
Yaml Cookbook
at the YamlForRuby site

Welcome to the Yaml Cookbook for Ruby. This version of the Yaml Cookbook
focuses on the Ruby implementation of Yaml by comparing Yaml documents with
their Ruby counterparts.

YAML(tm) is a readable text format for data structures. As you'll see below, YAML
can handle many common data types and structures. And what YAML can't
handle natively can be supported through flexible type families. For example,
YAML for Ruby uses type families to support storage of regular expressions,
ranges and object instances.

You can learn more about YAML at YAML.org or the YAML WikiWiki.

 Collections
o Simple Sequence
o Nested Sequences
o Mixed Sequences
o Deeply Nested Sequences
o Simple Mapping
o Sequence in a Mapping
o Nested Mappings
o Mixed Mapping
o Mapping-in-Sequence Shortcut
o Sequence-in-Mapping Shortcut
o Merge key

 Inline Collections
o Simple Inline Array
o Simple Inline Hash
o Multi-line Inline Collections
o Commas in Values

 Basic Types
o Strings
o String characters
o Indicators in Strings
o Forcing Strings
o Single-quoted Strings
o Double-quoted Strings
o Multi-line Quoted Strings
o Plain scalars
o Null
o Boolean
o Integers
o Integers as Map Keys
o Floats
o Time

o Date
 Blocks

o Single ending newline
o The '+' indicator
o Three trailing newlines in literals
o Extra trailing newlines with spaces
o Folded Block in a Sequence
o Folded Block as a Mapping Value
o Three trailing newlines in folded blocks

 Aliases and Anchors
o Simple Alias Example
o Alias of a Mapping

 Documents
o Trailing Document Separator
o Leading Document Separator
o YAML Header
o Red Herring Document Separator
o Multiple Document Separators in Block

 YAML For Ruby
o Symbols
o Ranges
o Regexps
o Perl Regexps
o Struct class
o Nested Structs
o Objects
o Extending Kernel::Array
o Extending Kernel::Hash

Collections

Simple Sequence

Brief

You can specify a list in YAML by placing each member of the list on a new line
with an opening dash. These lists are called sequences.

Yaml

 Simple Sequence in YAML?

- apple
- banana
- carrot

Ruby

 Simple Sequence in Ruby?

['apple', 'banana', 'carrot']

Nested Sequences

Brief

You can include a sequence within another sequence by giving the sequence an
empty dash, followed by an indented list.

Yaml

 Nested Sequences in YAML?

-
 - foo
 - bar
 - baz

Ruby

 Nested Sequences in Ruby?

[['foo', 'bar', 'baz']]

Mixed Sequences

Brief

Sequences can contain any YAML data, including strings and other sequences.

Yaml

 Mixed Sequences in YAML?

- apple
-
 - foo
 - bar
 - x123
- banana
- carrot

Ruby

 Mixed Sequences in Ruby?

['apple', ['foo', 'bar', 'x123'], 'banana', 'carrot']

Deeply Nested Sequences

Brief

Sequences can be nested even deeper, with each level of indentation representing
a level of depth.

Yaml

 Deeply Nested Sequences in YAML?

-
 -
 - uno
 - dos

Ruby

 Deeply Nested Sequences in Ruby?

[[['uno', 'dos']]]

Simple Mapping

Brief

You can add a keyed list (also known as a dictionary or hash) to your document
by placing each member of the list on a new line, with a colon seperating the key
from its value. In YAML, this type of list is called a mapping.

Yaml

 Simple Mapping in YAML?

foo: whatever
bar: stuff

Ruby

 Simple Mapping in Ruby?

{ 'foo' => 'whatever', 'bar' => 'stuff' }

Sequence in a Mapping

Brief

A value in a mapping can be a sequence.

Yaml

 Sequence in a Mapping in YAML?

foo: whatever
bar:
 - uno
 - dos

Ruby

 Sequence in a Mapping in Ruby?

{ 'foo' => 'whatever', 'bar' => ['uno', 'dos'] }

Nested Mappings

Brief

A value in a mapping can be another mapping.

Yaml

 Nested Mappings in YAML?

foo: whatever
bar:
 fruit: apple
 name: steve
 sport: baseball

Ruby

 Nested Mappings in Ruby?

{ 'foo' => 'whatever',
 'bar' => {
 'fruit' => 'apple',
 'name' => 'steve',
 'sport' => 'baseball'
 }
}

Mixed Mapping

Brief

A mapping can contain any assortment of mappings and sequences as values.

Yaml

 Mixed Mapping in YAML?

foo: whatever
bar:
 -
 fruit: apple
 name: steve
 sport: baseball
 - more
 -
 python: rocks
 perl: papers
 ruby: scissorses

Ruby

 Mixed Mapping in Ruby?

{ 'foo' => 'whatever',
 'bar' => [
 {
 'fruit' => 'apple',
 'name' => 'steve',
 'sport' => 'baseball'
 },
 'more',
 {
 'python' => 'rocks',
 'perl' => 'papers',
 'ruby' => 'scissorses'
 }
]
}

Mapping-in-Sequence Shortcut

Brief

If you are adding a mapping to a sequence, you can place the mapping on the
same line as the dash as a shortcut.

Yaml

 Mapping-in-Sequence Shortcut in YAML?

- work on YAML.py:
 - work on Store

Ruby

 Mapping-in-Sequence Shortcut in Ruby?

[{ 'work on YAML.py' => ['work on Store'] }]

Sequence-in-Mapping Shortcut

Brief

The dash in a sequence counts as indentation, so you can add a sequence inside
of a mapping without needing spaces as indentation.

Yaml

 Sequence-in-Mapping Shortcut in YAML?

allow:
- 'localhost'
- '%.sourceforge.net'
- '%.freepan.org'

Ruby

 Sequence-in-Mapping Shortcut in Ruby?

{ 'allow' => ['localhost', '%.sourceforge.net',
'%.freepan.org'] }

Merge key

Brief

A merge key ('<<') can be used in a mapping to insert other mappings. If the
value associated with the merge key is a mapping, each of its key/value pairs is
inserted into the current mapping.

Yaml

 Merge key in YAML?

mapping:
 name: Joe
 job: Accountant
 <

Ruby

 Merge key in Ruby?

{ 'mapping' =>
 { 'name' => 'Joe',
 'job' => 'Accountant',
 'age' => 38
 }
}

Inline Collections

Simple Inline Array

Brief

Sequences can be contained on a single line, using the inline syntax. Separate
each entry with commas and enclose in square brackets.

Yaml

 Simple Inline Array in YAML?

seq: [a, b, c]

Ruby

 Simple Inline Array in Ruby?

{ 'seq' => ['a', 'b', 'c'] }

Simple Inline Hash

Brief

Mapping can also be contained on a single line, using the inline syntax. Each key-
value pair is separated by a colon, with a comma between each entry in the
mapping. Enclose with curly braces.

Yaml

 Simple Inline Hash in YAML?

hash: { name: Steve, foo: bar }

Ruby

 Simple Inline Hash in Ruby?

{ 'hash' => { 'name' => 'Steve', 'foo' => 'bar' } }

Multi-line Inline Collections

Brief

Both inline sequences and inline mappings can span multiple lines, provided that
you indent the additional lines.

Yaml

 Multi-line Inline Collections in YAML?

languages: [Ruby,
 Perl,
 Python]
websites: { YAML: yaml.org,
 Ruby: ruby-lang.org,
 Python: python.org,
 Perl: use.perl.org }

Ruby

 Multi-line Inline Collections in Ruby?

{ 'languages' => ['Ruby', 'Perl', 'Python'],
 'websites' => {
 'YAML' => 'yaml.org',
 'Ruby' => 'ruby-lang.org',
 'Python' => 'python.org',
 'Perl' => 'use.perl.org'
 }
}

Commas in Values

Brief

List items in collections are delimited by commas, but there must be a space after
each comma. This allows you to add numbers without quoting.

Yaml

 Commas in Values in YAML?

attendances: [45,123, 70,000, 17,222]

Ruby

 Commas in Values in Ruby?

{ 'attendances' => [45123, 70000, 17222] }

Basic Types

Strings

Brief

Any group of characters beginning with an alphabetic or numeric character is a
string, unless it belongs to one of the groups below (such as an Integer or Time).

Yaml

 Strings in YAML?

--- String

Ruby

 Strings in Ruby?

'String'

String characters

Brief

A string can contain any alphabetic or numeric character, along with many
punctuation characters, including the period, dash, space, quotes, exclamation,
and question mark.

Yaml

 String characters in YAML?

- What's Yaml?
- It's for writing data structures in plain text.
- And?
- And what? That's not good enough for you?
- No, I mean, "And what about Yaml?"
- Oh, oh yeah. Uh.. Yaml for Ruby.

Ruby

 String characters in Ruby?

[
 "What's Yaml?",
 "It's for writing data structures in plain text.",
 "And?",
 "And what? That's not good enough for you?",

 "No, I mean, \"And what about Yaml?\"",
 "Oh, oh yeah. Uh.. Yaml for Ruby."
]

Indicators in Strings

Brief

Be careful using indicators in strings. In particular, the comma, colon, and pound
sign must be used carefully.

Yaml

 Indicators in Strings in YAML?

the colon followed by space is an indicator: but is a
string:right here
same for the pound sign: here we have it#in a string
the comma can, honestly, be used in most cases: [but not
in, inline collections]

Ruby

 Indicators in Strings in Ruby?

{
 'the colon followed by space is an indicator' => 'but is
a string:right here',
 'same for the pound sign' => 'here we have it#in a
string',
 'the comma can, honestly, be used in most cases' => [
'but not in', 'inline collections']
}

Forcing Strings

Brief

Any YAML type can be forced into a string using the explicit !str method.

Yaml

 Forcing Strings in YAML?

date string: !str 2001-08-01
number string: !str 192

Ruby

 Forcing Strings in Ruby?

{
 'date string' => '2001-08-01',
 'number string' => '192'
}

Single-quoted Strings

Brief

You can also enclose your strings within single quotes, which allows use of
slashes, colons, and other indicators freely. Inside single quotes, you can
represent a single quote in your string by using two single quotes next to each
other.

Yaml

 Single-quoted Strings in YAML?

all my favorite symbols: '#:!/%.)'
a few i hate: '&(*'
why do i hate them?: 'it''s very hard to explain'

Ruby

 Single-quoted Strings in Ruby?

{
 'all my favorite symbols' => '#:!/%.)',
 'a few i hate' => '&(*',
 'why do i hate them?' => 'it\'s very hard to explain'
}

Double-quoted Strings

Brief

Enclosing strings in double quotes allows you to use escapings to represent ASCII
and Unicode characters.

Yaml

 Double-quoted Strings in YAML?

i know where i want my line breaks: "one here\nand another
here\n"

Ruby

 Double-quoted Strings in Ruby?

{
 'i know where i want my line breaks' => "one here\nand
another here\n"
}

Multi-line Quoted Strings

Brief

Both single- and double-quoted strings may be carried on to new lines in your
YAML document. They must be indented a step and indentation is interpreted as
a single space.

Yaml

 Multi-line Quoted Strings in YAML?

i want a long string: "so i'm going to
 let it go on and on to other lines
 until i end it with a quote."

Ruby

 Multi-line Quoted Strings in Ruby?

{ 'i want a long string' => "so i'm going to " +
 "let it go on and on to other lines " +
 "until i end it with a quote."
}

Plain scalars

Brief

Unquoted strings may also span multiple lines, if they are free of YAML space
indicators and indented.

Yaml

 Plain scalars in YAML?

- My little toe is broken in two places;
- I'm crazy to have skied this way;
- I'm not the craziest he's seen, since there was always
the German guy
 who skied for 3 hours on a broken shin bone (just below
the kneecap);
- Nevertheless, second place is respectable, and he doesn't
 recommend going for the record;

- He's going to put my foot in plaster for a month;
- This would impair my skiing ability somewhat for the
 duration, as can be imagined.

Ruby

 Plain scalars in Ruby?

[
 "My little toe is broken in two places;",
 "I'm crazy to have skied this way;",
 "I'm not the craziest he's seen, since there was always "
+
 "the German guy who skied for 3 hours on a broken shin
" +
 "bone (just below the kneecap);",
 "Nevertheless, second place is respectable, and he
doesn't " +
 "recommend going for the record;",
 "He's going to put my foot in plaster for a month;",
 "This would impair my skiing ability somewhat for the
duration, " +
 "as can be imagined."
]

Null

Brief

You can use the tilde '~' character for a null value.

Yaml

 Null in YAML?

name: Mr. Show
hosted by: Bob and David
date of next season: ~

Ruby

 Null in Ruby?

{
 'name' => 'Mr. Show',
 'hosted by' => 'Bob and David',
 'date of next season' => nil
}

Boolean

Brief

You can use 'true' and 'false' for boolean values.

Yaml

 Boolean in YAML?

Is Gus a Liar?: true
Do I rely on Gus for Sustenance?: false

Ruby

 Boolean in Ruby?

{
 'Is Gus a Liar?' => true,
 'Do I rely on Gus for Sustenance?' => false
}

Integers

Brief

An integer is a series of numbers, optionally starting with a positive or negative
sign. Integers may also contain commas for readability.

Yaml

 Integers in YAML?

zero: 0
simple: 12
one-thousand: 1,000
negative one-thousand: -1,000

Ruby

 Integers in Ruby?

{
 'zero' => 0,
 'simple' => 12,
 'one-thousand' => 1000,
 'negative one-thousand' => -1000
}

Integers as Map Keys

Brief

An integer can be used a dictionary key.

Yaml

 Integers as Map Keys in YAML?

1: one
2: two
3: three

Ruby

 Integers as Map Keys in Ruby?

{
 1 => 'one',
 2 => 'two',
 3 => 'three'
}

Floats

Brief

Floats are represented by numbers with decimals, allowing for scientific notation,
as well as positive and negative infinity and "not a number."

Yaml

 Floats in YAML?

a simple float: 2.00
larger float: 1,000.09
scientific notation: 1.00009e+3

Ruby

 Floats in Ruby?

{
 'a simple float' => 2.0,
 'larger float' => 1000.09,
 'scientific notation' => 1000.09
}

Time

Brief

You can represent timestamps by using ISO8601 format, or a variation which
allows spaces between the date, time and time zone.

Yaml

 Time in YAML?

iso8601: 2001-12-14t21:59:43.10-05:00
space seperated: 2001-12-14 21:59:43.10 -05:00

Ruby

 Time in Ruby?

{
 'iso8601' => YAML::mktime(2001, 12, 14, 21, 59, 43,
0.10, "-05:00"),
 'space seperated' => YAML::mktime(2001, 12, 14, 21, 59,
43, 0.10, "-05:00")
}

Date

Brief

A date can be represented by its year, month and day in ISO8601 order.

Yaml

 Date in YAML?

--- 1976-07-31

Ruby

 Date in Ruby?

Date.new(1976, 7, 31)

Blocks

Single ending newline

Brief

A pipe character, followed by an indented block of text is treated as a literal
block, in which newlines are preserved throughout the block, including the final
newline.

Yaml

 Single ending newline in YAML?

this: |
 Foo
 Bar

Ruby

 Single ending newline in Ruby?

{ 'this' => "Foo\nBar\n" }

The '+' indicator

Brief

The '+' indicator says to keep newlines at the end of text blocks.

Yaml

 The '+' indicator in YAML?

normal: |
 extra new lines not kept

preserving: |+
 extra new lines are kept

dummy: value

Ruby

 The '+' indicator in Ruby?

{
 'normal' => "extra new lines not kept\n",
 'preserving' => "extra new lines are kept\n\n\n",
 'dummy' => 'value'
}

Three trailing newlines in literals

Brief

To give you more control over how space is preserved in text blocks, YAML has
the keep '+' and chomp '-' indicators. The keep indicator will preserve all ending
newlines, while the chomp indicator will strip all ending newlines.

Yaml

 Three trailing newlines in literals in YAML?

clipped: |
 This has one newline.

same as "clipped" above: "This has one newline.\n"

stripped: |-
 This has no newline.

same as "stripped" above: "This has no newline."

kept: |+
 This has four newlines.

same as "kept" above: "This has four newlines.\n\n\n\n"

Ruby

 Three trailing newlines in literals in Ruby?

{
 'clipped' => "This has one newline.\n",
 'same as "clipped" above' => "This has one newline.\n",
 'stripped' => 'This has no newline.',
 'same as "stripped" above' => 'This has no newline.',
 'kept' => "This has four newlines.\n\n\n\n",
 'same as "kept" above' => "This has four
newlines.\n\n\n\n"
}

Extra trailing newlines with spaces

Brief

Normally, only a single newline is kept from the end of a literal block, unless the
keep '+' character is used in combination with the pipe. The following example
will preserve all ending whitespace since the last line of both literal blocks
contains spaces which extend past the indentation level.

Yaml

 Extra trailing newlines with spaces in YAML?

this: |
 Foo

kept: |+
 Foo

Ruby

 Extra trailing newlines with spaces in Ruby?

{ 'this' => "Foo\n\n \n",
 'kept' => "Foo\n\n \n" }

Folded Block in a Sequence

Brief

A greater-then character, followed by an indented block of text is treated as a
folded block, in which lines of text separated by a single newline are concatenated
as a single line.

Yaml

 Folded Block in a Sequence in YAML?

- apple
- banana
- >
 can't you see
 the beauty of yaml?
 hmm
- dog

Ruby

 Folded Block in a Sequence in Ruby?

[
 'apple',
 'banana',
 "can't you see the beauty of yaml? hmm\n",
 'dog'
]

Folded Block as a Mapping Value

Brief

Both literal and folded blocks can be used in collections, as values in a sequence
or a mapping.

Yaml

 Folded Block as a Mapping Value in YAML?

quote: >
 Mark McGwire's
 year was crippled
 by a knee injury.
source: espn

Ruby

 Folded Block as a Mapping Value in Ruby?

{
 'quote' => "Mark McGwire's year was crippled by a knee
injury.\n",
 'source' => 'espn'
}

Three trailing newlines in folded blocks

Brief

The keep and chomp indicators can also be applied to folded blocks.

Yaml

 Three trailing newlines in folded blocks in YAML?

clipped: >
 This has one newline.

same as "clipped" above: "This has one newline.\n"

stripped: >-
 This has no newline.

same as "stripped" above: "This has no newline."

kept: >+
 This has four newlines.

same as "kept" above: "This has four newlines.\n\n\n\n"

Ruby

 Three trailing newlines in folded blocks in Ruby?

{
 'clipped' => "This has one newline.\n",
 'same as "clipped" above' => "This has one newline.\n",
 'stripped' => 'This has no newline.',
 'same as "stripped" above' => 'This has no newline.',
 'kept' => "This has four newlines.\n\n\n\n",
 'same as "kept" above' => "This has four
newlines.\n\n\n\n"
}

Aliases and Anchors

Simple Alias Example

Brief

If you need to refer to the same item of data twice, you can give that item an alias.
The alias is a plain string, starting with an ampersand. The item may then be
referred to by the alias throughout your document by using an asterisk before the
name of the alias. This is called an anchor.

Yaml

 Simple Alias Example in YAML?

- &showell Steve
- Clark
- Brian
- Oren
- *showell

Ruby

 Simple Alias Example in Ruby?

showell = 'Steve'
[showell, 'Clark', 'Brian', 'Oren', showell]

Alias of a Mapping

Brief

An alias can be used on any item of data, including sequences, mappings, and
other complex data types.

Yaml

 Alias of a Mapping in YAML?

- &hello
 Meat: pork
 Starch: potato
- banana
- *hello

Ruby

 Alias of a Mapping in Ruby?

hello = { 'Meat' => 'pork', 'Starch' => 'potato' }
[
 hello,
 'banana',
 hello
]

Documents

Trailing Document Separator

Brief

You can separate YAML documents with a string of three dashes.

Yaml

 Trailing Document Separator in YAML?

- foo: 1
 bar: 2

more: stuff

Ruby

 Trailing Document Separator in Ruby?

[{ 'foo' => 1, 'bar' => 2 }]

Leading Document Separator

Brief

You can explicity give an opening document separator to your YAML stream.

Yaml

 Leading Document Separator in YAML?

- foo: 1
 bar: 2

more: stuff

Ruby

 Leading Document Separator in Ruby?

[{ 'foo' => 1, 'bar' => 2 }]

YAML Header

Brief

The opening separator can contain directives to the YAML parser, such as the
version number.

Yaml

 YAML Header in YAML?

--- %YAML:1.0
foo: 1
bar: 2

Ruby

 YAML Header in Ruby?

y = Stream.new
y.add({ 'foo' => 1, 'bar' => 2 })

Red Herring Document Separator

Brief

Separators included in blocks or strings are treated as blocks or strings, as the
document separator should have no indentation preceding it.

Yaml

 Red Herring Document Separator in YAML?

foo: |

Ruby

 Red Herring Document Separator in Ruby?

{ 'foo' => "---\n" }

Multiple Document Separators in Block

Brief

This technique allows you to embed other YAML documents within literal blocks.

Yaml

 Multiple Document Separators in Block in YAML?

foo: |

 foo: bar

 yo: baz
bar: |
 fooness

Ruby

 Multiple Document Separators in Block in Ruby?

{
 'foo' => "---\nfoo: bar\n---\nyo: baz\n",
 'bar' => "fooness\n"
}

YAML For Ruby

Symbols

Brief

Ruby Symbols can be simply serialized using the !ruby/symbol transfer method,
or the abbreviated !ruby/sym.

Yaml

 Symbols in YAML?

simple symbol: !ruby/symbol Simple
shortcut syntax: !ruby/sym Simple
symbols in seqs:
 - !ruby/symbol ValOne
 - !ruby/symbol ValTwo
 - !ruby/symbol ValThree
symbols in maps:
 - !ruby/symbol MapKey: !ruby/symbol MapValue

Ruby

 Symbols in Ruby?

{ 'simple symbol' => :Simple,
 'shortcut syntax' => :Simple,
 'symbols in seqs' => [:ValOne, :ValTwo, :ValThree],
 'symbols in maps' => [{ :MapKey => :MapValue }]
}

Ranges

Brief

Ranges are serialized with the !ruby/range type family.

Yaml

 Ranges in YAML?

normal range: !ruby/range 10..20
exclusive range: !ruby/range 11...20
negative range: !ruby/range -1..-5
? !ruby/range 0..40
: range as a map key

Ruby

 Ranges in Ruby?

{ 'normal range' => (10..20),
 'exclusive range' => (11...20),
 'negative range' => (-1..-5),
 (0..40) => 'range as a map key'
}

Regexps

Brief

Regexps may be serialized to YAML, both its syntax and any modifiers.

Yaml

 Regexps in YAML?

case-insensitive: !ruby/regexp "/George McFly/i"
complex: !ruby/regexp "/\\A\"((?:[^\"]|\\\")+)\"/"
simple: !ruby/regexp '/a.b/'

Ruby

 Regexps in Ruby?

{ 'simple' => /a.b/, 'complex' => /\A"((?:[^"]|\")+)"/,
 'case-insensitive' => /George McFly/i }

Perl Regexps

Brief

Regexps may also be imported from serialized Perl.

Yaml

 Perl Regexps in YAML?

--- !perl/regexp:
 REGEXP: "R[Uu][Bb][Yy]$"
 MODIFIERS: i

Ruby

 Perl Regexps in Ruby?

/R[Uu][Bb][Yy]$/i

Struct class

Brief

The Ruby Struct class is registered as a YAML builtin type through Ruby, so it
can safely be serialized. To use it, first make sure you define your Struct with
Struct::new. Then, you are able to serialize with Struct#to_yaml and unserialize
from a YAML stream.

Yaml

 Struct class in YAML?

--- !ruby/struct:BookStruct

 author: Yukihiro Matsumoto
 title: Ruby in a Nutshell
 year: 2002
 isbn: 0-596-00214-9

Ruby

 Struct class in Ruby?

book_struct = Struct::new("BookStruct", :author, :title,
:year, :isbn)
book_struct.new("Yukihiro Matsumoto", "Ruby in a
Nutshell", 2002, "0-596-00214-9")

Nested Structs

Brief

As with other YAML builtins, you may nest the Struct inside of other Structs or
other data types.

Yaml

 Nested Structs in YAML?

- !ruby/struct:FoodStruct
 name: Nachos
 ingredients:
 - Mission Chips
 - !ruby/struct:FoodStruct
 name: Tostitos Nacho Cheese
 ingredients:
 - Milk and Enzymes
 - Jack Cheese
 - Some Volatile Chemicals
 taste: Angelic
 - Sour Cream
 taste: Zesty
- !ruby/struct:FoodStruct
 name: Banana Cream Pie
 ingredients:
 - Bananas
 - Creamy Stuff
 - And Such
 taste: Puffy

Ruby

 Nested Structs in Ruby?

food_struct = Struct::new("FoodStruct", :name,
:ingredients, :taste)

[
 food_struct.new('Nachos', ['Mission Chips',
 food_struct.new('Tostitos Nacho Cheese', ['Milk and
Enzymes', 'Jack Cheese', 'Some Volatile Chemicals'],
'Angelic'),
 'Sour Cream'], 'Zesty'),
 food_struct.new('Banana Cream Pie', ['Bananas', 'Creamy
Stuff', 'And Such'], 'Puffy')
]

Objects

Brief

YAML has generic support for serializing objects from any class available in
Ruby. If using the generic object serialization, no extra code is needed.

Yaml

 Objects in YAML?

--- !ruby/object:YAML::Zoolander
 name: Derek
 look: Blue Steel

Ruby

 Objects in Ruby?

class Zoolander
 attr_accessor :name, :look
 def initialize(look)
 @name = "Derek"
 @look = look
 end
 def ==(z)
 self.name == z.name and self.look == z.look
 end
end
Zoolander.new("Blue Steel")

Extending Kernel::Array

Brief

When extending the Array class, your instances of such a class will dump as
YAML sequences, tagged with a class name.

Yaml

 Extending Kernel::Array in YAML?

--- !ruby/array:YAML::MyArray
- jacket
- sweater
- windbreaker

Ruby

 Extending Kernel::Array in Ruby?

class MyArray < Kernel::Array; end
outerwear = MyArray.new
outerwear << 'jacket'
outerwear << 'sweater'
outerwear << 'windbreaker'
outerwear

Extending Kernel::Hash

Brief

When extending the Hash class, your instances of such a class will dump as
YAML maps, tagged with a class name.

Yaml

 Extending Kernel::Hash in YAML?

--- !ruby/hash:YAML::MyHash
Black Francis: Frank Black
Kim Deal: Breeders
Joey Santiago: Martinis

Ruby

 Extending Kernel::Hash in Ruby?

Note that the @me attribute isn't dumped
because the default to_yaml is trained
to dump as a regular Hash.
class MyHash < Kernel::Hash
 attr_accessor :me
 def initialize
 @me = "Why"
 end
end
pixies = MyHash.new
pixies['Black Francis'] = 'Frank Black'
pixies['Kim Deal'] = 'Breeders'
pixies['Joey Santiago'] = 'Martinis'
pixies

