

A Comparison of C++, FORTRAN 90 and
Oberon-2 for Scientific Programming

Bernd Mösli
ARITHMETICA

CH-8307 Effretikon, Switzerland
moesli@arithmetica.ch

May 12, 1995

Abstract

In the past decade, the programming languages C++, FORTRAN 90 and Oberon-2 allevolved
from their ancestors. This invites to reflect upon the suitability ofthese modern programming
languages for scientific and engineering computing. Inthe first part, we compare their primary
language features, as needed byscientists and engineers. In the second part, we list some
useful featuresmissing in Oberon-2. The report concludes by a personal assessment of the
threelanguages with respect to the numerical context. The reader's experience inscientific
programming in C or FORTRAN would be advantageous.

1 Introduction

Business computing holds the major share of the computer market. Here COBOL,PL/1 and C
have been the languages of choice, but C slowly supersedes itscompetitors in recent software
projects.
 Scientific computing holds a minor market share. FORTRAN 77 dominatedprogramming in
science and engineering in the past. The importance of Cincreases in all programming fields,
especially in science and engineering.Data have been the primary valuables of business
computing, while programs havebeen the primary valuables of scientific computing. Hence,
switching fromFORTRAN environments to C or Oberon is generally more laborious than
switchingfrom COBOL environments to C or Oberon.
 The small remainder of the market is shared by dedicated applications, assystem software,
for example. Oberon [6, 9] evolved from Modula-2[5]. Oberon-2 [7, 8, 19] has been and will
be a valuablealternative to C++ [1, 2] in any context, where general-purposeprogramming
languages are appropriate [10, 11]. We compare Oberon-2 onlyto C++ and FORTRAN 90 [3,
4], since these programming languages areextensions of their wide-spread ancestors C and
FORTRAN 77. In the following, afamiliarity with these languages is expected.

2 Comparison

We compare only the main language features being of interest in a scientificand engineering
context [12, 13, 14,15, 16, 17, 18]. Object-orientedfeatures are not discussed (see [19, 20, 21,
22]).

2.1 Identifiers and Reserved Words

Identifiers consist of a sequence of uppercase and lowercase letters,underscore characters and
digits with leading letter.
C++: Reserved words consist of lowercase letters.
FORTRAN 90: Any identifiers up to 31 characters. Pitfall: reserved words maybe valid
identifiers.
Oberon-2: No underscore characters allowed. Reserved words consist of uppercase letters.

2.2 Records

After more than three decades, FORTRAN 90 offers the record type. While somelanguage
designers luckily leave out packed records (used in Pascal), C++and Modula-2 allow variant
records that are unsafe or inefficient(run-time checking of the variant).
C++: Variant records, initialisation aggregates.
FORTRAN 90: Records and initialisation aggregates. The sequence statementforces record
fields to be stored in order of definition.
Oberon-2: Exported record types may have public fields (visible outsidethe module) and
private fields. Record types may be extensions of anotherrecord type. No initialisation
aggregates available.

2.3 Multidimensional Arrays

It should be possible to create multidimensional arrays at run-time. The staticmemory
management of FORTRAN 77 caused long parameter lists of procedures. Thelocal temporary
arrays (workspace) and array dimension had to be passedas parameters. The creation of
global and local multidimensional arrays (withpossibly no elements) at run-time, allows safe
array handling and readablesource code. The restriction to 7 dimensions in FORTRAN does
not harm.
C++: Static multidimensional arrays, dynamic one-dimensional arrays. Lowerindex bounds
are always zero.
FORTRAN 90: Static and dynamic multidimensional arrays up to 7 dimensions.
Indexbounds may be declared. Lower index bounds of arrays in parameter lists ofprocedures
may be declared.
Oberon-2: Dynamic multidimensional arrays. Lower index bounds are always zero.

2.4 Use of Uninitialised Variables

Using uninitialised non-pointer variables invalidates the program run (wrongdata, number
overflow, array index error, etc.), but processing invalidpointers or procedure variables may
crash the run-time system. The latter ismore harmful than the former.
C++: Possible.
FORTRAN 90: Possible.
Oberon-2: Possible. Local pointers may be initialised to NIL automatically,global pointers
are always initialised to NIL.

2.5 Pointer Manipulation

Low-level pointer manipulation should be restricted to modules close tohardware as device
drivers, for example. Pointer manipulation is oftenresponsible for software flaws and prevents
portability.
C++: Abuse is easy, even constants or stack objects could be defected.

FORTRAN 90: None.
Oberon-2: Only by explicit type cast.

2.6 Dangling References

Dynamic data structures and abstract data types are usually implemented throughpointers.
When explicit deallocation of objects is possible, unintentionaldereferencing of dangling
pointers leads to system corruption, which ishard to debug.
C++: Possible.
FORTRAN 90: Possible.
Oberon-2: Safe, because no explicit freeing of objects (garbage collection frees objects).

2.7 Logical Objects and Operators

Logical objects and operators are part of conditional statements anyway. Theintegers zero and
one are no adequate substitutes for logical values false and true , they rather confuse the
programmer. The rather simpleC++ statement "if(a=b && c+d<e)f" is legal.
C++: No logical objects but bitwise operations on characters,enumerations, integers and bit
fields. Conditions return integer values.
FORTRAN 90: Type LOGICAL with operators.
Oberon-2: Type BOOLEAN with operators.

2.8 Set Objects and Operators

Bit sets need less storage and operations are faster, compared to arrays oflogical values. In
some application fields, restricting to bit sets is notflexible enough.
C++: Set operations on integers, bit access by masking.
FORTRAN 90: Set and bit operations on integers.
Oberon-2: Set and bit operations on bit sets.

2.9 Relations

Beneath simple comparison operators, relations of structured types should bepossible.
Relation overloading is necessary for abstract data types.
C++: Relations apply to characters, enumerations, numeric and pointer types.Warning:
"a<b<c" means "(a<b)<c" and not "(a<b) and (b<c)".
FORTRAN 90: Relations apply to strings and numeric types except complex types,equality
applies to complex types.
Oberon-2: Relations apply to numeric types, characters and strings, equalityalso applies to
logical, set, pointer and procedure types.

2.10 Arithmetic Operators

The numerous numeric types are rather hindering than a benefit. The unsignedintegers in C++
(and Modula-2) have been primarily used for address arithmetic.The type COMPLEX of
FORTRAN could be implemented by structured functionresults and operator overloading.
The subtypes in FORTRAN 90 causes even moreproblems. Mixing different numeric types in
expressions leads to conversionproblems. It is tricky to manage operator overloading and
automatic typecoercion simultaneously. It is quite stupendous that none of these
programminglanguages supports fixed point numbers for business computing. The number

ofdecimal digits in 32-bit integers and 32-bit reals are by far too small. Ingeneral, the
definition of numeric types (no minimum range!) and operatorsshould be more precise and
portable.
C++: +,- apply to characters, enumerations, numeric and pointer types.*,/ apply to characters,
enumerations and numeric types. % (remainder)applies to characters, enumerations and types
where x = (x/y)*y + (x%y)holds, but for xɘ or yɘ the sign of the remainder is
implementationdependent [1] ! No complex type.
FORTRAN 90: +,-,*,/,** (exponentiation, a**b**c = a**(b**c) but2**(-3) truncates to zero)
apply to integer, real and complex types.Fractions of integers are truncated towards zero.
Oberon-2: +,-,*,/ (/ with real result), DIV (integers only, round to- infinity), MOD (integers
only, modulus) where x = (x DIV y)*y + (xMOD y), 0<=(x MOD y)<y holds. Numeric types
are coerced automaticallyaccording to the so-called type inclusion : SHORTINT <=
INTEGER<= LONGINT <= REAL <= LONGREAL. No complex type.

2.11 Go-to Statement

The lack of well-structured control statements in older programming languageslead to
excessive use of the harmful go-to statement. Maintaining so-calledspaghetti code is
expensive.
C++: Unconditional go-to, return statement in procedures, break statement initerations and
switch (case) statements.
FORTRAN 90: Unconditional go-to, arithmetic if (a conditional jump), computedgo-to (a
case statement), assigned go-to (a jump to label variable). Returnstatement in procedures.
Oberon-2: No explicit go-to, but return and exit statements in procedures and loops.

2.12 Procedures and Parameters

C++: Types and number of parameters are checked except for special procedures(as printf),
where the number of parameters is unspecified. Optionalparameters are possible. Parameter
passing: call by value (modify local copy),call by reference (modify original), and call by
reference with prefix const (read-only). Arrays can not be passed by value. The number of
array elements must be passed separately.Procedure variables are pointers to functions.
FORTRAN 90: Types and number of parameters are checked. Optional parametersare
possible. Parameter passing: call by value or call by reference (compilerdecision)! The
programmer may assign attributes to parameters: in forread-only parameters, out for
returned, and inout for modifiedparameters. The number of array elements may be passed
separately (assumed-shape array, automatic array). Procedure variables must be external
ormodule procedures.
Oberon-2: Types and number of parameters are checked. Parameter passing: call byvalue and
call by reference. Procedure variables can not be predefined procedures.

2.13 Recursive Procedure Calls

Calling procedures recursively allows adequate programming of numerousalgorithms based
on divide and conquer.
C++: Possible.
FORTRAN 90: Possible when procedure marked as recursive.
Oberon-2: Possible.

2.14 Overloading of Procedures and Operators

Procedure and operator overloading supports implementation of libraries.Operator precedence
and associativity is important. Overloading of predefinedprocedures and operators should be
possible.
C++: Overloading of procedures and operators, definition of new operators.
FORTRAN 90: Overloading of procedures and operators, definition of newoperators.
Oberon-2: None.

2.15 Exception and Error Handling

An error handling by the programmer enables handling of exceptions or errorswithin libraries.
Preventing some errors is often less efficient and morecomplicated than handling exceptions,
as numeric overflow, for example.
C++: By exception handler.
FORTRAN 90: None.
Oberon-2: None.

2.16 Language Support for Parallelism

Parallelism is needed to solve large and time-consuming problems in science,engineering and
business. Actually, the oldest languages are used to programsupercomputers. Parallelism
should be supported by modern general-purposeprogramming languages.
C++: None.
FORTRAN 90: No explicit parallelism, but implicit parallelism in arrayoperations.
Oberon-2: None.

2.17 Programs and Compilation Units

A program consists of several compilation units , each encapsulatingdata declarations and
code. Compilation units are compiled and storedseparately. The compilation unit interface
controls access to dedicatedlocal objects. Interface consistency means that the interface is
consistent withclient and server.
C++: Files are compilation units. Interface objects are declared in so-calledheader files .
Interface consistency is not checked.
FORTRAN 90: A program consists of one compilation unit (main program) andoptional
compilation units (modules, external functions and procedures). Theobject attributes private
and public in modules control the accessof clients. Interface consistency is not checked, but
user may copy theinterface into compilation unit as so-called interface block , which
ischecked locally.
Oberon-2: Modules are compilation units. Interface objects are marked in thesource. Read-
or-modify control for exported variables is available. Interfaceconsistency is checked.

3 Features Missing in Oberon-2

Oberon-2 needs additional features to enlarge the field of application. Some ofthe features
described subsequently are new, while some fit well in the presentlanguage definition [8, 19].
Features of minor importance, as exception handling, are not listed. The first four features
primarily improve readabilityand flexibility. Library programmers will benefit most. The last
feature,parallelism, is mandatory for future languages, since parallel computing willsoon be
available on workstations and personal computers. At present, parallelsystems are mainly

programmed in FORTRAN and C (with hardware-dependentlanguage extensions). If Oberon
will not offer parallelism soon, it will hardlybe possible to compete with future C++ and
FORTRAN 90 environments.

3.1 Arrays

The array features are important for porting the FORTRAN libraries to Oberon-2.In Oberon-
2, constant arrays are missing. For initialisation of arrays,see aggregation. FORTRAN 90 has
a different storage representation of arrays(column-by-column) than C++ and Oberon-2 (row-
by-row). This impedes calling ofFORTRAN libraries by C++ or Oberon-2 programs. The
different lower arraybounds are a severe obstacle for porting FORTRAN software to C++ and
Oberon-2.

3.2 Arbitrary Function Result Types

Actually, the result type of a procedure can be neither a record nor an array.Arbitrary types as
function results allows more compact and readable sourcecode. Combined with overloaded
operators, the language permits orthogonalextensions of expressions. The type COMPLEX
should be offered by a portablelibrary module, and not by the compiler (as FORTRAN does).
The compilercomplexity will be reduced. The flexibility will be enhanced. See
alsoaggregation and operators.

3.3 Operators

The language is more orthogonal, readable and flexible when some operators maybe
overloaded. Abstract mathematical data types (complex numbers, matrices,polynomials etc.)
will be easier to implement. This supports sophisticatedprogramming, as used in mathematical
expert systems or software libraries.There may be some pitfalls when using numeric type
hierarchy and automatic typeextension in mixed mode. It is advantageous to merge the
numeric type hierarchyin the operator concept. Arbitrary operator definitions, as in PROLOG,
shouldbe omitted for simplicity.

3.4 Aggregation

Aggregates lightens the initialisation of structured types (records, arrays,etc.) in definitions
and assignments. This is cumbersome and error-prone whenprogrammed explicitly. The code
will be more efficient and more readable.

3.5 Parallelism

This feature is most ambitious [24]. Some challenging problems (weatherforecast, fluid
dynamics, molecular design etc.) are very time-consuming. Theyrequire the computing power
of parallel systems, since the hardware developmentof sequential computers (temporarily)
reaches physical or commercial limits.Hence, Oberon-2 should offer parallelism to tackle this
performance problem. Inaddition to efficiency, parallelism is a valuable structuring tool. An
Oberonextension for vector computers is described in [23]. The programming ofsequential
computers would benefit too.

4 Summary

We compile a comparative overview of the language features. The marks mean:-- no support,
- poor, + average, ++ good support. Most motives for theranking are discussed in the first part
of this paper.

Feature C++ F 90 O-2
the language is easy to learn, easy to use -- -- ++
one language construct per features only - -- +
are numeric libraries for the language available - ++ --
object-oriented features + - +
exception and error handling - -- --
support for parallelism -- - --
block-structured features - -- +
go-to like statements avoided - -- +

variable initialisation in definition ++ + --
logical and set types - - ++
type complex -- ++ --
record extension/variants + - ++
initialisation aggregates for records + + --
safe multidimensional arrays -- + ++
user defined lower index bound -- ++ --

safe pointer handling -- ++ +
forced pointer initialisation -- -- +
omit dangling references -- -- ++

all types as procedure parameters - - +
call by value of procedure parameters - + ++
call by reference of procedure parameters + + ++
arbitrary function result types + + +
procedure and operator overloading ++ ++ --
procedure recursion available + ++ +
safe module and interface -- - ++

After three decades, the FORTRAN language became a partly useful patchwork ofnumerous
features, reflecting the history of software techniques. Actually, toomany constructs cover the
same features with different side-effects andrestrictions. This aggravates software
development, and is of no benefit atall. The dusty decks will keep dusty.
 In the chapter "design notes" [1], the author writes, "Simplicity was animportant design
criterion for C++ ..."! But the language reference chapter forC++ covers about 150 pages,
versus less than 30 pages for Oberon [9] orOberon-2 [19]. A tool should support the solving
of problems, not createproblems. The originally hardware-oriented design lacks a sound

programmer-oriented model. C++offers too many concepts. Their interaction is error-prone.
 We listed some features to be included in Oberon-2. Applications written inthis value-added
Oberon-2 will be safer and more readable. At present,Oberon-2 implementations are not less
efficient than C++ implementations atall. The language is easier to learn than FORTRAN 90
and C++; compare the sizeof their reports; [1] 680 pages, [3] 740 pages, and [8] 16pages. The
small number of language constructs facilitates a correct compilerimplementation. The
programmer easily understands and memorises theinterference of Oberon-2 constructs, which
is hardly possible for FORTRAN 90 and C++.

Conclusions

At present, the old-fashioned but value-added FORTRAN 90 seems to be inevitablefor
scientific and engineering work, when one of the numerous FORTRAN librariesis required.
 When starting from scratch, or when the necessary numerical libraries areavailable, Oberon-
2 competes with FORTRAN 90 and C++ at ease. We prefer usingan improved Oberon-2 to
master complex systems, for not being mastered bycomplex systems written in FORTRAN or
C.

Acknowledgements

The author would like to thank the referees for helpful suggestions, and JörgWaldvogel,
Seminar for Applied Mathematics ETH Zürich, for carefully reading this paper.

Bibliography

[1] B. Stroustrup: The C++ Programming Language, Addison-Wesley, 1993.

[2] B. Stroustrup: The Design and Evolution of C++, Addison-Wesley, 1994.

[3] J.C. Adams, W.S. Brainerd, J.T. Martin, B.T. Smith, J.L. Wagener:Fortran 90 Handbook.
Complete ANSI/ISO Reference, McGraw-Hill, 1992.

[4] M. Metcalf, J. Reid: Fortran 90 Explained, Oxford University Press, 1990.

[5] N. Wirth: From Modula to Oberon, Dept. Informatik, Report 143, ETH Zürich, 1990.

[6] N. Wirth: The Programming Language Oberon, Dept. Informatik, Report 143, ETH
Zürich, 1990.

[7] H. Mössenböck, N. Wirth: Differences between Oberon andOberon-2, Structured
Programming, Vol. 12 Iss. 4 p. 175-177, 1991.

[8] H. Mössenböck, N. Wirth: The Programming LanguageOberon-2, Structured
Programming, Vol. 12 Iss. 4 p. 179-195, 1991.

[9] M. Reiser, N. Wirth: Programming in Oberon. Steps beyond Pascal and Modula,
Addison-Wesley, 1992.

[10] M. Reiser: The Oberon System. User Guide and Programmer's Manual, Addison-
Wesley, 1991.

[11] J. Gutknecht, N. Wirth: Project Oberon. The Design of anOperating System and
Compiler, Addison-Wesley, 1992.

[12] T.D. Brown: C for FORTRAN Programmers, Silicon Press, 1990.

[13] R. Schäfer, F. Bomarius: Modula2C. Ein Übersetzer vonModula-2 nach C, Report 178,
Universität Kaiserslautern, 1988.

[14] C.A. Wiatrowski, R.S. Wiener: From C to Modula-2 and Back.Bridging the Language
Gap, Wiley & Sons, 1987.

[15] J.T. Smith: C++ for Scientists and Engineers, McGraw-Hill, 1991.

[16] Fortran and C in Scientific Computing, Brunel Conference Center, London, 1993.

[17] C. Überhuber, P. Meditz: Software-Entwicklung in Fortran 90, Springer, 1993.

[18] A.J.E. van Delft: Comments on Oberon, SIGPLAN Notices, Vol. 24 Iss. 3 p. 23-30,
1989.

[19] H. Mössenböck: Object-oriented Programming in Oberon-2, Springer, 1993.

[20] G. Blaschek, G. Pomberger, A. Stritzinger: A Comparison ofObject-Oriented
Programming Languages, Structured Programming, Vol. 10 Iss. 4 p. 187-197, 1989.

[21] R. Henderson, B. Zorn: A Comparison of Object-orientedProgramming in Four Modern
Languages, Software - Practice and Experience, Vol. 24 Iss. 11 p. 1077-1095, 1994.

[22] J. Templ: Vergleich der Programmiersprachen Oberon und C++, iX. Multiuser.
Multitasking, Iss. 9 p. 138-143, 1994.

[23] R. Griesemer: A Programming Language for Vector Computers, dissertation, ETH
Zürich, 1993.

[24] P.D. Stotts: A Comparative Survey of Concurrent ProgrammingLanguages, ACM
SIGPLAN Notices, Vol. 17 Iss. 10 p. 50-61, 1982.

Report Reference

Bernd Mösli
A Comparison of C++, FORTRAN 90 and Oberon-2 for Scientific Programming,
GISI 95,
editors: Friedbert Huber-Wäschle, Helmut Schauer, Peter Widmayer
Berlin, Springer, p. 740-748, 1995.

Full german title:
GISI 95: Herausforderungen eines globalen Informationsverbundes für die Informatik.

25. GI-Jahrestagung und 13. Schweizer Informatikertag,Zürich, 18-20. September 1995,
ISBN 3-540-60213-5

© Copyright 1995-1998 ARITHMETICA, webmaster page update 1998.05.19.

