyl group of STI-571, and around the nitro-
gen interacting with M318. A similar analysis was
carried out using the homology model of Jak2 and
the lowest docking energy conformation of AG-490.
AG-490 inhibits Jak2, but none of the other proteins
included in this analysis [10,11,28–30]. In Figure 7,
the regression coefficients from the DPLS regression

are mapped back onto the grid on the model of the
ATP binding pocket of Jak2. The results from the
PASSA indicate that Jak2 is particularly hydrophilic
compared to the other proteins in the areas close to the
OH-groups, the NH-group and the carbonyl group of
AG-490. We see from Figure 7 that the areas where
Jak2 is particularly hydrophobic correspond well to
the hydrophobic parts of AG-490. The fact that the
interactions between Abl kinase and STI-571, and
between Jak2 and AG-490 are identified by PASSA,
indicates that this approach may be utilised in the
design of selective drugs.

Figure 8 shows the results from the PASS analy-
sis of Tyk2. According to our results, Tyk2 has three
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unique hydrophobic pockets that can be utilised by an
inhibitor (shown in Figure 8A, B and C, respectively).
Similar analysis for the hydrophilicity identified use-
ful hydrogen acceptors and donors close to these
pockets. According to our results, interactions with
hydrogen acceptors/donors on the following residues
can be utilised to achieve selectivity towards Tyk2:
Y955, E1053, D1062 and S1063. Fragments from
the MCSS placed in regions of high DPLS regression
coefficients indicate possible functional groups for a
selective Tyk2 inhibitor. These results can be used
as a starting point for combinatorial library design,
database searching and de novo ligand design. Fig-
ure 8A shows that the hydrophobic pocket created by
V981, M978, L951, L954 and Y955 can be utilised
by an inhibitor having hydrophobic groups pointing
towards M978 and L954. In addition, a hydrophobic
group with a hydrogen donor or acceptor interacting
with the OH-group of Y955 may be advantageous.
The hydrophobic pocket shown in Figure 8B can be
occupied by a relatively large, aromatic structure, con-
taining a hydrogen donor group in hydrogen-bonding
position to E1053. According to our results, a selec-
tive inhibitor should also contain a hydrogen donor
or acceptor that could interact with the OH-group of
S1063, and a hydrogen donor close to D1062. These
groups can be connected by e.g. a hydrocarbon chain
occupying the space between Y1076 and L1073 (Fig-
ure 8C). Figure 8D shows the residues that according
to our analysis may be utilised to achieve selectivity
towards Tyk2. One can, of course, not guarantee that
other protein structures not included in this analysis do
not have the same properties as Tyk2 in some of these
areas.

In conclusion, we have developed a useful method
that identifies binding sites for functional groups that
can lead to selectivity. The method has been tested us-
ing both X-ray structures and homology models, and
appears to be robust against small structural errors
caused by the homology modelling process and the
computational docking.
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Abstract: The current status in rational drug design using homology-based models is discussed, with focus on
template selection, model building, model verification and strategies for drug design based on model
structures. A novel approach for identification of unique binding site features from homology-based models,
Protein Alpha Shape Similarity Analysis (PASSA) is described.
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INTRODUCTION

Rational drug design is an important concept in
pharmaceutical research. The goal is to identify a key drug
target based on a thorough understanding of regulatory
networks and metabolic pathways, and to design a highly
specific drug based on the known three-dimensional (3D)
structure of that target. The flood of data from large-scale
genome oriented projects is bringing this concept closer to
reality. The detailed mapping of genome sequences,
regulatory networks and metabolic pathways combined with
single nucleotide polymorphism (SNP) data, biological
samples or health records makes it easier to identify optimal
drug targets. Access to high-quality 3D structures of these
targets is a good starting point for rational design of novel
drugs.

There are several examples of rational drug design using
targets with known 3D structure, including the HIV protease
inhibitors amprenavir (Agenerase) and nelfinavir (Viracept)
[1-3] and the influenza virus inhibitor zanaminivir (Relenza)
[4]. Structure-based drug design has also been applied for
example in the design of inhibitors of protein kinases [5]
such as Abl kinase [6], CDKs [7], EGFR kinase [8], Lck [9]
and Src [10].

X-ray crystallography is the main method for structure
determination of proteins. This can be a time-consuming
process, and it will succeed only if it is possible to find
suitable conditions for growing crystals. This can therefore
easily become a bottleneck in drug design projects.
However, structural domains of proteins can be classified
into classes of similar folds, and the number of protein folds
actually used by nature seems to be limited [11].
Experimental structure data have been generated for a large
fraction of these possible folds, and ongoing structure
determination efforts focus on making this mapping as
complete as possible. This makes homology-based
modelling of protein structures a realistic and relevant
alternative to experimental structure determination.
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of Cancer Research and Molecular Medicine, Faculty of Medicine, MTFS,
Norwegian University of Science and Technology, N-7489 Trondheim,
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Comparative modelling is often used as a neutral
alternative to homology modelling, which implies an
evolutionary relationship between target and templates.
Homology modelling has been used successfully in several
drug design projects. Enyedy et al. [12] have utilised a
homology model of Bcl-2 to identify a novel class of
inhibitors by structure-based computer screening. Furet et al.
[13] successfully applied homology-based modelling for
rational design of inhibitors of Cyclin-dependent kinase 1
(CDK1). A modelled structure of an antagonist-bound
retinoic acid receptor based on the structure of estrogen
receptor has been applied for virtual ligand screening,
resulting in the discovery of three novel ligand candidates
[14], and homology modelling of Falcipain-2 provided
information that led to the discovery of new drug leads
against malaria [15].

It is a matter of discussion whether homology models are
accurate enough to be utilised in ligand screening and
design. It is at least important to use methods that are robust
against small structural errors. Recently, Schafferhans and
Klebe [16] published a method for computational docking of
ligands into protein binding sites that is especially suited for
protein structures derived by homology modelling. This
method incorporates ligand information into the protein
structure modelling procedure. Another drug design method,
PASSA, has also been developed specifically for use on
homology models. This method uses several alternative
homology models for the same protein together with
structures of other, related proteins to single out unique
features of the target protein [17]. However, such approaches
do not decrease the importance of high quality models of
potential targets.

HOMOLOGY MODELLING

Homology modelling is based on the observation that
the 3D structure of homologous proteins is more conserved
than sequence [18]. Chothia and Lesk [19] investigated the
relation between sequence conservation and structural
similarity for 32 pairs of homologous proteins, and
concluded that a protein structure can provide a close general
model for other proteins if the sequence similarity is greater
than 50%. When the sequence identity drops to 20%, there
will be large structural differences. However, the active sites
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Fig. (1). Key steps in the homology modelling and drug design pathway.

The modelling and design process normally starts with a suitable drug target, the 3D structure of the target is predicted through
homology modelling and the model is used for rational drug design (a). However, it is also possible to start with general high-
throughput modelling using all potential targets, followed by target selection based on these models (b). In both sections (homology
modelling and drug design) there are feedback loops, where e.g. model quality may be used to improve alignment (c) or experimental
data may have influence on the drug design strategy and lead optimisation (d).

can have very similar geometries, even for distantly related
proteins [20,21].

The methodology itself can be described in four steps
(illustrated in Fig. (1)): Identifying a suitable template,
making an optimal target-template alignment, building the
model and validating the model. Protein structure prediction
and homology modelling has recently been reviewed by
Schonbrun et al. [22] and Al-Lazikani et al. [23].

Template Identification

The first step is matching the protein sequence of interest
(the target) to experimentally determined structures, in order
to find at least one protein (the template) for which we can
assume that it has the same 3D structure as the target. This
is normally based on sequence similarity. Heuristic search
methods such as BLAST [24] and FASTA [25] are often
used in the initial template-finding step, because these
methods are fast and well tested. In difficult cases more
sensitive fold recognition methods, which utilise techniques
such as Hidden Markov Methods, Neural Networks, iterated
searches (e.g. PSI-BLAST [26]), and evolutionary
information can be used to scan a structural database for
suitable templates [27]. In particular when no close
homologues can be found, the increased sensitivity from
these methods may allow more potential templates to be
identified. This may improve the general reliability of the
model, and it may help in identifying structurally conserved
regions. For the same reason it is generally advantageous to

use several fold recognition methods in parallel, as
alternative algorithms may retrieve slightly different data
sets and alignments [28].

Alignment

After identification of the best templates for modelling,
an optimal alignment must be made. This seems to be the
most crucial step in homology modelling [22,29]. Here
“optimal” means that corresponding sequence positions in
target and template are identified, so that the predicted
structure of the target, based on the template, is as similar as
possible to an experimental structure of the same target.
Identification of corresponding sequence positions in terms
of evolution will at least give a close approximation to an
optimal alignment. It is important to realise that the
sequence alignment of target with respect to a template
identified by a search method or fold recognition method
may be sub-optimal with respect to modelling. Different
score matrices are needed in order to get optimal alignments
for homology modelling as compared to fold recognition
[30], possibly because fold recognition needs to focus on
conserved regions whereas homology modelling needs to
take all regions into account. Hence, alignments generated
from fold recognition methods often require refinement in
order to be utilised for modelling.

The Smith-Waterman algorithm uses dynamic
programming to find an optimal alignment between two
sequences, given a scoring matrix and a gap model [31,32].
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Table 1. Some Commonly Used Homology Modelling Programs

Method Typea Ref Url

SWISS-MODEL RBS [52] http://www.expasy.org/swissmod/SWISS-MODEL.html

WHATIF RBS [53] http://www.cmbi.kun.nl/whatif/

COMPOSER RBS [54-58] http://www.tripos.com/

CONGEN RBS [59] http://www.congenomics.com/

InsightII/Homology RBS [60] http://www.accelrys.com/

TURBO-FRODO RBS http://afmb.cnrs-mrs.fr/TURBO_FRODO/

JACKAL RBS http://trantor.bioc.columbia.edu/~xiang/jackal

ICM-Homology RBS [61] http://www.molsoft.com/

Look/GeneMine SM [62] http://www.bioinformatics.ucla.edu/genemine/

MODELLER SR [56] http://www.salilab.org/modeller/modeller.html

InsightII/Modeler SR [56] http://www.accelrys.com/
a RBS – Rigid body superposition, SM – Segment matching, SR – Spatial restraints

However, the scoring matrix and gap model represents a
simplified model of evolution, and a mathematically
optimal solution may still be wrong from an evolutionary
perspective. The use of alignments based on multiple
sequences is recommended, as this will highlight
evolutionary relationships, and increase the probability that
corresponding sequence positions are correctly aligned.
Moreover, evolutionary information incorporated into
sequence profiles greatly increases the alignment accuracy,
bringing the alignment closer to the ‘true’ structural
alignment [33]. ClustalX [34], Poa [35], Dialign [36,37] and
T-Coffee [38] are important multiple alignment tools. It has
been reported that for cases of low sequence identity, Dialign
produces the most accurate alignments, whereas T-Coffee is
more robust in cases of higher sequence identities [39].
Improved performance can be achieved by combining several
alignment strategies [40,41]. Other interesting methods
include machine learning [42], fast Fourier transform [43]
and improved score matrices built from structural
superpostion data [44]. New scoring functions have also
been developed to give a quantitative measure of alignment
accuracy [45].

Using structurally aligned templates as a starting point
for the multiple sequence alignment will improve the
alignment quality if sequence similarity is low [23,40,46].
Alignment programs such as DALI [47], STRUCTAL [48]
and LOCK [49] are examples of structural alignment
methods for aligning multiple templates.

Regardless of which program is used, the quality of the
alignment should always be verified. However, this is
closely related to verification of the homology model itself,
and will therefore be discussed there.

Model Building

Model building consists of three main steps. The
homology is important mainly when building the core of the
protein. Loop modelling is basically de novo model
building, whereas side chain (re)modelling mainly is an

optimisation step. Reliable identification of structurally
conserved core regions versus variable loop regions is an
important aspect of this process [50].

There are currently three important approaches for
building the core region from alignments. Rigid body
superposition constructs the model from a few core sections
defined by the average of Cα  atoms in the conserved
regions. Distance geometry uses spatial restraints obtained
from the alignment. Segment matching uses a database of
short segments of protein structure, with energy or geometry
rules, or some combination. It has been shown that when
used optimally, accuracies are similar for most modelling
methods [51]. Some commonly used programs for
homology modelling are listed in Table 1.

SwissModel [52,63] is a popular implementation of the
rigid body approach. ProModII [64] generates a model
framework based on the topological arrangement of
corresponding atoms to the given templates. The backbone
is rebuilt based on the positions of Cα  atoms, using a
library of backbone elements derived from high quality X-
ray structures. Incomplete loops and incomplete or missing
side chains are rebuilt before the models are energy
minimised with molecular mechanics (MM).

Homology modelling in MODELLER [56] is based on
satisfaction of spatial restraints. Distance and dihedral angle
restraints on the target structure are generated, based on the
alignment to the template structure. Corresponding distances
and angles between aligned residues in the template and the
target structures are assumed to be similar. Restraints on
bond lengths, bond angles, dihedral angles and nonbonded
atom-atom contacts are also derived from statistical analysis
of the relationships between Cα  atoms, solvent
accessibilities and side-chain torsion angles in known
protein structures. The restraints are expressed as probability
density functions (pdfs). These pdfs are combined to give a
molecular function, which is optimised using a combination
of energy minimisation with molecular dynamics and
simulated annealing.
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The LOOK software package [62] uses Segment Match
Modeling (SegMod) to generate homology models by
fragment based assembly [65]. SegMod uses a powerful
fragment-matching algorithm to find the appropriate
structural segments derived from known 3D structures. It
utilised both backbone and side chain information from the
fragments to obtain a complete model. After building 10
individual models, the averaged model is then minimised
using molecular mechanics. SegMod handles insertions and
deletions during model building by searching for compatible
fragments.

Separate steps are often used for predicting loops (loop
libraries or ab initio loop building) [66-69], and modelling
side chains [68,70-74]. These methods can be used in
combination with any of the core modelling techniques.

Although functionally important regions usually are well
conserved, flexible loop regions may often contribute
significantly in defining specificity. Accurate loop
modelling may therefore be important for the usefulness of
the homology model. However, existing methods are
generally not reliable for loops longer than 5 residues [75].
Loops are often too short to provide sufficient information
about their local fold, and segments of up to 9 residues
sometimes have entirely unrelated conformations in different
proteins [76,77]. Identification of optimal anchor groups
seems to be an important step in loop prediction [78,79]. Ab
initio loop prediction has recently been discussed by
Galaktionov et al. [69].

After the initial model building, the model can be
optimised with molecular mechanics software using either
energy minimisation or molecular dynamics methods, or a
combination. However, optimisation methods will in
general not bring models closer to the true structure [22]. In
fact, with extensive refinement homology models actually
tend to get worse [80]. Recent data from Flohil et al.
indicate that some improvement may be gained if long time
scale simulation with explicit inclusion of water molecules
is used [81]. However, since the roles of optimisation
procedures in improving structural quality are still debated
[51,68,70], they should be used with caution. Particular care
has to be taken when domains, rather than full structures, are
modelled. In domain modelling, the positions of any atoms
forming an interface to a missing domain should be fixed
during energy minimisation. Free movement in these
regions can lead to side chain conformations that are
preferable energetically, but not possible in the real protein
structure because of interactions with residues in the missing
domain.

It is still relatively unclear which approach generates the
best model. Since 1994 several modelling groups have
participated in a bi-annual evaluation project, the Critical
Assessment of Techniques for Protein Structure Prediction
(CASP) [82]. The groups model proteins that are in the
process of being solved experimentally, but not yet have
been released for publication. The submitted models are later
compared to the then released structures to determine which
modelling methods have been most successful. There is also
a web-server, EVA-CM (http://www.pdg.cnb.uam.es/
eva/cm/) which is designed to evaluate protein structure
prediction and modelling servers in ’real time’ [83,84]. This
server evaluates the ’black box’ modelling programs. These

programs often limit the number of templates used and
impose limitations on manual intervention.

Validation of Models

The accuracy of a model depends upon the sequence
similarity it shares with the template. Models with >50%
sequence identity to templates are normally of high quality,
with ~1 Å root mean square (RMS) error for main chain
atoms (equal to medium-resolution NMR or low resolution
x-ray structures). Models that have 30 – 50% sequence
identity are normally of medium accuracy with an RMS of
~1.5 Å [51,76,85]. Typical errors include problems with
side-chain packing, core distortion, loops, and
misalignment.

Several validation checks are used for assessing model
quality. The most common checks pertain to geometric and
stereochemical measurements: covalent geometry (bond
lengths and angles), planarity, chirality, phi/psi preferences,
chi angles, non-bonded contact distances, unsatisfied
donors/acceptors etc [86,87]. Ramachandran plots can
provide an overall view of phi/psi values and is a good
indicator of the global quality of the model [88]. Quality
checks such as these are present in standard crystallographic
and NMR software packages as well as in software designed
for molecular modelling (e.g. WHATIF and PROCHECK)
[53,89]. However, this analysis only indicates the presence
of unusual conformations in the structure. Even an incorrect
alignment may end up with very reasonable local geometry.
Hence, additional tests are needed, in particular for models
based on templates with low sequence similarity, where the
possibility for misalignment is significant. This is a quite
general problem, an interesting example of a misalignment
error was recently identified in an experimental 3D structure
[90].

Many of these tests are basically fold recognition
methods scoring the compatibility between the target
sequence and the predicted 3D structure. Sippl et al. uses an
inverse Boltzmann principle to calculate a mean force
potential by ’threading’ the target sequence onto structures
[91], measuring how well the primary sequence fits the
given three-dimensional structure. A related approach tests
model correctness by way of a 3-D profile [92]. The 3-D
profile of the structure describes the structural environment
of each residue. This can be used to score compatibility of
any amino acid sequence with that structure. Yet another
quality assessment algorithm takes into consideration
geometrical parameters of a given structure and then
calculates the local, buried and contact energy via statistical
potentials of mean force [93-96]. This method has been used
in homology modelling to evaluate alternative protein
models based on different alignments and as a detector of
problematic regions within the protein structure. Another
validation measure, designed directly from the results of
CASP3, seeks to find the largest subset of Cα  atoms of the
model that can be superpositioned well with the template
structures it was modelled from. The normalised score
reflects a rough quality measure of the model [97].

The validation checks have to be viewed in light of the
validation of the template structure itself. Crystallographic
structures are also prone to error, and whatever discrepancies
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Fig. (2). MCSS.

MCSS mapping of a protein cavity. A large number of different small molecules are placed inside the binding cavity of the protein
(left frame). A special energy minimisation procedure is run (see main text). Once the energy minimum has been found, the positions
and orientations of low energy molecules may be inspected (right frame).

introduced through the chemical structure determination will
most likely also arise in any model based on that structure.
The best approach is to gather as much information from as
many sources as possible, for both model and templates.

DRUG DESIGN

Given a suitable model of the 3D structure of a potential
target, the drug design step tries to find the optimal
compound for moderating the normal function of the target
in a selective and normally reversible way. In addition to
this, several physical criteria have to be met, related to
production, uptake, degradation etc. Here we will focus on
the actual ligand design, in particular on methods that may
improve selectivity. In order to design a ligand for a given
target possible interaction sites for ligands have to be
identified and the properties of these sites have to be
mapped. However, considering only the target protein may
be a mistake. Many drugs have recently been withdrawn
from late stage testing due to off target effects [98]. Hence,
to achieve selectivity and avoid side effects, knowledge of
related binding sites is also important. Homology modelling
makes this practical, as dozens or hundreds of protein
structures can be obtained. If such massive amounts of
structural data are to be useful, data analytical methods are
needed that aid the interpretation of structural data.

Mapping of Binding Sites

Numerous methods for mapping protein binding sites
exist, the majority of which utilise calculations of
interaction energies between the protein and small, molecular
probes. Binding site analysis is a prerequisite for effective
database searches, docking, and de novo ligand design. The
field of binding site analysis has recently been reviewed
[99]. Therefore, this review will focus on mapping strategies
that enable comparison of numerous structures for the
purpose of understanding selectivity, in particular Multiple
Copies Simultaneous Search (MCSS), GRID and Protein
Alpha Shape Similarity Analysis (PASSA).

Multiple copies simultaneous search is a method for
finding favourable interaction sites in a protein cavity [100].
The idea behind MCSS is to place a large number of copies

of one or more probe molecules into the active site of the
target. These probes are placed randomly around the active
site atoms and are assumed not to interact with each other
(Fig. (2), left). Next, a special energy minimisation protocol
is used to refine the initial placement. The receptor atoms
may be kept fixed, or be subject to the average forces of the
probes [101]. Each probe is subject to the full force of the
receptor but not forces from the other probes. Once stable
receptor and fragment geometries have been found, fragments
with high energies are deleted. The resulting low energy
fragments and how they interact with the receptor can then
be analysed (Fig. (2), right). The probe molecules are free to
move and will have migrated towards regions of favourable
interaction with the receptor. This identifies regions of
strong interactions that may be used by a ligand. It also
gives information on favourable orientation of functional
groups. This is useful for de novo ligand design as the low
energy fragments can be used as starting points. However, a
more systematic and complete mapping of the binding site
may be necessary, since this random search strategy may not
find all relevant interactions.

One of the most common methods for mapping ligand
binding sites in proteins is GRID [102], which uses a
regular grid spanning the binding site. At each grid point the
interaction energy between the protein and a probe group
placed on the grid point is computed using a molecular
mechanics energy function. Parameters for probes
representing various functional groups have been developed
[103,104]. The results can be visualised as contour plots of
the interaction energies for different probes, and highly
detailed potential maps of binding sites may be produced.
The low energy contours indicate where functional groups of
a ligand are likely to be placed. GRID has been used to
suggest functionality for both antibacterial [105,106] and
antiviral drugs [107,108]. Both GRID and MCSS have been
compared to experimental binding of small molecules by
crystallising the same protein in various solvents [109]. It
was found that both methods identified approximately the
same interaction site, but most results were not reproduced
experimentally. In some cases MCSS predicted the correct
orientation of the probe, but the predicted orientation of
large hydrophobic probes was often wrong. The major reason
for the discrepancies between experimental and
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Fig. (3). PASSA.

Protein structures are aligned to maximise the overlap in the active site. A regular grid is placed surrounding the active sites and the
alpha shape density of each protein is computed at each grid point. The density data form the matrix X . The user also specifies a
number of classes, and assigns each protein to a class. The alpha densities and the class data are analysed by DPLSR and a model is
produced. Interpretation of the model consists of two parts: Regression coefficients and scores. Mapping the regression coefficients
back on a protein structure may indicate which regions may contribute to selectivity. Regions may be colour coded by their
lipophilic or hydrophilic nature. The scores provide an alternative picture of the model. In the scores space, every protein is
represented by one point. Visualising the distribution of proteins in the scores space is useful for discovering clusters, highly
deviant structures and to evaluate the structural diversity in a set of proteins.

computational results is believed to be neglect of solvent
and entropy effects in the computational models.

Compared to MCSS, the GRID method has the
disadvantage that the fragments are not free to move away
from their grid point to a more optimal location. However,
the fixed grid has a major advantage with respect to
comparability. Many related proteins can be superpositioned
and the same grid used for all of them. Interesting
differences between related binding sites can be identified by
comparing energy maps. Thus, using GRID on multiple
proteins can aid the development of ligands selective for a

particular protein target. The data from the GRID
computations can be analysed by Principal Component
Analysis (PCA) to find the most important structural
differences to take into consideration for the design of a
selective inhibitor. The data analysis tools used to analyse
GRID results have been refined by changing the weighting
of data from different probes. This has been applied to the
design of selective inhibitors of both serine proteases [110]
and metalloproteinases [111]. Additional work using
homology models has been done on human cytochromes
[112].
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The use of homology models as the basis for GRID
calculations requires some special considerations,
specifically if multiple models are to be used in the design
of selective ligands. Computing the interaction energy
requires precisely defined atomic charges for all atoms,
protonation states, and correct placement of hydrogen atoms.
The very steep gradients of most force fields close to nuclei
may cause instabilities in the PCA models and inflate the
effects of small errors in the homology models or the
superpositioning.

Protein Alpha Shape Similarity Analysis (PASSA) is an
alternative to GRID, developed particularly for use with
homology models in the design of selective ligands. This
method uses geometrical objects known as alpha spheres to
construct a representation of the active site. An alpha sphere
is a sphere that contacts four atoms on its surface and has no
atoms contained internally. Small alpha spheres correspond
to densely packed regions in the protein, while very large
spheres are found on the protein surface. In the typical
binding pocket however, medium sized spheres are found.
Clusters of medium sized spheres will thus correspond to
the binding cavities of the protein. Alpha spheres have
proven useful for identifying the binding pockets in a
number of proteins, and the centres of alpha spheres have
been found to correspond well with the placement of atoms
in bound ligands [113]. Alpha shapes are determined
geometrically, using only the positions and radii of the
heavy atoms. This eliminates the need for placing hydrogens
and determining protonation states and partial charges. The
alpha spheres are classified as hydrophobic or hydrophilic
depending on the protein atoms they contact.

PASSA converts the discreet information contained in
the placement of alpha sphere centres and protein atoms to a
continuos field using a gaussian density estimate. ”Dummy”
atoms placed at each alpha sphere centre are assigned weights
for either the hydrophobic or the hydrophilic field, according
to the alpha sphere class. The use of gaussian functions with
a very simple partitioning according to the hydrophilic or
hydrophobic nature of the alpha spheres reduces some of the
problems associated with traditional force field models.
Gaussian functions have neither steep derivatives nor
singularities. The less detailed representation may also be
more robust against the errors typically present in homology
models. Analysis of data from gaussian fields typically
produce contour plots that are less fragmented and easier to
interpret than those produced using force field models [114].

PASSA has been used to suggest properties of a selective
inhibitor of Tyrosine kinase 2 (TYK2) and also to
understand the basis of the selectivity of STI571, a selective
Abl kinase inhibitor [17]. In this work, Discriminant Partial
Least Squares Regression (DPLSR), rather than PCA, is
used to analyse the field data (Fig. (3)). DPLSR enables the
user to guide the analysis towards features relevant for
selectivity towards a specific protein or group of proteins.
This is done by dividing the protein structures included in
the analysis into classes, typically a ‘target’ class, containing
the structures one wishes to develop a ligand for, and an
‘other’ class. The ‘other’ class contains proteins related to
the target, but for which a low affinity is desired. Any class
scheme may be used e.g. in exploratory work looking for a
suitable drug design target. In some cases, a single protein

structure may even belong to more than one class. When
analysing homology models in this manner, it is
advantageous to use more than one model of each protein,
particularly if several templates of comparable sequence
identity are available. If several independent structures exist
in both the ‘target’ and ‘other’ classes, cross validation of
the DPLSR model can be used to assess the stability of the
model parameters. Thus, the influence of errors in the
homology modelling may be gauged. DPLSR works by
extracting a low dimensional subspace from the PASSA data
that can explain the class structure. Typically relatively few
dimensions are needed to separate the classes. This enables
visualisation of the relationship between the structure
models and easy discovery of clusters or deviant structures.
DPLSR models can represent the differences between the
protein(s) of interest and all other proteins in the study as a
single vector of beta coefficients. The beta coefficients can be
visualised as contours in the original 3D space of the protein
structures. Spatial regions that may form the basis of
selectivity may thus be identified. When designing a TYK2
inhibitor, PASSA was used in combination with MCSS.
The plots of the regression coefficients from PASSA were
used to guide the selection of MCSS fragments towards
those fragments that may contribute to selectivity as well as
affinity. This use of combined knowledge of affinity and
selectivity is a good starting point for both database searches
and de novo ligand design, simplifying the task of designing
a selective inhibitor.

Database Screening

Once possible interaction sites for a selective inhibitor
have been identified, databases of already existing drugs can
be searched in order to find a drug molecule that fits the
receptor binding site [115]. A number of such databases
exist, such as The Cambridge Structural Database [116], the
database of The National Cancer Institute
(http://cactus.nci.nih.gov/), the Available Chemicals
Directory (MDL Information Systems) and PDBsum (which
includes a database of ligands from the RCSB Protein
Database) (http://www.biochem.ucl.ac.uk/bsm/pdbsum/).
The hits from the database searching can then be evaluated
further by molecular docking. Available docking programs
include AutoDock [117], DOCK [118], FlexX [119], GOLD
[120], LUDI [121] and MOE-Dock (Chemical Computing
Group Inc). A version of FlexX suited for combinatorial
library docking, FlexXc, has also been developed [122].
Recently, new docking methods especially suited for use
with homology modelled protein structures have been
developed. Schafferhans and Klebe [16] use gaussian
functions to represent the physico-chemical properties of the
receptor and the ligand, and optimise the overlap between
the functional description of the receptor binding site and the
ligand. Another docking method that utilises gaussian
functions is the method developed by McGann et al. [123],
that acts as a filter to reduce the search space for other
docking methods. This method only accounts for shape, and
minimises steric clashes between the receptor and ligand
atoms. The method developed by Wojciechowski and
Skolnick [124] uses a discretisation of the structural models
together with an averaging of the structural details and a
smoothing of the potential energy surface to compensate for
structural errors. Both steric and chemical complementarity
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Fig. (4). Three main categories of de novo ligand design methods.

Black spheres indicate hydrophobic areas of the protein, while white spheres indicate hydrophilic areas. In the linking approach (a),
molecular fragments placed close to important residues of the protein are connected to obtain a ligand. The growing approach (b)
starts from one fragment and connects fragments sequentially to it. Most of the random connection methods (c) start from an initial
“pool” of fragments and construct ligands by making and breaking connections between the fragments.

between the ligand and the receptor is sought using a grid-
based search. A complete cover of existing docking and
virtual screening methods is outside the scope of this
review, but the topic has recently been reviewed e.g. by
Taylor et al. [125], Lyne [126] and Bajorath [127].

To limit the computational time, docking simulations
have traditionally been carried out with a fixed protein
structure. When using protein structure models built by
homology modelling, it is especially important to allow for
protein flexibility, since this can reduce the impact of small
structural errors. Homology models are built using X-ray
structures of other proteins as templates. These are often co-
crystallised with a ligand, which induces ligand-specific
conformational changes in the protein. Using a rigid protein
structure might thus prevent us from identifying optimal
binding modes for alternative ligands. Some methods, such
as the method developed by Leach [128] and the “Mining
Minima Optimizer” method developed by Kairys and Gilson
[129] use side-chain flexibility. Anderson et al. [130]
developed an algorithm for identifying regions where
conformational adaptation to a ligand is likely to occur.
During the docking simulations the side-chains of these
residues are allowed to move.

Recently, some new methods have been developed, that
take protein backbone flexibility into account. The majority
of these methods utilise multiple protein structure models in
the calculations. Österberg et al. [131] incorporated protein
flexibility and structural water heterogeneity into the
docking simulations using an ensemble of protein structures.
In the “Relaxed Complex Method”, developed by Lin et al.

[132,133] a long molecular dynamics (MD) simulation of
the unliganded receptor is carried out, followed by a rapid
docking of candidate ligands to a large ensemble of the
receptor’s MD conformations. The FlexE approach [134] is
based on a united protein description generated from an
ensemble of protein structures. For varying parts of the
protein, discrete alternative conformations are explicitly
taken into account, which can be combinatorially joined to
create new protein structures. Broughton combined the use
of statistical analysis of conformational samples from short-
run protein molecular dynamics with grid-based docking
[135].

De Novo Ligand Design

If one fails to find a drug molecule having the required
interacting groups by database searching, the alternative may
be to construct a ligand having active groups placed in such
a way that interaction with the protein at the identified
interaction sites is possible. This ligand construction process
is called de novo ligand design. A large number of de novo
design programs are available. These can be divided into
three main categories: those that connect molecular
fragments placed at the interaction sites to obtain a ligand
(linking), those that start from one fragment and connect
fragments sequentially to it (growing) and random
connection methods. The last category includes the genetic
algorithm methods. Most of the random connection methods
start from an initial “pool” of fragments and construct
ligands by making and breaking connections between the
fragments. Molecular fragments placed at possible
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Table 2. Some De Novo Ligand Design Programs

Method Typeb Ref Url

BUILDER L [137] http://thalassa.ca.sandia.gov/~dcroe/

CAVEAT L [138] http://www.cchem.berkeley.edu/~pabgrp/Data/caveat.html

HOOK L [139] http://www.accelrys.com/quanta/mcss_hook.html

LUDI L [121] http://www.accelrys.com/insight/ludi.html

PRO_SELECT L [140] http://www.protherics.com/wtech_camdt.html

SKELGEN L [141] http://www.denovopharma.com/

SmoG G [142] http://www-shakh.harvard.edu/~smog/

CombiSMoG G [143] http://www.concurrentpharma.com/

SPLICE L [144] http://www.tripos.com/

SPROUT G [145] http://www.simbiosys.ca/sprout/

LigBuilder L+G [146] http://mdl.ipc.pku.edu.cn/drug_design/work/ligbuilder.html

LeapFrog G Tripos http://www.tripos.com/

DycoBlock L [147] yyshi@iris.bio.ustc.edu.cn

ADAPT R [148] http://mako.cgl.ucsf.edu/~spegg/

LEA R [149] douguetl@caramail.com
b L – linking approach, G – growing approach, R – random connection approach

interaction sites in the receptor binding pocket found by
methods such as PASSA can be used as starting points for
all three approaches. These approaches are illustrated in Fig.
(4), and Table 2 lists some de novo ligand design programs
and the approaches they use. A more complete listing of
available de novo ligand design methods can be found in
Schneider et al. [136].

There are a number of limitations to existing de novo
ligand design methods. Most of these methods do not take
factors such as synthetic accessibility, bioavailability and
metabolic properties into account. Many of the ligand
suggestions have large and complex structures. Recently,
some programs have been developed that attempt to take
such factors into account. An example is LigBuilder [146],
which uses a filter to make sure that the structures produced
have reasonable ADMET (Absorption, Distribution,
Metabolism, Excretion and Toxicity) properties. As for
molecular docking, most de novo ligand design methods use
rigid protein structure models. Recently, some methods have
been developed that attempt to take protein flexibility into
account. A new version of DycoBlock, F-DycoBlock [150]
uses multiple-copy stochastic molecular dynamics to account
for fluctuations in the protein structure. Carlson et al.
developed the “Dynamic Pharmacophore Method” [151], that
determines pharmacophore models for a large number of MD
snapshots. Protein flexibility in drug design has been
reviewed by Carlson and McCammon [152,153] and Wong
and McCammon [154].

Most de novo ligand design methods use simplified
scoring functions for the ligand-receptor system to estimate
binding affinity, mainly in order to speed up the
calculations. Solvation effects are typically omitted. Energy-

based scoring functions use molecular mechanics force fields
to estimate the binding energy, while rule-based scoring
functions use rules derived from analysis of structural
databases. Energy-based scoring functions are slow, and
sensitive to errors in the protein structure, atomic charges
and protonation states. In the same way as for GRID, the
force field scoring methods are often sensitive to small errors
in the atomic positions. Rule-based scoring functions are
often very simple, and are highly dependent on the amount
of structural data used to derive the rules. In spite of these
limitations, de novo ligand design methods have contributed
to the development of several important drug leads [155],
and have proved very useful when combined with some
expert knowledge in medicinal chemistry. In recent years
several cases of successful application of de novo ligand
design methods have been reported, as described in the
introduction. An important example is the discovery of STI-
571, which is a selective inhibitor of Abl kinase, and is
currently being used as a therapeutic agent against chronic
myelogenous leukaemia [6,156]. Other examples include the
development of antifungal agent [157] using LUDI and the
design of aspartyl protease inhibitors using a growth type
algorithm. The aspartyl protease inhibitors were verified
experimentally [158].

CONCLUSIONS

Homology modelling has significant potential as a tool
in rational drug design, in particular in high throughput in
silico screening or simulation approaches. However,
although the methods already are very useful, as
demonstrated in several drug design projects, significant
improvement is needed before the tools are robust and
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general enough for large scale use. All aspects discussed in
this review may need some improvement, but a few selected
areas may benefit from some extra attention. The quality of
the final structure depends mainly on the quality of the
target-template alignment. Any improvement in alignment
protocols will improve the final model. However, there will
always be structural differences between target and templates,
and these differences have to be identified and compensated
for by ab initio modelling or by optimisation methods. In
particular optimisation methods based on molecular
mechanics and dynamics protocols still represent a weak
point, although it is reasonable to assume that it should be
possible to improve most models by using a good force
field and simulation protocol. Finally, protein structures or
ligands are not rigid systems, they have a high degree of
flexibility, and docking or design methods that are able to
take both the flexibility and small structural errors into
account may give improved performance. Improvements in
these and other areas may finally turn homology-based
rational drug design into a really useful tool for the
pharmaceutical industry.
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ABBREVIATIONS

QSAR = Quantitative Structure-Activity Relati-
onship.

CoMSIA = Comparative Molecular Similarity Indices 
Analysis. 3D QSAR method using 
Gaussian property distributions.

CoMFA = Comparative Molecular Field Analysis. 3D
QSAR method using calculations of 
interaction energies between the ligands 
and probe atoms placed on a regular grid.

PCA = Principal Component Analysis. Statistical
data analysis method.

DPLSR = Discriminant Partial Least Squares 
Regression. Regression method where the 
dependent variables are indicator variables.

GRID = Method for analysis of protein binding 
sites by calculation of interaction energies 
between the protein and probe atoms placed
on a regular grid.

MCSS = Multiple Copies Simultaneous Search. 
Method for analysis of protein binding 
sites by calculation of interaction energies 
between the protein and probe molecules 
placed in the binding site.

PASSA = Protein Alpha Shape Similarity Analysis. 
Method for analysis of protein binding 
sites using a combination of Gaussian 
property distributions and DPLSR.

ADMET = Absorption Distribution Metabolism 
Excretion Toxicity
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We have carried out computational sensitivity analysis to analyze the interactions between the inhibitor
PD173074 and FGFR1 in order to identify the determinants of their recognition and generate insights
into further refining the inhibitor. The analysis has identified the parts of the inhibitor that are already
useful for binding, e.g. the part that recognizes the linker connecting the N-terminal and C-terminal
lobes of the kinase domain. These parts are profitably kept during a lead optimization process. The
analysis has also pointed out regions of the inhibitors that may be useful to modify to improve its
binding affinity, e.g. the dimethoxyphenyl ring. Comparative structural analysis of the binding pocket
of almost 400 protein kinases also suggests that modifying the dimethoxyphenyl moiety might improve
selective binding. Selectivity may be achieved not only by introducing groups to the 3 and 5 positions but
also to the 1 and 6 positions. Replacing the tertiary amines by hydrocarbon might also improve binding
affinity.

Keywords: Computational sensitivity analysis; continuum-solvent binding energy calculations; compara-
tive sequence/structure analysis.

1. Introduction

Angiogenesis (the biological process by which new

capillaries are formed from preexisting vessels) is in-

volved in embryo development, ovulation, and wound

repair. It is also essential for growth and metasta-

sis of tumors.1,2 Pathological angiogenesis (abnormal

rapid proliferation of blood vessels) is involved in a

large number of other diseases as well, such as dia-

betic retinopathy, atherosclerosis, rheumatoid arthri-

tis, age-related macular degeneration and psoriasis.3–8

Hence, angiogenic factors and their receptors are com-

mon targets for development of therapeutic agents.

The normal regulation of angiogenesis is governed

by a fine balance between factors that induce the for-

mation of blood vessels and those that halt or in-

hibit the process.9 Numerous factors that regulate
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angiogenesis have been identified, including members

of the fibroblast growth factor (FGF) family, vas-

cular endothelial growth factor (VEGF), angiogenin,

transforming growth factor (TGF) α and β, platelet-

derived growth factor (PDGF), platelet-derived

endothelial cell growth factor (PDECGF), tumor

necrosis factor (TNF) α, interleukins, chemokines and

angiopoietins.9,10

The effects of the potent angiogenic factors FGF

and VEGF are mediated through cell surface receptors

(fibroblast growth factor receptor (FGFR) and vascu-

lar endothelial growth factor receptor (VEGFR)) that

possess intrinsic protein tyrosine kinase activity.11

FGFR and VEGFR are members of the receptor ty-

rosine kinase (RTK) family of enzymes. RTKs consist

of an extracellular portion that binds polypeptide lig-

ands, a transmembrane helix, and a cytoplasmic por-

tion that possesses tyrosine kinase catalytic activity.12

The majority of RTKs are monomeric in the absence

of ligand. Binding of ligand to RTKs leads to re-

ceptor oligomerization and tyrosine autophosphoryla-

tion. Autophosphorylation of tyrosine residues leads

to increased kinase catalytic activity, and generation

of docking sites for protein substrates. The RTKs cat-

alyze the transfer of the γ phosphate of ATP to the

hydroxyl group of a tyrosine in a substrate protein.

This triggers signaling cascades that participate in a

large number of biological processes.

Mohammadi et al.11 have reported the crys-

tal structure of a compound of the pyrido[2,3-

d]pyrimidine class (PD173074) that selectively

inhibits the tyrosine kinase activity of FGFR and

VEGFR in complex with the FGF receptor tyrosine

kinase domain. This inhibitor contains a dimethoxy

phenyl group that occupies a pocket in the ATP-

binding cleft that is not occupied by ATP. Moham-

madi et al.11 suggest that this group is important for

the selective binding of this inhibitor. In this paper

we have investigated this hypothesis further by car-

rying out computational sensitivity analysis and by

comparative analysis of the binding pocket of almost

400 protein kinases.

The basic idea of computational sensitivity analy-

sis is similar to genetic experiments, in which one ex-

amines whether a particular feature of an amino acid

is affecting the property of a protein by mutating the

amino acid into another one that no longer contains

the feature. In a computational sensitivity analysis,

one “mutates” parameters of a molecular model, such

as atomic partial charges and dipole moments of func-

tional groups to examine the significance of these fea-

tures in affecting binding affinity. This analysis can be

done efficiently by using mathematical methods that

are widely used by engineers.13 The study here further

examines the kind of information sensitivity analysis

can provide in aiding the design of therapeutic agents.

In this work, we use relatively inexpensive implicit-

solvent models instead of the explicit-solvent molec-

ular dynamics simulation models employed earlier.13

We use this approach to identify the parts of a drug

lead that are most significant for binding and the parts

that should be modified to improve binding affinity.

With this knowledge, one can generate useful insights

into the optimization of a drug lead. For example,

one may want to keep the parts that are already use-

ful and focus on modifying those parts that are not

yet beneficial. This information can also add use-

ful constraints to designing focused chemical libraries

that may produce more useful new hits. The parts

of a drug lead that have been identified to be useful

for binding can also guide the construction of phar-

macophore models for mining new drug leads from

small-molecule libraries. We previously applied such

an approach to studying the binding of balanol and a

peptide inhibitor to protein kinase A.14,15 Here we ex-

tend this study to elucidating the interactions between

PD173074 and FGFR1. Again, we focus on studying

electrostatics determinants here. Studying other de-

terminants such as the size of functional groups may

require proper account of ligand and receptor flexibil-

ity. Since this work focuses on examining the feasi-

bility of using fixed-conformation models for speedier

initial evaluations, we avoid examining determinants

that the fixed conformation models may not be suf-

ficiently reliable to address. More general molecular

dynamics simulation model can take flexibility into

account but with a substantial increase in computa-

tional costs.13

In designing drugs targeting protein kinases, speci-

ficity is also an important factor to consider because

many promising drug leads bind to the ATP-binding

pocket, which is a common feature of all protein ki-

nases. We previously showed that one could obtain

useful insights into specificity by combining struc-

tural information obtained from protein crystallog-

raphy and sequence information of several hundred
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protein kinases.14,15 This idea is further applied here

to generate insights into how PD173074 may be mod-

ified to improve selectivity.

2. Methods

2.1. Computational sensitivity analysis

The crystal structure of the FGF receptor tyrosine

kinase domain in complex with the angiogenesis in-

hibitor PD173074 was obtained from the Protein Data

Bank (PDB) (entry 2FGI).16 Hydrogen atoms for

the protein and the ligand were added by using the

CHARMM17 and QUANTA18 packages respectively.

The atomic charges of the inhibitor were obtained by

using the Merz-Kollman method19,20 in Gaussian98.21

The 6-31G∗ basis set was used. Since the united-atom

representation was used for the nonpolar hydrogens in

the binding energy calculations, the atomic charges for

the hydrogens were added to the atomic charges of the

heavy atoms to which they attach. The hydrogens of

the proteins were first relaxed by 200 steps of steepest

descent energy minimization keeping the heavy atoms

of the protein and all the ligand atoms fixed. The lig-

and atoms were then relaxed by 200 steps of steepest

descent energy minimization with the whole protein

held fixed. The CHARMm22 forcefield22 were used

for the energy minimization.

The UHBD program23,24 was used for the bind-

ing energy calculations. The free energy, G, for the

complex, the protein, or the ligand, was calculated

according to Eq. (1).

G = Gsolv + Gcoul + Gsurf (1)

in which Gsolv is the electrostatics contribution to the

solvation energy obtained by solving the Poisson equa-

tion and Gcoul is the Coulombic energy calculated by

Coulomb’s law using the dielectric constant of the so-

lute. Gsurf describes hydrophobic contributions esti-

mated by multiplying the solvent accessible surface

area (determined by using a probe sphere of 1.4 Å

radius) by 0.025 kcal/mol/Å2. In these calculations,

the atomic charges and radii from CHARMm2222 were

used except that the atomic charges of the ligand

were obtained by the quantum calculations described

above. In solving the Poisson equation, the dielectric

constant of the solvent was 78 and the dielectric con-

stant for the solute interior was 2. The size of the

grid was 240 Å× 240 Å× 240 Å and the grid spacing

was 0.3 Å. The binding energy of the complex was

estimated by

∆Gbinding = Gbin − (Gapo + Glig) (2)

where Gbin, Gapo and Glig are the free energy of the

complex, the protein, and the ligand respectively.

Parallel to previous sensitivity analysis based on

molecular dynamics simulation, we gauge the signif-

icance of a model parameter in affecting a binding

energy by calculating derivatives of the form dG/dλi.

In this work, we estimated these derivatives by

d∆G/dλi = (∆Gbinding(mutant)

− ∆Gbinding(wildtype))/∆λi (3)

where ∆Gbinding(wildtype) is the binding free

energy between PD173074 and FGFR1, and

∆Gbinding(mutant) is the corresponding quantity

when the collective charge or dipole moment of an

atom or a functional group is changed by ∆λi. The

collective charge equals the charge of an atom if only

one atom is involved or the sum of the charges within

a group if a group of atoms is involved. We also scaled

a derivative by ∆λi to gauge the effect of turning on

the collective charge or dipole moment of an atom or

a group of atoms from zero. In other words, we cal-

culated d∆G/dλiλi where λi represents the collective

charge or dipole moment of an atom or a group of

atoms. A negative d∆G/dλiλ signifies an improve-

ment of the binding affinity when the collective charge

or dipole moment is turned on.

We also estimated the significance of pairwise in-

teractions on affecting binding by calculating sec-

ond order derivatives of the form d2∆G/dλidλj)λiλj .

These second order derivatives measure pairwise in-

teractions as in double mutagenesis experiments. The

significance of a pairwise interaction is estimated by

subtracting the change in binding free energy result-

ing from two single point mutations from the change

resulting from making the two mutations simultane-

ously. As in a previous work,15 we calculated the sec-

ond derivatives or pairwise interactions in the same

way as the experimentalists except that charges or

dipole moments, instead of amino acids, were changed.

The inhibitor studied in this project contains a

nitrogen (N1) that might be protonated in solution

near neutral pH. However, this nitrogen may not be

protonated inside the protein if its environment is not
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sufficiently polar. To check whether the protonated form is preferred in this protein, we used the following
thermodynamic cycle to calculate the free energy change ∆G that gives us this information:

LH+ ∆G2

−−−−→ L + H+

∆G1







y







y

∆G3

P : LH+
−−−−→

∆G
PL + H+

LH: Protonated ligand

L: Unprotonated ligand

P:LH: Protonated ligand bound to protein

P:L: Unprotonated ligand bound to protein

such that

∆G = ∆G3 + ∆G2 − ∆G1 (4)

∆G2 was estimated by using the measured pKa of tri-

ethylamine in water at 25◦C (∆G2 = −RT ln Ka).
25

∆G1 was estimated by calculating the difference be-

tween the free energy of the complex in which the

ligand was protonated, Gbin(protonated ligand), and

that of the protonated form of the ligand in solution,

Gligand(protonated):

∆G1 = Gbin(protonated ligand)

− Gligand(protonated) (5)

Gbin(protonated ligand) and Gligand(protonated) were

calculated according to Eq. (1). The protonated lig-

and in solution was only modeled as protonated tri-

ethylamine because we used the experimental pKa of

triethylamine to complete the thermodynamic cycle.

The coordinates for triethylamine were obtained by

deleting all the other atoms of the ligand PD173074.

∆G3 was estimated by

∆G3 = Gbin(neutral ligand) − Gligand(neutral) (6)

where Gbin(neutral ligand) and Gligand(neutral) were

respectively the free energy of the complex in which

the ligand was neutral and the free energy of the neu-

tral ligand in solution. These terms were again cal-

culated according to Eq. (1). The neutral ligand was

modeled by setting the charge of the ligand atoms

corresponding to those of triethylamine (i.e. C1, C2,

C3, C4, C5, C6, N1 and H4) to zero. These changes

reduced the net charge of the ligand from +1 to zero.

2.2. Desolvation effect

Desolvation of a charge/polar group can have a sig-

nificant impact on binding free energy. In this work,

we estimated the desolvation effect of such a group by

calculating the binding free energy with all charges

except those associated with the group of interest to

zero. This way, the contributions from the interac-

tions of the group with other atoms in the system

were eliminated and the calculated free energy change

only reflects the desolvation of the group.

2.3. Prediction of binding affinities

We first tested the ability of our computational model

to predict binding affinity by comparing the calculated

results with experimental binding affinities to FGFR1.

Eight different ligands, including the angiogenesis in-

hibitor PD173074, were included in the study. Once

the model was validated, we used the model for sen-

sitivity analysis. The insights provided by sensitivity

analysis were tested by making suitable derivatives

of PD173074 and calculating their binding affinity to

FGFR1. In cases where new functional groups were

introduced, the structure of the ligand in complex

with FGFR1 was energy optimized to a root-mean-

square gradient of 0.01 kcal/mol/Å2 using the molecu-

lar mechanics force field MMFF9426 together with the

PB/SA model implemented in the MOE package.27 A

smooth non-bonded cutoff was used in the range 10–

12 Å. All atoms of the complex except those of the

introduced functional group were kept fixed during

energy minimization.

2.4. Analysis of variability of amino

acid types at various sites of the

protein-ligand interface

To gain insights into which parts of the “lead com-

pound” PD173074 one should focus on modifying

to achieve selectivity, we have analyzed the distri-

bution of amino acid types at various sites near

the protein-ligand interface. A database of al-

most 400 protein kinases was analyzed. This anal-

ysis should be more insightful than many others
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that included only a few protein kinases. Here,

we used the database of protein kinases whose se-

quences were aligned by Hanks and Quinn28 and

is available in the Protein Kinase Resource main-

tained at the University of California, San Diego

(http://www.sdsc.edu/kinases/pkr/pk catalytic/

pk hanks seq align long.html). The database also in-

cludes protein kinases found in species other than hu-

man. These were included in the analysis since there

are protein kinases in the human genome that have

not yet been identified or included in this database.

We used protein kinases from other species to ap-

proximate the amino acid composition of the binding

pocket of human protein kinases that are not yet in

the database. The analysis can be easily repeated

with a more complete database of human protein

kinases when it becomes available.

3. Results and Discussions

3.1. Prediction of binding affinities

We first checked the computational model used in this

work by applying it to calculate the binding affinity for

eight ligands (including PD173074) with known IC50.

The structure of the ligands is shown in Fig. 1 and

the results are given in Table 1. In Fig. 2, the cal-

culated ∆Gbinding is plotted against log(IC50). The

correlation between simulated and experimental re-

sults is quite good with a correlation coefficient of

0.8. This gives us confidence on applying the com-

putational model to identify the determinants of

Fig. 1. Basic scaffold of the ligands studied in this work.

protein-ligand recognition and to generate hints for

further refining PD173074.

3.2. Computational sensitivity analysis

Figure 3(a) shows the angiogenesis inhibitor used in

this study (PD173074) along with atom labels to fa-

cilitate later discussions. The charges used for the

binding energy calculations are shown in Fig. 3(b).

Some of the atomic charges obtained from the Merz–

Kollman method19 are somewhat large. Methods im-

posing charge constraints to reduce the magnitude of

atomic charges, such as RESP,29 can be used. How-

ever, it is not essential to do this here because the

charges were largely used for describing the electro-

static field around the ligand for fixed-conformation

binding energy calculations, not for conformational

sampling in which intramolecular interactions among

the ligand atoms also needed to be more suitably

modeled.

Table 1. Calculated binding energies of eight different ligands to FGFR1 and their comparison to
experimental log(IC50) values.

Log ∆Gbinding

Ligand X R1 R2 IC50 (IC50) (kcal/mol)

1 3′, 5′-(OMe)2 NH(CH2)4NEt2 NHCONHtBu 21.5a 1.33 −20.32
2 2′, 6′-(Cl)2 NH2 NHCONHtBu 130b 2.11 −15.70
3 3, 5′-(OMe)2 NH2 NHCONHtBu 60b 1.78 −16.97
4 2′, 6′-(Cl)2 NH(CH2)4NEt2 NHCONHEt 49c 1.69 −17.55
5 2′, 6′-(Cl)2 NH(CH2)4NEt2 NHCONHtBu 48c 1.68 −18.32
6 H NH2 NHCONHtBu 3700d 3.57 −15.70
7 2′, 6′-(Cl)2 NH2 NH2 3000d 3.48 −12.09
8 3′, 5′-(OMe)2 NH2 NH2 230d 2.36 −14.08

aRef. 11.
bRef. 33.
cRef. 34.
dRef. 35.
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Fig. 2. Correlation between calculated binding free energy and experimental log(IC50) for PD173074 and 7 of its derivatives.

(a)

(b)

Fig. 3. (a) The structure of the angiogenesis inhibitor PD173074 along with its atom labels from PDB entry 2FGI.16

(b) Atomic partial charges of the ligand atoms used in the calculations.
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Table 2. Free energy derivatives measuring the significance of different charge or polar groups in affecting the
binding affinity between PD173074 and FGFR1

d∆G/dλiλi

Ligand Moiety Charge Modificationsα (kcal/mol)

Diethylamino group C1: 0.002 → 0, C2: 0.29 → 0, C3: 0.008 → 0, C4: 0.27 → 0,
(N1) C5: 0.04 → 0, C6: 0.18 → 0, N1: −0.16 → 0, H4: 0.36 → 0 1.57

N–H group (N2) N2: −0.73 → −0.40, H1: 0.33 → 0 −1.25
N–H group (N6) N6: −0.73 → −0.40, H2: 0.35 → 0.02 −0.38
N–H group (N7) N7: −0.82 → −0.49, H3: 0.36 → 0.03 0.03
Aromatic nitrogen (N3) N3: −0.87 → −0.11 −10.08
Aromatic nitrogen (N4) N4: −0.90 → −0.14 −4.29
Aromatic nitrogen (N5) N5: −0.76 → 0 −3.05
Carbonyl group (O3) O3: −0.70 → 0, C24: 0.99 → 0.29 −0.01
Ether oxygen (O1) O1: −0.46 → 0 −2.83
Ether oxygen (O2) O2: −0.46 → 0 −2.20
C22 C22: 0.24 → 0 −0.06
C23 C23: 0.24 → 0 0.00
C18 C18: 0.67 → 0 −2.00
C20 C20: 0.69 → 0.02 −2.09
C9 C9: 1.12 → 0 −5.10
C10 C10: 0.62 → 0 −0.23
C12 C12: 0.99 → 0 −1.86
C15 C15: 0.74 → 0 −0.81
C8 C8: 0.22 → 0 0.09
C25 C25: 0.90 → 0 0.13

αCharges that were changed in calculating the free energy derivatives d∆G/dλiλi where λi represents a
collective charge or dipole moment. See text for details.

Table 2 shows the charge and dipole moment mod-

ifications that were carried out for functional groups of

the ligand, and the corresponding free energy deriva-

tives that gauge the significance of these charges

and dipole moments in affecting binding. “Double

mutations” involving the functional groups of the lig-

and and residues of the protein within 10 Å of these

groups were also carried out. The most significant

ones are shown in Table 3. The results in Table 2 show

that the charge on N3 is quite significant for bind-

ing. This is consistent with the previous proposal that

many small-molecule protein kinase inhibitors utilize

two hydrogen bonds to recognize the linker region con-

necting the N-terminal and C-terminal lobes of the

catalytic domain.30 One of them is a hydrogen bond

donor, the other a hydrogen bond acceptor. N3 here

serves as the hydrogen bond acceptor to the backbone

NH group of A564. This is further supported by the

“double mutation” calculation that gave a favorable

interaction of −3.87 kcal/mol (Table 3). N3 also has

a useful interaction with the NH group of G567 with

an interaction energy of −0.31 kcal/mol. The interac-

tions between N3 and the sidechain guanidium group

of R627, and the ammonium groups of K638 and K482

were also found to be significant (Table 3). Table 3

also shows that there are a few unfavorable protein-

ligand interactions involving N3 but they are too weak

to counteract the favorable interactions. Although

there are a number of interactions that N3 is involved

with, its hydrogen bond with the linker region ap-

pears to provide the most significant contributions to

binding. The NH group N2–H1 provides the other hy-

drogen bond for recognizing the linker. Here, it serves

as a hydrogen bond donor to the carbonyl group of

A564 and “double mutagenesis” study confirms this

interaction to be quite favorable (−1.69 kcal/mol). It

will be useful to keep this hydrogen bond donor and

acceptor pair during a lead optimization process.

Several other nitrogens also play a useful role in

binding, e.g. N4. This nitrogen does not make a hy-

drogen bond to any residue of the protein accord-

ing to the hydrogen bond visualizer in Sybyl.31 The

“double mutation” study, however, shows that N4 has

an interaction with the NH group of A564 that en-

hances binding. An interaction with the NH group

of G567 was also found but this interaction is not as
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Table 3. “Double mutation” calculations that measure the strength of interactions between two functional groupsα.

Ligand Protein d2∆G/dλidλjλiλj

Moiety Residue Charge Modifications of Protein Residue (kcal/mol)

N1 K482 C190: 0.25 → 0, N191: −0.3 → 0, H192: 0.35 → 0, H193: 0.35 → 0, 1.29
H194: 0.35 → 0

N1 E571 C929: 0.14 → 0, O930: −0.57 → 0, O931: −0.57 → 0 −1.22
N1 S565 C867: 0.6 → 0.05, O868: −0.55 → 0 −0.34

N1 R570 N913: −0.4 → 0, H914: 0.3 → 0, C915: 0.5 → 0, N916: −0.45 → 0, 0.55
H917: 0.35 → 0, H918: 0.35 → 0, N919: −0.45 → 0, H920: 0.35 → 0,
H921: 0.35 → 0

N1 R576 N981: −0.4 → 0, H982: 0.3 → 0, C983: 0.5 → 0, N984: −0.45 → 0, 0.62
H985: 0.35 → 0, H986: 0.35 → 0, N987: −0.45 → 0, H988: 0.35 → 0,
H989: 0.35 → 0

N1 V631 C1396: 0.6 → 0.05, O1397: −0.55 → 0 −0.10
N2 A564 O860: −0.55 → 0, C859: 0.60 → 0.05 −1.69
N2 Y563 C853: 0.6 → 0.05, O854: −0.55 → 0 0.13
N6 K514 N400: −0.3 → 0, H401: 0.35 → 0, H402: 0.35 → 0, H403: 0.35 → 0 0.27
N6 D641 C1486: 0.14 → 0, O1487: −0.57 → 0, O1488: −0.57 → 0 −0.26
N3 A564 N855: −0.4 → −0.15, H856: 0.25 → 0 −3.87
N3 Y563 N841: −0.4 → −0.15, H842: 0.25 → 0 0.45
N3 Y563 O851: −0.65 → −0.25, H852: 0.4 → 0 0.26
N3 S565 N861: −0.4 → −0.15, H862: 0.25 → 0 0.47
N3 G567 N882: −0.4 → −0.15, H883: 0.25 → 0 −0.31
N3 V631 N1390: −0.4 → −0.15, H1391: 0.25 → 0 −0.19
N3 V493 C244: 0.6 → 0.05, O245: −0.55 → 0 0.27

N3 R627 N1351: −0.4 → 0, H1352: 0.3 → 0, C1353: 0.5 → 0, N1354: −0.45 → 0, −0.35
H1355: 0.35 → 0, H1356: 0.35 → 0, N1357: −0.45 → 0, H1358: 0.35 → 0,
H1359: 0.35 → 0

N3 K638 C1460: 0.25 → 0, N1461: −0.3 → 0, H1462: 0.35 → 0, H1463: 0.35 → 0, −0.84
H1464: 0.35 → 0

N3 K482 C190: 0.25 → 0, N191: −0.3 → 0, H192: 0.35 → 0, H193: 0.35 → 0, −0.82
H194: 0.35 → 0

N4 A564 N855: −0.4 → −0.15, H856: 0.25 → 0 −0.53
N4 G567 N882: −0.4 → −0.15, H883: 0.25 → 0 −0.20

N5, N7 — Intramolecular interaction. See Table 2 for charge modifications. −0.24
N5 A564 N855: −0.4 → −0.15, H856: 0.25 → 0 −0.16
O3 K514 N400: −0.3 → 0, H401: 0.35 → 0, H402: 0.35 → 0, H403: 0.35 → 0 −0.21
O3 D641 C1486: 0.14 → 0, O1487: −0.57 → 0, O1488: −0.57 → 0 0.17
O1 D641 N1482: −0.4 → −0.15, H1483: 0.25 → 0 −1.76
O1 M535 S587: −0.12 → 0 0.34
O1 F642 N1491: −0.4 → −0.15, H1492: 0.25 → 0 −0.22
O2 M535 S587: −0.12 → 0 0.26
O2 K514 N400: −0.3 → 0, H401: 0.35 → 0, H402: 0.35 → 0, H403: 0.35 → 0 −1.30
C9 A564 O860: −0.55 → 0, C859: 0.60 → 0.05 −2.55
C9 E562 C839: 0.6 → 0.05, O840: −0.55 → 0 −0.57
C9 Y563 C853: 0.6 → 0.05, O854: −0.55 → 0 1.28
C9 Y563 O851: −0.65 → −0.25, H852: 0.4 → 0 −0.28
C9 A564 N855: −0.4 → −0.15, H856: 0.25 → 0 1.62
C9 S565 C867: 0.6 → 0.05, O868: −0.55 → 0 0.41
C9 V631 C1396: 0.6 → 0.05, O1397: −0.55 → 0 −0.53

αThe charge modifications of the functional groups of the ligand are the same as in Table 2.

favorable as the interaction with A564. It may be use-

ful to keep N4 during lead optimization. On the other

hand, N5 only has a slight contribution to binding. It

forms an intramolecular hydrogen to H3. According

to the “double mutagensis” calculation, this interac-

tion is somewhat enhanced, by −0.24 kcal/mol, upon

binding due to the alternation of solvent-mediated in-

teractions in going from the free ligand form to the
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protein-bound form in which the solvent exposure is

altered. N5 also forms a weak hydrogen bond with

the NH group of A564, having a calculated pairwise

interaction energy of −0.16 kcal/mol. But these in-

teractions are too weak to make N5 a very useful

contributor to binding. There are two NH groups

in the urea moiety. The polarity of one of them

(N7–H) hurts binding slightly. Hence, replacing this

group by a nonpolar one might be useful. The po-

larity of the other NH group (N6–H2) closer to the

pyrido[2,3-d]pyrimidine ring enhances binding mod-

estly. The “double mutation” study shows that

this NH group has a favorable interaction with the

COO− group of D641 but this interaction is counter-

acted by the unfavorable interactions with the ammo-

nium group of K514. The polarity of the carbonyl

group (C24–O3) of the urea moiety is also not very

useful, giving a negligible free energy derivative of

−0.01 kcal/mol. Since the polarity of these parts of

the inhibitor are not yet doing much in binding, it

will be useful to try different functional groups to see

whether binding affinity can be improved.

The “single mutation” study indicates that it is

unfavorable to have a positively charged ammonium

group in R1 (associated with atom N1), as indicated

by a positive free energy derivate of 1.57 kcal/mol.

There are a number of unfavorable pairwise inter-

actions between this ammonium group and several

nearby protein functional groups. There is also a des-

olvation penalty of about 0.4 kcal/mol for this charged

group upon binding. We have checked that this am-

monium group really prefers to be in the charged form

in the protein. Using the thermodynamic cycle de-

scribed in Methods, the estimated free energy of pro-

tonation of the diethylamino group is 20.3 kcal/mol

(= ∆G2 + ∆G3−∆G1 = 14.64− 7691.4 + 7697.04 =

20.3 kcal/mol). This implies that the diethylamino

group prefers to be charged when the ligand is bound

to the protein. “Double mutation” calculations found

favorable interactions of this ammonium group with

the negatively charged COO− group of E571, and the

carbonyl groups of S565 and V631. However, unfavor-

able interactions with the NH3+ group of K482, and

the guanidium groups of R570 and R576 overwhelm

these favorable interactions. Coupled with the unfa-

vorable desolvation energy of the ammonium group

upon binding, it might be useful to put an uncharged

group here and introduce a charged group elsewhere

in the inhibitor to maintain aqueous solubility and if

possible improve binding affinity as well.

Consistent with experimental study,32 the two

methoxyl groups are both useful for binding. The

sensitivity analysis provides further insights into how

these groups achieve binding affinity. O1, O2, C18

and C20 all show favorable free energy derivatives. O1

makes a hydrogen bond to the NH group of D641, but

O2 makes no hydrogen bonds to the protein, accord-

ing to the hydrogen bond visualizer in Sybyl.31 The

comparable importance of O1 and O2 from the “single

mutation” study suggests that O2 might have longer-

range interactions with residues of the protein that

make it useful for binding. The “double mutation”

study indicates that O2 has a favorable interaction

(−1.3 kcal/mol) with the NH+
3 group of K514. On

the other hand, the methyl groups of both methoxyl

moieties show negligible d∆G/dλiλi, suggesting there

is little benefit of replacing them with charged or polar

groups of comparable size.

According to the results in Table 2, C9 is also im-

portant for binding. The “double mutation” study

indicates that C9 has favorable electrostatic interac-

tions with the carbonyl groups of A564, V631 and

E562. The most important of these interactions is the

one with A564. C9 also interacts favorably with the

OH group of Y563. It is therefore useful to keep this

carbon during a lead optimization process.

3.3. Analysis of variability of amino acid

types at the protein-ligand interface

Before further evaluating the results from sensitiv-

ity analysis and using them to guide the design of

new derivatives, we wanted to gain some insights into

how the PD173074 may be modified to achieve speci-

ficity. We therefore analyzed the variation of amino

acid types at different sites near the protein-ligand in-

terface. Table 4 shows the results for residues that

line the protein-ligand interface and have side-chains

close to the binding pocket. Some sites — such as

positions 512, 531, 641 and 514 — are largely con-

served. It might not be useful to target such sites to

achieve selectivity. Among the sites that are more

variable, some have their side-chains positioned in

ways that are more easily targeted by derivatives of

PD173074. These include M535, I545, V559, V561,

and A640 that are near the dimethoxylphenyl group
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Table 4. Distribution of amino acid types at sites near the protein-ligand interface.

L484 A640 A512 L630 E531 I545 V559 V561 A640

G 0 47 0 0 1 0 1 1 47
A 1 124 359 0 1 5 1 0 124
V 31 11 18 7 1 198 34 14 11
L 215 3 2 315 0 35 150 65 3
I 131 33 2 5 0 96 109 9 33
S 1 59 0 1 0 2 0 5 59
T 0 53 0 0 0 18 1 80 53
D 0 0 1 0 2 1 0 0 0
N 1 0 0 0 0 0 0 1 0
K 3 0 0 0 0 2 1 0 0
E 0 0 0 0 376 1 0 1 0
Q 0 0 0 0 2 2 1 11 0
R 0 0 0 0 1 0 1 1 0
H 0 1 0 0 1 1 0 0 1
F 2 0 1 20 0 0 32 66 0
C 0 54 3 0 0 6 0 0 54
W 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 1 1 18 0
M 1 0 1 37 0 3 53 113 0
P 0 0 0 0 0 14 0 0 0
– 1 0 0 0 2 0 0 0 0

A564 D641 K514 E571 S565 G567 Y563 F642 K482 G485 V493 M535

G 3 0 0 4 20 262 0 0 11 371 1 3
A 30 1 0 16 24 2 4 0 13 5 3 1
V 73 0 0 4 3 5 1 0 6 0 27 2
L 51 0 0 5 6 4 85 23 2 0 14 212
I 20 0 0 3 0 3 9 0 3 0 10 9
S 2 0 0 41 41 6 1 0 19 2 6 1
T 1 0 0 29 21 6 0 0 8 1 2 9
D 0 380 1 93 48 1 0 0 17 0 0 1
N 0 0 0 19 47 1 0 1 16 1 1 2
K 1 0 385 32 28 3 2 0 97 0 18 0
E 0 3 0 38 71 2 2 0 75 2 8 2
Q 2 0 0 30 5 2 0 0 19 2 1 1
R 0 0 1 22 10 6 2 0 86 0 24 2
H 11 0 0 12 3 0 12 0 4 1 15 13
F 0 0 0 16 1 0 81 345 1 0 53 8
C 59 0 0 0 7 2 7 0 0 0 35 6
W 0 0 0 4 0 0 7 10 1 0 26 0
Y 7 1 0 13 0 0 168 5 1 0 114 6
M 124 0 0 4 2 0 4 0 6 0 28 107
P 1 0 0 0 48 6 0 1 2 1 0 1
– 0 0 0 0 0 74 0 0 0 1 1 1

of PD173074. Therefore, it seems profitable to modify

this part of the molecule to improve potency and selec-

tivity. The sensitivity analysis discussed earlier sug-

gests that the polarity of the oxygens of the methoxyl

groups is useful for binding. It is therefore useful to

keep these oxygens to maintain their binding abil-

ity. However, these two oxygens are not likely to

present significant selectivity because they either in-

teract with backbone functional groups or conserved

residues. O1 achieves its binding affinity largely by

interacting with the N–H group of D641 while O2

does so with the ammonium group of K514 that is

conserved among protein kinases. Therefore, a useful

optimization strategy may be to replace the methyl

groups of the dimethoxylphenyl moieties with other

nonpolar groups to search for compounds that may

improve selectivity and potency.

Site 640 is also fairly variable and appears reach-

able by functional groups attached to C17, which is

ortho to the pyrido[2,3-d]pyrimidine ring. It may thus
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be worthwhile to put different functional groups at

C17 to see whether selectivity can be improved. In

FGFR1, this site is occupied by a small amino acid,

alanine. In other protein kinases, this site can be oc-

cupied by larger nonpolar amino acids such as va-

line, isoleucine and leucine, polar residues such as

serine and threonine, and the small residue glycine.

There are already experimental evidences that plac-

ing methyl, chloro, and bromo groups at this site can

enhance binding affinity.32

3.4. Derivatives of PD173074

The insights obtained from sensitivity analysis and

database analysis were further evaluated and extended

by calculating the binding affinity of different deriva-

tives of P173074 to FGFR1 (Table 5). Since sen-

sitivity analysis suggests that the positively charged

ammonium group associated with N1 is not useful for

binding, we changed N1 into a carbon atom to yield

ligand 9. Indeed, removing the positive charge im-

proved binding affinity by 1.7 kcal/mol. Since the

sensitivity analysis shows that the polarity of N6–H2

in R1 is somewhat useful, we replaced R1 with a hy-

drocarbon chain in addition to changing N1 into a

carbon atom (ligand 10). This compound indeed

binds weaker than ligand 9. Ligand 11 further demon-

strates the damaging effects of the positively charged

ammonium group when this group was introduced

back into ligand 10.

As mentioned earlier, we found that introducing

charges into the methyl groups of the methoxyl sub-

stituents had little effect on binding. On the other

hand, the methyl groups may be useful for gaining

hydrophobic interactions with the proteins. To check

this, we replaced one or more methoxyl groups with

OH groups (ligands 12, 13 and 14). All these mod-

ifications diminished binding, suggesting that having

hydrophobic groups in this area is useful for binding.

As mentioned earlier, this area is lined with residues

that are variable among protein kinases. Hence, re-

placing the methyl groups of the methoxyl moieties

by hydrophobic groups of varying sizes may also fine-

tune binding selectivity.

The results from the sensitivity analysis indicate

that the polarity of the polar groups of R2 only has

modest effects on binding. We have therefore tried dif-

ferent R2 groups with varying length and functional

groups to see whether binding affinity can be improved

(Table 6). One modification in which the C=O group

Table 5. Calculated binding energy for derivatives of PD173074 (in kcal/mol).

Ligand X R1 R2 ∆∆Gbinding

9 3′, 5′-(OMe)2 NH(CH2)4CHEt2 NHCONHtBu −1.73
10 3′, 5′-(OMe)2 NH(CH2)4CHEt2 (CH2)3tBu −0.87
11 3′, 5′-(OMe)2 NH(CH2)4NEt2 (CH2)3tBu 0.40
12 3′-OMe, 5′-OH NH(CH2)4NEt2 NHCONHtBu 1.31
13 3′-OH, 5′-OMe NH(CH2)4NEt2 NHCONHtBu 2.70
14 3′, 5′-(OH)2 NH(CH2)4NEt2 NHCONHtBu 3.79

Table 6. Calculated binding energy for derivatives of PD173074 (in kcal/mol).

Ligand X R1 R2 ∆∆Gbinding

15 3′, 5′-(OMe)2 NH(CH2)4NEt2 NHCH(COCH3)NHtBu −1.11
16 3′, 5′-(OMe)2 NH(CH2)4CHMe2 NHCONHtBu −0.71
17 3′, 5′-(OMe)2 NH(CH2)4Me NHCONHtBu −0.45
18 3′, 5′-(OMe)2 NH(CH2)4Cl NHCONHtBu −0.11
19 3′, 5′-(OMe)2 NH(CH2)4NH2 NHCONHtBu 0.10
20 3′, 5′-(OMe)2 NH(CH2)4NEt2 NHCH(OH)NHtBu 0.12
21 3′, 5′-(OMe)2 NH(CH2)4N(Me)Et NHCONHtBu 0.24
22 3′, 5′-(OMe)2 NH(CH2)4COOH NHCONHtBu 0.26
23 3′, 5′-(OMe)2 NH(CH2)4NEt2 CH(OH)CONHtBu 0.38
24 3′, 5′-(OMe)2 NH(CH2)4NEt2 CH(NH2)CONHtBu 0.47
25 3′, 5′-(OMe)2 NH(CH2)4NMe2 NHCONHtBu 0.93
26 3′, 5′-(OMe)2 NH(CH2)4COO NHCONHtBu 3.36
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was replaced by CHCOCH3 to push out the C=O

group was found to improve binding (Compound 15).

Replacing the N–H group closer to the aromatic ring

with an aliphatic alcohol (Compound 23) or pushing

out this N–H group by inserting a hydrocarbon be-

tween it and the aromatic ring (Compound 24) both

diminish binding. This is consistent with the sensi-

tivity analysis study that shows that the polarity of

this NH group is somewhat useful for binding. Sen-

sitivity analysis reflects that the polarity of the car-

bonyl group in the urea moiety has little effect on

binding. Replacing this group by an O–H group has a

similar effect (Compound 20). Table 6 also contains

compounds that explore the effects of different R1

groups. Replacing the damaging positively charged

ammonium group by the negatively charged carboxy-

late group does not improve binding (Compound 22

and 26). This suggests that this site does not favor

either positively or negatively charged groups. This is

probably caused by the nonpolar nature of this part

of the binding site that penalizes charged groups be-

cause of desolvation penalty. On the other hand, the

hydrophobic groups in R1 do seem useful as removing

some of these groups diminishes binding (Compounds

16, 17, 18, 19, 21, and 25).

Table 7 contains results for compounds combin-

ing and extending some of the earlier modifications.

Combining the replacement of the C=O group by

CHCOCH3 and the replacement of the protonated ni-

trogen with a carbon atom improves the binding affin-

ity further and the result is almost additive (ligand

27). The binding affinity is also improved when C7 is

replaced by a NH group, in addition to changing N1

to a carbon atom (ligand 28). Both ligands 27 and

28 bind stronger than ligand 9, where only the proto-

nated nitrogen is changed. The NH group that is in-

troduced in ligand 28 might interact with Y563, which

is at a variable site, according to Table 4. Hence, this

modification might improve selectivity as well as bind-

ing affinity. Introduction of the NH group at the C6

position does not help, as the resulting ligand, ligand

29, binds weaker than ligand 9. Since K482 is a non-

conserved residue, we tried to replace the ethyl groups

in R1 with CH2OH to see if one of the OH groups

could interact with K482 (ligand 32). Ligand 32 binds

weaker than ligand 9 suggesting that these changes

are not useful. However, replacing one or both of the

ethyl groups by hydrogen bond acceptor groups might

improve selectivity. Ligand 30 combines this change

with those done to achieve ligand 28 to achieve a slight

improvement to binding. Replacing the ethyl groups

with methoxyl groups (ligand 33) were found not to

improve binding affinity.

When R2 is changed to a pure hydrocarbon chain,

except for the NH group at N6 (ligand 36), the bind-

ing affinity is more favorable than ligand 11 that also

has this NH group changed to a hydrocarbon. This

further demonstrates the positive effect of this NH

group on binding. Comparing ligands 31 and 10

also supports this finding. We have also explored

Table 7. Calculated binding energy for derivatives of PD173074 (in kcal/mol).

Ligand X R1 R2 ∆∆Gbinding

27 3′, 5′-(OMe)2 NH(CH2)4CHEt2 NHCH(COCH3)NHtBu −2.81
28 3′, 5′-(OMe)2 NHCH2NH(CH2)2CHEt2 NHCONHtBu −1.98
29 3′, 5′-(OMe)2 NH(CH2)2NHCH2CHEt2 NHCONHtBu −1.32
30 3′, 5′-(OMe)2 NHCH2NH(CH2)2CH(CH2OH)2 NHCONHtBu −1.16
31 3′, 5′-(OMe)2 NH(CH2)4CHEt2 NH(CH2)2tBu −1.15
32 3′, 5′-(OMe)2 NH(CH2)4CH(CH2OH)2 NHCONHtBu −1.06
33 3′, 5′-(OMe)2 NH(CH2)4CH(OMe)2 NHCONHtBu −0.89
34 3′, 5′-(OMe)2 NH(CH2)4NEt2 NHCH(COO)NHtBu −0.51
35 3′, 5′-(OEt)2 NH(CH2)4NEt2 NHCONHtBu −0.34
36 3′, 5′-(OMe)2 NH(CH2)4NEt2 NH(CH2)2tBu −0.27
37 3′, 5′-(OMe)2 NH(CH2)4CHEt2 NHCONH(CH2)4COO −0.06
38 3′, 5′-(OMe)2 NH(CH2)4CHEt2 NHCONH(CH2)4NH3 0.04
39 3′, 5′-(OMe)2 NH(CH2)4CHEt2 NHCONH(CH2)3COO 0.11
40 3′, 5′-(OMe)2 NH(CH2)4CHEt2 NHCONH(CH2)3NH3 0.52
41 2′-Me, 5′-OMe NH(CH2)4NEt2 NHCONHtBu 0.64
42 2′, 5′-(OMe)2 NH(CH2)4NEt2 NHCONHtBu 1.08
43 3′, 5′-(OMe)2 NH(CH2)4NEt2 CH(NH3)CONHtBu 1.37
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replacing this NH group by a CHNH+
3 group but this

modification decrease binding affinity (ligand 43).

Replacing the carbonyl group in R2 with a nega-

tively charged group like CHCOO− improves binding

(ligand 34) but this modification is not as effective

as the replacement by the CHCOCH3 group demon-

strated earlier by ligand 15.

In an attempt to achieve hydrogen bond interac-

tions with the non-conserved residues R570, R627 and

E571, charged groups were introduced into R2 (ligands

37–40). Our results indicate that these changes do not

improve binding, probably because these residues are

quite far away from the modified groups (about 10 Å).

Since there are several non-conserved

residues containing hydrophobic groups near the

dimethoxylphenyl group of PD173074, we replaced

the methoxyl groups with ethoxyl (ligand 35) and

found a slight improvement of binding. However, a

previous study showed that this modification has a

negative impact on activity.32 In ligand 42, the 3′

methoxyl-group is moved to the 2-position, whereas

in ligand 41 a methyl group is placed in the 2-position

instead of 3′. Both modifications lead to a decrease

in binding affinity.

In summary, modifications that lead to improve-

ment of binding affinity include replacing the posi-

tively charged ammonium group with a non-charged

hydrocarbon, substituting the C=O group in R2

with CHCOCH3, and changing several hydrocar-

bons of R1 with polar N–H groups. Modifying the

dimethoxylphenyl ring may also yield more potent and

selective compounds.

4. Conclusions

Using sensitivity analysis to dissect the interac-

tions between PD173074 and the catalytic domain of

FGFR1 has identified parts of the inhibitor that are

profitable to keep and parts that are useful to mod-

ify during a lead optimization process. The portion

of the inhibitor that is already useful for recognizing

the linker region of the protein kinase is worthwhile to

keep. The positively charged diethylammonium group

was found damaging to binding affinity. Unless it is

important to use this group to improve aqueous solu-

bility, it may be worthwhile to replace this positively

charged ammonium group with a hydrophobic group.

Our analysis suggests that the dimethoxylphenyl ring

can be modified to fine tune its binding affinity. It

seems profitable to keep the oxygens of the methoxyl

groups but explore replacing the methyl groups with

other nonpolar groups. A comparative database anal-

ysis of almost 400 protein kinases also shows that se-

lectivity may be achieved by modifying this part of the

molecule. The database analysis also suggests that

introducing functional groups ortho to the pyrido[2,3-

d]pyrimidine ring may improve binding selectivity.

Some compounds of this type has already been tested

and found to be potent towards FGFR1.32 In the urea

moiety, the polarity of the N–H group closest to the

pyrido[2,3-d]pyrimidine appears to be more important

to keep. Replacing the carbonyl with a CH(COCH3)

group may improve binding affinity.
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Abstract 
 
A new score function for virtual library screening based on gaussian density estimates is introduced. 
A description of the protein binding site is generated using gaussian property fields calculated in the 
same way as in Protein Alpha Shape Similarity Analysis (PASSA). Gaussian property fields are 
also used to describe the ligand properties. The score function maximises the overlap between the 
receptor and ligand hydrophilicity and lipophilicity fields, while minimising steric clashes. The 
score function is trained on 218 X-ray structures of protein-ligand complexes for which 
experimental binding affinities are available. The use of gaussian functions to describe the protein 
and ligand properties makes our score function especially suited for use with protein structure 
models made by homology modelling. The entire training set was docked using Tabu search for the 
geometry optimisation, and the resulting structures were compared to the ligand X-ray structures. 
Using our score function, 102 of the 218 ligand conformations were within 2 Å root mean square 
deviation (RMSD) of the X-ray structure, and 128 conformations were within 2.5 Å RMSD. For 
comparison, docking of the same set of compounds with MOE-Dock resulted in 120 of the ligand 
conformations within 2 Å RMSD of the X-ray structure. MOE-Dock used ~50 minutes per 
molecule, compared to ~5 minutes per molecule for our method. Hence, MOE-Dock performs 
better than our docking method, but we use only 10% of the computational time. Since our docking 
method is very fast, it is well suited for initial screening purposes. 
 
 
Key Words: Computational docking, empirical score function, gaussian property fields, Protein 
Alpha Shape Similarity Analysis (PASSA), virtual screening. 
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Introduction 
 
The knowledge about genes and proteins associated with pathological states is increasing, 
especially following the human genome project. This has highly increased the potential of 
computer-aided drug design and virtual screening. A large variety of methods is available for small-
molecular docking and virtual library screening. However, most methods are highly time 
consuming. They also have limitations such as neglection of receptor flexibility, inaccuracies in 
determination of partial charges and underestimation of hydrophobic effects. Docking methods 
typically use a search method to explore the conformational space of the ligand in the bound state, 
and a score function to guide the geometry search and to estimate the binding affinity for the 
different conformations. Search methods range from rigorous search methods such as simulated 
annealing to faster methods such as Tabu search [1] and genetic algorithms [2]. Since the number of 
available experimentally determined protein structures is not increasing at the same speed as the 
number of available protein sequences, homology modelling has great potential in structure-based 
drug design. However, homology models are too inaccurate to be used with most existing docking 
methods. It is therefore a need for new docking methods that are robust against small structural 
errors. 
 
Many score functions exist for ranking drug candidates and prediction of binding affinities between 
a receptor and a ligand. Existing score functions can be divided into three main classes: force field-
based methods, empirical score functions and knowledge-based methods. The use of score functions 
in drug design has recently been reviewed by Böhm and Stahl [3].  
 
Force field-based scoring methods use nonbonded energies of molecular mechanics (MM) force 
fields to estimate the binding affinity. Hence, the free energy of binding in solution is substituted by 
an estimate of the gas-phase enthalpy of binding. Force field-based methods are generally time 
consuming. Examples of force field-based methods showing some success include the score 
function implemented in the AutoDock program [4] which utilises parameters from the AMBER 
force field [5], MM PB/SA [6] which complement the electrostatic interactions by a solvation term 
calculated by the Poisson-Boltzmann equation [7] and the newly developed OWFEG (one window 
free energy grid) method [7]. The OWFEG method is an approximation to the expensive first-
principles method of free energy perturbation [9]. A molecular dynamics (MD) simulation is carried 
out with the ligand-free, solvated receptor site. The energetic effects of probe atoms on a regular 
grid are collected and averaged during the simulation. Three simulations are run with three different 
probes: a neutral atom, a negatively charged and a positively charged atom. The resulting three 
grids contain information on the score contributions of neutral, positively and negatively charged 
ligand atoms located in various positions of the receptor site. The advantages of the OWFEG 
method are the implicit consideration of entropic and solvent effects and the inclusion of some 
protein flexibility in the simulations.  
 
Empirical score functions are generally faster than force field-based methods. The underlying idea 
is that the binding free energy can be interpreted as a weighted sum of localised interaction terms. 
The interaction terms typically represent hydrogen bonding terms, ionic interactions, hydrophobic 
interactions, binding entropy, etc. In addition, penalty functions for e.g. steric clashes can be added. 
The interaction terms are usually calculated using experimental 3D structures of receptor-ligand 
complexes, and the weights are estimated by multiple linear regression of experimental binding 
affinities. One disadvantage of empirical score functions is the dependency on the set of 
experimental structures used to train the functions. Usually, between 50 and 100 complexes are 
used to train the score functions, but recently it was shown that more than 100 complexes are 
needed for convergence [10]. Examples of empirical score functions showing some promise include 
PLP [11,12], ChemScore [13] and X-Score [14]. PLP uses a sum of pairwise linear potentials 
between ligand and protein heavy atoms with parameters dependent on interaction type. Each pair 
of interacting atoms is assigned one of three interaction types: donor and acceptor hydrogen 
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bonding, repulsive donor-donor and acceptor-acceptor interactions and generic dispersion of other 
contacts. The ChemScore function is a weighted sum of hydrogen-bonding terms, terms accounting 
for coordinate bonding between the ligand and metal ions placed in the protein binding pocket, 
hydrophobic effects and the number of rotors. The X-Score regression equation contains a van der 
Waals interaction term, a hydrogen bonding term, a term representing the hydrophobic effect and a 
torsional entropy penalty. 
 
Knowledge-based score functions are derived by statistical analysis of structural data alone, without 
reference to experimentally determined binding affinities. They are based on the inverse 
formulation of the Boltzmann law. The frequency of occurrence of individual contacts is used as a 
measure of their energetic contribution to binding. The frequencies are compared to frequencies 
from a random or average distribution. A high frequency indicates an attractive interaction, while a 
low frequency indicates a repulsive interaction. Knowledge-based score functions include the 
Potential of Mean Force (PMF) score function [15,16,17] and DrugScore [18]. The PMF score 
function is a sum of distance-dependent interaction potentials for atom pairs, where both enthalpic 
and entropic effects are assumed to be included implicitly. In the DrugScore equation also solvent-
accessible surface dependent singlet potentials for protein and ligand atoms are included.  
 
Recently, a comparison of eleven score functions using the same set of experimental structures was 
published [19]. This study indicates that X-Score and DrugScore are the score functions most suited 
for use with conformational sampling, since they produce a funnel-shaped energy surface for 
protein-ligand complexation, and therefore will most likely lead to a faster convergence to the 
global minimum. This study also indicates that a combination of several different score functions 
might be advantageous. X-Score, DrugScore and PLP were the score functions showing most 
promise in this study. However, these score functions give only moderate correlation between the 
predicted (using the experimentally determined conformation) and the experimental binding 
affinities for these 100 structures. Most of the score functions tested in this study predict 
hydrophilic interactions better than hydrophobic interactions. Hence, this study indicates a need for 
a fast and more accurate method for ranking a large number of ligands according to success of 
binding to a receptor.  
 
In this work we have developed a new empirical score function for estimation of binding affinities 
to a receptor using gaussian property distributions for both the protein and the ligands. The score 
function evaluates only the match between the lipophilicity and hydrophilicity of the receptor and 
the ligand, in addition to describing van der Waals effects. This makes it easy to interpret and 
robust. The fact that the score function is based on gaussian density estimates makes it more robust 
against the errors typically found in homology models, since gaussian functions give a less detailed 
representation than force field models, and they have neither steep derivatives nor singularities [20]. 
Hence, this score function will be well suited for virtual screening using protein structure models 
built by homology modelling. Since this score function is robust against small structural variations, 
including protein flexibility is less important than in many other docking methods. Because of the 
very simplified description of the protein-ligand interactions, the accuracy of our new score 
function can not be compared to score functions that take e.g. partial charges and electrostatics into 
account. However, the speed of our calculations makes this method an effective tool for exploration 
of the ligand conformational space and generation of starting conformations for more accurate 
docking methods.  
 
The protein binding site properties are mapped using the newly developed method Protein Alpha 
Shape Similarity Analysis (PASSA) [21], while the ligand properties are described using gaussian 
property distributions similar to those used in Comparative Molecular Similarity Index Analysis 
(CoMSIA) [22]. Both PASSA and CoMSIA work by assigning property distributions to each atom, 
so that the molecules are described by the spatial distribution of their interactions. At each point of a 
3D grid the values of the molecular similarity fields are computed. A molecular similarity index is 
based on atomic parameters such as lipophilicity, hydrogen bond donor and acceptor properties, etc. 
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A gaussian function with the intensity of the atomic parameter, and a standard deviation (σ) 
corresponding to the atomic radius is centred at each atom. For each physicochemical property, the 
value in a grid point is computed as the sum of the contributions from all gaussian functions 
representing that property (see Equation 1). 
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F is the value of the similarity field in grid point q of molecule j, ωik is the value of the 
physicochemical property k of atom i, riq is the distance between grid point q and atom i and σi 
corresponds to the atomic radius of atom i. 
 
PASSA [21] converts the discreet information contained in the placement of geometrical objects 
known as alpha spheres and the positions of protein atoms to a continuous field using gaussian 
density estimates. An alpha sphere is a sphere that contacts four protein atoms on its surface and has 
no atoms contained internally. Centres of alpha spheres have been found to correspond well with 
the placement of atoms in bound ligands [23]. Alpha spheres are determined geometrically, using 
only the positions and radii of the heavy atoms. This eliminates the need for placing hydrogens and 
determining protonation states and partial charges. The alpha spheres are classified as hydrophobic 
or hydrophilic depending on the protein atoms that they contact. In PASSA, gaussian functions (as 
shown in Equation 1) are centred at dummy atoms placed at each alpha sphere centre, and at all 
protein atoms. A 3D grid is placed around the binding site of the protein, and in each grid point the 
sum of the contributions from all gaussian functions is computed. The use of gaussian functions 
with a very simple partitioning according to the hydrophilic or hydrophobic nature of the alpha 
spheres, reduces some of the problems associated with force field models [20].  
 
Recently, new docking methods have been reported that utilise gaussian functions to describe 
protein-ligand interactions. Schafferhans and Klebe [24] published a method for computational 
docking of ligands into protein binding sites that is especially suited for protein structures derived 
by homology modelling. This method uses gaussian functions to represent the physicochemical 
properties of the receptor and the ligand, and incorporates ligand information into the protein 
structure modelling procedure. Another docking method that utilises gaussian functions is the 
method developed by McGann et al. [25] that acts as a filter to reduce the search space for other 
docking methods. This method only accounts for shape, and minimises steric clashes between the 
receptor and ligand atoms. By using gaussian functions representing hydrophilicity and 
lipophilicity, in addition to describing van der Waals effects, we hope to be able to describe protein-
ligand interactions better than methods that only account for steric clashes. 
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Methods 

Computation of gaussian property fields 
 
The properties of the protein binding site were mapped in the same way as in PASSA [21].  A 3D 
grid centred at the ligand and extended to 3 Å outside the ligand was used to compute the gaussian 
property fields. A grid spacing of 0.5 Å was used. The dummy atoms placed in each alpha sphere 
centre had the properties of either an oxygen atom or a carbon atom, depending on whether the 
alpha spheres were classified as hydrophilic or hydrophobic. The gaussian functions centred at the 
dummy atoms were given unit weight for either the hydrophilic or the hydrophobic field, according 
to the properties of the alpha spheres. The standard deviation of the gaussian functions (σ in 
Equation 1) corresponded to half the van der Waals radius for both dummy atoms and protein 
atoms. To include steric effects, the gaussian functions centred in protein atoms were given the 
weight –1 for both fields. In addition to the hydrophilic and hydrophobic field, a separate van der 
Waals field was generated for the protein. Also for this field the standard deviation of the gaussian 
functions corresponded to 0.5 times the van der Waals radius for the protein atoms, and the gaussian 
functions were all given unit weight.  
 
The ligand properties were described using gaussian property fields similar to those used in 
CoMSIA [22]. In the same way as for the protein, gaussian functions with unit weight and standard 
deviation corresponding to 0.5 times the atomic van der Waals radius were centred in each ligand 
atom. The atomic properties were determined using the pharmacophore functions [26] in Molecular 
Operating Environment (MOE) [27]. These functions return either zero or one, depending on 
whether the atom is of the specified pharmacophoric type or not. The following properties were 
used: hydrophilicity, lipophilicity, hydrogen acceptor and hydrogen donor. The van der Waals field 
for the ligand was computed using gaussian functions with standard deviation corresponding to 0.5 
times the van der Waals radius of the ligand atoms and weight equal to the van der Waals radius. 
 
All scripts are written in Scientific Vector Language (SVL) [27] and can be obtained from the 
authors upon request. 
 

Variables used to describe the binding affinity 
 
In each grid point, the products of the ligand and protein gaussian fields were computed. These 
product values were then summed over all grid points, giving one variable describing the match 
between the given ligand and protein fields. The variable ”protein lipophilicity * ligand lipophilicity 
(lip_lip)”, for example, describes the match between the protein and ligand lipophilicity fields, 
summed over all grid points. For the protein, only lipophilicity and hydrophilicity are considered. 
For the ligand, the following variables are used: lipophilicity, hydrophilicity and hydrogen donor or 
acceptor properties. No hydrogens or partial charges are taken into account in the calculations. 
 

Training of the empirical score function 
 
Five different sets of experimental structures of protein-ligand complexes for which the binding 
affinity (∆Gbinding) is known were used to train the score function. One was the set of 50 complexes 
used by Baxter et al. [1], to validate a flexible docking method using Tabu search. In addition to 
these 50 structures, we used the 100 complexes reported in [19]. These 100 structures have been 
used by Wang et al. to evaluate the performance of eleven score functions for molecular docking 
[19]. The five peptide structures reported in [28], the 170 protein-ligand complexes used to train the 
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empirical score function SCORE [10] and the 19 complexes reported in [29] were also added to our 
training set. All together we used 218 different protein-ligand complexes to train our score function. 
 
Ions and other co-factors were treated as a part of the receptor when not directly bound to the 
ligand. If more than one ligand molecule were present in the structure, only one of them was kept. 
Water molecules (and hydrogen atoms) are not considered in the calculations. Our calculations do 
not separate hydrogen donors from acceptors on the protein, and no directions are considered when 
estimating hydrophilic interactions. Since our calculations are independent of placement of 
hydrogen atoms, the fact that a hydrogen atom can form hydrogen bonds only with atoms pointing 
towards it is not accounted for. This is one of the major weaknesses of our method. We plan to 
account for this in the next version. 
 
We used Partial Least Squares (PLS) regression in Unscrambler [30] with full cross-validation to 
fit the regression parameters for prediction of binding affinities. The variables describing the match 
between the protein and ligand fields were centred and standardised (divided by the standard 
deviation for each variable) prior to the regression analysis.  
 

Docking using Tabu search  
 
The geometry search routines used are the same as those used for the Tabu searching in MOE-Dock 
[1,27]. Tabu search is a stochastic searching algorithm that maintains a list of previously visited 
conformations. These conformations are forbidden (tabu) to future moves. A new conformation is 
compared to the conformations in the list by calculating the root mean square deviation (RMSD) 
between the Cartesian coordinates of the new conformation and those of every entry in the list. If 
the RMSD value is below a specified value, the conformations are considered to be the same, and 
the move is tabu. 
 
In the geometry search, a fast version of the score function is used. In this version, only the values 
of the protein fields in the positions of the ligand atoms are used, instead of all grid point values. 
This speeds up the computation of the score values. In addition, the ligand property fields are 
substituted by vectors with zero or unit entries according to the atomic properties. Hence, no 
gaussian functions are used for the ligand. The ligand van der Waals field is substituted with the van 
der Waals radii of the ligand atoms. The van der Waals term was given unit regression coefficient in 
the score function used for the geometry search. To further penalise steric clashes, a sigmoid 
function of the van der Waals term was added to this score function. The receptor atoms are kept in 
fixed positions during the geometry search. 
 
To avoid steric clashes between ligand functional groups, the Lennard-Jones potential of the ligand 
is evaluated. A threshold value of 500 kcal/mol is used in the geometry search. Several different 
threshold values were tested (100, 200, 500 and 1000 kcal/mol), but changing this parameter did not 
have a significant effect on the results.  
 
The structures resulting from each Tabu search run (the results from several iterations) are ranked 
using the same score function as used in the geometry search, and the best ranked conformation is 
used for the final prediction of the binding affinity. The binding affinity is predicted using a slower, 
more accurate score function, computed using all grid points. In this version of the score function, 
gaussian functions are used to describe both the protein and the ligand properties. 
 

Method testing 
 
To test the performance of our new empirical score function, a docking analysis was performed 
with all protein-ligand complexes in the training set. All calculations were done in MOE [27], using 
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the molecular mechanics force field MMFF94 [31]. A smooth non-bonded cut-off of 10-12 Å was 
used. 
 
Ten Tabu search runs of 1000 iterations each were performed, and binding affinities were predicted 
using the score function that utilises the entire grid. The docking calculations were started from the 
X-ray structures.  
 
For comparison, a similar docking study was carried out using MOE-Dock [1,27] with Tabu search. 
Prior to the docking analysis with MOE-Dock, hydrogen atoms were added to the X-ray structures, 
and optimised to an RMS gradient of 1 with MMFF94 and a smooth non-bonded cut-off of 10-12 
Å. MOE-Dock calculates the potential energy grids only once, at the beginning of the docking 
procedure. Hence, protein flexibility is not taken into account in the MOE-Dock calculations. 
 
 

Results and discussion 

Gaussian property description  
 
Figure 1 shows an example of a gaussian property description of a known protein-ligand complex 
(RCSB Protein Data Bank (PDB) [32,33] entry 1AGP). Only the hydrophilicity field for the protein 
is shown, together with the ligand structure. As seen from the figure, the hydrophilic groups of the 
ligand and the hydrophilicity field of the protein match to a high degree for this complex. 
 

 
Figure 1. The gaussian hydrophilicity field for the 
protein in PDB entry 1AGP plotted together with the 
ligand. The blue mesh indicates the hydrophilicity field.  
 

Training of the empirical score function 
 
Two different score functions were made using the five sets of experimental structures described 
above, a fast score function to be used for the geometry search, and a more accurate function for the 
final estimation of binding affinities. The designed samples from the set made by Baxter et al. [1] 
(DFR4, TSC2 and TMT1) were excluded since they were not real X-ray structures. PDB [32,33] 
entries 1FKB and 2XIS were also removed from the training set due to problems with the 
interpretation of the connection of ligand atoms in the X-ray structure. 
 
The variables used to score the match between the protein and ligand properties are shown in Table 
1. 
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Table 1. The field variables used in the score functions. 
Variable Description 
hyd_hyd protein hydrophilicity * ligand hydrophilicity 
lip_lip protein lipophilicity * ligand lipophilicity 
hyd_lip protein hydrophilicity * ligand lipophilicity 
lip_hyd protein lipophilicity * ligand hydrophilicity 
lip_hacc protein lipophilicity * ligand hydrogen acceptor  
vdw_vdw protein van der Waals field * ligand van der Waals field 
 
 
The fast version of the score function used for the geometry search is given in Equation 2. The 
correlation between the score value (from the cross-validation, keeping the van der Waals terms 
out) and the experimental binding affinity for this score function is 0.62. The terms of the score 
function accounting for van der Waals effects were kept out of the regression analysis, since the 
training set consists only of structures without severe steric clashes. The regression coefficient 
resulting from the PLS regression would not be useful in the geometry search, where steric clashes 
have to be accounted for. We tested the performance of the docking method using several different 
values for the van der Waals parameter, and for our training set, the docking method performed best 
when the van der Waals parameter was given unit weight.  
 
To further penalise steric clashes, a sigmoid function was added to the van der Waals term. The 
parameters of this function were chosen based on observed values for the X-ray structures in the 
training set. Using this function leads to a steep increase in the steric clash penalty at values of 
vdw_vdw above 0.1, since this is the highest value of vdw_vdw observed in the training set (Figure 
2 A). The steric clash penalty reaches a constant value when vdw_vdw passes 0.2. The parameter 
for this term (having the value 100) was chosen to give this term high weight compared to the other 
terms. This sigmoid function has no effect for low values of vdw_vdw. Structures for which this 
sigmoid function has a higher value than 90 are considered so wrongly placed that they are given a 
high, positive value of 1000 for the score. The steric clash penalty is shown as a function of 
vdw_vdw in Figure 2 B.  
 
Score = -2.976 hyd_hyd - 9.187 lip_lip + 2.775 hyd_lip - 4.1 lip_hyd + 5.028 lip_hacc  
+ vdw_vdw + 100/(1+e(-50* vdw_vdw+8))        (2) 
 
The score function in Equation 2 can not be used for binding affinity prediction, because of the van 
der Waals terms that were added to it. This function is only suitable for finding the best ligand 
conformations in a geometry search. The score function using gaussian functions for both protein 
and ligand property fields and summation over all grid points is more accurate, and was used to 
estimate the binding affinities for the best conformations from each docking run. This score 
function is given in Equation 3. The correlation between the predicted binding affinity (from the 
cross-validation) and the experimental binding affinity for this score function is 0.64. Since we 
assume that the best conformation resulting from a docking run can be compared to an X-ray 
structure in the sense that they contain no severe steric clashes with the protein structure, we use the 
regression coefficient from the PLS regression for the van der Waals parameter in this score 
function. Hence, the estimate for the binding affinity produced by this score function lies in the 
correct range. 
 
∆Gbinding = -2.154 hyd_hyd - 8.719 lip_lip + 3.199 hyd_lip - 2.93 lip_hyd + 4.035 lip_hacc  
-3.464 vdw_vdw           (3) 
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Figure 2. A: Histogram over the values of 
the variable vdw_vdw (protein van der 
Waals field * ligand van der Waals field) 
for the X-ray structures in the training set. 
B: The steric clash penalty as a function 
of vdw_vdw. 
 

Method testing  
 
To test the performance of our new empirical score function, a docking analysis was performed 
with all protein-ligand complexes in the training set. The same set of structures was used both for 
training of the score function and for testing of the docking method. However, the wide variety of 
structures present in the data set combined with extensive cross-validation and a relatively small 
number of parameters ensure that the score function has not been overfitted. The test will therefore 
still be valid. The root mean square deviation (RMSD) between the X-ray ligand structures and the 
ligand structures resulting from the docking analysis was calculated. The results are given in Figure 
3. The predicted binding affinities found using the score function in Equation 3 are plotted against 
the experimental binding affinities in Figure 4.  
  

 
Figure 3. Left: Histogram over RMSD values between the X-ray 
ligand structures in the training set and the ligand structures 
resulting from 10 Tabu runs á 1000 iterations using our gaussian-
based score function. The fraction of the complexes having 
experimental binding affinities below –40 kJ/mol is shown in red. 
This docking procedure uses ~5 minutes per molecule. 
Right: Histogram over RMSD values between the X-ray ligand 
structures in the training set and the ligand structures resulting 
from 10 Tabu runs á 1000 iterations with MOE-Dock. The fraction 
of the complexes having experimental binding affinities below –40 
kJ/mol is shown in red. This docking procedure uses ~50 minutes 
per molecule. 
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Figure 4. Predicted binding affinities (found using Equation 3) 
for the ligand structures resulting from the docking analysis 
plotted against the experimental binding affinities.  
 
The following structures (from the PDB [32,33]) were kept out of the plot in Figure 4 because they 
were severe outliers: 1L83, 2TMN, 5TMN, 6TMN, 2SNS, 9RUB and 2CTC. These seven X-ray 
structures all contain bond lengths and angles that are not frequently observed, caused by e.g. an 
ion-containing ring structure. This leads to a very high value for the estimated internal energy. 
Figure 4 shows that 1STP, 6CPA, 7CPA and 1EBG are false negatives (shown in the lower, right 
part of the figure). 1EBG contains two ion bonds, and therefore binds much stronger than predicted. 
1STP binds to the protein through several hydrogen bonds, and since our method is unable to fully 
represent hydrogen bonds, the binding affinity is underestimated. 6CPA and 7CPA contain 
hydrophobic groups that protrude towards the solvent. Alpha spheres can only represent ligand 
atoms bound in a protein cavity. Hence, interactions on the outer surface of the protein are ignored. 
The contribution of the protruding groups to binding is therefore not included, and the binding 
affinity is underestimated. 
  
The histograms in Figure 3 show that MOE-Dock performs better than our docking method, but 
MOE-Dock uses ten times as much computational time (~5 minutes versus ~50 minutes per 
molecule). Using our score function, 102 of the 218 ligand conformations were within 2 Å RMSD 
of the X-ray structure and 128 conformations were within 2.5 Å RMSD, while docking with MOE-
Dock resulted in 120 of the ligand conformations within 2 Å RMSD. The two histograms showing 
the distribution of obtained RMSD values for the two docking methods are almost identical, except 
for the first column, representing the number of structures within 0.6 Å RMSD of the X-ray 
structure. The histograms also indicate that our docking method performs better than MOE-Dock 
for ligands having high affinity for the receptor (shown in red). The shape of the curve in the 
histogram for our gaussian score function corresponds to what one might expect from a score 
function that is robust against small structural errors. That is, the purpose of this score function is to 
find a reasonable ligand conformation for a large number of protein-ligand complexes, not to find 
the absolutely correct conformation. The level of accuracy of our score function might not be 
sufficient for a stand-alone docking procedure, but since our docking method is very fast, it is well 
suited for generation of starting conformations for more accurate docking.  
 
Protein flexibility is not explicitly taken into account in the docking calculations. The use of 
gaussian functions to describe the protein and ligand properties will partly compensate for this, 
since this makes the score function robust against small structural variations. Hence, protein 
flexibility is less critical than for many other docking methods. 
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Examples from the docking analysis with the gaussian-based score function  
To illustrate in what cases our gaussian-based docking method is likely to succeed in predicting the 
binding affinity and the structure of a ligand-receptor complex, we show some examples from the 
docking analysis performed on our training set. 
 
Three examples where our method succeeds in reproducing the ligand X-ray structure are PDB 
[32,33] entries 1E96, 1ETS and 1HVI. The RMSD values between the docked conformations and 
the ligand X-ray structures are 0.46 Å, 0.57 Å and 0.93 Å, respectively. Figures 5, 6 and 7 show the 
docking results for these three PDB entries. 
 
 
 

   
Figure 5. Left: Result from docking of PDB entry 1E96. The ligand conformation from the X-ray structure is rendered 
in green, while the docked conformation is rendered in blue. The RMSD value between the docked conformation and 
the ligand X-ray structure is 0.46 Å. 
Right: The X-ray structure from PDB entry 1E96. 
 

   
Figure 6. Left: Result from docking of PDB entry 1ETS. The ligand conformation from the X-ray structure is rendered 
in green, while the docked conformation is rendered in blue. The RMSD value between the docked conformation and 
the ligand X-ray structure is 0.57 Å. 
Right: The X-ray structure from PDB entry 1ETS. 
 
 

   
Figure 7. Left: Result from docking of PDB entry 1HVI. The ligand conformation from the X-ray structure is rendered 
in green, while the docked conformation is rendered in blue. The RMSD value between the docked conformation and 
the ligand X-ray structure is 0.93 Å. 
Right: The X-ray structure from PDB entry 1HVI. 
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One example where our docking calculations resulted in a high RMSD value between the X-ray 
structure and the docked structure is PDB entry 1TET. Figure 8 shows the docked ligand 
conformation together with the X-ray structure of the complex.  

 

 
Figure 8. Result from docking of PDB 
entry 1TET. The ligand conformation 
from the X-ray structure is rendered in 
green, while the docked conformation is 
rendered in blue. The RMSD value 
between the docked conformation and the 
ligand X-ray structure is 3.70 Å. 
 
Figure 8 shows that for 1TET we have very good match between the docked conformation and the 
X-ray ligand conformation in the region binding to the protein, while the part of the ligand pointing 
towards the solvent is flipped outwards. The reason is that our algorithm considers only cavities in 
the protein structure, since alpha spheres are placed in protein cavities. This leads to a very high 
RMSD value, even though our docking calculations succeeded for the part of the ligand that is 
relevant for binding to the protein.  
 
Our docking calculations also failed to reproduce the ligand X-ray structure in PDB entry 1CPS. As 
shown in Figure 9 (left), the structure of the ligand in PDB entry 1CPS is flipped 180° in the docked 
conformation. One possible reason is that our algorithm does not represent hydrogen bonds fully. 
As seen from Figure 9 (right), the ligand in PDB entry 1CPS is stabilised in the bound conformation 
by several hydrogen bonds.  
 
 

   
Figure 9. Left: Result from docking of PDB entry 1CPS. The ligand conformation from the X-ray structure is rendered 
in green, while the docked conformation is rendered in blue. The RMSD value between the docked conformation and 
the ligand X-ray structure is 6.18 Å. 
Right: The X-ray structure from PDB entry 1CPS. Possible hydrogen bonds to the protein are shown (drawn using 
MOE [27]).   
 
The result from the docking analysis of PDB entry 1DBK (Figure 10) demonstrates that our 
algorithm predicts hydrophobic interactions quite well. The RMSD value between the docked 
ligand conformation and the ligand X-ray structure is very high for 1DBK. In the same way as for 
1CPS, the ligand structure is flipped 180°. However, Figure 10 shows that the ligand structure is 
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almost symmetric, and our algorithm succeeds in placing the hydrophobic ring structures. Since the 
ligand is flipped, an almost correct ligand placement leads to a very high RMSD value (5.86 Å).  
 

 
Figure 10. Result from docking of PDB 
entry 1DBK. The ligand conformation 
from the X-ray structure is rendered in 
green, while the docked conformation is 
rendered in blue. The RMSD value 
between the docked conformation and the 
ligand X-ray structure is 5.86 Å. 
 
The results from our docking analysis show that our method predicts hydrophobic interactions 
better than hydrophilic interactions. One reason is that hydrophilic interactions are more direction-
specific than hydrophobic interactions. The ligands in PDB [32,33] entries 1ETS and 1HVI both 
contain several hydrophobic groups (Figures 6 and 7). Since our method is independent of 
placement of hydrogen atoms and partial charges, we are not able to fully account for the formation 
of hydrogen bonds. Hydrogen bond formation is very dependent on the direction in which the 
hydrogen atom points. We are planning to account for possible hydrogen bond formation in the next 
version of the score function. Our method is not suitable in cases where the ligand makes an ion 
bond to the protein. However, our method succeeds to a high degree in placing the hydrophobic 
parts of the ligands. The results also show that our method works best in cases where the ligand is 
bound in a well-defined cavity of the protein. This is not surprising since alpha spheres only 
describe protein cavities, not the outer surface of the protein. Hence, our gaussian-based docking 
method is most likely to succeed in cases where the protein has a well-defined binding pocket and 
the ligand is not bound to the protein by an ion bond. The docking method presented here succeeds 
in reproducing the ligand conformations found in X-ray structures in most cases, and the speed of 
the calculations makes it a useful tool for fast drug candidate screening. The use of gaussian 
functions to describe the molecular properties makes this docking method suitable for use with 
homology modelled protein structures. 
 

Conclusion 
 
A new score function for virtual library screening is introduced, that use gaussian functions to 
describe protein-ligand interactions. This score function accounts for hydrophilicity and 
lipophilicity of the protein, and hydrophilicity, lipophilicity, hydrogen donor and acceptor potential 
for the ligand. In addition, van der Waals effects are taken into account. Neither hydrogens nor 
partial charges are considered. The use of gaussian functions makes this score function relatively 
robust against small structural errors, like those typically found in homology models. The accuracy 
of our score function can not be compared to that of more complex score functions that account for 
e.g. hydrogens, partial charges and electrostatics, but the speed of this method makes it useful for 
fast screening and generation of starting conformations for other docking methods. With this 
method we are able to dock 200-300 ligands per day (~5 minutes per molecule) on a Linux cluster. 
For comparison, the more accurate docking method MOE-Dock uses ~50 minutes per molecule on 
the same set of ligands. Using our score function, 102 of the 218 ligand conformations were within 
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2 Å RMSD of the X-ray structure, while docking of the same set of compounds with MOE-Dock 
resulted in 120 of the ligand conformations within 2 Å RMSD of the X-ray structure. Hence, MOE-
Dock performs best in terms of identifying the correct conformation, but the combination of speed 
and reasonable accuracy makes our method more suitable for use in pre-screening. 
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Abstract 
 
Possible functional groups of a selective inhibitor of Tyrosine kinase 2 (Tyk2) have been proposed 
earlier by our group, based on results from Protein Alpha Shape Similarity Analysis (PASSA). The 
database of the National Cancer Institute (NCI) was searched for existing drugs having these 
functional groups. The hits from this pharmacophore search were evaluated by computational 
docking in a homology model of Tyk2. Additional structures having the required functional groups 
were created using de novo ligand design. The most promising structures were tested for selectivity 
by computational docking in seven protein kinase structures, in addition to Tyk2. The results from 
our docking analysis indicated that none of the structures present in the NCI database can be used to 
inhibit Tyk2 selectively, but five of the structures generated by de novo ligand design gave very 
promising results. 
 
Key Words: Tyk2, tyrosine kinase, Protein Alpha Shape Similarity Analysis (PASSA), inhibitor 
design, selectivity, homology modelling, pharmacophore search, molecular docking. 
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Introduction 
 
Protein kinases contribute to regulation and coordination of e.g. metabolism, gene expression, cell 
growth, cell motility, cell differentiation and cell division.1 The Janus kinase (Jak) family of non-
receptor tyrosine kinases consists of four known mammalian proteins (Tyk2, Jak1, Jak2 and Jak3) 
that play a critical role in initiating signalling cascades of a large number of cytokine receptors.2, 3, 4, 5 
All Jak family kinases possess a carboxyl-terminal tyrosine kinase catalytic domain, a central 
kinase-like domain, and a large amino-terminal region, which has been subdivided into five Jak 
homology regions (JH7 to JH3) based on sequence conservation.5, 6 In contrast to most other 
cytoplasmic protein tyrosine kinases, the Janus kinases have no Src homology (SH2 nor SH3) 
domains.2 The specific and non-covalent association of these kinases to the intracellular region of 
cytokine receptors governs their activation upon ligand binding.3 The JH domains have been shown 
to be the parts of the Janus kinases that are associated with the cytoplasmic domains of cytokine 
receptors.3, 5, 7 The activation of the Janus kinases is mediated by ligand-induced receptor 
oligomerisation.8, 9, 10 The Janus kinases are activated by e.g. the type I interferons (IFNα/β and γ), 
the interleukins (IL2-7, IL-10 and IL-12), growth hormone (GH), prolactin, erythropoietin (Epo), 
granulocyte-specific colony-stimulating factor (G-CSF), granulocyte-macrophage colony-
stimulating factor (GM-CSF), leukaemia inhibitory factor (LIF) and ciliary neurotrophic factor 
(CNTF).2, 5, 11  
 
Activated Janus kinases autophosphorylate,3 and phosphorylate the cytokine receptors with which 
they are associated, providing binding sites for the Signal Transducers and Activators of 
Transcription (STAT) family of transcription factors.8 The Jaks catalyse phosphorylation of the 
STAT proteins (seven isoforms, STAT1-4, STAT5A-B and STAT6),12 that occurs by transfer of the 
γ phosphate of adenosine triphosphate (ATP) to the hydroxyl group of a tyrosine residue in the 
STAT protein. After phosphorylation on tyrosine residues, the STAT molecules form homo- or 
heterodimers,9 which are translocated into the nucleus. The STAT proteins then bind to DNA, and 
activate gene transcription.2 The Jak-STAT signalling cascade has been shown to contribute to 
growth and survival of e.g. human multiple myeloma cells,13 acute lymphoblastic leukaemia14 and a 
variety of other malignancies.15, 16 This makes the Janus kinases potential targets for new cancer 
therapies. One way to interrupt this signalling cascade is to block the binding of ATP to the tyrosine 
kinases. ATP analogues are generally non-selective, but the development of inhibitors like STI57117 
shows that ATP binding sites can be used as targets for selective drugs. 
 
At the present time none of the Janus kinases have experimentally determined 3-dimensional (3D) 
structures.18, 19 In a recent publication, we predicted the 3D structures of the tyrosine kinase domains 
of Jak2 and Tyk2 by homology modelling, and suggested functional groups for a selective inhibitor 
of Tyk2 based on Protein Alpha Shape Similarity Analysis (PASSA).20 PASSA is a new method for 
mapping protein binding sites, and is especially suited for protein structures predicted by homology 
modelling. In PASSA, several models for the same protein are used together with structures of 
other, related proteins to single out unique features of the target protein. Hence, this method is 
developed especially for design of selective drugs. In PASSA, the binding sites of the protein 
structures are compared using gaussian property distributions. Discriminant Partial Least Squares 
(DPLS) regression is used for the data analysis. DPLS regression is PLS regression, where the 
dependent variables are indicator variables. These results are combined with results from Multiple 
Copy Simultaneous Search (MCSS),21 to suggest functional groups of a selective inhibitor. The use 
of gaussian functions to describe the protein binding sites makes PASSA especially suited for use 
with homology modelled structures, since the less detailed representation may be more robust than 
e.g. force field based methods against small structural errors typically present in homology models. 
Homology modelling in drug design has recently been reviewed.22 
 
In this work, we utilised previously suggested functional groups for a selective Tyk2 inhibitor20 in a 
pharmacophore search of the database of the National Cancer Institute (NCI). The resulting 
structures were tested for binding to Tyk2 by computational docking in a homology model of Tyk2. 
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Structures having the desired functional groups were also generated by de novo ligand design. The 
most promising drug candidates resulting from this analysis were tested for selectivity towards 
Tyk2 by computational docking in seven protein kinase structures, in addition to the homology 
model of Tyk2. 
 
   
Methods 

Pharmacophore search 
 
The 3D structure database of the NCI from August 2000 (http://cactus.nci.nih.gov/) (250241 
structures) was searched using the pharmacophore search routines in Molecular Operating 
Environment (MOE).23 Functional groups for a selective Tyk2 inhibitor have been proposed earlier 
by our group,20 based on MCSS. Selected MCSS fragments20 defined the pharmacophore.  
 
A match on at least six of the pharmacophore query features (MCSS fragments) was required. A 
query feature is a point in space with a radius-like tolerance on spatial proximity and an associated 
expression indicating electrostatic properties. To allow some variation from the MCSS fragments, 
the following proximity tolerances were used for the different query features: Aromatic (benzene 
rings): 4.0 Å, hydrophobic (CH3-groups): 2.0 Å, hydrogen donor or hydrogen acceptor: 1.6 Å. This 
is about twice the actual size of the fragments. The compounds of the database satisfying at least six 
of the specified functionalities (having atoms with properties overlapping with the pharmacophore 
features) were first filtered according to distance from the ATP binding site. All compounds having 
atoms within 10 Å of the docked conformation of ATP20 were kept for further analysis.  
              

Computational docking analysis 
 
The hits from the pharmacophore search were docked in a previously reported20  homology model of 
Tyk2. Two different docking procedures were used: Docking with MOE-Dock,23, 25 and docking 
with a new docking method recently developed by our group.26 MOE-Dock uses the sum of the 
electrostatic and the dispersive interaction energy between the ligand and the target and the 
intramolecular energy of the ligand to rank the structures. The molecular mechanics (MM) force 
field MMFF9427 was chosen for the docking study as it predicts both intermolecular hydrogen 
bonding and geometries of small molecules quite well.28 A smooth non-bonded cut-off of 10-12 Å 
was used. In our new docking method, a score function based on gaussian property descriptions is 
used. Both methods use Tabu search25 for the geometry search. 
 
Docking with MOE-Dock 
 
ATP has previously been docked into the homology model of Tyk2.20 The hits from the 
pharmacophore search having atoms within 10 Å of the docked conformation of ATP were docked 
into the homology model of Tyk2 as a first screening, using ten MOE-Dock runs of 1000 iterations 
each. A docking box of 125x125x125 grid points with 0.375 Å spacing between each grid point was 
used. The docking box was centred on the docked conformation of ATP. All structures from this 
docking analysis having docking energies <5000 kcal/mol (112 structures) were further docked 
using ten runs of 25000 iterations each. This threshold of 5000 kcal/mol was chosen based on the 
distribution of the docking energies. 
 
MOE-Dock uses grid-based potential fields23 to calculate interaction energies between the ligand 
and the receptor. This grid-based method calculates the potential energy grids only once, at the 
beginning of the docking procedure. Hence, protein flexibility is not taken into account in these 
calculations. 
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The conformation of each drug candidate having the lowest docking energy was also scored using 
the gaussian-based score function recently developed by our group.26  
 
Docking using the gaussian-based docking method 
 
The structures from the pharmacophore search of the NCI database described above were also 
docked using our newly developed gaussian-based docking method.26 The largest and most flexible 
compounds (917 out of 1168 structures) were removed from the compound set prior to the docking. 
The compounds were chosen according to Kier flexibility index.29 The threshold value for the Kier 
flexibility index was chosen by inspection of the structures. 
 
A docking analysis with 100 Tabu runs of 1000 iterations each was carried out, using a docking box 
with 3 Å padding around the protein structure. MMFF94 with a smooth non-bonded cut-off of 10-
12 Å was used. A threshold value of 500 kcal/mol for the ligand Lennard-Jones potential was used 
in the geometry search.26 This docking method is independent of hydrogen atoms and partial 
charges.  
 

De novo ligand design 
 
LigBuilder30 was used to design new structures having the required functional groups. Structures 
were built using selected molecular fragments from previous MCSS results20 as “seed” structures in 
the “GROW” function of LigBuilder. The binding pocket of Tyk2 was defined by the MCSS 
fragments defining the Tyk2 pharmacophore. The resulting structures were energy minimised in 
MOE23 (100 iterations with steepest descent, 100 iterations with conjugate gradient and 200 
iterations with Truncated Newton optimisation) in complex with the homology model of Tyk2 with 
all receptor atoms fixed. The force field MMFF9427 with implicit solvation was used. Following the 
energy minimisation, the structures were ranked according to binding affinities estimated using the 
gaussian-based score function.26  
 
The compounds in the NCI database were searched for similarity to the most promising structures 
from the de novo ligand design, using the pharmacophore search routines in MOE.23, 24 To 
approximate the size of the functional groups of the ligands, the following proximity tolerances 
were used for the different pharmacophore query features: Aromatic rings: 2.0 Å, hydrophobic 
groups: 1.8 Å, hydrogen donor or hydrogen acceptor: 0.8 Å. 
 

Testing of promising drug candidates for selectivity to Tyk2 
 
To test the most promising drug candidates from the pharmacophore search and the de novo ligand 
design for selectivity towards Tyk2, they were docked in the following kinase structures, in addition 
to the homology models of Tyk2 and Jak220: RCSB Protein Data Bank (PDB)18,19 entries 1ir3 
(Insulin-receptor tyrosine kinase), 1byg (C-terminal Src kinase), 1fgk (tyrosine kinase domain of 
Fibroblast growth factor receptor 1), 1fpu (Abelson (Abl) kinase), 1qcf (Haematopoetic cell kinase 
(Hck)) and 1qpc (Lymphocyte-specific kinase (Lck)). The protein structures were aligned to the 
homology model of Tyk2 in MOE prior to docking. A modified version of the Needleman and 
Wunsch approach31 with a structural correction and the Blosum 6232 similarity matrix was used for 
the sequence alignments. The 3D structures were superposed as described by Shapiro et al.33 The 
docking analysis was performed with our gaussian-based docking method, as described above. 
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Results and discussion 

Pharmacophore search and docking 
 
The Tyk2 pharmacophore used for searching the NCI database (and for de novo ligand design) was 
based on previously selected molecular fragments from MCSS.20 These fragments are shown 
together with the docked conformation of ATP20 in Figure 1. 
 

 
Figure 1. The Tyk2 pharmacophore used for the database search and de novo ligand design. The pharmacophore was 
defined by fragments from MCSS.20 The docked conformation of ATP20 is also shown. 
 
Pharmacophore searching of the NCI database resulted in 1168 compounds having properties that 
matched at least six of the specified functionalities, and were placed within 10 Å of the docked 
conformation of ATP. 
 
 
Docking with MOE-Dock  
 
The five compounds from the NCI database that were predicted to have the lowest docking energy 
by MOE-Dock are listed in Table 1. The docking energies are shown together with the estimated 
binding affinity to Tyk2 predicted using our gaussian-based score function. There is good 
correlation between the docking energies from MOE-Dock and the binding affinity estimated using 
our gaussian-based score function for all compounds in Table 1, except for the compound with NSC 
number 27773. 
 
 
Table 1. Results from computational docking of selected structures from 
the NCI database with MOE-Dock. 

NSC 
number 

Docking energy from 
MOE-Dock  
(kJ/mol) 

Estimated binding 
affinitya to Tyk2 
(kJ/mol) 

40148 -323.0 -2.31 
159203 -113.0 -1.20 
3766 -37.1 -0.01 
29377 -3.31 -0.03 
27773 26.3 -4.59 

a
 The binding affinity was predicted using our gaussian-based score function.26 
 
 

Comparison of the placement of these ligands in the Tyk2 binding site with the Tyk2 
pharmacophore showed that none of the docked conformations of the ligand structures had 
functional groups completely overlapping with the pharmacophore. The ligand structure with NSC 
number 40148 is also small, and very flexible. The docked structure of this ligand had groups 
overlapping with the oxygen-containing sugar ring in the docked conformation of ATP. It is 
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therefore not likely to be Tyk2 selective. The hydrophobic rings of ligand structure 159203 were 
placed close to benzene rings “5” and “6” from Figure 1, but the ring structures were not 
overlapping. This may, however, be caused by inaccuracies in the docking analysis. This structure 
is therefore considered to be a possible drug candidate, in spite of the low estimated binding 
affinity. The same is true for the ligand structures with NSC numbers 3766 and 29377. The 
hydrophobic part of ligand structure 27773 was overlapping with benzene ring “5”, but in the same 
way as 40148, this ligand is small and flexible, and therefore not likely to be selective to Tyk2.  
 
The mean experimental binding affinity for the set of structures used to train the gaussian-based 
docking method26

 was –35 kJ/mol. None of the docked structures from MOE-Dock had estimated 
binding affinities below –35 kJ/mol. This indicates that even though some of the structures in the 
NCI database have functional groups that match the Tyk2 pharmacophore, they may not bind very 
strongly to Tyk2. 
 
For comparison, the binding affinity was also estimated in the same way for six different X-ray 
structures of protein kinases in complex with known ligands from the PDB.18,19 Some of these X-ray 
structures were used as templates in the homology modelling of Tyk2.20 The average estimated 
binding affinity for these six protein kinase complexes was -18 kJ/mol (Table 2). None of the 
compounds from the NCI database shown in Table 1 had estimated binding affinities below -18 
kJ/mol. However, when the 112 docked structures from the last MOE-Dock screening were sorted 
according to binding affinities to Tyk2 estimated using our gaussian-based score function (keeping 
the ligand conformations produced by MOE-Dock), three of the compounds had binding affinities 
below –18 kJ/mol (Table 3). The docked conformations of 116725 and 167941 were both placed 
close to benzene rings “5” and “6”, while the docked conformation of 231503 was placed close to 
fragments “1”-“4” from Figure 1.  
 
 
Table 2. Estimated binding affinities for protein kinases in complex with 
known ligands (from experimental structures).  

PDB entry Ligand Estimated binding 
affinitya (kJ/mol) 

1agw SU4984 -15.9 
1fpu PRC -29.3 
1iep STI571 -35.3 
1ir3 ANP-Mg -13.0 
1k3a ACP -9.31 
1qpc ANP -7.90 

a The binding affinity was predicted using our gaussian-based score function.26   
 
 
Table 3. The three compounds from the NCI database having estimated 
binding affinities to Tyk2 below –18 kJ/mol.  

NSC 
number 

Docking energy from 
MOE-Dock  
(kJ/mol) 

Estimated binding 
affinitya to Tyk2 
(kJ/mol) 

116725 49.8 -21.7 
167941 512.1 -20.5 
231503 3073.1 -18.2 

a
 The binding affinity was predicted using our gaussian-based score function.26   

 
 



 7

Docking using the gaussian-based docking method 
 
In the same way as for MOE-Dock, docking with the gaussian-based docking method26 did not 
identify any compounds from the NCI database with estimated binding affinities to Tyk2 below –35 
kJ/mol. However, one of the structures had estimated binding affinity below the average for the six 
X-ray structures of protein kinase complexes in Table 2 (-18 kJ/mol). The estimated binding affinity 
to Tyk2 for this compound is given in Table 4. The docked conformations of this compound from 
MOE-Dock and docking with the gaussian-based docking method were quite similar (Figure 2). 
 
 
Table 4. Results from computational docking of selected 
structures from the NCI database with our gaussian-based 
docking method.26  
NSC number Estimated binding affinity to 

Tyk2 (kJ/mol) 
116725 -26.13 

 

 
Figure 2. The docked conformations of 116725 
produced by MOE-Dock (green) and our gaussian-
based docking method (blue). 
 
Since none of the two docking methods used in this work were able to identify any compounds 
from the NCI database with estimated binding affinities below the average for the set of X-ray 
structures used to train the gaussian-based docking method, new structures were generated with de 
novo ligand design, in order to find compounds that bind more strongly to Tyk2. 
 

De novo ligand design 
 
In each LigBuilder run, 200 candidate structures were generated. Benzene rings “1”, “5” and “6” 
(Figure 1) were used separately as “seed” fragments. Two LigBuilder runs with benzene rings “5” 
and “6”, respectively, and one LigBuilder run with benzene ring “1” were carried out. In total, 1000 
structures were generated. Estimation of binding affinities for these structures using the gaussian-
based score function,26 showed that using benzene ring “1” from Figure 1 as “seed” fragment 
resulted in the most promising drug candidates. In total, 162 of our compounds had predicted 
binding affinities below the mean experimental binding affinity for the set of structures used to train 
the gaussian-based docking method26 (–35 kJ/mol). One of these compounds was generated with 
benzene ring “5” as “seed” fragment (called “5_1”), while all the other compounds were generated 
with benzene ring “1” as “seed” fragment (“1_1”-“1_161”). Table 5 shows the estimated binding 
affinities for the structures generated using benzene ring “1” with estimated affinity below -45 
kJ/mol (ten structures), together with the one compound generated with benzene ring “5” as “seed” 
fragment having estimated affinity below -35 kJ/mol. 
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Table 5. Estimated binding affinities to Tyk2 for the most 
promising drug candidates generated by de novo ligand 
design.  
Ligand structure Estimated binding affinitya to 

Tyk2 (kJ/mol) 
1_1 -47.60 
1_2 -46.94 
1_3 -46.89 
1_4 -46.88 
1_5 -46.15 
1_6 -45.73 
1_7 -45.52 
1_8 -45.47 
1_9 -45.44 
1_10 -45.44 
5_1 -35.99 

a
 The binding affinity was predicted using our gaussian-based 

score function.26   

 
 
The results in Table 5 show that the estimated binding affinities for the structures generated with 
LigBuilder are much lower than for any of the compounds from the NCI database. Hence, these 
structures are more likely to be effective as Tyk2 inhibitors. There is, however, no guarantee that 
they do not bind to other kinases as well. The selectivity of these compounds towards Tyk2 was 
tested by computational docking. 
 
 

Testing of promising drug candidates for selectivity to Tyk2 
 
The six most promising structures from the docking analysis with MOE-Dock and our gaussian-
based method (159203, 3766, 29377, 116725, 167941 and 231503), together with the eleven 
structures in Table 5 were docked in seven protein kinase structures, in addition to Tyk2, using the 
gaussian-based docking method. The estimated binding affinities are shown in Table 6. The 
gaussian-based docking method was chosen for this study, since it was developed especially for use 
with homology modelled proteins.26 The use of gaussian functions gives a less detailed 
representation that may be more robust than force field based methods against small structural 
errors typically present in homology models. Homology models of Tyk2 and Jak2 were used here.  
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Table 6. Estimated binding affinities (kJ/mol) for the most promising drug candidates after docking in seven protein 
kinase structures in addition to the homology model of Tyk2.  

Estimated binding affinity (kJ/mol) Ligand 
structure Tyk2 Jak2 1ir3 1byg 1fgk 1fpu 1qcf 1qpc 
159203 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
3766 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
29377 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

116725 -26.13 0.0 -33.06 0.0 0.0 0.0 0.0 0.0 
167941 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
231503 -1.73 0.0 -1.31 -1.30 0.0 0.0 0.0 -1.85 
“1_1” -4.35 -6.50 -5.80 -3.91 -6.19 -1.98 -7.98 -4.79 
“1_2” -49.56 0.0 -6.61 0.0 0.0 0.0 -6.86 0.0 
“1_3” -4.46 -6.04 -5.56 -3.81 -5.66 -5.47 -7.93 0.0 
“1_4” -0.013 0.0 0.0 0.0 0.0 0.0 0.0 -3.60 
“1_5” -5.91 -6.66 -5.59 -3.86 -4.63 -5.24 -7.14 -5.06 
“1_6” 0.0 0.0 -4.41 0.0 0.0 -1.86 -0.93 0.0 
“1_7” -46.14 -6.27 -5.31 -4.14 -5.87 -5.79 0.0 -5.66 
“1_8” -22.66 0.0 -7.22 0.0 -4.00 0.0 0.0 0.0 
“1_9” -42.56 -5.74 -5.22 -3.76 -4.69 -5.24 -7.08 -4.97 

“1_10” -43.26 -6.89 -5.34 -4.20 -5.0 -0.90 -8.16 -5.47 
“5_1” -4.01 0.0 -2.0e-4 0.0 -0.021 0.0 -6.89 0.0 

 
The zero entries in Table 6 are caused by ligand placements outside the grid used to estimate the 
binding affinity. Hence, these ligands are docked outside the binding pocket of the proteins. 
Ligands binding outside the active site region are not likely to inhibit activity, and therefore not 
relevant for this study. 
 
The results in Table 6 indicate that the compound with NSC number 116725 might be a selective 
inhibitor of Tyk2 and insulin receptor tyrosine kinase. As shown in Figure 3 A, the docked structure 
of 116725 overlap with benzene rings “5” and “6” from the Tyk2 pharmacophore shown in Figure 
1. Hence, this compound may be a promising drug candidate. The docked conformation of 116725 
in the homology model of Tyk2 is shown in Figure 3 B. Figure 4 shows the docked conformation of 
this compound in insulin receptor tyrosine kinase, together with the ligand in PDB entry 1ir3. 
 
A      B 
 

 
Figure 3. A: The docked conformation of 116725 in the homology model of Tyk2, together with benzene rings “5” and 
“6” from the Tyk2 pharmacophore. The ligand is rendered in “ball and stick”, while the fragments are rendered in 
“stick”. 
B: The docked conformation of 116725 in the homology model of Tyk2, together with the docked conformation of 
ATP.20 
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Figure 4. The docked conformation of 116725 in insulin receptor tyrosine kinase, together with the X-ray structure of 
insulin receptor tyrosine kinase in complex with ANP-Mg (PDB entry 1ir3).  
 
Figure 3 B and Figure 4 show that the orientation of 116725 is different in insulin receptor tyrosine 
kinase compared to Tyk2, but this compound utilises the same pocket in both structures. Hence, this 
pocket may not be the best choice in the design of a selective Tyk2 inhibitor. Compounds that bind 
in the same pocket as fragments “1”-“4” may be more promising. The much lower estimated 
binding affinity for the structures generated with LigBuilder using benzene ring “1” as “seed” 
fragment (Table 5), and the fact that compound “5_1” is not Tyk2 selective according to the results 
in Table 6, support this assumption. Compound 231503 binds in this pocket according to the MOE-
Dock study, but the results from docking with the gaussian-based method indicated the contrary. 
According to the results presented in Table 6, this compound is not Tyk2 selective. None of the 
other compounds from the NCI database bind in this pocket. Hence, the structures generated with 
LigBuilder may be more promising as drug candidates. 
 
The primary template used in the homology modelling of Tyk220 was the X-ray structure in PDB 
entry 1qpc. A common problem with homology modelling is that the model is more similar to the 
primary template than to the target protein.34 The results in Table 6 indicate that this is not the case 
for our homology model of Tyk2, since there is no correlation between the estimated binding 
affinities for 1qpc and Tyk2. If these protein structures were very similar, one would expect the 
same compounds to bind to both proteins.  
 
The results from our docking analysis indicate that five of the structures generated with LigBuilder 
are selective inhibitors of Tyk2. Figures 5 - 9 show the docked conformations of these compounds 
in the homology model of Tyk2, together with fragments from the Tyk2 pharmacophore and the 
docked conformation of ATP.20 
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A      B 

 
 

Figure 5. A: The docked conformation of “1_2” in the homology model of Tyk2, together with fragments “1”-“4” from 
the Tyk2 pharmacophore. The ligand is rendered in “ball and stick”, while the fragments are rendered in “stick”. 
B: The docked conformation of “1_2”  in the homology model of Tyk2, together with the docked conformation of ATP. 
 
 
 
 
A      B 

 
 

Figure 6. A: The docked conformation of “1_7” in the homology model of Tyk2, together with fragments “1”-“4” from 
the Tyk2 pharmacophore. The ligand is rendered in “ball and stick”, while the fragments are rendered in “stick”. 
B: The docked conformation of “1_7”  in the homology model of Tyk2, together with the docked conformation of ATP. 
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A      B 
 

 
Figure 7. A: The docked conformation of “1_8” in the homology model of Tyk2, together with fragments “1”-“4” from 
the Tyk2 pharmacophore. The ligand is rendered in “ball and stick”, while the fragments are rendered in “stick”. 
B: The docked conformation of “1_8”  in the homology model of Tyk2, together with the docked conformation of ATP. 
 
 
 
 
A      B 
 

 
Figure 8. A: The docked conformation of “1_9” in the homology model of Tyk2, together with fragments “1”-“4” from 
the Tyk2 pharmacophore. The ligand is rendered in “ball and stick”, while the fragments are rendered in “stick”. 
B: The docked conformation of “1_9”  in the homology model of Tyk2, together with the docked conformation of ATP. 
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A      B 
 
 

 
 
Figure 9. A: The docked conformation of “1_10” in the homology model of Tyk2, together with fragments “1”-“4” 
from the Tyk2 pharmacophore. The ligand is rendered in “ball and stick”, while the fragments are rendered in “stick”. 
B: The docked conformation of “1_10” in the homology model of Tyk2, together with the docked conformation of 
ATP. 
 
 
The compounds in the NCI database were searched for similarity to the most promising structures 
from the de novo ligand design, “1_2” and “1_7”-“1_10”. A match on the pharmacophoric 
properties of these structures was found for the fourteen structures in Table 7. These compounds 
were missed in the original pharmacophore search. In the same way as the compounds in Table 6, 
these compounds were docked in the homology model of Tyk2 and seven other protein kinase 
structures. The results are given in Table 7. 
 
 
Table 7. Estimated binding affinities (kJ/mol) from docking of the compounds in the NCI database resembling the 
most promising structures from de novo ligand design.  

Estimated binding affinity (kJ/mol) NSC 
number 

Resembling 
structure Tyk2 Jak2 1ir3 1byg 1fgk 1fpu 1qcf 1qpc 

340033 “1_2” -2.22 0.0 -3.84 -1.81 0.0 -4.05 -6.45 -3.53 
372408 “1_2” -4.01 -5.31 -3.72 -2.53 -4.16 -4.17 0.0 -3.69 
372452 “1_2” -3.71 -5.28 0.0 -2.34 -1.02 -4.27 -7.21 -3.66 
623329 “1_2” -3.50 -6.61 -6.71 -2.36 -5.71 -5.95 -8.78 -5.39 
624404 “1_2” -3.96 -18.49 -5.95 -9.17 -3.84 -15.77 -5.16 -8.84 
627686 “1_2” 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
629605 “1_7” 0.0 -5.69 -5.54 -3.56 -2.72 0.0 -8.94 -4.90 
25585 “1_8” -2.68 0.0 -0.27 0.0 0.0 -2.67 0.0 -2.79 

119957 “1_8” -0.32 0.0 0.0 0.0 0.0 -8.79 0.0 0.0 
138557 “1_8” 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
142574 “1_8” 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
157622 “1_8” 0.0 0.0 -0.66 0.0 0.0 0.0 0.0 0.0 
203969 “1_8” 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
633715 “1_9” 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 
 
As the results in Table 7 indicate, none of the compounds in the NCI database found to resemble the 
most promising structures from the de novo ligand design bind selectively to Tyk2. They all have 
relatively low Tyk2 activity. Compound 624404 binds to Jak2 and Abl kinase (PDB entry 1fpu). 



14 

The binding to Jak2 might be an artefact of that the X-ray structure in PDB entry 1fpu was the 
primary template used for the homology modelling of Jak2.20 
 
 
Conclusion 
 
We have screened the NCI database for compounds binding selectively to Tyk2, using two different 
docking methods. The results from our docking analysis indicated that none of the structures 
present in the NCI database can be used to inhibit Tyk2 selectively. Even though the two docking 
methods did not identify the same compounds as the most active ones, they both produced the same 
conclusion, namely that there are no promising Tyk2 inhibitors in the NCI database. The main 
purpose of docking methods is to identify the most active compounds. Most docking methods (as 
these two) are also trained using X-ray structures of protein-ligand complexes. Hence, internal 
ranking of inactive compounds is bound to fail, and not interesting for drug design purposes. This 
may be the reason why the two docking methods ranked the compounds in the NCI database 
differently. However, our analysis provides useful information about parts of the structures that may 
be used as functional groups of a selective inhibitor of Tyk2, and one compound was found to 
inhibit Tyk2 and insulin receptor tyrosine kinase selectively. Several promising structures were 
proposed by de novo ligand design. These were tested for selectivity towards Tyk2 by 
computational docking in seven protein kinase structures, in addition to Tyk2. This study indicated 
that five of the generated structures might be potential selective inhibitors of Tyk2. 
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Application of Protein Alpha Shape Similarity Analysis (PASSA) in modelling 
selectivity 
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Abstract 
 
A new method for exploration of protein binding site properties, called Protein Alpha Shape 
Similarity Analysis (PASSA), has recently been developed. In this work, PASSA has been used to 
map the properties of the adenosine triphosphate (ATP) binding pockets of proteins in the Protein 
Kinase C – subfamily and the kinase domains of Abelson (Abl) kinase, Epidermal growth factor 
receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), c-Src and Protein Kinase A 
(PKA). Empirical models are developed which are able to predict IC50 values for a number of 
inhibitors towards these proteins, using the data produced by PASSA. Two datasets were analysed 
by this method and cross-validated correlations (q2) of 0.75 and 0.62 were obtained. The model 
parameters can also be examined graphically and give insight into the structural basis for 
selectivity. Hence, this method is a useful tool for revealing structural features that contribute to 
selectivity.  
 
Key Words: Partial Least Squares Regression (PLSR), Protein Alpha Shape Similarity Analysis 
(PASSA), protein kinases, Quantitative Structure-Activity Relationship (QSAR), selectivity. 
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Introduction 
 
Drug development is extremely costly and the withdrawal of an otherwise promising drug candidate 
due to side effects is an enormous waste of resources. Often side effects are caused by interactions 
with a receptor other than the intended target. Examples of this include aspirin, which targets the 
protein COX-2, but may cause irritation of the stomach mucosa by inhibition of COX-1 [1]. The 
protein kinase inhibitor staurosporine, targets the adenosine triphosphate (ATP) binding site of 
Protein Kinase C. At high concentrations, staurosporine looses its specificity and is toxic [2]. 
Hence, when promising compounds have been identified, it is of interest to predict their affinity to a 
number of related proteins as well as the target. This is the inverse of the normal virtual screening 
problem [3], as the goal is not to screen a large number of drug candidates against a single target, 
but rather to score a small number of potential drugs against a protein family. Particularly in the 
case of protein kinase inhibitors targeting the ATP binding site, such information is valuable. ATP 
binding pockets all have the same overall structure. It is therefore expected that a compound 
binding to one ATP binding site will bind to a number of other ATP sites in related protein kinases 
as well. For this reason, use of docking for virtual screening for side effects of protein kinase 
inhibitors has been suggested [4]. However, reliable docking is computationally expensive, time 
consuming, and requires protein models of high quality. As virtual screening of a full protein family 
will most likely require use of homology models to obtain at least some of the protein structures 
needed, docking may not be an optimal choice of methodology. Though special docking procedures 
for use with homology models and other low quality protein structures have been developed [5, 6, 
7], these methods have not been extensively tested. 
 
A supplement to docking when predicting drug-receptor interactions is the use of three-dimensional 
(3D) Quantitative Structure-Activity Relationship (QSAR) models such as Comparative Molecular 
Field Analysis (CoMFA) [8]. QSAR models are empirical models that predict the biological activity 
of a set of related molecules. Typically, a calibration or training set of a few (30-100) molecules is 
used. If the modelling is successful, the biological activity of a large number of related molecules 
may be predicted. The topic of this paper is use of a method related to QSAR modelling in 
screening for potential off target affinities. An empirical model is made using the recently 
developed method Protein Alpha Shape Similarity Analysis (PASSA) [9]. With PASSA, the 
structural properties of a protein binding site can be related to the proteins affinity for a ligand. This 
is particularly relevant as the number of proteins to screen is relatively small. Even the largest 
protein families in the human genome typically have less than a thousand members [10]. Previous 
uses of protein structure information in QSAR work have focused on predicting the affinity towards 
‘new’ ligands for a very small number of proteins. Receptor models have been used to guide 
molecular alignment before 3D QSAR modelling [11], or sequence information about the targets 
has been included as additional variables in the descriptor data [12]. When screening for side 
effects, the aim is instead to consider many proteins affinity towards a few ligands. Such data sets 
are rare in the literature, but can be obtained commercially in the case of kinase inhibitors [13].  
 
Modelling the affinity of a drug for a number of proteins requires a good description of the protein 
structure and response data to use for calibration. The response data may come from experiments, 
or from high quality dynamic docking simulations. The standard high throughput docking 
simulations may not be of sufficient quality to be useful, but free energy perturbation methods have 
recently been improved to the point where reasonably accurate predictions of binding free energies 
are possible, though at considerable computational expense [14]. 
 
PASSA has been shown to be useful by correctly identifying the reason for the selectivity of STI-
571 towards Abelson (Abl) kinase, as well as by aiding the design of a selective Tyk2 inhibitor [9]. 
The protein binding site representation in PASSA is derived using geometric objects known as 
alpha spheres. Alpha spheres tend to cluster in ligand binding regions of proteins [15]. A molecular 
similarity field is computed as a sum of gaussians centred on the alpha spheres and on the protein 
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atoms. Gaussians centred on alpha spheres are classified as either hydrophobic or hydrophilic, 
depending on the nature of the protein atoms contacting the alpha sphere. Separate fields are then 
computed for the density of either hydrophobic or hydrophilic alpha spheres. These fields are 
referred to as gaussian property fields. The fields are sampled on a set of grid points spanning the 
binding pocket and the resulting gaussian property fields are used in the data analysis.  
 
In this work we use PASSA to predict biological activity by using the gaussian property field data 
as independent variables in a Partial Least Squares Regression (PLSR). This regression model may 
then be able to predict the affinity of the ligands for related proteins based on the alpha sphere 
densities of their ligand binding sites. Using PASSA to model selectivity within a protein family is 
a useful supplement to virtual screening with computational docking. Empirical docking methods 
are trained on diverse sets of compounds and are intended to be as general as possible. Hence, the 
ability to predict binding modes and binding affinities for a certain protein-ligand complex depends 
on the similarity of the complex to the structures used to train the docking method. Using PASSA to 
model selectivity within a protein family, as in this work, allows for more detailed and family-
specific modelling of protein-ligand interactions. This method also allows for effective visualisation 
of the molecular basis for selectivity.  
 
In the work presented here, PASSA has been used to model selectivity of ligands towards two 
different sets of protein kinases. One is a set of eight Protein Kinase C (PKC) isozymes [16], while 
the other set consists of structures of the kinase domains of Abl kinase, Epidermal growth factor 
receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), c-Src, Protein Kinase A (PKA), 
and two isozymes of PKC [17]. Overactivity of some PKC isozymes has been associated with 
several disease states, e.g. diabetic complications. The protein kinase inhibitor staurosporine, targets 
the ATP binding site of PKC. In this work, the activity of staurosporine and nine other 14-
membered macrocycles towards the eight different PKC isozymes is modelled using PASSA.  
 
Abl kinase has been shown to play an important role in the development of chronic myelogenous 
leukaemia (CML) and acute lymphocytic leukaemia (ALL) [17, 18]. Binding of ATP to Abl kinase 
is crucial for its activity. Hence, the ATP binding site of Abl kinase is an attractive drug target. STI-
571 is a selective inhibitor of Abl kinase, c-Kit and PDGFR [18]. During the screening for a 
selective Abl kinase inhibitor, 37 compounds were tested for binding to Abl kinase, EGFR, 
PDGFR, c-Src, PKA, PKC-α and PKC-δ [17]. In this work, PASSA has been used to describe the 
selectivity of the compounds in this dataset. 
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Materials and methods 
 

Binding affinity data  
 
Dataset 1 consists of a set of IC50 values for inhibitors of Protein kinase C (PKC) and was obtained 
from the work of Jirousek et al. [16]. The dataset consists of IC50 values for ten kinase inhibitors 
(Fig. 1) on eight PKC isozymes. 
 
 

 
Figure 1. Structures of the ligands used in dataset 1.   
 
 
Dataset 2 was taken from the work of Zimmermann et al. [17]. They tested 37 derivatives of the 
Abl kinase inhibitor STI-571 for binding to seven different members of the protein kinase family 
(Abl kinase, EGFR, PDGFR, c-Src, PKA, PKC-α and PKC-δ).  
 
To closer approximate a normal distribution and clarify the interesting variations, both datasets 
were converted to pIC50 values before modelling. 
   

Protein structures  
 
3D structures for the eight PKC isozymes were obtained using homology modelling in Molecular 
Operating Environment (MOE) [19]. Templates (Table 1) were found with BLAST search in 
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SwissModel [20]. All templates were aligned using a modified Needleman and Wunsch approach 
with structural correction and the Blosum 62 similarity matrix [21]. Initial models use the backbone 
coordinates of the first template. Side chain coordinates are taken from the first conserved residue 
found amongst all templates. Independent models of the target protein structure were built using a 
Boltzmann-weighted randomised modelling procedure [22], combined with specialised logic for 
handling of insertions and deletions [23]. The final model was energy minimised to a root mean 
square gradient of 0.1 kcal/mol, using the AMBER94 force field [24].  
 
 
Table 1. Templates used in the homology modelling of the PKC isozymesα 

Nr Target Template 1 Template 2 Template 3 Template 4 Template 5 
1 PKC-α 1STC.E 1AO6 1KOB.A 1JKL.A 1PHK 
2 PKC-β I 1STC.E 1AO6 1JKL.A 1KOB.A 1FGK.A 
3 PKC-β II 1STC.E 1AO6 1JKL.A 1KOB.A 1FGK.A 
4 PKC-γ 1STC.E 1AO6 1JKL.A 1PHK 1F3M.C 
5 PKC-δ 1STC.E 1AO6 1JKL.A 1F3M 1PHK 
6 PKC-ε 1STC.E 1AO6 1F3M.C 1PHK 1QMZ.C 
7 PKC-ζ 1PHK 1STC.E 1KOB.A 1AO6 1F3MC 
8 PKC-η 1STC.E 1AO6 1PHK 1F3M.C 1QMZ.C 
α The template structures are named according to RCSB Protein Data Bank (PDB) [25] entries. 
 
 
Due to a large gap in the sequence alignment between the amino acid sequence of human PDGFR 
and related proteins, reliable homology modelling of PDGFR was not possible. Instead, a model of 
the 3D structure of the tyrosine kinase domain of PDGFR was made using the threading software 
3D-PSSM [26].  
 
X-ray structures of the tyrosine kinase domains of Abl kinase, EGFR, c-Src and PKA were obtained 
from the RCSB Protein Data Bank (PDB) [25]. All available PDB entries of these proteins were 
examined, and those that contained no missing residues in the ATP binding pocket were used in the 
modelling (Table 2).  
 
Table 2. RCSB Protein Data Bank (PDB) entries used in the modelling. 

Nr Protein Structures obtained from 
1 Abl PDB entries: 1FPU, 1IEP, 1M52, 1APM 
2 PKA PDB entries: 1APM, 1CDK, 1FMO, 1JBP, 1JLU, 1L3R, 1Q24, 1YDR, 

1YDS, 1YDT, 1CPK 
3 EGFR PDB entries: 1M14, 1M17 
4 c-Src PDB entry: 1BYG 
5 PKC-α Homology modelling (Table 1). 
6 PKC-δ Homology modelling (Table 1). 
7 PDGFR Structure obtained by threading (see main text). 
 

Superpositioning of the protein structures  
 
The protein structure models were aligned using the same methodology as in the homology 
modelling described above. The structures were superpositioned by rigid body searching, 
minimising the deviations between Cα and Cβ atoms of amino acids with corresponding positions 
in the sequence alignment. Only the amino acids with atoms at the surface of the binding cavity 
were used in the superpositioning. Including the Cβ atoms in the superpositioning makes the result 
more relevant to ligand binding, as information on side chain orientations is used in the 
superpositioning.  
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Generating gaussian property fields 
 
Gaussian property fields were computed for each protein on a fixed grid surrounding the ATP 
binding pockets of the proteins. A spatial resolution of 0.75 Å was used and the grid dimensions 
were 40×40×50 grid points. The alpha sphere centres are first identified and assigned either a 
hydrophobic or hydrophilic weight (ω) of  +1 on the basis of the atoms touching the alpha spheres. 
Dummy atoms are placed at the alpha sphere centres. All protein atoms are assigned negative 
weights (ω) of  - 1 for both fields. Both a hydrophilic and a hydrophobic property field are 
computed using Equation 1. 
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F is the value of the gaussian property field in grid point q of molecule j, ωik is the value of the 
physicochemical property k of atom i, riq is the distance between grid point q and atom i and σi 
corresponds to the atomic radius of atom i.  
 
Contributions from both the real protein atoms and the alpha sphere centre dummy atoms are 
included in the summation. The data was assembled into a molecular similarity matrix with one row 
for each protein and two columns (hydrophobic and hydrophilic) for each spatial grid point. Each 
column of this matrix is used as an independent variable in the regression analysis.  
 

Regression analysis 
 
Irrelevant variations are removed from the gaussian property field data by removing variables with 
a very low standard deviation (std(Fqk) < 0.1). Grid points with no positive values of Fqk for any of 
the proteins were also removed as these represent points buried in the interior of all proteins. The 
filtered property field data were used as independent variables in a PLS regression. Due to the small 
number of proteins used in this analysis, no variable selection or other form of model optimisation 
was carried out. To simplify the interpretation of the modelling result, the data from all ligands were 
analysed in the same PLSR2 model. 
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Results and discussion 
 

Example 1 
 
Gaussian property fields for the eight PKC isozymes were regressed onto the response pIC50 data 
from ten ligands using PLSR. The regression model was validated by full leave one out cross-
validation (Fig. 2), and three principal components (PCs) was found to be optimal, resulting in a 
cross-validated correlation q2 = 0.75. This is comparable to what may be achieved by other methods 
used to predict binding affinity such as CoMFA or docking [27, 28]. As no model optimisation 
other than the choice of the number of PLS components is done on the basis of this cross-validation 
result, the q2 is a fairly unbiased estimate of the predictive ability of the model [29].  
 

 
Figure 2. Predicted pIC50 from the cross-validation vs. measured pIC50 for dataset 1. The marked outliers are the data 
points of staurosporine and Ligand 1 (Fig. 1) binding to PKC-ζ. 
 
The predicted vs. measured plot (Fig. 2) shows poor predictions for two data points. Both 
predictions are for the protein PKC-ζ. The homology model for this protein was made using the 
PDB file 1PHK as primary template, while all the other homology models were made using 1STC. 
This may cause this homology model to differ from the others purely due to the choice of template, 
which may influence the predictions for this protein.   
 
Interpretation 
 
The PLSR model produces regression coefficients for each grid point. However, the regression 
coefficients are representative of one response variable only and may therefore be impractical for a 
PLSR model with many response variables. A better alternative is to use the loading weights. The 
loading weights determine the subspace of X used in the PLS regression. Every loading weight 
vector has an element for every grid point used in the model, and there is one loading weight vector 
per principal component. These can be visualised in precisely the same way as regression 
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coefficients. In practice however, the phenomena described by the loading weights themselves are 
somewhat arbitrary and may not have a physical meaning. Also, as no variable selection is carried 
out, highlighting relevant loading weights from the model is difficult. An aid in this sense is the 
scores and loading weights bi-plot. As a three-component model is used, both the scores and the 
loading weights can be plotted in the same space (Fig. 3). By highlighting interesting regions in the 
loading weights, the corresponding interaction sites in the proteins can be identified. 
 
 

A: 

B:

 
Figure 3. A: Scores and loading weight bi-plot. The PLS scores of each protein are shown as red spheres and the PLS 
loading weights of the grid variables are shown as blue dots. The selected loading weights are rendered as blue 
spheres. B: The structural origin of the selected loading weights. Hydrophobic points are shown in green. 
 
In our case, there are two particularly interesting sets of loading weights. One is protruding towards 
proteins ‘1‘ and ‘4’ and another towards protein ‘7’ (Fig. 3A). Looking at the protrusion towards 
protein ‘7’ (PKC-ζ), we find that the loading weights spanning this direction correspond to a well-
defined hydrophobic area (Fig. 3B).  
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Example 2 
 
As in example 1, property fields for the proteins were regressed onto the pIC50 values for the 37 
derivatives of STI-571 (reported in Zimmermann et al. [17]) using PLSR. The regression model 
was validated by full leave one protein out cross-validation, and one principal component was 
found to be optimal. This resulted in a correlation coefficient (q2) of 0.62 between the predicted and 
the measured pIC50 (Fig. 4). In this cross-validation the affinity for some ligands towards PDGFR 
and PKC-α is severely underestimated. In the case of PDGFR, the structure of this protein had to be 
obtained by threading. The structure may therefore be more uncertain than the structures obtained 
by experimental X-ray crystallography or homology modelling. The PKC-α structure however, was 
used successfully in example 1. 

 
Figure 4. Predicted vs. measured plot from the cross-validation of the model for dataset 2. Regions with outlying 
samples for PDGFR and PKC-α have been outlined with dashed lines. 
 
In the same way as the loading weights, the regression coefficients from the PLS regression can be 
mapped back onto the grid points, and structural regions that contribute to selectivity can be 
identified. As we have experimental structures available for several of the protein-ligand complexes 
in dataset 2, we are able to test if the results produced by our method resemble the properties of the 
actual ligands. As an example, the regression coefficients for STI-571 were plotted together with 
the X-ray structure of Abl kinase in complex with STI-571 (present in PDB [25] entry 1IEP) (Fig. 
5). Since STI-571 is known to be a selective inhibitor of Abl kinase, this can be used as a test on 
how well the results from PASSA correspond to the properties of known, selective inhibitors.   
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Figure 5. The regression coefficients for the hydrophobicity (green) for STI-571 plotted together with the X-ray 
structure of Abl kinase in complex with STI-571 (PDB entry 1IEP). 
 
The results in Figure 5 show that the regression coefficients for the hydrophobicity for STI-571 
correspond to a large degree with the hydrophobic groups of STI-571. This indicates that PASSA is 
a useful method for identification of regions in a protein binding site that can be utilised to achieve 
selective binding of ligands to the protein. However, there are also some regions of high regression 
coefficients for hydrophobicity that do not overlap with hydrophobic groups on STI-571. This is 
probably caused by the fact that closely related proteins share many structural features. With the 
low number of proteins used in this study, correlations between spatial regions that are not directly 
involved in ligand binding may cause non-binding regions to be highlighted along with binding 
regions in the analysis. 
 
 
 
The examples shown here demonstrate that the PASSA method may be used quantitatively to 
predict IC50 values for a number of ligands within a set of closely related protein targets. The 
models obtained may also provide insight into regions that are involved in ligand binding to the 
various proteins. However, due to the small number of proteins used in the modelling, the estimate 
is still uncertain and more data is needed before any firmer conclusions can be made about the 
usefulness of this method. If the level of predictive ability obtained in these examples can be 
expected generally with this method, then the use of PASSA in screening for side effects will be 
useful. 
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