
ModulaTor logo, 7.8KB

The ModulaTor
Oberon-2 and Modula-2 Technical Publication

Ubaye's First Independent Modula-2 & Oberon-2 Journal! Nr. WS, Jan-
1997

Oberon-2, a hi-performance alternative
to C++

(This article has been submitted for publication. Copyright may be transferred without further notice
and this version may no longer be accessible.)

Günter Dotzel
ModulaWare

La Chanenche
F-04340 Meolans Revel (France)

mailto:gd@modulaware.com

Wojtek Skulski
Chemistry Department and Nuclear Structure Research Laboratory

University of Rochester
Rochester, NY 14623, USA

mailto:skulski@nsrl.rochester.edu

August 26, 1996

Abstract
Oberon is a highly efficient, general-purpose programming language, descendant of
Pascal and Modula-2. It is simpler yet more powerful than its predecessors. Oberon
programs are structured, modular and type-safe. Object-oriented programming is
supported through the type extension mech- anism, single inheritance, procedural
variables, type-bound methods, data hiding and encapsulation, and garbage

collection. Both standalone and integrated Oberon compilers are available for most
types of popular computer platforms.

1. Oberon: the new Pascal
Oberon [1] is a modern, general-purpose programming language which has all the
essential features of other popular object-oriented programming languages, such as
classes, inheritance, methods and messages. At the same time, "Oberon" is also the
name of an extensible operating system [2] written in Oberon programming language.
Both, the language and the system, were developed by Prof. Niklaus Wirth and
collaborators at Eidgenössische Technische Hochschule (ETH) in Züurich. As a
legitimate heir in the Pascal family, designed by the same person who also designed
Pascal and Modula-2, Oberon is both an old and new programming language. It
relies on three decades of experience and development. At the same time, Oberon is
simpler yet more powerful than its predecessors Pascal and Modula-2.
The quotation from Einstein "make it as simple as possible, but not simpler" became
the motto of the Oberon project. This design goal was achieved by eliminating many
superfluous Modula-2 features, such as nested modules, subrange types,
enumerations, variant records and a selective import statement. Module definition
and implementation parts have been merged into one text file. In order to support
object-oriented programming (OOP), only very few new terms were added. Besides
garbage collection, the most important new language feature was type extension.
Somewhat surprisingly, the OOP methodology could be fully supported as a special
case of more general programming techniques offered by the Oberon language.
There was little need to introduce "classes", "inheritance", "methods", etc, as special
OOP terms, in addition to those already existing. In a sense, Oberon became the
world's smallest, yet fully functional OOP language.
The simplicity, gained by purging the unnecessary while adding only as few new
features as possible, resulted in a language which is easy to learn, simple to
implement, and also very efficient. Last, but not least, it is a pleasure to work with. In
this article we will try to convey this "spirit of Oberon" to the reader.
Perhaps the most important news is that the traditional procedural style is fully
supported along with OOP. One can thus write an entirely traditional program in
Oberon. This translates into a flat learning curve. Migration from Fortran is almost
automatic, at least for those who arrange their Fortran programs neatly. Also, Pascal
or Modula-2 programmers can be up and writing Oberon programs in just a couple of
hours, after browsing through the compact language report and noting new features
of the language. Naturally, learning the OOP techniques will take somewhat longer,
but this is not due to the complexity of the language itself, but rather due to the
complexity of the subject. As far as the language goes, there is almost nothing to be
learned the hard way.
One of the outstanding Oberon qualities is the mandatory modular structure of
Oberon programs, a feature retained from Modula-2. A simple example will illustrate
the point:

 (* Simple point-and-click on-screen calculator. How to use:
 (1) mark any integer with right mouse button, anywhere on screen
 (2) click middle mouse button on Adder.AddInt ^ *)

 MODULE Adder;
 IMPORT In, Out; (* Adder uses services of other modules *)
 VAR s: REAL; (* sum is not accessible from outside *)

 PROCEDURE Clear*; (** clear the sum *)
 BEGIN
 Out.String('Clearing sum'); s := 0; Out.Ln
 END Clear;

 PROCEDURE AddInt*;
 (** take integer from screen, add to sum *)
 VAR i:INTEGER; x: REAL;
 BEGIN
 In.Open; In.Int(i); x := i;
 IF In.Done THEN
 s:=s+x;
 Out.String('Adding '); Out.Real(x,10); Out.Ln;
 ELSE Out.String('Read error'); Out.Ln
 END
 END AddInt;

 PROCEDURE Show*;
 (** show the sum on screen *)
 BEGIN
 Out.String('Sum:'); Out.Real(s,11); Out.Ln
 END Show;

 BEGIN (* module initialization section *)
 s := 0
 END Adder.

 Adder.AddInt ^ Adder.Show Adder.Clear

All Oberon programs must take form of modules, like the simple on-screen adder
shown above. Compared with traditional programs written in Fortran, Pascal, or C,
Oberon programs have multiple entry points, which in this case were named
Adder.AddInt, Adder.Show and Adder.Clear, all three with obvious meaning. All
entities marked with asterisks are visible outside the module and accessible for client
modules, who can import Adder to use the services it exports. Whatever is not
marked, is hidden and thus protected from outside access.
In this way, Oberon modules are divided into hidden implementations and public
interfaces, both defined by the same source text. An interface of our adder module
can be extracted with one of the "browser" standard programs available under all
Oberon implementations. Our favorite browser called "Def" (naturally, a module
itself), will extract also the specially marked comments to produce an annotated
"public view" of our on-screen adder program:

 DEFINITION Adder;
 PROCEDURE Clear;
 (* clear the sum *)
 PROCEDURE AddInt;
 (* take integer from screen, add to sum *)
 PROCEDURE Show;
 (* show the sum on screen *)
 END Adder.

Another somewhat unusual feature is that under the Oberon System (to be discussed
later), module entry-points can be activated directly from any Oberon text-window by
pointing and clicking with the mouse. Thus, it is not by accident that we put three
"Oberon commands" right after the source listing above. These commands,
syntactically a combination of "Modulename.Entryname", form simple yet fully

functional user interface to the adder program. It is perhaps the world's simplest
\point-and-click" user interface. With no special configuration tools, any user can
develop amazingly simple "point-and-click" interactive programs in a matter of
minutes. Under the Oberon System environment, any text window can serve as user
interface to any Oberon program, as illustrated above. Consequently, there is no
conventional command shell or command line under the Oberon environment.
One should also note, that in fact any Oberon System text window is editable without
explicitly invoking an editor program, because a powerful multifont wordprocessor is
a standard builtin environment component. In order to start editing any displayed text,
it is enough to point and click the mouse at the intended spot. Program texts (typeset
in color and multiple fonts) can be compiled directly either from disk files or from any
text window. Examples of this facility can be found on the screen shots included with
this article.

2. Object-Oriented Programming in Oberon
We now turn our attention to the object-oriented side of the Oberon language. A
simple illustration is provided below. Assuming a given structured record type

 TYPE T = RECORD x, y: INTEGER END;

extensions may be defined which contain certain fields in addition to the existing
ones. For example, the following declarations

 TYPE
 T0 = RECORD (T) z: REAL END; (* extension of T *)
 T1 = RECORD (T) w: LONGREAL END; (* extension of T *)

define new types T0 and T1, with fields x, y, z and x, y, w, respectively. Both T0 and
T1 can be called "subclasses" of the base class T (this terminology is a matter of
pure convention.) Furthermore, "methods" and "method calls" are introduced as
follows:

 TYPE
 action = PROCEDURE (a,b: INTEGER): INTEGER; (* a procedural type *)
 T2 = RECORD (T)
 Add: action (* "Add" is a "method" of the T2 class *)
 END;
 VAR
 object: T2; result: INTEGER;
 BEGIN
 object.x := 123; object.y := 456;
 result := object.Add (object.x, object.y); (* method call *)
 END

This example shows, that indeed it was possible to introduce essential OOP concept
without any special OOP terminology. All that was needed was structured extensible
record types with data fields of procedural type. In this approach, a "method" is
simply a procedural data field defined for a given record type. Such a method is
"polymorphic" in a natural way, because, by their very nature, record fields can be
redefined on the fly. Data fields such as x, y, and z, may be thought of as "class
attributes".

Strictly speaking, the above approach to OOP is the one initially introduced by the
Oberon language [1]. Later on, the language revision called Oberon-2 [3] introduced
another, slightly different notation motivated by user convenience:

 TYPE
 T3 = RECORD (T) END;

 PROCEDURE (VAR me: T3) Add(): INTEGER;
 BEGIN
 RETURN (me.x + me.y)
 END Add;

In this example, procedure Add is a virtual method "bound to a type T3" through the
"receiver" parameter me. (For clarity, the receiver must be explicitely specified. In
Oberon there is no predeclared receiver name such as "self".) In derived types this
method can be redefined, under the restriction that the formal parameter list remains
the same (in this example it is empty):

 TYPE
 T4 = RECORD (T3) t, u, v: INTEGER END; (* new data fields *)

 PROCEDURE (VAR me: T4) Add(): INTEGER; (* "Add" is redefined *)
 BEGIN
 RETURN (me.x + me.y + me.t + me.u + me.v)
 END Add;

Invoking the method "Add" is performed as follows: result := object.Add(); this time
there is no need to explicitly pass the parameters. Hence, the parameter list is now
empty. The correct version of the method being called is determined at run time,
depending on which type of the "instance variable" one is dealing with. If it is T3, the
Add variant bound to T3 will be called, and the sum of two numbers will be returned.
If it is T4, five numbers will be added together.
We want to stress, that this more conventional approach to OOP methods was
introduced only for convenience of those users who already learned OOP elsewhere.
The original Oberon style is still retained for the purists. The difference between the
two is of secondary importance, and one can mix both OOP styles in the same
program.
Because of the conceptual simplicity outlined above, the Oberon language is easy to
learn and to use. It is a reas- onable choice for education [5], programming in the
large [2] and in consequence also for industrial software development. The rest of
this article will be arranged in the "question and answer" style in order to keep
presentation simple.

Does Oberon support dynamic arrays and matrices?

The multi-dimensional "open array" is the standard feature of the language. The
following example shows, how to allocate at run-time a one- and a two dimensional
array with 50 elements in each dimension.

 TYPE
 Open1Array = POINTER TO ARRAY OF REAL; (*1 dim *)
 Open2Array = POINTER TO ARRAY OF ARRAY OF REAL; (*2 dim *)

 VAR
 My1Array: Open1Array; My2Array: Open2Array;
 BEGIN
 NEW (My1Array, 50); (* dynamic allocation *)
 FOR i := 0 TO LEN(My1Array)-1 DO
 My1Array[i] := 0.0;
 END; (* FOR i *)

 NEW (My2Array, 50,50); (* dynamic allocation *)
 FOR i := 0 TO LEN(My2Array,0)-1 DO
 FOR j := 0 TO LEN(My2Array,1)-1 DO
 My2Array[i,j] := 0.0
 END (* FOR j *)
 END (* FOR i *)
 END;

Comparing this example with Fortran, one can see that array indices always start at
0, like in C! Naturally, one can always find a few such inconveniences in the Oberon
language. Another inconvenience is lack of built-in COMPLEX data type (it is
however a standard part of AlphaOberon [6]). Complex numbers have been
implemented as a library module.

Is Oberon language type safe?

Type safety was the foremost consideration of the language design. Compared with
Fortran or C, Oberon is almost absolutely safe, what is quite remarkable for an
extensible language relaying heavily on dynamically allocated data structures. Safety
was achieved by static type checking during compilation time (also across module
boundaries), dynamic type checks at run-time, as well as pointer safety facilitated by
garbage collection. Both the compiler and the runtime system enforce that if a
module interface has changed, all its clients have to be recompiled. Very few security
gaps still remaining are well documented and can be easily avoided.
In order to facilitate low-level programming, features to breach the type system are
provided through a special standard module named SYSTEM. The correctness of
any given program module can be rigorously proven based on the imported module
interfaces, under the precondition, that the import of module SYSTEM is not visible in
the interface. Although symbolic post-mortem and run-time debuggers are available,
in practice there is very little need for debugging Oberon programs, and no need at
all for any kind of a "lint utility". Most programming errors are detected at compile
time. Few remaining ones are easily pinned down with the help of the ASSERT
standard procedure.

Is it garbage collected?

Garbage collection is provided and automatically triggered, when heap space is
critical. For example, most implementations of Oberon layered on-top of existing
operating systems such as Unix, invoke the garbage collector each time when
opening a file.

Can the user define new types/classes?

Yes, this is the single most important new feature of the language, as compared to its
predecessors Pascal and Modula-2. Classes are simply record types with procedures

bound to them. There is no need to duplicate the headers of bound procedures in the
record as it is done in other object-oriented languages like C++ or Object Pascal.
This keeps record declarations short and avoids unpleasant redundancy. The "class
browser" standard tool utility allows to list the record types together with all
procedures bound to them.

Does it truly support OOP?

Oberon is termed a "hybrid language". It supports OOP via extensible types, single
inheritance, polymorphism, value and reference based objects, two categories of
visibility, i.e.: public and hidden attributes and methods, run-time type information and
persistent objects. However, Oberon is by no means "OOP only". Not everything has
to be classes. Quite the opposite, the traditional procedural style is supported along
with OOP. One can write an entirely traditional program in Oberon, or one can
arrange everything in classes. Both approaches can also be mixed. This gives a
programmer the best of both worlds, what can be attractive for those users, who want
to learn OOP gradually. Migration from Fortran to Oberon is almost automatic, at
least in case of cleanly written Fortran programs.

Encapsulation, dynamic binding, inheritance?

Encapsulation of abstract data types is provided through the module concept, similar
to Modula-2. Separate "definition" and "implementation" modules were dropped from
Oberon. Exported items are simply marked by an asterisk following their declarations,
or a dash in case of the read-only export. A single source file per module simplifies
the maintenance overhead. Whatever is not marked for export, is invisible for clients
and thus encapsulated.
Automatic dynamic binding is supported for the "type-bound" methods explained
above (the Oberon-2 method style). The traditional Oberon-1 methods are simply
procedure variables assigned "by hand" to respective record data fields of procedural
type. These methods are statically bound to every variable instance. They can be
thus reassigned at any time. This is particularly useful in GUI systems, where the
behavior of a given object can be changed on the fly by changing its handler
procedure (one of object's procedural data fields). As already mentioned, both OOP
styles can be freely mixed, where appropriate.
Only single inheritance is provided in Oberon. Arguably, this provides the same
flexibility as multiple inheritance known from C++, but avoids the problems
associated with the latter. As shown by Mössenböck [3], solutions equivalent to
multiple inheritance can be easily achieved using single inheritance mechanisms.
Multiple inheritance was therefore not introduced into the Oberon language. The
same was true with operator overloading: benefits were not worth the cost and
problems.

Is Oberon simple to learn and use?

Oberon is perhaps the simplest of all OOP languages. The complete defining
Oberon-2 language report [3] has only 28 pages including examples and appendices
with formal description of syntax, definition of terms, compatibility rules and the
SYSTEM module. This concise language report compares favorably with hundreds of
pages needed to define some other modern programming languages. Because of the

traditional side of the language, Pascal or Modula-2 programmers will need only a
couple of hours to start writing Oberon programs. Naturally, learning OOP techniques
will take longer, but not because of the complexity of the language itself, but rather
because of the complexity of the subject. As far as the language is considered, there
is almost nothing to be learned the hard way.
A remarkable feature of typical Oberon programs is their small size and small
manpower needed for development and maintenance. Oberon programs are typically
measured in kilobytes, not in megabytes. For example, in spite of their great
sophistication, most implementations of the Oberon System can be distributed on
single floppy disks, and they can be effectively supported by very small developer
teams.

What kind of documentation is available?

Many articles and books were published on Oberon, see the bibliography section
below. In addition, very good on-line documents are included with every Oberon
System release. Text-, graphics-, expression-, and formula-editor, application
programming interface, hypertext elements, various tools and games, are all
thoroughly documented. The user can print these documents from within his/her
environment, to have them handy.

What kind of libraries are available?

There is a standard set of library modules, common to all Oberon System releases,
since it is in fact an operating system of its own. Concerning libraries specific to
physics or math, there are few. This is naturally due to the fact that physicists have
not used Oberon much till now. However, a few library development projects are
underway. This relative lack of libraries is not as serious as it sounds, since most
existing Fortran and Pascal routines port easily, due to the "traditional side" of the
language. It takes usually only about half an hour to port a couple of Numerical
Recipes Fortran subroutines. Changes are mostly mechanical.

Can one link Oberon with other languages?

Calling other languages from the Oberon System is system-specific and depends on
whatever dynamic link/load facilities exist in the host operating system. Most Oberon
System implementations allow operating system calls, such as calling Unix, Mac
Toolbox, or Windows API. AlphaOberon allows to call any foreign language routine of
any shareable image. This includes all system- and run-time library routines, as well
as access to X11/OSF/Motif. Stand-alone Oberon-2 compilers generally allow foreign
language calls.

What kind of programming environments are available for Oberon?

Among many integrated Oberon environments available, there is an outstanding one
called the Oberon System [2, 4] It originated as a complete graphical operating
system for a particular computer hardware developed at ETH-Zürich. Two different
variants of the Oberon System, version 3 and 4, emerged by now. Architecturally, V3
is entirely based upon persistent objects, whereas V4 is not, but at the same time V4
is less complex than V3. Both versions include everything needed to efficiently

conduct everyday work, such as a compiler, a programming library including a simple
yet very effective graphical user interface, and a sophisticated multifont text
processor complete with hyper-text elements and pop-up menus embedded in any
text (even in source programs). The standard Oberon System editor is extensible in
functionality. Many useful extensions of this basic system already exist, which include
text formatting, formula editor, and graphics elements.
Additionally, optional graphical user interface kits are available under both V3 and V4
environments, featuring sophisticated pop-up menus and a wide range of
configurable dialog boxes (Dialogs [7], Gadgets [8]). The tool set available under V3
is particularly impressive. It includes a program formatter, spreadsheet, sorter, mailer,
WWW browser, Java interpreter and many games such as Tetris and MineSweeper.
Most programs are available with source code.
The Oberon System (either V3 or V4) is available for all popular platforms: Amiga,
DECAlpha (OpenVMS), MacII, PowerMac, PC (DOS, Windows, WNT/Win95, OS/2,
Linux), NeXt (both Intel and 68k), Unix (DECStation/MIPS, HP-9000/HP-UX,
RS6000, SGI, SunSparc/Solaris). On these platforms, the Oberon System runs as an
application under the control of the host operating system. The Oberon System has
exactly the same look-and-feel, regardless of the platform it runs on. Texts and
graphics are portable across all platforms, regardless of byte ordering (little or big
endian). Most Oberon-2 programs, written with this environment in mind, can be
ported to all platforms mentioned above by simple recompilation.
Of special interest is the Native Oberon System for PC, currently in beta-testing
stage. This version of the System V3 runs on a bare PC hardware. It includes all of
the tools and components already mentioned.
Dynamic loading is the default mode for Oberon System. No separate linking step is
required. Compiled modules are automatically loaded and linked when any item
belonging to the module is referenced for the first time. This feature, called "lazy
module loading", allows to load and start large application programs very fast.
Neither the number of modules nor their names need to be known a priori when
invoking a program.
Oberon programs can be extended at run-time by adding new modules, or by
replacing an active module by a modified and newly compiled version. This can
happen also when other parts of the application remain loaded into computer
memory. Oberon System is thus an unusual programming environment, because it
allows piece-wise modification of active applications when the applications are
running. Since Oberon compilation is blazingly fast, this translates into very efficient
software development cycle.

What about conventional programming environments?

For those users who prefer to work under their traditional environment, several non-
integrated, command-line Oberon-2 compilers are available, both public domain and
commercial. For example, a free o2c Oberon-to-C translator can be integrated in the
emacs environment. o2c has been ported to a great variety of platforms. The
commercial Oberon-to-C translator Ofront can be used both in the standalone
command-line mode and in the integrated environment mode. The same is true for
the commercial implementation for DECAlpha: it features both, a stand-alone
compiler producing OpenVMS object files, as well as the version of the compiler
embedded in the Oberon System (AlphaOberon). Other variants of the Oberon
System for Windows and Mac exist, which are "integrated into" the windowing system

of the host operating environment, and thus follow conventional "look and feel" of
respective platforms.

Does Oberon come with source code?

The original Oberon System was published with full source including the compiler. As
of time of this writing, a few other implementations were also released with full
source: Amiga, Macintosh (both 68k and PowerPC) and Windows versions of the
Oberon System V4. (The source of other implementations is available on request.)
The Oberon-to-C translator o2c also comes with full source.

Which implementation is good for me?

With so many different Oberon implementations available, one does not fit all. Which
one is the best for the reader, depends on the application. If one wants to link Oberon
code with existing libraries, then either freeware o2c or commercial Ofront will be the
best choice, or commercial AlphaOberon for the DECAlpha platform. Users
interested in "all in one" environment can pick up either V3 or V4 environments. Both
are ideal for interactive data processing. Their invaluable asset is virtually no GUI
overhead since effective GUIs are provided in different flavors. One can adopt either
the austere default Oberon GUI, or very sophisticated add-on packages like Dialogs
or Gadgets. One can thus develop fully interactive programs with minimum
investment. (An example of an on-screen interactive adder was given above.)

What kind of applications is Oberon best for?

In the past, the programming language Pascal suffered from the "mostly teaching
language" opinion. The same should not happen to Oberon, which should be
regarded as a general-purpose programming language. The very first program ever
written in Oberon was a sophisticated graphical operating system [2] proving the
language to be a suitable tool for large-scale system programming. Oberon is
currently being used for distributed programming, database access, interactive data
analysis, image processing, and for CAD design. As an example, the Trianus project
[9], currently underway at ETH Zürich, focuses on designing electronic circuits with
Field-Programmable Gate Arrays (FPGAs). For this purpose a multiple-view editor is
being developed, which presents a design textually and graphically. With the aid of
this editor, a designer can manipulate a circuit layout under the constraints of a
textual specification provided by the textual view. By closely coupling the
representations, circuit information, e.g. signal delays, is instantly available.
An example of interactive data analysis with Oberon is the Voyager project
developed at StatLab Heidelberg [10]. It focuses on an extensible portable
programming environment for statistical computing and simulation, based on Oberon
System. This and many other Oberon projects can be accessed over the Internet.
In addition to these "real world" applications, Oberon can and should become a
serious alternative to Pascal in education. Several programming environments, which
are freely available for the most popular PC and MacIntosh platforms, afford to setup
student programming courses at no cost. An instructor can teach both traditional
procedural programming style and the new object-oriented techniques using the
same programming language and environment. Novel object-oriented GUIs such as
Dialogs or Gadgets can become standard topics of programming courses focused on

Oberon System. At the same time, versions of the environment embedded in the
traditional MS-Windows and MacOS environments (also free for educational use) can
be useful to teach more traditional GUI techniques. More details are available
through the "Oberon in education" home page [5]
Recently a new exciting Oberon project [11] named "Juice" was released by the
University of California at Irvine. Juice is a new technology for distributing executable
content across the World Wide Web. It is thus similar to Java from Sun
Microsystems. However, Juice outperforms Java in many "downloadable Applets"
applications, especially large ones. Rather than being interpreted, as Java applets
normally are, Juice always compiles each applet from its mother tongue Oberon into
the native code of the target machine. Juice's on-the-fly compilation is not only very
fast, but it also generates object code that is comparable in quality to commercial C
compilers. Further, Juice avoids many of the Java security issues, because strong
type checking makes it virtually impossible to write an applet that violates security
rules imposed by the Oberon source language. The Juice project can be accessed at
http://www.ics.uci.edu/~juice/.

3. Summary
The simplicity gained by purging unnecessary features is an invaluable asset of
Oberon, which is perhaps the only programming language which solves more
problems than it creates. Oberon is a sound tool to conduct serious work. The reader
who wants to try out one of existing Oberon implementations, can download one
them from the Internet and install in less than an hour. For beginners, one of the
integrated versions is recommended. Most integrated environments fit on a single
floppy, and they include documentation and host of useful tools. For serious
development, either the integrated or standalone compiler can be a better choice,
depending on concrete project. The Oberon development community is very
vigorous. New versions of Oberon tools appear frequently.

4. Acknowlegments
We are indebted to our friends from ETH Zürich and from Univ. Linz for all their great
Oberon work and for many discussions. Guy Laden contributed valuable comments
on the draft version of the manuscript.

5. References
Oberon on the Web

A complete summary and details of all existing implementations of Oberon systems,
compilers, related documentation, applications, an research papers, can be found on
the Web at http://www.math.tau.ac.il/~laden/Ob-pkgs.html

The collection of The ModulaTor TechJournal is at
http://www.modulaware.com/mdltr_.htm

Bibliography

[1] : N. Wirth and M. Reiser: Programming in Oberon. Steps beyond Pascal and
Modula. Addison Wesley, 1992, ISBN 0-201-56543-9. Tutorial for the Oberon
programming language and concise language reference.

[2] : N. Wirth and J. Gutknecht: Project Oberon. The Design of an Operating System
and Compiler. Addison Wesley, 1992, ISBN 0-201-54428-8. Program listings with
explanation for the whole system, including the compiler for NS32000 processor.

[3] : H. Mössenböck: Object-Oriented Programming in Oberon-2. Springer, 1993,
ISBN 3-540-56411-X. Principles and applications of object-oriented programming
with examples in the language Oberon-2.

[4] : M. Reiser: The Oberon System. User Guide and Programmer's Manual. Addison
Wesley, 1991, ISBN 0-201-54422-9. Addison Wesley, 1992, ISBN 0-201-56543-9.
User manual for the programming environment and reference for the standard
module library.

[5] : "Oberon in Education" home page: http://www-cs.inf.ethz.ch/Oberon/Education.
See also J~urg Gutknecht's article Oberon in Education" in the ModulaTor.

[6] : Günter Dotzel: OpenVMS Alpha Modula-2 and Oberon-2 Compiler Project. In:
Peter Schulthess (Hsg.): Proceedings of the Joint Modular Languages Conference,
Universit~atsverlag Ulm, 1994. Revised edition in HTML at
http://www.modulaware.com/max_sum.htm

[7] : M. Knasmüller: Oberon Dialogs, User's Guide and Programming Interface.
Institut für Informatik, Johannes Kepler Universität Linz, Report No. 1, 1994.
http://www.ssw.uni-linz.ac.at/Projects/Dialogs.html

[8] : J. L. Marais: The Gadgets User Interface Management System. Department
Informatik, ETH Z~urich, Report No. 144, 1990.
http://huxley.inf.ethz.ch/~marais/Spirit.html

[9] : N. Wirth home page: http://www-cs.inf.ethz.ch/Wirth/Gruppe.html

[10] : The Voyager project: http://statlab.uni-heidelberg.de/projects/voyager/

[11] : The Juice project: http://www.ics.uci.edu/~juice/

Fig. 1. Oberon System 3 graphical user interface named Gadgets. The figure shows
a snapshot of the Oberon desktop with several overlapping documents. Every
graphical element in this figure, from the desktop to the smallest button, is a Gadget
itself. The Native PC Oberon System (now in beta development stage) will feature
Gadgets user interface.

Fig. 2. The Oberon System Version 4 featuring a very efficient user interface
consisting of tiled windows. In addition to multiple fonts and colors, the standard
Oberon editor Edit supports "active text elements" such as pull down menus and
hypertext folds. Figures, like the one shown, can be edited directly in the text where
they appear. Programs can be compiled directly from editor windows.

This article is also available for download in GNUzipped PostScript format at
ftp://nuchem.nsrl.rochester.edu/pub/Oberon/CiP/NewestDraft.ps.gz

This article appeared in Computers in Physics, Vol 11, No. 1 (Jan-1997), American Institute of
Physics.

[Home | Site_index | Contact | Legal | Buy_products | OpenVMS_compiler | Alpha_Oberon_System |
XDS_family | ModulaTor | Bibliography | Oberon[-2]_links | Modula-2_links | Effekta_onduleurs |
General book recommendations]

Books Music Video
Amazon.com log

Enter keywords...

Search

webmaster@modulaware.com, 20-Mar-1999. © (1996-1999) Günter Dotzel, Wojtek Skulski.

