
From: http:// ... TKP4106

(Automatic HTML etc. to PDF Conversion)

Creator: Tore Haug-Warberg

Department of Chemical Engineering

NTNU (Norway)

Created: Thu Jan 22 15:05:03 +0100 2015

PDF name: 2015 01 22 15 05 03.pdf

Contents

1 Homepage 4

2 Tore Haug-Warberg (Programming) 6
2.1 Real Programmers use FORTRAN . 10

3 Heinz A. Preisig (Modelling) 18

4 Frequently Asked Questions (FAQ) 20

5 Syllabus 23
5.1 Introduction to Python . 24

5.1.1 Seven Topics in Python . 28
5.1.2 Verbatim: “script” . 56
5.1.3 Emacs quick reference . 57
5.1.4 Vim quick reference . 59
5.1.5 TextPad quick reference . 61
5.1.6 LaTeX (Cambridge University) . 63
5.1.7 High-quality portable PDF (Schatz) . 69
5.1.8 Regex (Stephen Ramsay) . 71
5.1.9 Regex quick reference . 74
5.1.10 BNF and EBNF (L. M. Garshol) . 75

1

5.1.11 Windows shortcuts (OIT) . 86
5.1.12 Linux programming (digilife) . 87
5.1.13 Mac shortcuts (macmost) . 89
5.1.14 Commenting Python code (MIT) . 90
5.1.15 Programming paradigms (Kurt Normark) . 92
5.1.16 Real Programmers (Ed Post), see also Sec. 2.1 98
5.1.17 Seven Topics in Python, see also Sec. 5.1.1 99
5.1.18 Seven Topics in Python (Haug-Warberg), see also Sec. 5.1.1 100
5.1.19 Epydoc (sourceforge) . 101
5.1.20 Epytext markup (sourceforge) . 102
5.1.21 Python Docstrings (Sourceforge) . 112
5.1.22 Scientific Python (numpy.org) . 114

5.2 Exercise 1 . 116
5.3 Regular expressions . 123

5.3.1 A Smalltalk about Modelling . 127
5.3.2 Regular Expressions, see also Sec. 5.1.8 . 132

5.4 Exercise 2 . 133
5.5 Documenting your code . 139

5.5.1 The real programmer, see also Sec. 2.1 . 143
5.5.2 epydoc, see also Sec. 5.1.19 . 144
5.5.3 Verbatim: “atoms.py” . 145
5.5.4 epytext, see also Sec. 5.1.20 . 147
5.5.5 docstring, see also Sec. 5.1.21 . 148
5.5.6 Epydoc output file . 149

5.6 Exercise 3 . 150
5.7 Molecular formula parser . 163

5.7.1 Verbatim: “atoms.py” . 166
5.7.2 Backus-Naur Formalism, see also Sec. 5.1.10 168

5.8 Exercise 4 . 169
5.9 The atom matrix . 181

5.9.1 Verbatim: “atom matrix.py” . 185
5.9.2 Verbatim: “molecular weight.py” . 186

5.10 Exercise 5 . 188
5.11 Independent reactions . 201

5.11.1 Verbatim: “rref.py” . 205
5.11.2 Verbatim: “null.py” . 207
5.11.3 The mass balance . 208

5.12 Exercise 6 . 214
5.13 Root solvers . 240

5.13.1 Verbatim: “sqrt.py” . 242
5.13.2 Verbatim: “pv.py” . 243
5.13.3 The energy balance . 245

5.14 Exercise 7 . 254
5.15 A thermodynamic equation solver . 260

5.15.1 Verbatim: “solve.py” . 261
5.15.2 Verbatim: “hpn.py” . 262
5.15.3 Verbatim: “mprod.py” . 265
5.15.4 The energy balance . 266

5.16 Exercise 8 . 275
5.17 The reactor model . 289

5.17.1 Verbatim: “srk ammonia.py” . 291
5.17.2 Verbatim: “flowsheet.py” . 294

2

5.17.3 Verbatim: “ammonia reactor.py” . 300
5.17.4 Verbatim: “tkp4106.py” . 303
5.17.5 ammonia reactor.py, see also Sec. 5.19.2 . 304
5.17.6 srk ammonia.py, see also Sec. 5.17.1 . 305
5.17.7 Modelling issues . 306

5.18 Exercise 9 . 319
5.19 Integration . 327

5.19.1 Verbatim: “flowsheet.py” . 329
5.19.2 Verbatim: “ammonia reactor.py” . 335
5.19.3 flowsheet.py, see also Sec. 5.19.1 . 338
5.19.4 ammonia reactor.py, see also Sec. 5.19.2 . 339
5.19.5 Modelling issues . 340

5.20 Exercise 10 . 353
5.21 Unit testing . 379
5.22 Exercise 11 . 380
5.23 Putting the model to work . 397

5.23.1 Verbatim: “graph.gp” . 399
5.23.2 Verbatim: “graph.dat” . 400
5.23.3 graph.pdf . 401
5.23.4 ammonia reactor.py, see also Sec. 5.19.2 . 402
5.23.5 graph.gp, see also Sec. 5.23.1 . 403
5.23.6 Modelling perspectives (Norwegian) . 404

5.24 Exercise 12 . 405

3

TKP4106 Process Modelling
This is the joint homepage for TKP4106 Process Modelling. The course is
composed of two parallel sessions - Modelling theory (HAP) and Programming
(THW) - each of them having a dedicated webpage. The syllabus and the FAQ
list are in common.

ALL THE COURSE MATERIAL NEEDED TO COMPLETE THE COURSE IS ON
THE WEB.
THAT INCLUDES WHITE PAPERS, SOURCE CODE AND EXTERNAL
REFERENCES.
WHICH MEANS YOU'LL ACTUALLY HAVE TO BE READ THE PAGES TOP
DOWN - NOT SIMPLY BROWSE THEM.

We also expect you to visit all the external links in order to get an overview of
the entire course.

Lecturer's home page:

1. Tore Haug-Warberg (Programming)
2. Heinz A. Preisig (Modelling)

Common parts:

1. Python manual (very good)
2. Frequently Asked Questions (FAQ)
3. Syllabus

Process modelling builds on the basic conservation principles, transport
phenomena, thermodynamics and mathematical physics. We teach on how
these models are being built systematically so that we have precisely the
knowledge required - neither more nor less. Models we establish formulate many
different mathematical problems that need to be solved simultaneously in order
to get an over-all solution. We learn on how to approach, and to solve, these
problems effectively using mathematical and computer-based numerical tools.
Programming is seen as a core activity for achieving this latter goal. Examples
taken from the different corners of our discipline are the subjects of our
discussions.

Learning outcome:

1. Get a birdsview of the modelling process.
2. Establish an integration of the different involved subjects.

3. Programming as part of solving technical problems.
4. Abstraction of the plant.
5. Formulation of complete process models.
6. Solving simple mathematical and numerical problems using computers.
7. Programming methods and a programming language.
8. Have a systematic approach to problem solving.
9. Know how to generate models.

TKP4106 Programming Activities

"The easiest way to tell a Real Programmer from the crowd is by the programming language he (or she)
uses. Real Programmers use Fortran. Quiche Eaters use Pascal. Nicklaus Wirth, the designer of Pascal,

gave a talk once at which he was asked, "How do you pronounce your name?". He replied, "You can either
call me by name, pronouncing it 'Veert', or call me by value, 'Worth'." One can tell immediately by this

comment that Nicklaus Wirth is a Quiche Eater. The only parameter passing mechanism endorsed by Real
Programmers is call-by-value-return, as implemented in the IBM/370 Fortran G and H compilers. Real

Programmers don't need all these abstract concepts to get their jobs done-- they are perfectly happy with a
keypunch, a Fortran IV compiler, and a beer."

Real Programmers use FORTRAN

This page gives a brief introduction to the programming activities in Process
Modelling TKP4106. For easy off-line browsing you can download the contents
of the entire course as a 6.2 MB PDF-file here. There is also a FAQ list and a
syllabus available. See also the other links at the top of the page. The Goals
section below gives an overview of where we are heading. We will be using
Python for the programming, but we shall try to stay away from external libraries
and rather work out the software as needed. This brings in topics like: formula
parsing, atom matrix and matrix product calculation, row-reduced-echelon-form,
nullspace, linear and non-linear equation solving, Euler and Runge-Kutta
integration, a thermodynamic equation of state and an object-oriented flowsheet
module with stream and reactor objects. To increase the learning effect you are
not given the programs out of the box. Instead you are asked to change these
stub programs into workable code as a compulsory part of the course.

The work flow of a typical modelling job has 5 dedicated tasks:

 - Algebra | Theory part of TKP4106
 - Analysis | - " -
 ..
 - Algorithm | Computer lab activity in TKP4106
 - Programming | - " -
 - Simulation | - " -

but most students find it difficult to work in a top-bottom style and have a
tendency of doing things backwards. In particular there is a lack of
understanding (and appreciation) for the necessity of doing the algebra and the

analysis before one starts doing programming. The short-cut seldomly works
and a lot of time and frustration is spent on a task that would otherwise be
affordable. The Golden Rule is therefore: Always do your paper work before you
attempt any serious programming!

There are many ways to Rome, and even more ways to learn how to do
computer programming, but one way to learn is to travel the long and winding
road of a complete modelling task. The problem we are going to study here is
that of a steday-state Plug Flow Reactor. This will naturally bring in the algebra
and analysis needed for understanding things like: Algorithmic parsing of
chemical formulas, matrix theory, thermodynamic Jacobian transformations and
integration of ordinary differential equations, before we finally end up doing a
chemical reactor simulation. Our scientific "value chain" looks something like
this:

['H2', 'N2', 'NH3']

 =>

 | 2 0 3 |
 A = | |
 | 0 2 1 |

 =>

 | 3/2 |
 N = | 1/2 |
 | -1 |

 =>

dh/dT dh/dv dh/dc		grad(T)		0
dT/dp dp/dv dp/dc	*	grad(v)	=	0
0 0 I		grad(c)		N*r

Here, A is the so-called atom or formula matrix, N = null(A) is the nullspace
of A, h(T,v,c) is a thermodynamic function called enthalpy and
r(T,v,c,x,t) is the rate of reaction (chemical kinetics). It will be our pride to
learn how this grand picture evolves from basic physical principles and a few
pages of computer code. But, we should ask:

Q: Why?
A: The understanding and use of physically based models is becoming
increasingly important in industry, teaching and academia.

Q: What?
A: Algorithmic description of dynamics, events and static processes.
Conservation of mass and energy (not so much momentum in our case). The
models can be simple yet complex (networks).

Q: How?
A: Linear algebra (ODE and DAE), root solvers (NR), syntax (regex and BNF

parsers), code structure (OOP and FP), containers (tuple, list, hash, struct and
array), code design (epydoc, patterns and exceptions).

So, our goals are obviously quite widespread and it is worth while reflecting a
little over what we actually need to understand of mathematics, physics and
programming in solving the chemical reactor problem:

Goals (programming):

1. Formula parser dict =
atoms(str)

2. Algebra mw =
molecular_weight(str)

3. Formula matrix A =
amat([str1, str2, ...])

4. Row-reduced-echelon-form B =
rref(A)

5. Nullspace N = null(A)
6. Linear equations X = solve(A,

B)

7. Matrix product C = mprod(A, B)
8. Integration

hpn_vs_tvn('Euler', r, 0,

1, n)

Goals
(paradigms):

1. Backus-Naur
formalism

2. Regular
expressions

3. Strings
4. Lists (arrays)
5. Tuples
6. Dictionaries

(hashes)
7. Lambda

functions
8. Modules
9. Classes

10. Objects
11. Exceptions

Goals (modelling):

1. Applying energy, momentum and
mass conservation

2. Chemical reactions and nullspace
3. Linear and non-linear system

descriptions
4. Linearization of models
5. Solving linear equations
6. Newton-Raphson iteration
7. Systems of ordinary differential

equations
8. Dynamic versus steady state

approximation
9. Numerical integration using Euler's

method
10. The needs for an equation of state
11. Thermodynamic Jacobian

transformations
12. Hand calculations of (1 x 1) up to

(3 x 6) matrices

Occasionally, there are matter-of-programming-fact discussions going on in the
corridor and my colleagues wonder whether the choice of a computer language
really matters (which of course it does because there are more than 2000
languages around), why a switch-case test is better than if-elseif-else (a
compelling thought indeed), why Object Oriented Programming (OOP) is better
than Imperative Programming (IP) (which is not always the case), why Python is
better than Matlab (which is maybe true), and so on. My personal attitude to a
few of these questions is collected in a list of inFrequently Asked Questions
below. However, in the name of science I should be more objective, really. So, to
give a better understanding of what programming is I have collected some data
showing the chronology from the late 1950s to present. I believe that this
knowledge is important for understanding how, and along which lines, the
computer languages have evolved.

Procedural

1. FORTRAN (1957)
2. ALGOL (1958)
3. COBOL (1959)

Structured

1. Pascal (1972)
2. C (1972)
3. Ada (1983)

Object-oriented

1. Simula (1967)
2. Smalltalk (1972)
3. C++ (1985)

Functional

1. Lisp (1958)
2. APL (1962)
3. ML (1974)

4. BASIC (1964) 4. Perl (1987)
5. Python (1990)
6. Java (1994)
7. Ruby (1995)
8. C# (2002)

4. Scheme (1975)
5. Miranda (1985)
6. Haskell (1987)

(in)Frequently Asked Questions (iFAQ):

Which language?
Use the language that is ideal for you and your task. Always. Switch to another language if you feel
constrained.
Why do I need an editor?
The editor and the keyboard are your textual links to the computer. Forget about the mouse and fancy
GUIs. Such things are only useful for graphics work and hyperlinks. Learn about the shortkeys of
your computer, learn to master one editor efficiently, learn to manipulate several files at once and
learn to run scripts from the terminal (command) window. Use these tools for all your stuff afterwards.
This is not about religion but about productivity and self-consciousness.
Matlab or Python?
Matlab stands for Matrix Laboratory while Python is a generic programming language. Matlab is
good at doing numbers while it sucks on doing strings. Python is good at handling strings and have
good numerics too. More important, however, Matlab is proprietary while Python is open source.
NTNU should not promote proprietary languages••• Python has also a much bigger community than
has Matlab (about 10 times higher activity according to The Transparent Language Popularity Index).
Actually, we should rather been using Ruby because it has a nice, rich and beautiful syntax!
OOP, IP or FP?
Object oriented programming (OOP) is valuable for administrating calculations at a high level using
the concept of a class. Imperative programming (IP) is, quite inevitably, what is used in the inner
loops of calculation intensive algorithms like e.g. matrix calculations. Functional programming (FP)
offers a beatiful way of doing recursive calculations on infinite lists and so-called higher order
programming working with functors (akin to functionals in mathematics). In most program systems of
reasonable size all three paradigms will be used.
IF-ELSEIF-ELSE or CASE?
The answer is almost religious: Never use if-elseif-else only if-else and switch-case or case-when.
The reason is that an if-elseif has to be evaluated one test at a time (you can be comparing strings in
one test and numbers in the next) while the switch-case is precompiled (you compare one single
object to a set of predefined matches). The if-elseif clutters the code because you have to read every
single statement in order to understand what is being tested. The scope of the switch-case is, on the
other hand, determined by one single line of code and it consequently looks more clean and coherent
to the human eye.
TDT41100 vs TKP4106?
Why are we going to have yet-another introduction course in programming? Why is not TDT41100
sufficient? The answer is simple: TDT41100 offers you an introduction to information technology while
TKP4106 focuses at writing beautiful code that stands the test of documentation standards,
unittesting and reusability.

Real Programmers Don't Use Pascal
[A letter to the editor of Datamation, volume 29 number 7, July 1983. I've long ago lost
my dog-eared photocopy, but I believe this was written (and is copyright) by Ed Post,
Tektronix, Wilsonville OR USA.

The story of Mel is a related article.]

Back in the good old days-- the "Golden Era" of computers-- it was easy to separate the
men from the boys (sometimes called "Real Men" and "Quiche Eaters" in the literature).
During this period, the Real Men were the ones who understood computer programming,
and the Quiche Eaters were the ones who didn't. A real computer programmer said things
like "DO 10 I=1,10" and "ABEND" (they actually talked in capital letters, you
understand), and the rest of the world said things like "computers are too complicated for
me" and "I can't relate to computers-- they're so impersonal". (A previous work [1] points
out that Real Men don't "relate" to anything, and aren't afraid of being impersonal.)

But, as usual, times change. We are faced today with a world in which little old ladies can
get computers in their microwave ovens, 12 year old kids can blow Real Men out of the
water playing Asteroids and Pac-Man, and anyone can buy and even understand their
very own personal Computer. The Real Programmer is in danger of becoming extinct, of
being replaced by high school students with TRASH-80s.

There is a clear need to point out the differences between the typical high school junior
Pac-Man player and a Real Programmer. If this difference is made clear, it will give these
kids something to aspire to-- a role model, a Father Figure. It will also help explain to the
employers of Real Programmers why it would be a mistake to replace the Real
Programmers on their staff with 12 year old Pac-Man players (at a considerable salary
savings).

The easiest way to tell a Real Programmer from the crowd is by the programming
language he (or she) uses. Real Programmers use Fortran. Quiche Eaters use Pascal.
Nicklaus Wirth, the designer of Pascal, gave a talk once at which he was asked, "How do
you pronounce your name?". He replied, "You can either call me by name, pronouncing it
'Veert', or call me by value, 'Worth'." One can tell immediately by this comment that
Nicklaus Wirth is a Quiche Eater. The only parameter passing mechanism endorsed by
Real Programmers is call-by-value-return, as implemented in the IBM/370 Fortran G and
H compilers. Real Programmers don't need all these abstract concepts to get their jobs
done-- they are perfectly happy with a keypunch, a Fortran IV compiler, and a beer.

Real Programmers do List Processing in Fortran.

Real Programmers do String Manipulation in Fortran.

Real Programmers do Accounting (if they do it at all) in Fortran.

Real Programmers do Artificial Intelligence programs in Fortran.

If you can't do it in Fortran, do it in assembly language. If you can't do it in assembly

language, it isn't worth doing.

The academics in computer science have gotten into the "structured programming" rut
over the past several years. They claim that programs are more easily understood if the
programmer uses some special language constructs and techniques. They don't all agree
on exactly which constructs, of course, and the example they use to show their particular
point of view invariably fit on a single page of some obscure journal or another-- clearly
not enough of an example to convince anyone. When I got out of school, I thought I was
the best programmer in the world. I could write an unbeatable tic-tac-toe program, use
five different computer languages, and create 1000 line programs that WORKED
(Really!). Then I got out into the Real World. My first task in the Real World was to read
and understand a 200,000 line Fortran program, then speed it up by a factor of two. Any
Real Programmer will tell you that all the Structured Coding in the world won't help you
solve a problem like that-- it takes actual talent. Some quick observations on Real
Programmers and Structured Programming:

Real Programmers aren't afraid to use GOTOs.

Real Programmers can write five page long DO loops without getting confused.

Real Programmers like Arithmetic IF statements-- they make the code more
interesting.

Real Programmers write self-modifying code, especially if they can save 20
nanoseconds in the middle of a tight loop.

Real Programmers don't need comments-- the code is obvious.

Since Fortran doesn't have a structured IF, REPEAT ... UNTIL, or CASE
statement, Real Programmers don't have to worry about not using them. Besides,
they can be simulated when necessary using assigned GOTOs.

Data structures have also gotten a lot of press lately. Abstract Data Types, Structures,
Pointers, Lists, and Strings have become popular in certain circles. Wirth (the above
mentioned Quiche Eater) actually wrote an entire book [2] contending that you could
write a program based on data structures, instead of the other way around. As all Real
Programmers know, the only useful data structure is the Array. Strings, Lists, Structures,
Sets-- these are all special cases of arrays and can be treated that way just as easily
without messing up your programming language with all sorts of complications. The
worst thing about fancy data types is that you have to declare them, and Real
Programming Languages, as we all know, have implicit typing based on the first letter of
the (six character) variable name.

What kind of operating system is used by a Real Programmer? CP/M? God forbid--
CP/M, after all, is basically a toy operating system. Even little old ladies and grade school
students can understand and use CP/M.

Unix is a lot more complicated of course-- the typical Unix hacker never can remember
what the PRINT command is called this week-- but when it gets right down to it, Unix is
a glorified video game. People don't do Serious Work on Unix systems: they send jokes
around the world on UUCP-net and write Adventure games and research papers.

No, your Real Programmer uses OS/370. A good programmer can find and understand
the description of the IJK305I error he just got in his JCL manual. A great programmer
can write JCL without referring to the manual at all. A truly outstanding programmer can
find bugs buried in a 6 megabyte core dump without using a hex calculator. (I have
actually seen this done.)

OS is a truly remarkable operating system. It's possible to destroy days of work with a
single misplaced space, so alertness in the programming staff is encouraged. The best
way to approach the system is through a keypunch. Some people claim there is a Time
Sharing system that runs on OS/370, but after careful study I have come to the conclusion
that they were mistaken.

What kind of tools does a Real Programmer use? In theory, a Real Programmer could run
his programs by keying them into the front panel of the computer. Back in the days when
computers had front panels, this was actually done occasionally. Your typical Real
Programmer knew the entire bootstrap loader by memory in hex, and toggled it in
whenever it got destroyed by his program. (Back then, memory was memory-- it didn't go
away when the power went off. Today, memory either forgets things when you don't want
it to, or remembers things long after they're better forgotten.) Legend has it that Seymore
Cray, inventor of the Cray I supercomputer and most of Control Data's computers,
actually toggled the first operating system for the CDC7600 in on the front panel from
memory when it was first powered on. Seymore, needless to say, is a Real Programmer.

One of my favorite Real Programmers was a systems programmer for Texas Instruments.
One day, he got a long distance call from a user whose system had crashed in the middle
of saving some important work. Jim was able to repair the damage over the phone,
getting the user to toggle in disk I/O instructions at the front panel, repairing system
tables in hex, reading register contents back over the phone. The moral of this story:
while a Real Programmer usually includes a keypunch and line printer in his toolkit, he
can get along with just a front panel and a telephone in emergencies.

In some companies, text editing no longer consists of ten engineers standing in line to use
an 029 keypunch. In fact, the building I work in doesn't contain a single keypunch. The
Real Programmer in this situation has to do his work with a "text editor" program. Most
systems supply several text editors to select from, and the Real Programmer must be
careful to pick one that reflects his personal style. Many people believe that the best text
editors in the world were written at Xerox Palo Alto Research Center for use on their Alto
and Dorado computers[3]. Unfortunately, no Real Programmer would ever use a
computer whose operating system is called SmallTalk, and would certainly not talk to the
computer with a mouse.

Some of the concepts in these Xerox editors have been incorporated into editors running
on more reasonably named operating systems-- EMACS and VI being two. The problem
with these editors is that Real Programmers consider "what you see is what you get" to be
just as bad a concept in Text Editors as it is in Women. No, the Real Programmer wants a
"you asked for it, you got it" text editor-- complicated, cryptic, powerful, unforgiving,
dangerous. TECO, to be precise.

It has been observed that a TECO command sequence more closely resembles
transmission line noise than readable text[4]. One of the more entertaining games to play

with TECO is to type your name in as a command line and try to guess what it does. Just
about any possible typing error while talking with TECO will probably destroy your
program, or even worse-- introduce subtle and mysterious bugs in a once working
subroutine.

For this reason, Real Programmers are reluctant to actually edit a program that is close to
working. They find it much easier to just patch the binary object code directly, using a
wonderful program called SUPERZAP (or its equivalent on non-IBM machines). This
works so well that many working programs on IBM systems bear no relation to the
original Fortran code. In many cases, the original source code is no longer available.
When it comes time to fix a program like this, no manager would even think of sending
anything less than a Real Programmer to do the job-- no Quiche Eating structured
programmer would even know where to start. This is called "job security".

Some programming tools NOT used by Real Programmers:

Fortran preprocessors like MORTRAN and RATFOR. The Cuisinarts of
programming-- great for making Quiche. See comments above on structured
programming.

Source language debuggers. Real Programmers can read core dumps.

Compilers with array bounds checking. They stifle creativity, destroy most of the
interesting uses for EQUIVALENCE, and make it impossible to modify the
operating system code with negative subscripts. Worst of all, bounds checking is
inefficient.

Source code maintenance systems. A Real Programmer keeps his code locked up in
a card file, because it implies that its owner cannot leave his important programs
unguarded [5].

Where does the typical Real Programmer work? What kind of programs are worthy of the
efforts of so talented an individual? You can be sure that no Real Programmer would be
caught dead writing accounts-receivable programs in COBOL, or sorting mailing lists for
People magazine. A Real Programmer wants tasks of earth-shaking importance
(literally!).

Real Programmers work for Los Alamos National Laboratory, writing atomic
bomb simulations to run on Cray I supercomputers.

Real Programmers work for the National Security Agency, decoding Russian
transmissions.

It was largely due to the efforts of thousands of Real Programmers working for
NASA that our boys got to the moon and back before the Russkies.

The computers in the Space Shuttle were programmed by Real Programmers.

Real Programmers are at work for Boeing designing the operation systems for
cruise missiles.

Some of the most awesome Real Programmers of all work at the Jet Propulsion
Laboratory in California. Many of them know the entire operating system of the Pioneer
and Voyager spacecraft by heart. With a combination of large ground-based Fortran
programs and small spacecraft-based assembly language programs, they are able to do
incredible feats of navigation and improvisation-- hitting ten-kilometer wide windows at
Saturn after six years in space, repairing or bypassing damaged sensor platforms, radios,
and batteries. Allegedly, one Real Programmer managed to tuck a pattern matching
program into a few hundred bytes of unused memory in a Voyager spacecraft that
searched for, located, and photographed a new moon of Jupiter.

The current plan for the Galileo spacecraft is to use a gravity assist trajectory past Mars
on the way to Jupiter. This trajectory passes within 80 +/- 3 kilometers of the surface of
Mars. Nobody is going to trust a Pascal program (or Pascal programmer) for navigation
to these tolerances.

As you can tell, many of the world's Real Programmers work for the U.S. Government--
mainly the Defense Department. This is as it should be. Recently, however, a black cloud
has formed on the Real Programmer horizon. It seems that some highly placed Quiche
Eaters at the Defense Department decided that all Defense programs should be written in
some grand unified language called "ADA" ((C), DoD). For a while, it seemed that ADA
was destined to become a language that went against all the precepts of Real
Programming-- a language with structure, a language with data types, strong typing, and
semicolons. In short, a language designed to cripple the creativity of the typical Real
Programmer. Fortunately, the language adopted by DoD had enough interesting features
to make it approachable-- it's incredibly complex, includes methods for messing with the
operating system and rearranging memory, and Edsger Dijkstra doesn't like it [6].
(Dijkstra, as I'm sure you know, was the author of "GOTOs Considered Harmful"-- a
landmark work in programming methodology, applauded by Pascal Programmers and
Quiche Eaters alike.) Besides, the determined Real Programmer can write Fortran
programs in any language.

The Real Programmer might compromise his principles and work on something slightly
more trivial than the destruction of life as we know it. Providing there's enough money in
it. There are several Real Programmers building video games at Atari, for example. (But
not playing them-- a Real Programmer knows how to beat the machine every time: no
challenge in that.) Everyone working at LucasFilm is a Real Programmer. (It would be
crazy to turn down the money of fifty million Star Trek fans.) The proportion of Real
Programmers in Computer Graphics is somewhat lower than the norm, mostly because
nobody has found a use for Computer Graphics yet. On the other hand, all Computer
Graphics is done in Fortran, so there are a fair number of people doing Graphics in order
to avoid having to write COBOL programs.

Generally, the Real Programmer plays the same way he works-- with computers. He is
constantly amazed that his employer actually pays him to do what he would be doing for
fun anyway (although he is careful not to express this opinion out loud). Occasionally, the
Real Programmer does step out of the office for a breath of fresh air and a beer or two.
Some tips on recognizing Real Programmers away from the computer room:

At a party, the Real Programmers are the ones in the corner talking about operating
system security and how to get around it.

At a football game, the Real Programmer is the one comparing the plays against his
simulations printed on 11 by 14 fanfold paper.

At the beach, the Real Programmer is the one drawing flowcharts in the sand.

At a funeral, the Real Programmer is the one saying "Poor George. And he almost
had the sort routine working before the coronary."

In a grocery store, the Real Programmer is the one who insists on running the cans
past the laser checkout scanner himself, because he never could trust keypunch
operators to get it right the first time.

What sort of environment does the Real Programmer function best in? This is an
important question for the managers of Real Programmers. Considering the amount of
money it costs to keep one on the staff, it's best to put him (or her) in an environment
where he can get his work done.

The typical Real Programmer lives in front of a computer terminal. Surrounding this
terminal are:

Listings of all programs the Real Programmer has ever worked on, piled in roughly
chronological order on every flat surface in the office.

Some half-dozen or so partly filled cups of cold coffee. Occasionally, there will be
cigarette butts floating in the coffee. In some cases, the cups will contain Orange
Crush.

Unless he is very good, there will be copies of the OS JCL manual and the
Principles of Operation open to some particularly interesting pages.

Taped to the wall is a line-printer Snoopy calendar for the year 1969.

Strewn about the floor are several wrappers for peanut butter filled cheese bars--
the type that are made pre-stale at the bakery so they can't get any worse while
waiting in the vending machine.

Hiding in the top left-hand drawer of the desk is a stash of double-stuff Oreos for
special occasions.

Underneath the Oreos is a flow-charting template, left there by the previous
occupant of the office. (Real Programmers write programs, not documentation.
Leave that to the maintenence people.)

The Real Programmer is capable of working 30, 40, even 50 hours at a stretch, under
intense pressure. In fact, he prefers it that way. Bad response time doesn't bother the Real
Programmer-- it gives him a chance to catch a little sleep between compiles. If there is
not enough schedule pressure on the Real Programmer, he tends to make things more
challenging by working on some small but interesting part of the problem for the first
nine weeks, then finishing the rest in the last week, in two or three 50-hour marathons.
This not only impresses the hell out of his manager, who was despairing of ever getting
the project done on time, but creates a convenient excuse for not doing the

documentation. In general:

No Real Programmer works 9 to 5. (Unless it's the ones at night.)

Real Programmers don't wear neckties.

Real Programmers don't wear high heeled shoes.

Real Programmers arrive at work in time for lunch.

A Real Programmer might or might not know his wife's name. He does, however,
know the entire ASCII (or EBCDIC) code table.

Real Programmers don't know how to cook. Grocery stores aren't open at three in
the morning. Real Programmers survive on Twinkies and coffee.

What of the future? It is a matter of some concern to Real Programmers that the latest
generation of computer programmers are not being brought up with the same outlook on
life as their elders. Many of them have never seen a computer with a front panel. Hardly
anyone graduating from school these days can do hex arithmetic without a calculator.
College graduates these days are soft-- protected from the realities of programming by
source level debuggers, text editors that count parentheses, and "user friendly" operating
systems. Worst of all, some of these alleged "computer scientists" manage to get degrees
without ever learning Fortran! Are we destined to become an industry of Unix hackers
and Pascal programmers?

From my experience, I can only report that the future is bright for Real Programmers
everywhere. Neither OS/370 nor Fortran show any signs of dying out, despite all the
efforts of Pas- cal programmers the world over. Even more subtle tricks, like adding
structured coding constructs to Fortran, have failed. Oh sure, some computer vendors
have come out with Fortran 77 compilers, but every one of them has a way of converting
itself back into a Fortran 66 compiler at the drop of an option card-- to compile DO loops
like God meant them to be.

Even Unix might not be as bad on Real Programmers as it once was. The latest release of
Unix has the potential of an operating system worthy of any Real Programmer-- two
different and subtly incompatible user interfaces, an arcane and complicated teletype
driver, virtual memory. If you ignore the fact that it's "structured", even 'C' programming
can be appreciated by the Real Programmer: after all, there's no type checking, variable
names are seven (ten? eight?) characters long, and the added bonus of the Pointer data
type is thrown in-- like having the best parts of Fortran and assembly language in one
place. (Not to mention some of the more creative uses for #define.)

No, the future isn't all that bad. Why, in the past few years, the popular press has even
commented on the bright new crop of computer nerds and hackers ([7] and [8]) leaving
places like Stanford and MIT for the Real World. From all evidence, the spirit of Real
Programming lives on in these young men and women. As long as there are ill-defined
goals, bizarre bugs, and unrealistic schedules, there will be Real Programmers willing to
jump in and Solve The Problem, saving the documentation for later. Long live Fortran!

References:

References:
[1] Feirstein, B., "Real Men don't Eat Quiche", New York, Pocket Books, 1982.

[2] Wirth, N., "Algorithms + Data Structures = Programs", Prentice Hall, 1976.

[3] Ilson, R., "Recent Research in Text Processing", IEEE Trans. Prof. Commun., Vol.
PC-23, No. 4, Dec. 4, 1980.

[4] Finseth, C., "Theory and Practice of Text Editors - or - a Cookbook for an EMACS",
B.S. Thesis, MIT/LCS/TM-165, Massachusetts Institute of Technology, May 1980.

[5] Weinberg, G., "The Psychology of Computer Programming", New York, Van
Nostrand Reinhold, 1971, p. 110.

[6] Dijkstra, E., "On the GREEN language submitted to the DoD", Sigplan notices, Vol.
3, No. 10, Oct 1978.

[7] Rose, Frank, "Joy of Hacking", Science 82, Vol. 3, No. 9, Nov 82, pp. 58-66.

[8] "The Hacker Papers", Psychology Today, August 1980.

ACKNOWLEGEMENT

I would like to thank Jan E., Dave S., Rich G., Rich E. for their help in characterizing the
Real Programmer, Heather B. for the illustration, Kathy E. for putting up with it, and
atd!avsdS:mark for the initial inspiration.

Webbed by Greg Lindahl (lindahl@pbm.com)

Process Systems Engineering, NTNU

HEINZ A PREISIG

Browse: Home / Courses / TKP4106 Script and

Exercises

TKP4106 SCRIPT AND
EXERCISES

LINKS >>>

 Script_v2

 Slides

 Exercise sets

Script changes:
complete revision

active nomenclature

Script TO DO:
Chapter 7: to be moved to after Chapter 10 and

add pressure distribution network (event-

dynamic). Alternatively do not move but add a

event-dynamic mass system and add the

Menu

Copyright © 2014 Heinz A Preisig

Powered by WordPress and Oxygen

event-dynamic mass system and add the

pressure distribution discussion to Chapter 10.

Chapter 12: extend into finite volume because it

matches Chapter 4

Chapter 13: Something to think about. Should

probably be properly extended. Needs some

more thinking.

Extensions beyond state space: More on

linearisation, properties like observability and

controllability, stability. Model reduction due to

assumptions an extension of what is woven into

the text until now.

Note: This course is under development, consequently

the linked documents may change during the session.

There is a slight miss-match with titles on the exercises

due to mix of old and new versions.

Computing exercises: compulsory – required because

they are necessary ingredients for later assignments.

Theory exercises: Some compulsory exercises – will

be defined on distribution. 80 % of the remaining

exercises.

Pensum: Script

Solutions: Will be made available

Frequently asked questions (FAQ)
Nuts and bolts:

1. How to create a homepage on the stud server: change permissions here.
2. Publishing .py files: By default the server folk.ntnu.no treats files ending in

.py as binary files. So, if you click a link to a .py file, the file will be
downloaded. This is OK if you actually want to edit or play around with the
file, but not OK if you want to have a quick look and then leave the file.
However, folk.ntnu.no runs apache web server and it can be configured
(recursivly on a folder by folder basis) using a special hidden file called
.htaccess. The trick is to configure the server such that .py files get served
as text/plain mime type. Because different versions of Windows can make
it confusing working with hidden files, and because the task is very simple
to solve in LINUX which is available to all students at logon.stud.ntnu.no,
open Putty (it is on most NTNU computers, or you can install it on your
own) and enter logon.stud.ntnu.no. Then logon using your normal
username and password and copy the following into the terminal echo
'AddType text/plain .py' >> ~/public_html/.htaccess.

3.
4.

Python:

1. Use quit() or ctrl + Z to exit Python in the command window.
2. Comparison operators in Python are the same as in C/C++ that are ==, !=,

<= and >=.
3. The indexing of lists, vectors, etc. starts at 0 - not at 1 as in FORTRAN and

Matlab.
4. Use colon (:) to terminate if, else, while and for conditionals.
5. The elif in Python corresponds to else if in C/C++.
6. To start writing Python you must be familiar with the most basic

programming concepts:
recursion
loops (for, while)
regular expressions
functions

7. You must know how to work with basic objects and containers:
string
number

float
int

list

dictionary

8. Finally, you must know the meaning of a few reserved words:
for, while
if, else, elif
def
len
return
int
help
import
help
dir

9. Importing mathematics package:
import math

10. Importing regular expression package:
import re
re.match('looking for re', 'in string')
re.group()

11. Working with dictionaries:
dict.get()
dict.pop()
dict.iteritems()

12.
13.

Unix/Linux/Cygwin:

1. Find all files of kind TeX or LaTeX in your Document catalogue: find
~/Documents/ -iname *.tex

2. Find all occurences of PYTHON, Python, python etc. in those files: grep -E
-i --color 'python' `find ~/Documents/ -iname *.tex`

3. Collect all .py files in every sub-directory into a new file called tmp: for file
in **/*.py; do cat $file; done > tmp

4. Calculate the cumulative number of words in the entire directory tree: ls -R
./**/* | wc -w

5. Remove comment lines from Python script: grep -Ev '^\s*(#.*)?$' foo.py
6.
7.

Windows:

1. Use quit() or ctrl + Z to exit Python in the command window.
2. How to use epydoc in the command window: Open the cmd window.

Change directory (cd) to the folder where epydoc.py was saved
(C:\Python27\Scripts). Enter the command epydoc.py and then the path to
the file you want to run epydoc on (e.g. epydoc
C:\Python27\myfiles\atoms.py). Command line options can be (e.g. -o
myfiles\html will send output to an html folder in myfiles).

3. How to set the Python path in windows 7: My computer -> system
properties -> advanced settings -> environment variables -> scroll down to
path in the window below -> edit -> add ;C:\Python27 at the end of list.
Press OK. Now you can open python.exe in the cmd window independent
of where in the path you are at the present.

4. How to change text colour in command window: Right click on the
command line. Choose properties -> colors -> windows text -> choose the
pale green color.

5.
6.

TextPad:

1. How to find syntax for regular expressions: help -> help topics -> how to... -
> find and replace text -> use regular expressions. Will then get a list of all
legal search expressions.

2. How to get line numbers: Configure -> preferences -> view -> line numbers
(tick off).

3. How to get default file ending of .py: Configure -> preferences -> file ->
default extension: py.

4. Downloading of syntax highlighting: Choose the one of python(8) ->
download to the Samples folder where TextPad has been installed. Go to
TextPad, close all open documents. Choose configure-> new document
class -> follow the instructions for installation. Remember to tick off the
Enable syntax highlighting box. In the drop-down window: Syntax definition
file -> choose the file you just have downloaded.

5. How to change background colours: Close all open documents. Configure -
> preferences -> document classes -> python... -> colors -> choose more
colors -> choose the yellow color close to the centre of the circle.

6. Use ctrl + tab to switch between open documents.
7.
8.

Syllabus (TKP4106)
Week Programming topics (THW) Modelling

(HAP)

Tore Introduction to Python
Running Python from the command line using text files. • • •

Heinz
• • •

Exercise 1
Info about this week

Dove Regular expressions
Editors and regular expression search-and-replace, and the handling of
multiple files.

Exercise 2
Info about this week

Chicken Documenting your code
Embedded documentation (epytext), and automatic documentation
(epydoc).

Exercise 3
Info about this week

Lion Molecular formula parser
Backus-Naur formalism, regular expressions, and string parsing.

Exercise 4
Info about this week

Penguin The atom matrix
Dictionaries (hash tables) and iterators.

Exercise 5
Info about this week

Fish Independent reactions
Matrix algebra, null space, and the mass balance of chemically reacting
systems.

Exercise 6
Info about this week

Elephant Root solvers
Solving non-linear problems in one variable. Safe-guarding the iteration.

Exercise 7
Info about this week

Beaver A thermodynamic equation solver
Solving a spefication in H,p,N1,N2,... with respect to T,V,N1,N2,...

Exercise 8
Info about this week

Kangaroo The reactor model
Making a generic simulation model for plug-flow reactors.

Exercise 9
Info about this week

Giraffe Integration
Solving ODEs using explicit and implicit Euler integration.

Exercise 10
Info about this week

Cow Unit testing
Verification and validation of computer code, and exception handling.

Exercise 11
Info about this week

Monkey Putting the model to work
Unit testing the model, and producing plots.

Exercise 12
Info about this week

A First Introduction to Python
(TKP4106)

/about/gettingstarted

"Talking, you can only hope that somebody is listening. Writing, you can only hope that someone will be
reading. When doing programming, however, you can tell the computer what to do, how to do it and when

it should be done. That makes a heck of a difference to the scientist.

Corollary: In speech and writing it does not matter how wrong you are if you are a little right. In
programming it does not matter how right you are if you are a little wrong."

Introductory words to TKP4106, Tore Haug-Warberg (2011)

About Python as a language I am not religious. Not at all since I have coded only
a few projects in Python. The syntax is admittedly not very juicy but the language
offers a good compromise between stringency and sloppiness, and it got tons of
useful libraries. It also enforces strict indentation rules which is definitly a Good
Thing for newbies. For this reason alone Python stands out as a good learning
platform, besides being one of the more popular scripting languages available
today (far more so than Matlab for instance). The impatient reader may already
find the Seven Topics in Python useful. The newbie should attempt a peek into
this Python script, stored here, for «understanding» how a complete modelling
project might look.

To do computer programming you'll need an editor. It will soon turn out that this
will be your most valuable asset. Forget about fancy GUI's and IDE's used for
large scale programming. There are several good editors on the marked being
free, stable, powerful and omnipresent. So, dispose the mouse, learn shortkeys
and teach yourself TextPad, Vim, Emacs or … That's it.

And yes, while programming you shall document your code. Always. Coding is
about syntax — documentation is about semantics. Remember that. The idea
is to document as much as possible in the code itself using plain 7-bit ASCII
characters. The chances are that this documentation will survive all future
changes made to both computers and software.

When it comes to technical details involving complicated mathematics, tables,
pictures and other graphical elements we have to employ more advanced
principles, but I still recommend to write everything as readable text and avoid
using Microsoft Word and other text editors having proprietary data formats. For

scientific uses (La)TeX is still a good candidate.

You must also test your code. Always. What is now known as unittesting is a
Good Thing.

Finally, a little humor helps a lot when you are hit hard by a dead-line and are
forced to work late hours. Programmers are infamous for their dry and nerdish
humour.

The table below presents what I think is a set of good links, but please feel free
to suggest other links that are better. This homepage is under continuous
development!

Editors:

1. Emacs (all
platforms)

2. Emacs
quick
reference

3. Vim
(UNIX)

4. Vim quick
reference

5. TextPad
(Windows)

6. TextPad
quick
reference

Text processing:

1. LaTeX
(Cambridge
University)

2. LaTeX in
Norwegian
(Hanche-
Olsen)

3. LaTeX
professional
math (Voss)

4. High-quality
portable PDF
(Schatz)

5. Regex (Stephen
Ramsay)

6. Regex quick
reference

7. BNF and
EBNF (L. M.
Garshol)

Programming en
masse:

1. Windows
shortcuts (OIT)

2. Linux
programming
(digilife)

3. Mac shortcuts
(macmost)

4. The Transparent
Language
Popularity Index

5. Commenting
Python code
(MIT)

6. 99 bottles of beer
(1000++
languages)

7. Programming
paradigms (Kurt
Normark)

Mostly fun:

1. Real
Programmers (Ed
Post)

2. The story of Mel
(Ed Nather,)

3. The Tao of
programming
(Kragen Sitaker)

4. Computer
languages (E.
Levenez)

5. Shoot yourself in
the foot (WWW)

6. Lord of the Rings
(D. Pritchard)

7. About spell
checkers (WWW)

8. Foobar etymology
(Jargon File)

It is said that Python is an Object Oriented Programming language. But Python
and most other languages can also be used for Imperative Programming. So
what does OOP mean in contrast to IP? Let me try to explain the difference in
terms of how NTNU organizes the exams. Assume for the moment that NTNU is
a central Python module and that you (the student) is a data object floating
around in cyberspace. In Python jargon we can then state the following:
...
...
A list of all courses at NTNU.
 courses = [..., TKP4106, ...]
...
...
It's time for arranging exams.

 for course in courses:
 arrange_exam(course)
...
...
Make sure all students do their exams.
 def arrange_exam(course):
 for student in course.students():
 answer = student.do_exam(course)
 if answer == None:
 mark = 'Failed'
 else:
 mark = evaluate_exam(course, answer)
 end
 print(student, course, mark)
...
...

The big difference is how the methods arrange_exam() and do_exam() are
implemented. NTNU is the official authority and knows exactly why, what, who,
when and where to examine. NTNU's function arrange_exam() is therefore
implemented as a global function which is part of an imperative schedule called
a study program. I.e. NTNU tells you what to do at each level of your study. But,
whenever NTNU alarms you to conduct an exam it invokes do_exam() which is
an object method installed on you (and on all other student objects). It is in fact a
singleton since it is installed on a one-to-one basis and will be different for each
student. For that reason NTNU cannot rely fully on your scientific integrity and it
therefore invokes another global function called evaluate_exam() which
marks your answer. The rest of the story you all know… I hope this little allegory
helps you understand the difference of OOP and IP.

To help you getting started with Python I have collected a set of links (below)
which take you all the way from a novice's trial-and-error efforts to advanced
programming issues using Matlab-style linear algebra packages. For those who
would prefer an introduction that is more tightly bound to the contents of
TKP4106 I can offer you this Seven Topics in Python written specifically to meet
the needs of students coming in from the sideline without having any prior
experiences with computer programming.

Getting started:

1. Seven Topics in Python
(Haug-Warberg)

2. A Beginner's Python Tutorial
(Steven Thurlow)

3. Epydoc (sourceforge)
4. Epytext markup

(sourceforge)

Going a little further:

1. Python Docstrings
(Sourceforge)

2. Regex in Python
(python.org)

3. Unittesting in
Python (python.org)

4. Python best practise
(Well House)

The full story:

1. Numerical Python
(numpy.org)

2. Plotting with
Python (matplotlib)

3. Scientific Python
(numpy.org)

4. Symbolic Python
(sympy.org)

Let's conclude this introduction by writing our first Python script:

print "Hello world"

As you can understand it simply prints a string saying hello world to the screen
(standard output). Store the code in a file called TKP4106/Python/hello.py
and run it from the terminal (while being positioned inside TKP4106/Python)
issuing the command: python hello.py to the operating system. There is
nothing magical about TKP4106/Python — it serves only as a decent
placeholder for the Python files you are going to write throughout this course. To
continue, we can make the script a little more useful for our future needs by re-
writing it into:

hello = "Hello world"

if __name__ == '__main__':
 print hello

The program does still print its greeting to the world, but it first assigns the
string "hello world" to the variable hello and then tests that you are
actually invoking the script directly from the command line identified as
"__main__" before it prints the content of hello to standard output. If this
not the case — that is to say the file is being imported by another program — it
will not print anything. This feature proves to be very handy while testing
programs which are under development. More about these technical details
later… What is crucial for the current understanding is that you start appreciating
the language, or jargon, which is being used when talking about programmatic
issues (assignments, variables, strings, command line, etc.).

Seven Topics in Python Programming

Editor: Tore Haug-Warberg

Programmer: Eivind Haug-Warberg

Copyright c© 2012 by Tore Haug-Warberg

Department of Chemical Engineering

NTNU (Norway)

Created: August 25, 2014

Contents

Introduction 3

Starting Python 4

Assignments 4

Programming vs calculus 4

Datatypes 5

String formatting 6

Objects 6

Classes 8

Loops 8

Logic operators 9

Functions 9

1

Methods 11

1 Lists 12
New content . 12
Generating arithmetic lists (ranges) . 12
Generating arbitrary lists . 13
The biggest element in a list . 13
The code . 13
Run by itself . 14

2 Exceptions 15
New content . 15
Exception handling . 15

3 Regular expressions 17
New content . 17
Regular expressions . 17
Splitting a string . 18
The code . 18
Run by itself . 20

4 Dictionaries 21
New content . 21
The set datatype . 21
The dict datatype . 21
Default values for dictionaries . 21
The code . 21
Run by itself . 22

5 Lambda functions 23
New content . 23
Anonymous function calls . 23
The code . 23
Run by itself . 24

6 Classes 25
New content . 25
Creating a new class . 25
The code . 25
Run by itself . 27

7 Unittests 28

2

Introduction

This little Python guide is designed to fill the needs of Process Modelling TKP4106 at IKP
(NTNU). Its main purpose is to give our 3rd year students enrolled in the Chemical Engineering
program a chance to become acquainted with computer programming. Python was chosen in
competition with other srcripting languages — not because it excels in any particular way — but
because it has an easy and compact syntax and because it imposes strict indentation rules on
the user. Rules which are consistent with programming in almost any language but which are
easy to forget by newcomers in the field. From a practical point of view it is more efficient for
Python to enforce the rules than for the teacher to advice the students to follow them.

The entire course is screwed together with two simple thoughts in mind: The examples ought
to be simple yet realistic and they should not constitute more than 30 pages of documented
code. A small program called m2py plays the role of the centerpiece in this matter. It aims
at using different parsing techniques for reading Matlab input strings into numerical matrices.
The motivation for this choice is that Matlab is in widespread use for technical calculations and
that it can be of interest in its own right to parse Matlab input directly from Python. The
string parsing requires besides non-trivial programming with a minimum knowledge of math,
physics, numerics or whatever. Still, the programs are not dummies but real-working programs
that can be used afterwards by the students.

But why do we take the troubles to design a course ourselves? Why don’t we simply drop
into the internet and link up to some other resources? Well, we think that to teach students
programming, or any other kind of technical subject, they must feel that the examples are
relevant and you must know the problem yourself — by heart. This does not mean that we can
simply ignore the rest of the world and the interested reader is therefore given a list of similar
projects below. These projects are from other universities with a profile similar to NTNU.
The google terms we used to locate the courses were: <univ.name> python modelling and
<univ.name> python physics:

02450 Introduction to Machine Learning and Data Modeling. ECTS: 5.
texttthttp://www2.imm.dtu.dk/courses/02450/

02820 Python Programming. ECTS: 5.
texttthttp://www2.imm.dtu.dk/courses/02820/

X442.3 Python Programming. EECS: 1 semester unit.
texttthttp://extension.berkeley.edu/catalog/course522.html

CS9H Python. Self paced study.
texttthttp://inst.eecs.berkeley.edu/ selfpace/class/cs9h/

6.189 A Gentle Introduction to Programming Using Python. 6 units.
texttthttp://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

CS 11 Python track. 3 units.
texttthttp://courses.cms.caltech.edu/cs11/material/python/index.html

Physics 20 Introduction to Tools of Scientific Computing. 6 units.
texttthttp://www.pma.caltech.edu/ physlab/physics 20 fall12.html

IN4186TU Datastructures, Algorithms and Databases. ECTS: 6.
texttthttp://studiegids.tudelft.nl/a101 displayCourse.do?course id=16896

AE1205 Programming & Scienific Computing in Python for AE1. ECTS: 2.
texttthttp://www.studiegids.tudelft.nl/a101 displayCourse.do?course id=27066

3

Note: The URLs are not hyperlinked because they are probably broken within a couple of years
or so. It is at least reasons to think so because computer courses are among the most dynamic
courses at the University level. The two courses given at Caltech are of special interest to
TKP4106, however, and should be followed up more closely in the future.

Starting Python

There are two ways to use Python. Either by running it interactively from the console, that
is the “Terminal” on Mac, the “command line” in Linux, or the “command prompt” in MS-
Windows, or by asking it to compile and run an input-file written in Python syntax. Typing
python by itself starts the Python interpreter:

1 $ python
2 >>> print ’Hello world’
3 ’Hello world’

Everything you enter afterwards is interpreted as Python code. For example print() is a
function that displays its arguments in your console window, in this case it is the content of a
string. Typing python <filename>.py executes the contents of the file <filename>.py:

1 $ python hello.py
2 ’Hello world’
3 $

In this case the input file hello.py is supposedly containing a single line of code that says
print ’Hello world’. The output is therefore the same in both cases.

Assignments

Variables are used to keep track of the information flow. In Python a variable does not store the
actual value but rather stores the memory address there the value is being located. To assign
an address to a variable you write <name> = <value>. This lets you type <name> instead of
<value> later.

1 >>> a = 1
2 >>> a + 2
3 3

To assign the same value to several variables at a time you type: a = b = 1. If you want several
variables to have all different values you can do this: a, b = 1, 2.

Programming vs calculus

Arithmetic operators (+, −, ∗ and /) in Python are similar to what you would expect while the
syntax for “power” is **. Typing a+=n, a-=n, a/=n, a*=n etc. will do the same as a=a+n,

a=a-n, a=a/n, a=a*n; it will increase, decrease, divide or multiply itself with n. Python is a
list oriented language and is not made for doing calculus, really, and the math module is of great
help when doing more advanced mathematics. E.g. importing sqrt() from the math module
makes these calculations possible:

a = 1, b = 4, c = −2

c · (a+
√
b)3 = −54

Here is how it would look in Python:

4

1 >>> from math import sqrt
2 >>> a, b, c = 1, 4, -2
3 >>> c * (a + sqrt(b))**3
4 -54.0

The code segment from math import sqrt means that you import the function sqrt() from
a file called math. On its own, import math imports the entire file and sqrt() must then be
accessed by math.sqrt(). If you want to rename one of the functions in a module, or the mod-
ule itself, you can use the as keyword: from math import sqrt as squareroot. Hereafter,
squareroot(x) calculates the square root of x.

Python is also useful for more advanced operations and is especially well designed for handling
lists and sequences efficiently. Take this sum as an example:

50∑

n=1

n = 1275

To encode it in Python you can use the range() function which unlike sqrt() is a built-
in function. It returns a list of numbers extending from the first argument up to (but not
including) the second argument (see Section 1.2). The for loop (explained on page 9) is used to
iterate through the list returned from range() and sum up the values of each of the elements.
Here is how it would look in Python:

1 >>> sum = 0
2 >>> for i in range(50):
3 ... sum += i + 1
4 ...
5 >>> print sum
6 1275

Note that there is no explicit ending of the for loop. The loop is instead controlled by a special
Python-feature: Code that belongs to the for loop will have to be indented! This also includes
conditional tests, functions and classes which are explained later. All these code blocks are
ended by simply stopping the indentation.

Another example: π is a number used frequently in calculus which you typically access by
simply pressing a “pi-button” on the calculator. In Python programming you can feel the
satisfaction of calculating it yourself:

1 >>> pi = 0.0
2 >>> for i in range(int(1e6)):
3 ... pi += (-1)**i * (1.0 / (i * 2 + 1))
4 ...
5 >>> print pi * 4
6 3.14159265359

Datatypes

There are eight basic datatypes in Python which can hold different types of data. Assigning
the objects that are listed in the “Example” column to a variable name will make that variable
an object of the corresponding “Datatype”.

5

Datatype Name Example Description

Integer int 1, 2, -1, -2, 0 integer number
Float float -1.0, 0.0, 1.2e2 decimal number (also scientific notation)
String str ’a’, ’b c’ alphanumeric characters inside quotes
Boolean bool True, False either True or False
List list [2.0, ’Foo’, [1, None]] a list of any data objects
Dictionary dict {’a’: 1, ’b’: ’a’} unordered list, often indexed by a string
Tuple tuple (1, 2, 3) a list that cannot be changed (immutable)
Exception exception SyntaxError, ValueError errors that might occur during execution
None NoneType None nothing, really

These concepts are not needed in the beginning but you should nevertheless be aware that there
are many different data types. Note also that tuples are immutable. Integers, floats, booleans
and strings cannot be changed too. True, you can change the value of a variable that holds an
integer but you cannot change the integer itself, say from 2 to 3. This issue will be explained
more carefully (further down on the current page) talking about objects.

String formatting

Strings, lists and dicts are among the most common Python objects. As stated above the strings
are immutable which means they cannot be modified per se. To modify a string we have to
make a brand new copy. One way to edit strings dynamically is from using string formatting.
In the example below we have defined a function that takes a person’s name and his or her age
as input and generates a greeting line out of it:

1 >>> def intro(name, age):
2 ... return ’My name is %s, I am %d years old.’ % (name, age)
3 ...
4 >>> intro(’Bob’, 20)
5 My name is Bob, I am 20 years old.

Typing %s inside a string lets you replace %s with any kind of text later, whereas %d can be
replaced with integers only and %f lets you insert floats. If you want a string of fixed length in
the output you can specify its length (e.g. 6) as a format modifier %6s:

1 >>> def printrow(pattern, *columns):
2 ... return pattern * len(columns) % columns
3 ...
4 >>> print printrow(’%6s’, 123, 456, 789)
5 123 456 789
6 >>> print printrow(’%-5s’, 123, 456, 789)
7 123 456 789

As you can see the extra spaces are placed in front of the string. To make the string left justified
use a negative number like in %-6s.

Objects

All variables in Python are objects. An object has a unique identifier, a type and some content.
The identifier is a reference to the computer memory and will not change run-time. The type of
an object is what we previously have called the datatype. This cannot be changed either. The
example below shows how references work:

1 >>> a = 1
2 >>> b = a
3 >>> id(a); id(b); id(1)
4 140645150830792

6

5 140645150830792
6 140645150830792
7 >>> b = 2
8 >>> id(a); id(b); id(2)
9 140645150830792

10 140645150830768
11 140645150830768

Here, a is the name of an object of type int. It has the value 1. b is another name for the same
object. An assigment in Python evaluates the right hand side first and assigns the value to the
name appearing on the left side. When two right hand sides evaluate to the same object we get
two different names for the same thing — in this case a and b. In other words: a and b keep
references to the same memory address which happens to be the reference to 1. When assigning
b = 2 a new object is created which has a new identifier referring to 2. Even though we assigned
b = a the changing of b will not affect a. Python is not a language for doing symbolic math
like you do on a piece of paper. The order of assigment does therefore matter.

The same does not happen when using lists, dictionaries and tuples. Here, assigning a =

[1] not only creates a named object but it also makes a new memory address where the list
elements are stored. Then, b = a makes sure b refers to the same address as a, just like in the
previous example.

1 >>> a = [1]
2 >>> b = a
3 >>> id(a); id(b)
4 4364804752
5 4364804752

The difference is that when you change an element inside b a new object is not made. Rather,
the element stored in that memory location is being changed and since b and a still refer to the
same address both objects are affected:

1 >>> b[0] = 2
2 >>> id(a); id(b)
3 4364804752
4 4364804752
5 >>> a
6 [2]

Whenever a is assigned to a new list then a new object with a new memory location is returned.
In this case a and b have different references and they are therefore independent:

1 >>> a = [1]
2 >>> b = a
3 >>> a; b
4 [1]
5 [1]
6 >>> a = [2]
7 >>> a; b
8 [2]
9 [1]

In Python, multiplying a list by n will repeat the list n times. This means that n objects
having exactly the same reference will be returned. The feature does not cause any problems
for numbers and strings but for other objects it might cause trouble:

1 >>> a = [[0]] * 3
2 >>> a
3 [[0], [0], [0]]
4 >>> a[0][0] = 1
5 >>> a
6 [[1], [1], [1]]

Here, a is assigned to a list-of-lists. The inner list is repeated three times. This means that we
have a list of three lists sharing the same reference. Changing the element of say the first of the
inner lists affects all the other lists as well because they all share the same memory address.

7

Classes

The last two sections were about objects and datatypes. Now the scope is broadened with
classes. All these concepts are quite abstract and hard to grasp. In loose terms, however, you
can think of an object as an instance of a named class which is used to represent the data type.
An example explains the concept quite easily. Think about a rational number. It consists of
two integers. How can we represent this number as a new datatype in Python? The code below
is doing the job with a minimum of fuzz:

1 class Rational:
2 def __init__(self, m, n):
3 self.m = int(m) # the numerator
4 self.n = int(n) # the denominator
5

6 # Rational numbers should be store on a reduced form. Else m and n will blow
7 # up in algebraic operations like a+b and a*b. Try to implement the algorithm
8 # yourself using e.g. the Greatest Common Divisor scheme.
9

10 def __add__(self, arg):
11 return Rational(self.m*arg.n+self.n*arg.m, self.n*arg.n)
12

13 def __mul__(self, arg):
14 return Rational(self.m*arg.m, self.n*arg.n)
15

16 def __str__(self):
17 return ’%s/%s’ % (self.m, self.n)
18

19 def __getattr__(self, arg):
20 errmess = "no function %s in object %s" % (arg, type(self))
21 raise AttributeError(errmess)
22 return

The Rational class is admittedly quite immature but it can be used to illustrate a couple of
non-trivial class aspects:

1 >>> from rational import Rational as rational
2 >>> print rational(2, 3) + rational(3, 4)
3 17/12
4 >>> print rational(2, 3) * rational(3, 4)
5 6/12

From implementing a bare-bone class with 5 functions we are able to make two instances of the
rational datatype and both add and multiply the numbers (without reduction). We are also
able to pretty-print the answer. Not bad. However, there is even more to it:

1 >>> print rational(2, 3).float()
2 ...
3 AttributeError: no function float in object <class ’instance’>

As you can see, trying to convert the rational number to float fails because function float()

is not known to instances of the Rational class. Rational is not a built-in class and Python
gives all instances of any user-defined classes the generic name instance unless we explicitly
tell it to do something else. The full story is lenghty and we therefore drop the theme and pick
it up later in Section 6.

Loops

Running code that does the same stuff over and over again requires a loop. There are two kinds
of loops in Python: The for loop and the while loop. The for loop is used to execute the
same code for all the elements in a iterable object, like lists, dicts etc. The while loop is used
to repeat the code as long as a given statement is true.

8

Do for iteration objects

As already said the for loop is used to iterate a list, dict or any other iterable object, and to
execute a block of code in each iteration:

1 >>> for i in [1, 2, 3]:
2 ... print i
3 ...
4 1
5 2
6 3

The list that is traversed in this case is [1, 2, 3]. The local variable that is assigned to each
of the elements in turn is i. The code that is executed in each step is print i.

Do while a statement is True

The while() function is used to execute a block of code for as long as its conditional is true:

1 >>> i = 0
2 >>> while i < 3:
3 ... i += 0.9
4 ... print i
5 ...
6 0.9
7 1.8
8 2.7
9 3.6

The condition is i < 3 and the code that is executed is i += 0.9. The looping continues till i
is bigger than 3.

Logic operators

The if statement is used to differ between something that is true or not true:

1 >>> if 1 == 2:
2 ... print ’1 equals 2’
3 ... elif 1 == 3:
4 ... print ’1 equals 3’
5 ... else:
6 ... print ’1 not equal 2 or 3’
7 ...
8 ’1 not equal 2 or 3.’

When extending to list comprehension in Section 1.3 and to lambda functions in Section 5.2 it
can be meaningful to keep everything on one line:

1 >>> ’1 equals 2’ if 1 == 2 else ’1 equals 3’ if 1 == 3 else ’1 not equal 2 or 3’
2 ’1 not equal 2 or 3’

Functions

Functions are used to save pieces of code. Typically this means code that you want to reuse
later. Calling a function means that some dedicated code is being executed and that selected
results are conveyed back to the user. Functions you meet in programming are quite similar to
functions you know from math. They take zero or more arguments and return either None or
any data object(s) of your own request. This example shows how to define and call a function:

9

1 >>> def f(x):
2 ... return 3 * x + 4
3 ...
4 >>> f(4)
5 16
6 >>> f(10)
7 34

Note the parantheses in f(4) and f(10). Skipping these makes Python believe that f is a
variable. Note also that def is a reserved word for defining a new function. You cannot use def

as a local variable in your programs.
A function has its own namespace which means all the variables that are created inside it are

accessible (only) until the function returns. This means you can have two different variables
sharing the same name as long they are in different namespaces. Finally, we should mention
that functions can take several arguments which do not need to be integers.

More about functions

You can also define default values for the variables in a function. If a variable is not specified
run-time it will be set to the default value automatically:

1 >>> def func(a = ’a’, b = 1.0):
2 ... print a, b
3 ...
4 >>> func()
5 a 1.0
6 >>> func(a = ’foo’)
7 foo 1.0
8 >>> func(a = ’foo’, b = ’bar’)
9 foo bar

10 >>> func(’foo’, ’bar’)
11 foo bar

Functions taking any number of arguments

By using default values the user can freely enter from 0 to n arguments, assuming that n is
the total number of local variables in the function header. But the number of arguments is
still limited to some fixed value n. We can, however, define functions without such restrictions.
Adding an asterics * in front of the last variable collects all the additional arguments that are
passed to the function into that variable. This special variable belongs to a datatype called
tuple which is an immutable object. A tuple can be made but it cannot be changed. It must
appear as the last variable in the function header:

1 >>> def letter(recipient, sender, *lines):
2 ... print ’Dear’, recipient, ’,\n’
3 ... for line in lines:
4 ... print line
5 ... print ’\nFrom’, sender
6 ...
7 >>> letter(’Foo’, ’Bar’, ’How are you?’, ’I am fine.’)
8 Dear Foo,
9

10 How are you?
11 I am fine.
12

13 From Bar

If you want to index the variable lines using strings like in a dictionary you can use **lines

instead of *lines:

1 >>> def letter(recipient, sender, **lines):
2 ... print ’Dear’, recipient, ’,\n’

10

3 ... for line in lines:
4 ... print line, ’:’, lines[line]
5 ... print ’\nFrom’, sender
6 ...
7 >>> letter(’Foo’, ’Bar’, Line1 = ’Hey’, Line2 = ’Yo’)
8 Dear Foo ,
9

10 Line2 : Yo
11 Line1 : Hey
12

13 From Bar

Note: When iterating on dicts the keywords may come in a seemingly random order! This stems
from the fact that dicts are using a kind of random storage which may change run-time.

Methods

A function can take any number of arguments, calculate its results, and return something. Only
the namespace of the function is affected when it is called. For objects you also want to write
functions that modify the state of the object. These functions affect the namespace of the object
per se and should therefore be called something else. They are often referred to as methods. To
show the difference we can wrap the function f() inside a minimal class obj and refer to it as
a method registered to the instance of that class:

1 >>> class obj:
2 ... def __init__(self):
3 ... self.answer = None
4 ... def f(self, x):
5 ... self.answer = 3 * x + 4
6 ... return self
7 ...
8 >>> print obj().answer
9 None

10 >>> print obj().f(4).answer
11 16

The borderline between a namespace and an object is not very clear in Python and the distinction
between f() and obj().f() suffers from this fact. The issue is straightened out more clearly in
other languages like e.g. C++ and Ruby, but in Python it remains subtle and we shall therefore
stick to the word function to avoid any further confusion.

11

1 Lists (m2py list.py)

1.1 New content

Lists are in focus in this section. The task is to make a program that takes any list-of-lists and
generates a regular table. By regular we mean a table that is full and rectangular. Elements
that are missing are filled in using a padding value which is supplied by the user. As a part
of the programming you will learn to use range(), append() and max(). These are functions
built into the list type. You will also learn to use list comprehension which is a Python’ish way
to generate lists. Finally, there is an important issue about assignments.

1.2 Generating arithmetic lists (ranges)

range() returns a list of integers. It takes up to 3 integer arguments. Given one argument it
returns a list of numbers from zero and up to, but not including, the given argument:

1 >>> range(4)
2 [0, 1, 2, 3]

Given two arguments it returns a list of all integers from the first argument and up to, but not
including, the second argument:

1 >>> range(4, 8)
2 [4, 5, 6, 7]

Given three arguments it returns a similar list using the third argument as the increment:

1 >>> range(4, 11, 2)
2 [4, 6, 8, 10]

The list function append() adds a single value to the end of the list:

1 >>> a = [1, 2, 3]
2 >>> a.append(4)
3 >>> a
4 [1, 2, 3, 4]

Note that a.append(n) is the same as typing a += [n], but it is not the same as a = a + [n].
The last call is an assignment, and an assignment results in a new object with a new reference
to a new memory address. This means that a will be copied by value:

1 >>> a = [1, 2]
2 >>> b = a
3 >>> a.append(3)
4 >>> b
5 [1, 2, 3]
6 >>> a += [4]
7 >>> b
8 [1, 2, 3, 4]
9 >>> a = a+[5]

10 >>> b
11 [1, 2, 3, 4]
12 >>> a
13 [1, 2, 3, 4, 5]

Line 1 to 5 show that a and b refer to the same object.

Line 6 to 8 the same happen here.

Line 9 to 13 object a has gotten a new reference and is therefore independent of b.

12

1.3 Generating arbitrary lists

List comprehension is a nifty way of creating lists. It uses a shorthand for loop to generate each
element in the list. The value of the element is calculated by a one-liner (code written entirely
in one line). The syntax is: [<code> for <element> in <list>]. The <code> is doing the
calculations and <element> is a local variable accessing the elements of <list>. The square
brackets indicate that you are working on a list. Here are some examples:

1 >>> [i for i in range(1, 11)]
2 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
3 >>> [i*2 for i in range(1, 11)]
4 [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
5 >>> [[i, j**2] for i in range(1, 4) for j in range(1, 3)]
6 [[1, 1], [1, 4], [2, 1], [2, 4], [3, 1], [3, 4]]

The same syntax is used for making dictionaries in Section 4. The brackets are then replaced
by curly braces:

1 >>> {c: c for c in [’a’, ’b’, ’c’]}
2 {’a’: ’a’, ’c’: ’c’, ’b’: ’b’}

1.4 The biggest element in a list

max() returns the list element that is considered to have the biggest value. For numbers,
the largest value is the biggest one. If the list is nested then the maximum value is calculated
according to the first element in the lists, then to the second element and so on. For dictionaries,
the tuple having the biggest keyword will be returned — the values are decisive only if the
keywords are equal. Strings are sorted in lexicographic order:

1 >>> max([1, 5, 2])
2 5
3 >>> max([[0, 1], [2]])
4 [2]
5 >>> max([’a’, ’b’, ’ca’, ’d’])
6 ’d’
7 >>> max([{’b’:’d’}, {’b’:’eb’}])
8 {’b’: ’eb’}

When the list contains several different datatypes strings are considered the highest, next up
are lists, then dicts, and at last numbers.

1.5 The code

The code below converts a non-regular table into a regular matrix. The empty cells in the matrix
are filled with a “padding” value. Matrices are interpreted as lists-of-lists in this context:

1 def m2py(rows, padding=0, debug=False):
2 maxlen = max([len(row) for row in rows])
3

4 if debug:
5 print ’m2py_list: Max length: %s’ % maxlen
6

7 return [row + [padding] * (maxlen-len(row)) for row in rows]

Line 1 defines a function called m2py(). It takes 1, 2 or 3 arguments: rows, padding and
debug. If padding is not given it will be assigned the value 0 by default. Likewise, if debug is
missing it is assigned the value False.

Line 2 traverses each row in the input table called rows, using the len() function to get hold
of the length of that row. Then it uses max() to calculate the maximum length of all the rows.

Line 7 traverses all the rows and adds one padding value for each of the missing elements.

13

1.6 Run by itself

The last part of file m2py list.py is executed only when Python runs the code by itself. It
means you enter python <file>.py directly in the terminal. The code is skipped when the
file is loaded with import <file> inside another program. This is the Python-way of writing
stand-alone unittests:

9 if __name__ == ’__main__’:
10 print m2py([[], [’’, ’’]], None)
11 print m2py([[1, 2], [4, 5, 6], []], 3)

The code runs m2py() and displays the output. The padding value is None and 3 respectively:

1 [[None, None], [’’, ’’]]
2 [[1, 2, 3], [4, 5, 6], [3, 3, 3]]

This feature makes it a snap to write small tests showing how the program works.

14

2 Exceptions

2.1 New content

Exceptions allow the program to exit in a controlled manner when errors occur. Rather than
printing local messages from deep inside the code, python takes care of the entire operation and
lets you simply raise an error datatype with a message attached. Most modern languages have
this feature, but it is still common to see local error messages printed from all over the place.
This should now be considered bad practise.

2.2 Exception handling

The keyword try executes a piece of code that can produce an error without crashing the
program. The code that comes after try is used to describe what you intend to do, the code
that comes after except is what should be done if an error occurs:

1 >>> a = []
2 >>> for i in range(-10,10):
3 ... a.append(i*abs(i)/i)
4 ...
5 Traceback (most recent call last):
6 File <stdin>", line 2, in <module>
7 ZeroDivisionError: integer division or modulo by zero

In this case the error is caused by a division-by-zero inside the loop. The error is captured like
this:

1 >>> a = []
2 >>> for i in range(-10, 10):
3 ... try:
4 ... a.append(i*abs(i)/i)
5 ... except ZeroDivisionError:
6 ... a.append(i)
7 ...
8 >>> a
9 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

You cannot use the try keyword alone — it must be followed by something. But, the keyword
except may affect the error traceback. Use finally to prevent this. The code after finally

is what you will do in the end, no matter if a bug has occured or not:

1 >>> def tryfloat(var):
2 ... try:
3 ... var = float(var)
4 ... finally:
5 ... return var
6 ...
7 >>> tryfloat(’1e3’)
8 1000.0
9 >>> tryfloat(’1e3e’)

10 ’1e3e’

The last of the keywords is else. The else block is executed only if the try block did not fail.
This can be helpfull when two actions give the same type of error:

1 >>> from math import sqrt
2 >>> def trysqrt(var):
3 ... try:
4 ... var = float(var)
5 ... except ValueError:
6 ... var = float(’nan’)
7 ... else:
8 ... try:
9 ... var = sqrt(var)

10 ... except ValueError:

15

11 ... var = str(sqrt(abs(var))) + ’i’
12 ... finally:
13 ... return var
14 ...
15 >>> trysqrt(’4’)
16 2.0
17 >>> trysqrt(’-4’)
18 ’2.0i’
19 >>> trysqrt(’-4d’)
20 nan

There are no limits on how to break the program. You can even raise an exception by yourself.
This is useful for giving intelligent error messages connected to semantic faults in your own
code. The feature blends nicely with the handling of syntax errors, divide-by-zero traps and
other run-time errors:

1 >>> raise SyntaxError(’Custom error message’)
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 SyntaxError: Custom error message

You can choose any error type you want but it is advisable to pick one that describes the error
situation adequately.

16

3 Regular Expressions (m2py regex.py)

3.1 New content

Strings and regular expressions are in focus in this section. Basically, we shall redo the pro-
gramming in Section 1 but with a more flexible understanding of what a list element is. You
will need to learn how to use regular expressions, how to split strings using other strings, and
even to split strings using regular expressions. You will also learn more about functions.

3.2 Regular expressions

A regular expression, or simply a regex, is used to recognize string patterns. Let’s say you are
writing a text with a lot of numbers. You want to make sure that all these numbers have a
comma after each third digit (e.g. 1000000 should be 1,000,000). In this case we can use a regex
to check the spelling and even to correct the written text automagically (not covered here):

1 >>> import re
2 >>> def spellchecker(text):
3 ... badspelling = re.match(’.*(\d{4,}).*’, text)
4 ... if badspelling:
5 ... return ’%s is not formatted correctly.’ % badspelling.group(1)
6 ... else:
7 ... return ’OK’
8 ...
9 >>> spellchecker(’One "grand" equals 100 dollars.’)

10 ’OK’
11 >>> spellchecker(’No, one grand is 1000 dollars.’)
12 ’1000 is not formatted correctly.’
13 >>> spellchecker(’All right, it is 1,000 dollars.’)
14 ’OK’

So, what happened? Obviously, the spellchecker() function picks up the given text as its first
and only argument. Inside that function badspelling is assigned to whatever value is returned
from the re.match() function. This will be a match object if the string matches the pattern
(explained below), and None if it does not match. The rest of the program is straightforward.

Regular expressions are among the simplest of all computer languages. They are known as
context free languages using character patterns where each symbol has a definite meaning. The
most basic pattern symbols are the ones explained below:

Pattern Meaning

^ start of string or negated range operator [^]
$ end of string or end of line in multiline mode
. any character except newline
\d any digit in the range [0-9]
\s any white-space character
\w any character in the range [a-zA-Z]

[a-w] any character in the range a to w

[^a-w] any character not in the range a to w

* 0 or more of the previous token, range or group
+ 1 or more of the previous token, range or group
? 0 or 1 of the previous token, range or group
{n,m} n to m of the previous token, range or group

(a|b) either a or b stored in a group
(ab) a followed by b stored in a group
(?:ab) same as above but no group is formed

17

In the table there is a term called group which needs explanation. Take the group (ab) as
an example. That group is made available to a function called <matchobject>.group(1) if
and only if the regex matches the string. If the string is not matched then the return value of
<matchobject>.group(1) is None. In this way we dissect the string after it has been created.
Such operations are called introspection in the computer science lingo. (a|b) is doing the same
thing for a string which is either a or b. (?:ab) matches again the token ab but without making
any group. If there are no parantheses then the match object is empty but still not None.

The match object have two useful functions: group() and groups(). group(1) returns
whatever matched the first () in the pattern, group(2) returns the second (), etc. group(0)
returns everything that matched the pattern even when it is not inside parantheses, while
groups() returns a tuple of all the matched groups:

1 >>> object = re.match(r’([N-Z]|[a-m])\d(?:[A-M]|[n-z])(\d)’, ’R2D3 is awesome’)
2 >>> object.groups()
3 (’R’, ’3’)
4 >>> object.group(0)
5 ’R2D3’
6 >>> object.group(1)
7 ’R’
8 >>> object.group(2)
9 ’3’

This pattern matches any character from N to Z or from a to m putting the result into group(1).
Then it continues matching any digit \d. Then comes any character, this time from A-M or from
n-z, but without making a new group. Last comes any digit \d which goes into group(2).

3.3 Splitting a string

The function split() is built-in for strings. It takes a single argument and splits the string into
a list of smaller strings everywhere the argument is matching the string. The matching part of
the string is consumed in the process. The return value is a list with one element (the string
itself) if the argument matches the string nowhere:

1 >>> ’R2D2 is awesome’.split(’2’)
2 [’R’, ’D’, ’ is awesome’]
3 >>> ’abc’.split(’r’)
4 [’abc’]

The re module does also provide a similar split() function. One major difference between
the two functions is that re.split() takes the string as input. In addition re.split() does
of course support regular expressions:

1 >>> re.split(r’\s*[,;]?\s*’, ’a, b ; c d’)
2 [’a’, ’b’, ’c’, ’d’]
3 >>>

3.4 The code

The program takes a string that is formatted like a Matlab matrix ’[1 2 3; 4 5 6]’ and
parses it into a Python list-of-lists which we can think of as a matrix: [[1, 2, 3], [4, 5,

6]]. All numbers in the Matlab string are explicitly converted to float. The reason for this
choice is that Python does integer division whenever possible which sooner or later will cause
problems if the matrix is being factored or inverted. The “number” is returned as a string if
it cannot possibly be converted to a float. The function m2py list.m2py() is used to fill in
missing elements if the input does not conform with a regular matrix:

1 def m2py(matstring, padding = 0.0, debug = False):
2 if isinstance(padding, int):
3 padding = float(padding)

18

4

5 import re
6 import m2py_list
7

8 try:
9 tokens = re.match(r’^\s*\[\s*(.*)\s*\]\s*$’, matstring).group(1)

10 except TypeError:
11 raise TypeError(’Input must be %s, was %s’ % (type(’’), type(matstring)))
12 except AttributeError:
13 raise SyntaxError(’Input format is: [obj_11, obj_12, ...; obj_21, ...; ...]’)
14

15 if tokens == ’’:
16 if debug:
17 print ’m2py_regex: No tokens given - empty matrix returned.’
18 return [[]]
19

20 output = []

Line 2 to 3 Because we convert the values of the input list-of-lists to float, we should do the
same with the padding value too. But, if we do that straight ahead without testing first we will
deprive the user the possibility of using a (numerical) string as the padding value, because it
will be floated automatically.

Line 8 to 13 Matlab allows white-spacing before and after the square brackets. These spaces
are filtered out together with the brackets. The regular expression matches any number of
whitespaces followed by a left square bracket and any number of whitespaces. Then, it matches
everything, followed by any number of whitespaces, a right square bracket and any whitespaces
again. The $ means end-of-line. This tells the string must be ending after the whitespaces.
Note that “everything” is the only part of the pattern that is grouped in the match object.

There are two things that can go wrong on line 7. A TypeError is raised if matstring is not of
type str. The other issue is that we call group() on the returned match object. If matstring
does not match the input pattern then None is being returned. But, None has no group()

function! So, calling this function blindly will cause an AttributeError.

Line 15 to 18 If there’s nothing inside the brackets of the input string then tokens will be
an empty string. Later, when we split tokens using row and column separators it returns a
list-of-lists containing an empty string. Realising that this string is empty it is replaced by the
padding value. However, what we expect from an empty input is an empty output matrix. To
rectify this situation we test if tokens is empty and returns an empty list-of-lists if that is the
case.

22 for row in re.split(r’\s*;\s*’, tokens):
23 output.append([])
24

25 for col in re.split(r’\s*,?\s*’, row):
26 try:
27 col = float(col)
28 except ValueError:
29 if col == ’’:
30 if debug:
31 print(\
32 ’m2py_regex: [%s][%s]: Cell is empty, inserted %s value.’\
33) % (len(output), len(output[-1]), padding)
34 col = padding
35 else:
36 if debug:
37 print(\
38 ’m2py_regex: [%s][%s]: \
39 "%s" cannot be converted to float, inserted string value.’\
40) % (len(output), len(output[-1]), col)
41 output[-1].append(col)
42

43 # The next line can be the source of much grief. Try indenting one extra level

19

44 # and see what happens!

Line 22 to 23 The easiest way to turn the string into a matrix is using the re.split() function.
We split tokens at semicolons, possibly embedded in whitespaces, and iterate on all the sub-
strings. For each sub-string we add a new row to the output matrix.

Line 25 to 41 The sub-string is thereafter split at whitespaces, or commas, and iterated on the
subsub-string level. But, appending col to the last row in the matrix would yield a matrix with
strings — not numbers. We therefore make use of float(col) which either returns the float
value of col or it raises an ValueError. The error is easily checked using a try block where
col is assigned to the float value of itself. If the conversion fails the string value is retained in
the matrix.

Note: Appending col to the matrix on line 41 makes a matrix with mixed floats and strings.
The problem is that e.g. ’[1, , 2]’ returns [[1, ’’, 2]] although the empty string was
supposed to be replaced by padding. This is why col must be tested to see if it is empty
before it is appended to the matrix. Finally, col is appended to the matrix and the iterations
are complete. We now have a matrix-like object that may still be irregular. The final call to
m2py list.m2py() makes a regular matrix for us.

3.5 Run by itself

The last part of the file is executed only when Python runs the code by itself. It means you
enter python <file>.py directly in the terminal. The code is skipped when the file is loaded
with import <file> inside another program. This is the Python-way of writing stand-alone
unittests:

45 return m2py_list.m2py(output, padding, debug)
46

47 if __name__ == ’__main__’:
48 print m2py(’[; ,]’, None)
49 print m2py(’[1, 2; 4, 5, 6;]’, 3)

The code runs m2py() and displays the output. The padding value is None and 3 respectively:

1 [[None, None], [None, None]]
2 [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [3.0, 3.0, 3.0]]

The m2py regex.m2py() function has the same scope as m2py list.m2py() in Section 1, but
since the parser rules are different there will be semantic differences. The second line in the
output is appearantly the same as before except that elements are now converted to float. The
first line, however, is different. In m2py list.m2py() we could supply empty strings as list
elements, but in m2py regex.m2py() all the whitespace is first gobbled up by the parser before
it is replaced by the padding value (object None in this case).

20

4 Dictionaries (m2py dict.py)

4.1 New content

So far we have been using lists for storing many values in one place. In this section we will
introduce sets and dictionaries. The scope is the same as in Sections 1 and 3, but rather than
storing the incoming tokens as either float or strings we shall go one step further and anticipate a
certain structure of the string input. The anticipated structure is that of a chemical formula. In
a way, we are going to train the computer to interprete human readable strings. This process is
called parsing. The regular expression and the dictionary are ideal companions for this purpose.

4.2 The set datatype

The set is an unordered list. You can make an empty set by typing set(). It can hold any
number of values just like a list, but two values cannot be equal. New elements are added to
the set using add(). The argument given to add() will be added to the set unless it already
exists.

4.3 The dict datatype

While lists can only be indexed by numbers and sets cannot be indexed at all, a dict can be
indexed by strings as well as numbers (or any other object that is capable of producing a descent
hash value). Another characteristics is that the dict is not ordered in any way. It behaves more
like a random storage database. You have a key and look up a value. Iterating on a dict returns
(key, value) pairs in a seemingly random order, but for small dicts the ordering is what you’d
expect:

1 >>> d = {} # This creates an empty dict.
2 >>> d[’a’] = 3 # Assigns a value for the a-element
3 >>> d[’b’] = [1, 2] # Assings a value for the b-element
4 >>> d
5 {’a’: 3, ’b’: [1, 2]}

4.4 Default values for dictionaries

The get() function takes 2 arguments, the first is the keyword that you’d like to fetch the value
of, the second is what should be returned if there is no value registered for the given keyword:

1 >>> a = {’a’: 1}
2 >>> a.get(’a’, 0)
3 1
4 >>> a.get(’b’, 0)
5 0

4.5 The code

The input to the program is a string of chemical formulas separated by semicolons like in
’[H2O; NH4]’. The substring inside the brackets is split on semicolon and the occurences of
each atom is counted for each of the formulas. The return value is a list-of-lists where each row
is synonymous to a formula. There will be exactly one column for each atom that is found.
Each of the elements in the list-of-lists holds the number of atoms in the corresponding formula.
This is the celebrated formula matrix known from chemical reaction theory:

1 def m2py(matstring, debug=False):
2 import re
3 from atoms import atoms as atoms_parser

21

5 try:
6 tokens = re.match(r’^\s*\[\s*(.*)\s*\]\s*$’, matstring).group(1)
7 except TypeError:
8 raise TypeError(’Input must be %s, was %s’ % (type(’’), type(matstring)))
9 except AttributeError:

10 raise SyntaxError(’Input format is: [formula_1; formula_2; ...].’)
11

12 if tokens == ’’:
13 if debug:
14 print ’m2py_dict: No tokens given - empty matrix returned.’
15 return [[]]
16

17 dictionaries = [] # list of molecular formula dicts
18 formulas = re.split(r’\s*;\s*’, tokens) # list of chemical formulas
19 atoms = set() # set of atomic symbols
20

21 for formula in formulas:
22 try:
23 dictionaries.append(atoms_parser(formula)[0])
24 atoms.update(dictionaries[-1])
25 except:
26 raise SyntaxError(’Cannot parse formula "%s".’ % formula)
27

28 atoms = list(atoms)
29 atoms.sort()
30

31 return [[dictionary.get(atom, 0) for atom in atoms] for dictionary in dictionaries], \
32 atoms, \
33 formulas

Line 5 to 15 are the same as in the previous section. The required information is extracted
from the input string and a proper error message is raised if something went wrong.

Line 17 to 29 The tokens variable is split into several formulas which are interpreted by the
atoms parser() one by one. If successful a list with one single dict is returned. The dict has
keywords for each of the atoms in the formula. The dict values are the total number of atoms
of each kind. Since atoms parser() returns a list of dictionaries we use atoms parser()[0]

to access the first (and only) dict. Function update() on line 24 adds the keywords from each
dictionary to the atoms set variable. Finally, atoms is turned into a list object and sorted.

Line 31 It is necessary to loop over all the atoms in each of the dictionaries (i.e. molecular
formulas) in order to build the output object. Note that get(atom, 0) returns the number of
each atom in the formula, or zero if the atom is missing from the formula. The list comprehension
will eventually return a list-of-lists, which is the output from the program. In addition atoms

and formulas are also returned because they will find use later on.

4.6 Run by itself

The last part of the file is executed only when Python runs the code by itself. It means you
enter python <file>.py directly in the terminal. The code is skipped when the file is loaded
with import <file> inside another program. This is the Python-way of writing stand-alone
unittests:

35 if __name__ == ’__main__’:
36 print m2py(’[]’, True)[0]
37 print m2py(’[CH3OH; HNO3]’)[0]
38 print m2py(’[H2O; CH3(CH2)2NO3]’)[0]

Note the number [0]. It is an index, not a padding value. Zeros are padded automatically.
The empty list argument in line 36 causes a warning message:

1 m2py_dict: No tokens given - empty matrix returned.
2 [[]]
3 [[1, 4, 0, 1], [0, 1, 1, 3]]
4 [[0, 2, 0, 1], [3, 7, 1, 3]]

22

5 Lambda Functions (m2py lambda.py)

5.1 New content

All the functions we have seen so far have their own namespaces declared by def. In this section
we will meet lambda functions that lack separate namespaces. They are anonymous functions
(given no readable names) operating in the local namespace. This is hardly worth a notice
before we suddenly realise that it opens up a whole new world of programmatic possibilities.
The point being that functions in Python are first-class variables. You can assign a function
definition to a variable and send it to another function which then becomes a functor, something
akin to a functional in mathematics.

Our scope is the same as in the last section. What we achieve from using lambda functions
is that the regular expressions inside m2py() go away. This has a tremendous effect on the
program design because we can change the parser rules from the outside of the function without
changing the function definition itself. Think code maintenance and you’ll understand why this
is a great idea.

5.2 Anonymous function calls

The lambda function uses the reserved word lambda to create a function definition that is
assigned to a variable in the local namespace. It takes any number of arguments and processes
them all in a single line of code called a one-liner :

1 >>> f = lambda x, y: 2 * x + y

The lambda function f defined above does essentially the same as this:

1 >>> def f(x, y):
2 ... return 2 * x + y
3 ...

The one-liner syntax is similar to normal Python syntax. It supports e.g. list comprehension,
logical operators, and so on:

1 >>> evenrange = lambda x: [i for i in range(x) if i%2 == 0]
2 >>> evenrange(10)
3 [0, 2, 4, 6, 8]
4 >>> import math
5 >>> safesqrt = lambda x: math.sqrt(x) if x > 0 else 0 if x == 0 else ’%si’ % math.sqrt(abs(x)
6 >>> safesqrt(100)
7 10
8 >>> safesqrt(-9)
9 ’3.0i’

The first of the two examples above is but a silly example on how to make a lambda function.
It does not illustrate how to make ranges. That is more elegantly done this way:

1 >>> evenrange = lambda x: range(0, x, 2)
2 >>> evenrange(10)
3 [0, 2, 4, 6, 8]

5.3 The code

The functions are now passed as arguments instead of being hard-coded into the file. The
variable matstring is still a string, but getstr(), split() and parse() are lambda functions
defined by the user:

1 def m2py(matstring, getstr, split, parse, debug=False):
2 try:
3 tokens = getstr(matstring)

23

4 except TypeError:
5 raise TypeError(’Input must be %s, was %s’ % (type(’’), type(matstring)))
6 except AttributeError:
7 raise SyntaxError(’Input format is: [formula_1; formula_2; ...].’)
8

9 if tokens == ’’:
10 if debug:
11 print ’m2py_lambda: No tokens given - empty matrix returned.’
12 return [[]]
13

14 dictionaries = [] # list of molecular formula dicts
15 formulas = split(tokens) # list of chemical formulas
16 atoms = set() # set of atomic symbols
17

18 for formula in formulas:
19 try:
20 dictionaries.append(parse(formula))
21 atoms.update(dictionaries[-1])
22 except:
23 raise SyntaxError(’Cannot parse formula "%s".’ % formula)
24

25 atoms = list(atoms)
26 atoms.sort()
27

28 return [[dictionary.get(atom, 0) for atom in atoms] for dictionary in dictionaries], \
29 atoms, \
30 formulas

The code looks almost the same as in the previous section. The few exceptions are in located
line 3, 15 and 20, where explicit code has been replaced with lambda functions.

5.4 Run by itself

Running the program will require that you define the lambda functions first. It is a good idea
to do this inside the main module to keep everything that is associated with the program at
one place. Here, it shows by example how the lambda functions should be defined to make the
new m2py() function work:

32 if __name__ == "__main__":
33 import re
34 from atoms import atoms as atoms_parser
35

36 getstr = lambda x: re.match(r’^\s*\[\s*(.*)\s*\]\s*$’, x).group(1)
37 parse = lambda x: atoms_parser(x)[0]
38 split1 = lambda x: re.split(r’\s*,?\s*’, x)
39 split2 = lambda x: re.split(r’\s*;?\s*’, x)
40

41 print m2py(’[H2O, CH3(CH2)2NO3]’, getstr, split1, parse)[0]
42 print m2py(’[CH3OH; HNO3]’, getstr, split2, parse)[0]

Line 33 to 34 Regular expression module and molecular formula parser loaded from the outside
of the m2py() function.

Line 36 to 39 Lambda functions for removing square brackets, for calculating the formula ma-
trix, and for splitting the string on comma or semicolon (notice the small difference between
split1 and split2).

The output should look like this:

1 [[1, 4, 0, 1], [0, 1, 1, 3]]
2 [[0, 2, 0, 1], [3, 7, 1, 3]]

24

6 Classes (m2py class.py)

6.1 New content

Python has eight basic datatypes. Each of these datatypes are uniquely connected to a pro-
grammatic entity called a class. Time has now come to learn more about classes and to see
how the class concept can be used to make user defined datatypes. You will also learn how to
customize functions that reside inside the namespace of the class. The outcome of this section
is a class that makes the pretty-printing of a composite table quite easy.

6.2 Creating a new class

Creating a new class is similar to creating a new function. A class has its own namespace
including functions that are callable only on the objects of that class. The class definition also
has an optional argument known as the parent class. Everything that is known to the parent is
known to the sibling but not vice versa: Function definitions that are overridden by the sibling
will not be known to the parent. This mechanism is called inheritance The idea is very simple
but in the 1960’s when Kristen Nygaard and Ole Johan Dahl pioneered the concept under the
umbrella of the SIMULA language they were way ahead the rest of the world:

1 >>> class matrix(list):
2 ... def __init__(self, arg):
3 ... super(matrix, self).__init__(arg)
4 ... def tr(self):
5 ... return matrix([[self[j][i] \
6 for j in range(len(self))] for i in range(len(self[0]))])
7 ...

To repeat ourselves: The class matrix(list) declaration makes a new class matrix that in-
herits from the existing list datatype. All attributes known to list will automatically be
available to matrix. You can spot the attributes of the two classes by issuing the commands
dir(list) and dir(matrix). The function init () inside the class scope is special. Actu-
ally, all functions in Python that start and end with two underscores are special. In particular,
the init () function is called every time a new object is created from its class definition.
In this case by issuing the command matrix(). This operation is known as a constructor call
in object oriented programming. The self argument enables the init () function with a
reference to the object itself. This must always be the first (mandatory) argument. The other
function tr() is registered to all objects created from class matrix. It also takes self as its first
argument (you never actually do this — it is supplied automatically by Python) and returns the
transposed of itself:

1 >>> m = matrix([[1, 2], [3, 4]])
2 >>> m.tr()
3 [[1, 3], [2, 4]]

6.3 The code

The program makes use of m2py lambda.m2py() to parse a string of molecular formulas and to
calculate the corresponding formula matrix. The goal is to decorate the output matrix with a
new row and column vectors showing the atomic symbols and the molecular formulas. We must
then modify the str () function in class Table to make it display its objects as formatted
tables rather than standard list-of-lists. The starting point is a 4-dimensional list-of-lists-of-
lists-of-lists which can is visualized below (the chemistry is the same as in Section 6.4):

25

[[[[’’]],

[[’C’, ’Cl’, ’H’, ’N’, ’Na’, ’O’]]],

[[[’H2O’],

[’CH3(CH2)2NO3’],

[’NaCl’]],

[[0, 0, 2, 0, 0, 1],

[3, 0, 7, 1, 0, 3],

[0, 1, 0, 0, 1, 0]]]]

The elements are a mix of strings and integers but they could be of any kind as long as they
have a descent string representation. We have now come close to the real problem: By stacking
the horisontal lists as rows in the output table, and removing 2 levels of innermost brackets, it
is possible to produce something of this kind:

[[’’, ’C’, ’Cl’, ’H’, ’N’, ’Na’, ’O’],

[’H2O’, 0 , 0 , 2, 0, 0, 1],

[’CH3(CH2)2NO3’, 3 , 0 , 7, 1, 0, 3],

[’NaCl’, 0 , 1 , 0, 0, 1, 0]]

Our task is to encode the operations required into the function str () of class Table. In
programming it is often the case that there are more ways to Rome than there are travellers
and this problem poses no exception to the rule. The problem presented here is in fact quite
open and the code given below must not be taken to be the ultimate answer (the comments do
by the way refer to the old example from Section 6.4):

1 class Table(list):
2 def __init__(self, *arg):
3 super(Table, self).__init__(*arg)
4

5 def __str__(self): # e.g. self = [[t11, t12], [t21, t22]]
6 tmp = []
7 for row in self: # -"- [t21, t22]
8 for i in range(len(row[0])): # -"- i = 2
9 tmp.append([]) #

10 for j in range(len(row)): # -"- j = 1
11 for rji in row[j][i]: # -"- rji = t22[i=2][k=0] = 3
12 tmp[-1].append(str(rji)) #
13

14 mcw = [max([len(tmp[i][j]) for i in range(len(tmp))]) \
15 for j in range(len(tmp[0]))]
16

17 return "\n".join([\
18 ’ ’.join([’%*s’ % (mcw[j], tmp[i][j]) for j in range(len(tmp[0]))]) \
19 for i in range(len(tmp))])

Line 3 The constructor of class Table makes an explicit call to the constructor of the parent
class. This means that all the details of the Table class will be the same as for the list

datatype. The only difference between the two class descriptions lies in the str () method
which is explicitly redefined by us.

Line 5 to 12 The 4-dimensional list-of-lists-of-lists-of-lists is reduced to a 2-dimensional list-of-
lists. The code is far from perfect. There is no error checking and no clever code tricks.

Line 14 Calculate the (maximum) column width for each column in the table. This information
is required in the output to make the elements properly aligned.

Line 17 The column elements are joined in the inner loop and the rows in the outer loop.

26

6.4 Run by itself

The last part of the file is executed only when Python runs the code by itself. It means you
enter python <file>.py directly in the terminal. The code is skipped when the file is loaded
with import <file> inside another program. This is the Python-way of writing stand-alone
unittests:

21 if __name__ == "__main__":
22

23 matstring = ’[H2O, CH3(CH2)2NO3, NaCl]’
24

25 import re
26 from atoms import atoms as atoms_parser
27 import m2py_lambda
28

29 getstr = lambda x: re.match(r’^\s*\[\s*(.*)\s*\]\s*$’, x).group(1)
30 parse = lambda x: atoms_parser(x)[0]
31 split = lambda x: re.split(r’\s*,?\s*’, x)
32

33 atoms_lol, atoms, formulas = m2py_lambda.m2py(matstring, getstr, split, parse)
34

35 t11 = [[’’]]
36 t12 = [atoms]
37 t21 = [[f] for f in formulas]
38 t22 = atoms_lol
39

40 tab = Table([[t11, t12], [t21, t22]])
41

42 print type(tab)
43 print tab

Line 23 to 31 is essentially the same as in Section 5.4.

Line 33 The formula parser returns a list of atomic symbols and a list of chemical formulas in
addition to the formula matrix.

Line 35 to 38 Making list-of-lists to populate the 4-dimensional table.

Line 40 Objects of class Table can be printed in the same manner as standard Python objects.

The output should look like this:

1 $ python m2py_class.py
2 <class ’__main__.Table’>
3 C Cl H N Na O
4 H2O 0 0 2 0 0 1
5 CH3(CH2)2NO3 3 0 7 1 0 3
6 NaCl 0 1 0 0 1 0
7 $

Line 2 Objects of class Table have their own datatype registered in the main namespace.

27

7 Unittests

In the Sections 1.6, 4.6, 5.4 and 6.4 we used the run-by-itself idiom to test the programs we’ve
written up to that point — one by one. This is good for small projects with a couple of modules
but it is not adequate for bigger programs having many classes spread over several modules.
To handle large projects it has over the years crystallized another idiom called unittesting. The
current doctrine is to work in small cycles: coding + testing + coding + · · · + testing and let
the unittest module decide whether the code is error-free or not. In this way the programmer
can concentrate solely on the coding. A minimal example on how the m2py xxx modules might
be tested is shown below:

1 import unittest
2

3 class TestAll(unittest.TestCase):
4 ’’’Local namespace for testing m2py_xxx modules.’’’
5

6 def setUp(self):
7 pass
8

9 def test_m2py_class(self):
10 import re
11 from atoms import atoms as atoms_parser
12 import m2py_lambda
13 import m2py_class
14

15 matstring = ’[H2O, CH3(CH2)2NO3, NaCl]’
16

17 getstr = lambda x: re.match(r’^\s*\[\s*(.*)\s*\]\s*$’, x).group(1)
18 split = lambda x: re.split(r’\s*,?\s*’, x)
19 parse = lambda x: atoms_parser(x)[0]
20

21 atoms_lol, atoms, formulas = m2py_lambda.m2py(matstring, getstr, split, parse)
22

23 t11 = [[’’]]
24 t12 = [atoms]
25 t21 = [[f] for f in formulas]
26 t22 = atoms_lol
27

28 tab = m2py_class.Table([[t11, t12], [t21, t22]])
29

30 ans = " C Cl H N Na O\n"\
31 " H2O 0 0 2 0 0 1\n"\
32 "CH3(CH2)2NO3 3 0 7 1 0 3\n"\
33 " NaCl 0 1 0 0 1 0"
34

35 self.assertEquals(str(tab), ans)
36

37 if __name__ == ’__main__’:
38 unittest.main()

Function assertEquals() on line 35 compares the calculated table with the correct answer and
makes sure the user is notified if the comparison fails. Note that equality is by no means the
only option — there are several other assert-functions. In this case everything is fine:

1 $ python test_m2py.py
2 .
3 --
4 Ran 1 test in 0.006s
5

6 OK

28

5.1.2 Verbatim: “script”

1 """
2 @summary: Integration along the periphery of a circle using explicit
3 Euler integration. The circle is defined by the formula:
4

5 x**2 + y**2 = r**2
6

7 where the radius "r" is constant. Differentiation yields:
8

9 2*x*dx + 2*y*dy = 0
10

11 or:
12

13 x*dx + y*dy = 0
14

15 that is:
16

17 | dx |
18 [x, y] * | | = 0
19 | dy |
20

21 which means the differentials dx and dy are in the null
22 space of [x, y]. In this particular case we are able to
23 solve the null space by inspection:
24

25 | dx | | -y |
26 | | propto | |
27 | dy | | x |
28

29 Hence, we are going to integrate [x, y] in the direction
30 of [-y, x]. That’s all.
31

32 @author: Tore Haug-Warberg
33 @since: 23 Aug 2014 (started)
34 """
35

36 import sys
37

38 nstep = int(sys.argv[1]); # picks up 1st argument on command line
39 dt = float(sys.argv[2]); # picks up 2nd argument on command line
40 x = [2.0, 0.0]; # start position
41

42 for i in range(0,nstep):
43 x = [x[0]-x[1]*dt, x[1]+x[0]*dt];
44 print "%5.3f %5.3f" % (x[0], x[1])

56

1. Nomenclature
C-key Hold the 'Control key' down while hitting

“key”
A-key Hold the “Alt Key” down while hitting

“key”. On Windows, you can use the “Alt
Key” or “Escape Key” and on Solaris you
use the “Escape Key” or the “Meta (black
diamond) key”. these are used in place of
the “Meta” key, from the original emacs
on Symbolics computers, hence you will
see “M-” when you type “Alt” or
“Escape”.

A-x command Hold the “Alt” Key down while hit-
ting the “x” key, then type the command
shown

<space> Spacebar

2. Program Control
C-x C-f Open or Create a file
C-x C-s Save file
C-x s Save all open buffers
C-x C-w Save file as...
C-x C-c Exit Emacs
C-g Cancel current command
C-l Redisplay screen and center on cursor
C-/ Undo action (keystroke or command)
C-x d Open Directory

3. Cursor Movement
C-n Move cursor down one line
C-p Move cursor up one line
C-f Move cursor forward one line
C-b Move cursor back one line
C-a Move cursor to beginning of line
C-e Move cursor to end of line
C-v Move one page down
A-v Move one page up
A-< Move to beggining of file
A-> Move to end of file
A-x goto-line nGo to line n

4. Editing
C-k Erase(Kill) line. Does not remove newline

at end unless line is empty. Content
Removed is sent to Kill Ring Buffer

C-d Erase next Character
A-d Erase Word
Delete Delete next character
C-<space> Begin Marking of Region at Cursor
C-w Delete region from begin of mark to cur-

rent cursor position. Content is moved to
Kill Ring Buffer

C-y Insert content(Yank) of Kill Ring Buffer at
cursor position

A-y If typed after a C-y, it goes through any
entries in the Kill Ring and replaces the C-
y insert with the next former Kill Ring
Entry

A-w Copy content of region from marked beg-
ging to current cursor location into the Kill
Ring Buffer

C-t Transpose characters on either side of cur-
sor

A-t Transpose words on either side of cursor
C-q Escape the special meaning of the next

chacter, if you want to insert a ^C into the
code, you type C-q C-c.

C-c C-c Comment out a marked region
C-u C-c C-c Un-comment out the marked region

5. Search and Replace
C-s Search for string starting at the cursor..

The line at the bottom of the window has
you type in the string you search for. The
search is done as you type. To look for the
next occurance, hit C-s again, and your last
entry is used as the default search string. If
you hit the bottom of the buffer, you type
C-s again to go back to the top.

C-r Reverse search. Same as C-s above, except
it searches backward from the cursor

Emacs Command Reference Page
based on emacs v20.7 Robert Evans, rbevans@akane.jhuapl.edu 7/10/00

A-x replace-string Works from current cursor
location. Begins a two part dialog, at the
bottom of the window it first asks for the
string you want to search for, and then asks
for what you want to replace it with. This
operation immediately works on the entire
buffer

A-% Query replace string. Works from current
cursor location. Begins a two part dialog,
at the bottom of the window it asks you
what you want to search for and then what
you want to replace it with. It then
searches for each occurance of the string
and highlights the match. If you want the
replacement to occur, hit the spacebar, if
you want it to skip this match, hit the
“delete” key.

6. Buffers, Regions, & Windows
C-x 2 Split window into two equal sized buffers,

one on top of the other
C-x 3 Split window into two equal sized buffers,

one to the left/right of the other.
C-x o Move the cursor to the next buffer in the

visible window
C-x 5 2 Create a new window, with the contents of

the current buffer in the new window as
well

C-x 1 If in a two buffer window, have the buffer
that the cursor is in take up the entire win-
dow.

C-x 0 If in a two buffer window, have the buffer
that the cursor is not in take up the entire
window

C-x b Shift back to the most recent buffer you
were visiting prior to your current buffer

C-x b filename Shift to the named filename buffer
C-x C-b List all of the buffers currently opened. If

the cursor is on a line in this buffer win-
dow, typing an “e” will open that buffer in
the current buffer, typing an “o” will open
it in a second buffer in the current window.

C-x k Kill the current buffer. If the buffer is not
saved you will be prompted to save it

7. Java Development
Environment (JDE) Commands
C-c C-v C-c Compile the object in the current

buffer
C-c C-v C-r Run main method of object in current

buffer
C-c C-v C-j Run the “beanshell” java interpreter.

Allows you to run an interactive java shell

8. Printing
A-x print-bufferPrints the current buffer
A-x print-regionPrints the current marked region

9. Command Shell
A-x shellCreates a command shell on the native OS.

All of emacs commands work within this
shell for cutting and pasting.

A-p Yank command from prior command his-
tory

A-n Next command from prior command his-
tory

C-x k Kill buffer and the shell along with it

10.Additional Notes:
Emacs is fantistically customizable and flexible.
Check the GNU website for more information about
customizing emacs. If you are using JDE, you can
use project files for a package directory, which
allows you to customize emacs settings for each
package you work in.

VIM QUICK REFERENCE CARD

Basic movement
h l k j character left, right, line up, down
b w .word/token left, right
ge e . end of word/token left, right
{ }beginning of previous, next paragraph
()beginning of previous, next sentence
0 gm .beginning, middle of line
^ $. first, last character of line
nG ngg line n, default the last, first
n%percentage n of the file (n must be provided)
n| . column n of current line
%match of next brace, bracket, comment, #define
nH nL line n from start, bottom of window
M .middle line of window

Insertion & replace → insert mode
i a . insert before, after cursor
I A . insert at beginning, end of line
gI . insert text in first column
o Oopen a new line below, above the current line
rc replace character under cursor with c
grc like r, but without affecting layout
R replace characters starting at the cursor
gR like R, but without affecting layout
cm change text of movement command m
cc or S . change current line
C . change to the end of line
s . change one character and insert
~ . switch case and advance cursor
g~m switch case of movement command m
gum gUm . . . lowercase, uppercase text of movement m
<m >m shift left, right text of movement m
n<< n>>. shift n lines left, right

Deletion
x X delete character under, before cursor
dm delete text of movement command m
dd D delete current line, to the end of line
J gJ join current line with next, without space
:rd←↩ . delete range r lines
:rdx←↩ delete range r lines into register x

Insert mode

V̂c V̂n insert char c literally, decimal value n

Â . insert previously inserted text

@̂same as Â and stop insert → command mode

R̂x R̂ R̂x insert content of register x, literally

N̂ P̂ text completion before, after cursor

Ŵ . delete word before cursor

Û delete all inserted character in current line

D̂ T̂ shift left, right one shift width

K̂c1c2 or c1←c2 enter digraph {c1, c2}
Ôc execute c in temporary command mode

X̂ Ê X̂ Ŷ . scroll up, down

〈esc〉 or [̂abandon edition → command mode

Copying

"x use register x for next delete, yank, put

:reg←↩ show the content of all registers

:reg x←↩ show the content of registers x

ym yank the text of movement command m

yy or Yyank current line into register

p P put register after, before cursor position

]p [p like p, P with indent adjusted

gp gP like p, P leaving cursor after new text

Advanced insertion

g?m. perform rot13 encoding on movement m

n Â n X̂ +n, −n to number under cursor

gqm format lines of movement m to fixed width

:rce w←↩ center lines in range r to width w

:rle i←↩ left align lines in range r with indent i

:rri w←↩ right align lines in range r to width w

!mc←↩ . filter lines of movement m through command c

n!!c←↩ filter n lines through command c

:r!c←↩filter range r lines through command c

Visual mode

v V V̂ . . start/stop highlighting characters, lines, block

o . . . exchange cursor position with start of highlighting

gv start highlighting on previous visual area

aw as ap select a word, a sentence, a paragraph

ab aB select a block (), a block { }

Undoing & repeating commands

u Uundo last command, restore last changed line

. R̂repeat last changes, redo last undo

n. repeat last changes with count replaced by n

qc qCrecord, append typed characters in register c

q . stop recording

@c . execute the content of register c

@@ . repeat previous @ command

:@c←↩execute register c as an Ex command

:rg/p/c←↩ execute Ex command c on range r

b where pattern p matches

Complex movement

- + line up/down on first non-blank character

B W space-separated word left, right

gE E end of space-separated word left, right

n down n− 1 line on first non-blank character

g0 . beginning of screen line

g^ g$first, last character of screen line

gk gj . screen line up, down

fc Fc next, previous occurence of character c

tc Tc before next, previous occurence of c

; , repeat last fFtT, in opposite direction

[[]] start of section backward, forward

[]][. end of section backward, forward

[(])unclosed (,) backward, forward

[{ [} unclosed {, } backward, forward

[m]m start, end of backward, forward java method

[#]# .unclosed #if, #else, #endif backward, forward

[*]* start, end of /* */ backward, forward

Search & substitution

/s←↩ ?s←↩ search forward, backward for s

/s/o←↩ ?s?o←↩ search fwd, bwd for s with offset o

n or /←↩ . repeat forward last search

N or ?←↩ repeat backward last search

* . . . search backward, forward for word under cursor

g# g* same, but also find partial matches

gd gD . . . local, global definition of symbol under cursor

:rs/f/t/x←↩ substitute f by t in range r

b x : g—all occurrences, c—confirm changes

:rs x←↩ repeat substitution with new r & x

Special characters in search patterns

. ˆ $ any single character, start, end of line

\< \> . start, end of word

[c1..c2] a single character in range c1..c2
[ĉ1..c2] a single character not in range

\i \I an identifier, excluding digits

\k \K . a keyword, excluding digits

\f \F . a file name, excluding digits

\p \Pa printable character, excluding digits

\s \Sa white space, a non-white space

\e \t \r \b 〈esc〉, 〈tab〉, 〈←↩〉, 〈←〉
\= * \+match 0..1, 0..∞, 1..∞ of preceding atoms

\| . separate two branches (≡ or)

\(\) . group patterns into an atom

Offsets in search commands

n or +n n line downward in column 1

-n . n line upward in column 1

e+n e-n n characters right, left to end of match

s+n s-nn characters right, left to start of match

;sc execute search command sc next

Marks and motions

mc mark current position with mark c ∈ [a..Z]

‘c ‘C go to mark c in current, C in any file

‘0..9 . go to last exit position

‘‘ ‘"go to position before jump, at last edit

‘[‘] go to start, end of previously operated text

:marks←↩print the active marks list

:jumps←↩ . print the jump list

n Ô go to nth older position in jump list

n Î go to nth newer position in jump list

Key mapping & abbreviations

:map c e←↩map c 7→ e in normal & visual mode

:map! c e←↩map c 7→ e in insert & cmd-line mode

:unmap c←↩ :unmap! c←↩ remove mapping c

:mk f←↩ . . .write current mappings, settings... to file f

:ab c e←↩ add abbreviation for c 7→ e

:ab c←↩ show abbreviations starting with c

:una c←↩ . remove abbreviation c

Tags
:ta t←↩ . jump to tag t
:nta←↩ jump to nth newer tag in list
]̂ T̂ . . . jump to the tag under cursor, return from tag
:ts t←↩ list matching tags and select one for jump
:tj t←↩ . . jump to tag or select one if multiple matches
:tags←↩ . print tag list
:npo←↩ :n T̂←↩ jump back from, to nth older tag
:tl←↩ . jump to last matching tag
Ŵ} :pt t←↩preview tag under cursor, tag t
Ŵ] split window and show tag under cursor
Ŵz or :pc←↩ close tag preview window

Scrolling & multi-windowing
Ê Ŷ . scroll line up, down
D̂ Û . scroll half a page up, down
F̂ B̂ . scroll page up, down
zt or z←↩ set current line at top of window
zz or z.set current line at center of window
zb or z-set current line at bottom of window
zh zl scroll one character to the right, left
zH zL scroll half a screen to the right, left
Ŵs or :split←↩ split window in two
Ŵn or :new←↩create new empty window
Ŵo or :on←↩make current window one on screen
Ŵj Ŵkmove to window below, above
Ŵw Ŵ Ŵmove to window below, above (wrap)

Ex commands (←↩)
:e f edit file f , unless changes have been made
:e! f edit file f always (by default reload current)
:wn :wN write file and edit next, previous one
:n :N .edit next, previous file in list
:rw . write range r to current file
:rw f .write range r to file f
:rw>>f .append range r to file f
:q :q!quit and confirm, quit and discard changes
:wq or :x or ZZwrite to current file and exit
〈up〉 〈down〉 recall commands starting with current
:r f insert content of file f below cursor
:r! c insert output of command c below cursor
:all . . open a window for each file in the argument list
:args . display the argument list

Ex ranges
, ; separates two lines numbers, set to first line
n .an absolute line number n
. $ the current line, the last line in file
% * . entire file, visual area
’t . position of mark t
/p/ ?p?the next, previous line where p matches
+n -n+n, −n to the preceding line number

Miscellaneous
:sh←↩ :!c←↩ . . .start shell, execute command c in shell
K lookup keyword under cursor with man

:make←↩ start make, read errors and jump to first
:cn←↩ :cp←↩display the next, previous error
:cl←↩ :cf←↩ list all errors, read errors from file
L̂ Ĝ redraw screen, show filename and position
g Ĝ . . . show cursor column, line, and character position
ga show ASCII value of character under cursor
gfopen file which filename is under cursor
:redir>f←↩ redirect output to file f
@̂ K̂ ˆ \ unused keys, available for mapping

This card may be freely distributed under the terms of the GNU

general public licence — Copyright c©  by Laurent Grégoire

〈laurent.gregoire@icam.fr〉 — v1.3 — The author assumes no

responsability for any errors on this card. The latest version can

be found at http://tnerual.eriogerg.free.fr/

TextPad Quick Reference Card
version 0.03 – editor: John Bokma – freelance programmer

Cursor Movement
Cursor left one character ←
Cursor left one word c-←
Cursor right one character →
Cursor right one word c-→
Cursor down one line ↓
Cursor down to the start of the next paragraph a-↓
Cursor up one line ↑
Cursor up to the start of the previous paragraph a-↑
Move cursor forward to start of word c-W
Move the cursor back to start of word c-B
Move cursor back to end of word c-D
Cursor to start of line, press twice to go to the left margin Home
Cursor to end of line End
Cursor to start of document c-Home
Cursor to end of document c-End
Cursor to the first visible line, in the current column,
if possible a-Home
Cursor to the last visible line, in the current column,
if possible a-End
Move cursor to the next tab stop, or indent selected lines Tab
Move cursor to the previous tab stop, or reduce
indentation of selected lines s-Tab
Go to line c-G
Find matching { [(< or >)] } c-M

Deleting
Delete selection, or character before the cursor,
(replace it with a space in overtype mode) Backspace
Delete back to the last start of word c-Backspace
Delete selection, or character after the cursor Delete
Delete forward to the next start of word c-Delete
Delete to the end of the line c-s-Delete
Delete all lines in the document a-Delete

Undo and Redo
Undo last edit c-Z
Undo all edits c-s-Z
Redo last undo c-Y
Redo all undos c-s-Y

Selection and Clipboard
Select all c-A
Cancel any existing selection Escape
Select left one character s-←
Select left one word c-s-←
Select right one character →
Select right one word c-s-→
Select down one line s-↓
Select to the start of the next paragraph a-s-↓
Select up one line ↑

Select to the start of the previous paragraph a-↑
Select forward to start of word c-W
Select back to start of word c-s-B
Select back to end of word c-s-D
Select to start of line, press twice to select to the
left margin s-Home
Select to end of line s-End
Select to start of document c-s-Home
Select to end of document c-s-End
Select to matching { [(< or >)] } c-s-M
Switch in and out of selection mode c-Q-S
Copy selection to clipboard c-C
Append selection to clipboard c-s-C
Cut the selection to the clipboard c-X
Cut and append the selection to the clipboard c-s-X
Paste text from the clipboard c-V
Indent selected lines Tab
Reduce indentation of selected lines s-Tab
Delete selection Backspace
Delete selection, or character after the cursor Delete
Invert case of selection c-K
Convert first character of selection to upper case and
the rest to lower case c-s-U
Check the spelling of the selection F7

Formatting
Start a new line Enter
Insert new line after current line c-Enter
Insert new line before current line c-s-Enter
Increase indentation c-I
Reduce indentation c-s-I
Join selected lines c-J
Reformat selected lines c-s-J
Split word-wrapped lines c-a-J
Center text c-E
Right align text c-s-E
Insert a page break c-s-L
Display/hide visible spaces, tabs and paragraphs c-Q-I
Display/hide line numbers c-Q-L
Set the right margin at the cursor position c-Q-R
Switch in and out of word-wrap mode c-Q-W

Case Change and Transposing
Convert selection to lower case c-L
Convert selection to upper case c-U
Convert first character of selection to upper case and
the rest to lower case c-s-U
Invert case of selection c-K
Transpose the lines or characters either side of the cursor c-T
Transpose the words either side of the cursor c-s-T

Search and Replace
Invoke the Replace dialog box F8
Replace next instance of search pattern c-F8
Invoke the Find dialog box F5

Invoke the Find in Files dialog box c-F5
Find next instance of search pattern c-F
Find previous instance of search pattern c-s-F
Hypertext jump in Search Results window Enter
Hypertext jump to next item in Search Results window F4
Hypertext jump to previous item in Search Results window s-F4
Activate the Search Results window s-F11

Bookmarks
Set or clear a bookmark on the current line c-F2
Go to next bookmark F2
Go to previous bookmark s-F2

Edit Modes
Switch between insert and overtype mode Insert
Switch in and out of block select mode c-Q-B
Switch between read-only and edit modes c-Q-E
Switch in and out of word-wrap mode c-Q-W

Macros
Record a new macro c-s-R
Playback the scratch macro c-R
Invoke the Playback Macro dialog box c-F7

Documents
Create a new document c-N
Save the active document c-S
Save all documents c-s-S
Save as F12
Open a document using the Open File dialog box c-O
Open a document by typing its name c-s-O
Insert the contents of a file at the cursor position c-s-V
Delete all lines in the document a-Delete
Next window c-Tab or c-F6
Previous window c-s-Tab or c-s-F6
Close the active window c-F4
Display in-context properties dialog box a-Enter
Display document statistics on status bar c-F1
Invoke the Manage Files dialog box F3
Invoke Windows File Manager or Explorer a-F3
Print active document c-P
Preview the active document as it will print c-s-P
Check the spelling of the active document F7
Sort F9
Compare c-F9
Invoke the document selector F11

Scrolling and Scroll Bars
Scroll the view up one line, without moving the cursor c-↓
Scroll the view down one line, without moving the cursor c-↑
Locks cursor position when scrolling with
page up/down keys Scroll Lock
Display/hide the horizontal scroll bar c-Q-H
Display/hide the vertical scroll bar c-Q-V
Switch in and out of synchronized scrolling mode c-Q-Y

Command Results
Stop the tool running in the command window c-Break
Hypertext jump in Command Results window Enter
Hypertext jump to next item in Command Results window F4
Hypertext jump to previous item in Command Results window s-F4
Activate the Command Results window c-F11

Views
Activate next view F6
Activate previous view s-F6

Help
In-context help F1
Invoke in-context help cursor s-F1

Miscellaneous
Activate the Clip Library a-0
Show or hide the Clip Library c-F3
Display in-context properties dialog box a-Enter
Activate the main menu F10
Popup the in-context document menu s-F10 or right mouse
Popup the insert date/time menu c-F10 or c-right mouse
Display the Preferences dialog box c-Q-P

Regular Expressions (POSIX)
. Any single character.
[] Any one of the characters in the brackets, or any of a

range of characters separated by a hyphen (-), or a
character class operator (see below).

[^] Any characters except for those after the caret "^".
^ The start of a line (column 1).
$ The end of a line (not the line break characters).
\< The start of a word.
\> The end of a word.
\t The tab character.
\f The page break (form feed) character.
\n A new line character, for matching expressions that span

line boundaries. This cannot be followed by operators
'*', '+' or {}. Do not use this for constraining matches to
the end of a line. It's much more efficient to use "$".

\xdd "dd" is the two-digit hexadecimal code for any
character.

\(\) Groups a tagged expression to use in replacement
expressions. An RE can have up to 9 such expressions.

\| Matches either the expression to its left or its right.
* Matches zero or more preceding characters/expressions.
? Matches zero or one preceding characters/expressions.
+ Matches one or more preceding characters/ expressions.
{count} Matches the specified number of the preceding

characters or expressions.
{min,} Matches at least the specified number of the preceding

characters or expressions.
{min,max} Matches between min and max of the preceding

characters or expressions.

\ "Escapes" the special meaning of the above expressions,
so that they can be matched as literal characters.

[:alpha:] Any letter.
[:lower:] Any lower case letter.
[:upper:] Any upper case letter.
[:alnum:] Any digit or letter.
[:digit:] Any digit.
[:xdigit:] Any hexadecimal digit (0-9, a-f or A-F).
[:blank:] Space or tab.
[:space:] Space, tab, vertical tab, return, line feed, form feed.
[:cntrl:] Control characters (Delete and ASCII codes less than

space).
[:print:] Printable characters, including space.
[:graph:] Printable characters, excluding space.
[:punct:] Anything that is not a control or alphanumeric character.
[:word:] Letters, hypens and apostrophes.
[:token:] Any of the characters defined on the Syntax page for the

document class, or in the syntax definition file if syntax
highlighting is enabled for the document class.

Replacement Expressions
& Substitute the text matching the entire search pattern.
\0 to \9 Substitute the text matching tagged expression 0 through

9. \0 is equivalent to &.
\f Substitute a page break (form feed).
\i<no> Substitute a sequence number.
\n Substitute a newline.
\p Substitute the contents of the clipboard.
\t Substitute a tab.
\xdd Substitute the character with hex code dd (must be 2 hex

digits, excluding 00).
\u Force the next substituted character to be in upper case.
\l Force the next substituted character to be in lower case.
\U Force all subsequent substituted characters to be in

upper case.
\L Force all subsequent substituted characters to be in

lower case.
\E or \e Turns off previous \U or \L.

Tool Parameter Macros
$File The fully qualified filename of the current

document.
$DOSFile Same as $File, except that DOS aliases are

substituted for any long names in the path, and
characters are converted to the DOS (OEM) code
set.

$UNIXFile Same as $File, except any '\' characters are
changed to '/'.

$FileName The simple filename of the current document.
$BaseName $FileName stripped of any extension.
$DOSBaseName Same as $BaseName, except that the DOS alias

is substituted for a long file name, and characters
are converted to the DOS (OEM) code set.

$WspBaseName The workspace filename, stripped of any path
and extension.

$FileDir The drive and directory of the current document.
$WspDir The drive and directory of the current workspace

file.
$FilePath The directory of the current document, stripped

of the drive.
$UnixPath Same as $FilePath, except any '\' characters are

changed to '/'.
$Dir The current working drive and directory.
$UNIXDir Same as $Dir, except any '\' characters are

changed to '/'.
$Line The cursor line within the current document.
$Col The cursor column within the current document.
$Prompt Prompt for a value to substitute for $Prompt. If it

is followed by a string in brackets, that string
will be displayed in the prompt dialog box.

$Password Prompt for a value to substitute for $Password.
The value will not be echoed as it is typed. If it is
followed by a string in brackets, that string will
be displayed in the prompt dialog box.

$Sel Selected text in the active document. This is
limited to the first line in a multi-line selection.

$SelLine The text on the line containing the cursor. This
has the side effect of selecting that line.

$SelWord The word containing the cursor. This has the side
effect of selecting that word.

$Clip Selected text in the active document, or the
whole document if nothing is selected, is copied
to the clipboard before running the tool.

$AppWnd The handle of the main application window. This
is a decimal number.

$DocWnd The handle of the active document's window.
This is a decimal number.

$Encoding The characters encoding of the active document.
This is of the forms: windows-ddd (or cpddd for
DOS), UTF-8, UTF16-LE or UTF-16BE, where
ddd is a code page number.

Page Header/Footer Macros
The normal font for subsequent text &n
A bold font for subsequent text &b
An italic font for subsequent text &i
A bold italic font for subsequent text &I
Subsequent text to be left justified &l
Subsequent text to be centered (this is the default) &c
Subsequent text to be right justified &r
The current date in Windows short form &d
The current date in Windows long form &D
The current time in Windows format &t
The filename, excluding its path &f
The full filename, including its path &F
The page number &p
The total number of pages &P

Based on the TextPad help file. Edited by John Bokma (freelance
programmer). For the latest version: http://johnbokma.com/textpad/

Contact us

University of Cambridge Department of Engineering Computing Help LaTeX

introductions

writing guides

printable
documentation

bibliographies

graphics

maths

tables

packages

fonts

sources of
information

FAQ

local search

distributions

converters

editors/front-
ends

Miscellaneous

local updates
(Jan 2014)

example

exercises

more exercises

Text Processing using LaTeX
TeX is a powerful text
processing language
and is the required
format for some
periodicals now. TeX
has many macros to
which you can eventually add your own. LaTeX is a macro package which sits on top
of TeX and provides all the structuring facilities to help with writing large documents.
Automated chapter and section macros are provided, together with cross referencing
and bibliography macros. LaTeX tends to take over the style decisions, but all the
benefits of plain TeX are still present when it comes to doing maths. The Why LaTeX?
page discusses LaTeX's strengths/weaknesses.
On CUED's central system you can run latex from the command line using latex or
pdflatex. We also have Kile and Lyx

Introductions
LaTeX: An introduction, Advanced LaTeX (full of examples) and LaTeX Maths and
Graphics contain all you'll need to know for writing most documents - the "how"
rather than the "why".
LaTeX workshop exercise for beginners
The Not So Short Introduction to LaTeX2e is a 141 page introduction to LaTeX2e
by Tobias Oetiker et al. Worth a read. There are versions in german and french,
italian etc.
The very short guide to typesetting with LATEX (4 pages)
LaTeX and Friends (M.R.C. van Dongen) (250+ pages)
LaTeX for Complete Novices (Nicola L. C. Talbot)
Introduzione al Mondo di LaTeX is a guide (PDF slides) in Italian
online tutorials (Andy Roberts)
TeX Resources (A.J. Hildebrand)
LaTeX for Word Processor Users
The Indian TeX Users Group has tutorials on several subjects.
The LaTeX Wikibook
Making Friends with Latex
LaTeX course (University of Cambridge Computing Service)

Packages
There are numerous "add-ons" for LaTeX. Some enumerate and fancyhdr) slightly
enhance existing features, others provide extensive new functionality. The TeX and
LaTeX Catalogue describes packages available elsewhere. See the Configuring LaTeX
document if you intend to install many packages.

Bibliographies, Graphics and Maths
Front/Back matter

See the bibliographies page.
bibliographies with biblatex

Search

Department of Engineering
IT Services

Natural Science Citations - provides many options. See also the reference sheet
CTAN has many bibliography styles in its bibtex section.
Using Makeindex. How to add an index to your document
Simple LaTeX Glossaries and Acronyms using the glossaries package
The nomencl package How to add nomenclature sections

Graphics
Using Imported Graphics in LaTeX and PDFLaTeX (by Keith Reckdahl) explains all
there is to know about putting graphics into LaTeX documents. The Hints about
tables and figures in LaTeX and Hints on adding figures to multicolumn
environments documents deal with common problems. See also Klaus Hoeppner's
Strategies for including graphics in LaTeX documents
How to influence the position of float environments like figure and table in LaTeX
(Frank Mittelbach)
Graphics for Inclusion in Electronic Documents (Ian Hutchinson)
The xfig graphics editor.
Gnuplot displays data graphically. Use its "set term postscript eps color" to
produce a postscript file which can be added to your latex document in the usual
way. Matlab may be preferable.
The pstricks tutorial show how to use the pstricks package to produce line
drawings
Matlab graphics with LaTeX

Maths
The psfrag handout addresses the common problem of how to add LaTeX maths to
a postscript file.
Part of Math into LaTeX (by G. Grätzer) is online
AMS-LaTeX provides specialist support.
The Short Math Guide for LaTeX comes from the American Mathematical Society
mathmode (133 pages) by Herbert Voß is useful.
Matlab has some support for LaTeX production. Type "help latex" inside matlab for
details.
Effective Scientific Electronic Publishing (by Markus G. Kuhn) and AcroTeX by
D.P.Story cover PDF production.
Maths cheat sheet (Martin Jansche)
Math Tutorial for mimeTeX
A Survey of Free Math Fonts for TeX and LaTeX (Stephen G. Hartke)
Detexify - LaTeX symbol classifier lets you draw a symbol and will give you the
corresponding LaTeX

Tables
Tables in LaTeX: packages and methods

Guides to writing various types of documents
Creating Technical Posters With LaTeX (by Nicola Talbot)
Reports (the squeezing space in LaTeX notes may also be useful)
Using LaTeX to Write a PhD Thesis (Nicola L. C. Talbot)
LaTeX IIB project report classes
The CUED PhD/MPhil Thesis Style
HTML or PDF from LaTeX
Creating a PDF document using PDFlatex (by Nicola Talbot)
Producing PDF
Multi-column output
For collaborative or multi-draft documents, latexdiff might be useful. Doing

 latexdiff -CCHANGEBAR old.tex new.tex > diff.tex

 pdflatex diff.tex

should produce a document that compares and contrasts the 2 versions of the file.

CUED users can access the current university identifiers (crests) using

\includegraphics{BWUni3.eps} or \includegraphics{CUni3.eps} on our linux servers.
These should only be used in their original sizes.

Other sources of information
General

You can do a keyword search of the LaTeX documents on this server.
LaTeX Matters (a blog)
LaTex Community
See the Frequently Asked Questions (or the Engineering Department's LaTeX FAQ)
for more information.
The UK archive of TeX-related material, CTAN contains everything to do with
LaTeX. Use the CTAN search to search your nearest CTAN archive.
TeX Live documentation
Hypertext Help with LaTeX (an extensive indexed reference)
The TeX Users Group (TUG) keeps lists of TeX resources and packages (free and
commercial), etc. The LaTeX project site is useful too.
References for TeX and Friends from mixie.org offers material in several formats.
LaTeX cheat sheet
The comp.text.tex newsgroup covers LaTeX issues.
tex.stackexchange.com is a forum for questions and answers
The PracTeX Journal includes low-tech articles like \begin{here} % getting started
etc.
texdoctk is often installed with LaTeX. It's an easy way to access installed
documentation

Distributions
Note that the "front-end" (the program with
an editor, buttons and menus) and the LaTeX files may well be separately distributed.
If you install texmaker, for example, it will assume that you've already downloaded
the latex system.

Distributions for many machine types are available in CTAN's systems directory.
For MS Windows 95/98/NT/2000 machines, proTeXt (based on MiKTeX) is worth a
look. See LaTeX using MikTeX and WinEdt for information about using MikTeX and
WinEdit on Windows. BaKoMa TeX might also be useful.
TeX Live has binaries for most flavors of Unix, including GNU/Linux, and also
Windows
MacTeX for Macs includes support for using Mac fonts.
The Macintosh TeX/LaTeX Web Site is very informative.

Converters
wvLaTeX is installed (Word to LaTeX).
OpenOffice has an option to export Word files as LaTeX
There's a list of RTF/Word/WP - LaTeX - converters online.
Excel2Latex may be useful to Windows users

Fonts and Characters
Using common PostScript fonts with LaTeX
The Comprehensive LaTeX Symbol List
LaTeX and fonts
The Font Installation Guide (Philipp Lehman)
character sets

Typesetting
The memoir package has very extensive documentation about design.

Editors/Front-ends

With Kile (installed on our
local system - type kile in the
Terminal window to start it)
you still need to type LaTeX
code, but Kile has many
facilities (templates, wizards,
etc) to make it easier.

You should be able to find
what you want in the menus
(for example, the File->Statistic option gives a word-count, etc). You can print the
LaTeX file directly from Kile. To print the output file you need to use another
program. For example, if you want to create a PDF file you can produce the DVI
file, use the Build->Convert->DVItoPDF option, then the Build->View->ViewPDF
option to view the file. The viewer has a Print option.

lyx is a WYSIWYG front-end
for LaTeX that's getting better
all the time. It's installed on
our teaching system.
Warning: it may not always
be easy to convert between
LaTeX and lyx formats - use
at your own risk!

Texmaker (not installed) is a
free cross-platform LaTeX
editor
LEd is a free integrated
development environment
(IDE) for use with Windows

95/98/Me/NT4/2000/XP/2003/Vista operating systems
writelatex lets you write LaTeX docs and work collaboratively without needing to
install anything.
The emacs editor offers extra menus when a LaTeX file is loaded in

Miscellaneous
Installing LaTeX Packages
Configuring LaTeX
Extending LaTeX
Travels in TeX Land: Tweaking LaTeX (David Walden)
LaTeX tips (Volker Koch)
Postscript, PDF and LaTeX versions of local documention are online.

Updates
January 2014 - new PhD/MPhil Thesis (with LyX support)
March 2013 - minitoc installed
July 2012 - TeXLive 2011 installed
May 2011 - biblatex installed
May 2009 - LaTeX removed from gate. Use one of the Linux servers

May 2009 - IIB project classes (also for LyX users)
February 2009 - latexdiff program installed - to determine and mark up
differences between two latex files. Type man latexdiff for details.
January 2009 - glossaries package installed, to supercede glossary. See the
glossaries documentation for details.
September 2008 - The TeX Live distribution has replaced the teTeX distribution.
Users shouldn't notice any difference.
September 2007 - nomencl (nomenclature package) updated to version 4.2. It's
incompatible with the old version - use \usepackage[compatible]{nomencl} if you
want the old behaviour.
August 2007 - Metapost (mpost) and purifyeps installed
July 2007 - TeTeX 3.0 installed on the teaching system
23/10/06 - Harish Bhanderi's CUED PhD/MPhil Thesis Style

Example
One way to get started with LaTeX is to look at a simple example. A short document is
reproduced below. Engineering Department users can find a file with a similar
structure in /export/Examples/LaTeX/demo0.tex. Further examples (a letter, a CV,
etc) are in the same directory.

\documentclass{article}
\begin{document}

\section{Simple Text} % THIS COMMAND MAKES A SECTION TITLE.

Words are separated by one or more spaces. Paragraphs are separated by
one or more blank lines. The output is not affected by adding extra
spaces or extra blank lines to the input file.

Double quotes are typed like this: ``quoted text''.
Single quotes are typed like this: `single-quoted text'.

Long dashes are typed as three dash characters---like this.

Italic text is typed like this: \textit{this is italic text}.
Bold text is typed like this: \textbf{this is bold text}.

\subsection{A Warning or Two} % THIS COMMAND MAKES A SUBSECTION TITLE.

If you get too much space after a mid-sentence period---abbreviations
like etc.\ are the common culprits)---then type a backslash followed by
a space after the period, as in this sentence.

Remember, don't type the 10 special characters (such as dollar sign and
backslash) except as directed! The following seven are printed by
typing a backslash in front of them: \$ \& \# \% _ \{ and \}.
The manual tells how to make other symbols.

\end{document} % THE INPUT FILE ENDS WITH THIS COMMAND.

Once you have created a LaTeX source file it must be processed by LaTeX before it
can be printed out. On systems that offer a command line you can try the command

pdflatex myfile.tex

while in the same folder as the saved LaTeX file. It will produce a number of files
including myfile.log, myfile.aux and myfile.pdf. If you are using various sorts of cross
referencing then you may have to run LaTeX more than once. If you want an
automated bibliography you will also have to run bibtex.

© Cambridge University, Engineering Department, Trumpington Street, Cambridge CB2 1PZ, UK (map)

Tel: +44 1223 332600, Fax: +44 1223 332662

Contact: tl136 (with help from jpmg, etc)

When this procedure is complete you will have a file myfile.pdf to print out or preview.

↑↑ Home ↑ TeX tricks

Generating high-quality portable PDF files
The usual way to compile a TeX source file is to generate a .dvi file with the tex or
latex command and then convert it into a PostScript file with dvips. If a PDF file is
required, it can be generated from the PostScript by ps2pdf. This can be problematic in
two respects: the quality of images may degrade for no apparent reason, and the resulting
PDF file may not display correctly on other systems.

A long time ago, I found on someone else's home page a dvips command line which
prevents both problems. (It seems to be extremely well hidden, as I did not manage to
find it again. However, I made a note of it.) Here it is:

ps2pdf -sPAPERSIZE=a4 -dCompatibilityLevel=1.3 \
 -dEmbedAllFonts=true -dSubsetFonts=true -dMaxSubsetPct=100 \
 -dAutoFilterColorImages=false -dColorImageFilter=/FlateEncode \
 -dAutoFilterGrayImages=false -dGrayImageFilter=/FlateEncode \
 -dAutoFilterMonoImages=false -dMonoImageFilter=/CCITTFaxEncode \
 document.ps document.pdf

I have since learned to understand the options. They are named, but hardly explained in
the ps2pdf documentation which consists of the file Ps2pdf.htm in the Ghostscript
documentation directory (use locate Ps2pdf.htm to find it).

The important thing for the image quality is AutoFilter...Images=false and
...ImageFilter=/FlateEncode. The first disables the automatic determination by
Ghostscript of the "best" compression format, which tends to favour /DCTEncode, lossy
JPEG encoding. The second set of options manually set the compression method to the
lossless (de)flate encoding for colour and greyscale images and to CCITT encoding for
monochrome images.

The other options are for maximum compatibility of the generated PDF file.
CompatibilityLevel sets the PDF version. The remaining options concern embedding of
fonts into the generated PDF. EmbedAllFonts=true is self-explanatory and causes the
output file to be readable even on systems which lack some of the fonts used.
SubsetFonts=true together with MaxSubsetPct=100 causes the fonts to be embedded
partly only, however many characters from them may be used. This protects you from
lawsuits if you use copyrighted fonts, as embedding a font in full amouts to an illegal
copy. Last, the option -sPAPERSIZE=a4 doesn't seem necessary unless you convert from
some other size; replace a4 by letter if that is the paper size you use.

An alternative way to arrive at a PDF file, if you do not require a PostScript file, is to use
pdftex or pdflatex instead of tex or latex. In my experience, pdflatex embeds all
fonts by default, as subsets, so you are safe on both the compatibility and the copyright
issue. However, to be able to use pdflatex, you have to convert graphics into PDF
format (or PNG for pixel graphics). To avoid any loss of quality, this should be done with
the same ps2pdf command line shown above. The options relating to font embedding
should not be omitted, as vector graphics can contain text which requires fonts. The paper

size option should be omitted.

As an aside, the options of ps2pdf above can be required in different contexts as well.
That is because ps2pdf is just a script calling the Ghostscript interpreter (gs) and passes
its options to it unchanged. gs can be used for tasks as diverse as concatenating PDF files,
with the command line

gs -dBATCH -dNOPAUSE -dSAFER -sDEVICE=pdfwrite -sOUTPUTFILE=output.pdf \
 <ps2pdf options> source1.pdf source2.pdf ...

where <ps2pdf options> stands for the options given above. The options conserving
image quality are especially useful when putting the scanned pages of a document
together (even the large copier at my office outputs single-page PDF files unless you can
put a stack of loose pages into its automatic feed). You can use gs with the same
command line and only one source file to embed fonts into a PDF document without
regenerating it, provided the fonts are available on the system where you do it.
Unfortunately the resulting document can be significantly larger, not because of the
embedded fonts, but because gs is inefficient at re-encoding the images (you can see that
it is not due to the fonts by trying -dEmbedAllFonts=false).

You can use the pdffonts command to find out which of the fonts used in a PDF
document are embedded, and whether they are embedded as subsets.

U.Va. Home Contact Us My Account

University of Virginia Library > Our Organization > The
Electronic Text Center

The Electronic Text Center
The Electronic Text Center (1992-2007), known to many as “Etext,”
 served the University community’s teaching and research needs in
the areas of humanities text encoding for fifteen years. Many of
the resources once available on Etext are now available via VIRGO,
the Library’s online catalog and the primary access point for all
U.Va. Library digital texts and images.

In the course of migrating thousands of texts from Etext to VIRGO,
we determined that certain resources were not eligible for
inclusion, most often due to copyright issues. Many of the texts
that were not migrated can be found among other university online
text collections, Google Books, HathiTrust and Project Gutenberg.
 We regret any inconvenience this may cause you and we wish you
the best with your research. Some pages from the Etext center
have been preserved at the Internet Archive.

If you have questions about the location of older resources, please
send your inquiry to Virgo Feedback.

Search Virgo for books, articles, digital materials, and more.SearchSearch

UNIVERSITY OF VIRGINIA LIBRARYUNIVERSITY OF VIRGINIA LIBRARY

NAVIGATE TO:

-- Select Page --

ALSO TRY ▼

HAVE QUESTIONS? NEED HELP?

Phone: 434.924.3021

Email: library@virginia.edu

Chat now

Hours

Staff Directory

Jobs

Fellowships & Internships

Press

GIVE TO THE LIBRARYGIVE TO THE LIBRARY

USING THE LIBRARYUSING THE LIBRARY

Library Use Policies

Off-Grounds Access

Library & ITS Accounts

Accessibility Services

INITIATIVESINITIATIVES

Libra

Project Hydra

OTHER SITESOTHER SITES

UVaCollab

SIS

ITS

Cavalier Advantage

U.Va. Home

Library Staff Site

© 2014 by the Rector and Visitors of the University of Virginia

This library is a Congressionally designated depository for U.S. Government
documents. Public access to the Government documents is guaranteed by

public law.

Tracking Opt-out

University of Virginia Library, P.O. Box 400113, Charlottesville, VA 22904-4113University of Virginia Library, P.O. Box 400113, Charlottesville, VA 22904-4113
(Parcel Service Delivery: Alderman Library, 160 McCormick Road, Charlottesville,(Parcel Service Delivery: Alderman Library, 160 McCormick Road, Charlottesville,

VA 22903)VA 22903)

Regular Expression Quick Reference v1.00
Online RegEx Resources: http://gmckinney.info/regex

Literal Characters Repetition
\f Form feed {n,m} Match the previous item at least n times but no more than m times.

\n Newline (Use \p in UltraEdit for platform independent line end) {n,} Match the previous item n or more times.

\r Carriage return {n} Match exactly n occurrences of the previous item.

\t Tab ? Match zero or one occurrences of the previous item. Equivalent to {0,1}

\v Vertical tab + Match one or more occurrences of the previous item. Equivalent to {1,}

\a Alarm (beep) * Match zero or more occurrences of the previous item. Equivalent to {0,}

\e Escape {}? Non-greedy match - will not include the next match's characters.

\xxx The ASCII character specified by the octal number xxx ?? Non-greedy match.

\xnn The ASCII character specified by the hexadecimal number nn +? Non-greedy match.

\cX The control character ^X. For example, \cI is equivalent to \t and \cJ is equivalent to \n *? Non-greedy match. E.g. ^(.*?)\s*$ the grouped expression will not include trailing spaces.

Character Classes Options
[...] Any one character between the brackets. g Perform a global match. That is, find all matches rather than stopping after the first match.

[^...] Any one character not between the brackets. i Do case-insensitive pattern matching.

. Any character except newline. Equivalent to [^\n] m Treat string as multiple lines (^ and $ match internal \n).

\w Any word character. Equivalent to [a-zA-Z0-9_] and [[:alnum:]_] s Treat string as single line (^ and $ ignore \n, but . matches \n).

\W Any non-word character. Equivalent to [^a-zA-Z0-9_] and [^[:alnum:]_] x Extend your pattern's legibility with whitespace and comments.

\s Any whitespace character. Equivalent to [\t\n\r\f\v] and [[:space:]]
\S Any non-whitespace. Equivalent to [^ \t\n\r\f\v] and [^[:space:]] Note: \w != \S Extended Regular Expression
\d Any digit. Equivalent to [0-9] and [[:digit:]] (?#...) Comment, "..." is ignored.

\D Any character other than a digit. Equivalent to [^0-9] and [^[:digit:]] (?:...) Matches but doesn't return "..."

[\b] A literal backspace (special case) (?=...) Matches if expression would match "..." next
[[:class:]] alnum alpha ascii blank cntrl digit graph (?!...) Matches if expression wouldn't match "..." next

lower print punct space upper xdigit (?imsx) Change matching rules (see options) midway through an expression.

Replacement Grouping

\ Turn off the special meaning of the following character. (...) Grouping. Group several items into a single unit that can be used with *, +, ?, |, and so on, and
remember the characters that match this group for use with later references.

\n Restore the text matched by the nth pattern previously saved by \(and \). n is a number from 1 to 9, with
1 starting on the left. | Alternation. Match either the subexpressions to the left or the subexpression to the right.

& Reuse the text matched by the search pattern as part of the replacement pattern. \n Match the same characters that were matched when group number n was first matched. Groups are
subexpressions within (possibly nested) parentheses.

~ Reuse the previous replacement pattern in the current replacement pattern. Must be the only character
in the replacement pattern. (ex and vi).

% Reuse the previous replacement pattern in the current replacement pattern. Must be the only character
in the replacement pattern. (ed). Anchors

\u Convert first character of replacement pattern to uppercase. ^ Match the beginning of the string, and, in multiline searches, the beginning of a line.

\U Convert entire replacement pattern to uppercase. $ Match the end of the string, and, in multiline searches, the end of a line.

\l Convert first character of replacement pattern to lowercase. \b Match a word boundary. That is, match the position between a \w character and a \W character. (Note,
however, that [\b] matches backspace.)

\L Convert entire replacement pattern to lowercase. \B Match a position that is not a word boundary.

BNF and EBNF: What are they and
how do they work?

By: Lars Marius Garshol

Contents
Introduction

What is this?
What is BNF?

How it works
The principles
A real example
EBNF: What is it, and why do we need it?
An EBNF sample grammar

Uses of BNF and EBNF
Common uses
How to use a formal grammar

Parsing
The easiest way

Top-down parsing (LL)
An LL analysis example
An LL transformation example

The slightly harder way
Bottom-up parsing (LR)

LL or LR?
More information

Appendices
Acknowledgements

Introduction

What is this?

This is a short article that attempts to explain what BNF is, based on
message <wkwwagbizn.fsf@ifi.uio.no> posted to comp.text.sgml on

16.Jun.98. Because of this it is a little rough, so if it leaves you with any
unanswered questions, email me and I'll try to explain as best I can.​

It has been filled out substantially since then and has grown quite large.
However, you needn't fear. The article gets more and more detailed as
you read on, so if you don't want to dig really deep into this, just stop
reading when the questions you are interested in have been answered
and things start getting boring.

What is BNF?

Backus-Naur notation (more commonly known as BNF or Backus-Naur
Form) is a formal mathematical way to describe a language, which was
developed by John Backus (and possibly Peter Naur as well) to describe
the syntax of the Algol 60 programming language. ​

(Legend has it that it was primarily developed by John Backus (based on
earlier work by the mathematician Emil Post), but adopted and slightly
improved by Peter Naur for Algol 60, which made it well-known. Because
of this Naur calls BNF Backus Normal Form, while everyone else calls it
Backus-Naur Form.)​

It is used to formally define the grammar of a language, so that there is no
disagreement or ambiguity as to what is allowed and what is not. In fact,
BNF is so unambiguous that there is a lot of mathematical theory around
these kinds of grammars, and one can actually mechanically construct a
parser for a language given a BNF grammar for it. (There are some kinds
of grammars for which this isn't possible, but they can usually be
transformed manually into ones that can be used.)​

Programs that do this are commonly called "compiler compilers". The most
famous of these is YACC, but there are many more.

How it works

The principles

BNF is sort of like a mathematical game: you start with a symbol (called
the start symbol and by convention usually named S in examples) and are
then given rules for what you can replace this symbol with. The language
defined by the BNF grammar is just the set of all strings you can produce
by following these rules.​

The rules are called production rules, and look like this:

 symbol := alternative1 | alternative2 ...

A production rule simply states that the symbol on the left-hand side of the
:= must be replaced by one of the alternatives on the right hand side. The
alternatives are separated by |s. (One variation on this is to use ::= instead

of :=, but the meaning is the same.) Alternatives usually consist of both
symbols and something called terminals. Terminals are simply pieces of
the final string that are not symbols. They are called terminals because
there are no production rules for them: they terminate the production
process. (Symbols are often called non-terminals.)​

Another variation on BNF grammars is to enclose terminals in quotes to
distinguish them from symbols. Some BNF grammars explicitly show
where whitespace is allowed by having a symbol for it, while other
grammars leave this for the reader to infer.​

There is one special symbol in BNF: @, which simply means that the
symbol can be removed. If you replace a symbol by @, you do it by just
removing the symbol. This is useful because in some cases it is difficult to
end the replacement process without using this trick.​

So, the language described by a grammar is the set of all strings you can
produce with the production rules. If a string cannot in any way be
produced by using the rules the string is not allowed in the language.

A real example

Below is a sample BNF grammar:

 S := '-' FN |
 FN
 FN := DL |
 DL '.' DL
 DL := D |
 D DL
 D := '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

The different symbols here are all abbreviations: S is the start symbol, FN
produces a fractional number, DL is a digit list, while D is a digit.​

Valid sentences in the language described by this grammar are all
numbers, possibly fractional, and possibly negative. To produce a number,
start with the start symbol S:​

 S

Then replace the S symbol with one of its productions. In this case we
choose not to put a '-' in front of the number, so we use the plain FN
production and replace S by FN:​

 FN

The next step is then to replace the FN symbol with one of its productions.
We want a fractional number, so we choose the production that creates
two decimal lists with a '.' between them, and after that we keep choosing
replacing a symbol with one of its productions once per line in the example
below: ​

 DL . DL

 D . DL

 3 . DL

 3 . D DL

 3 . D D

 3 . 1 D

 3 . 1 4

Here we've produced the fractional number 3.14. How to produce the
number -5 is left as an exercise for the reader. To make sure you
understand this you should also study the grammar until you understand
why the string 3..14 cannot be produced with these production rules.​

EBNF: What is it, and why do we need it?

In DL I had to use recursion (ie: DL can produce new DLs) to express the
fact that there can be any number of Ds. This is a bit awkward and makes
the BNF harder to read. Extended BNF (EBNF, of course) solves this
problem by adding three operators:​

? : which means that the symbol (or group of symbols in parenthesis)
to the left of the operator is optional (it can appear zero or one times)
* : which means that something can be repeated any number of
times (and possibly be skipped altogether)
+ : which means that something can appear one or more times

An EBNF sample grammar

So in extended BNF the above grammar can be written as:

 S := '-'? D+ ('.' D+)?

 D := '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

which is rather nicer. :)​

Just for the record: EBNF is not more powerful than BNF in terms of what
languages it can define, just more convenient. Any EBNF production can
be translated into an equivalent set of BNF productions.

Uses of BNF and EBNF

Common uses

Most programming language standards use some variant of EBNF to
define the grammar of the language. This has two advantages: there can
be no disagreement on what the syntax of the language is, and it makes it
much easier to make compilers, because the parser for the compiler can

be generated automatically with a compiler-compiler like YACC.​

EBNF is also used in many other standards, such as definitions of protocol
formats, data formats and markup languages such as XML and SGML.
(HTML is not defined with a grammar, instead it is defined with an SGML
DTD, which is sort of a higher-level grammar.)​

You can see a collection of BNF grammars at the BNF web club .

How to use a formal grammar

OK. Now you know what BNF and EBNF are, what they are used for, but
perhaps not why they are useful or how you can take advantage of them.​

The most obvious way of using a formal grammar has already been
mentioned in passing: once you've given a formal grammar for your
language you have completely defined it. There can be no further
disagreement on what is allowed in the language and what is not. This is
extremely useful because a syntax description in ordinary prose is much
more verbose and open to different interpretations.

Another benefit is this: formal grammars are mathematical creatures and
can be "understood" by computers. There are actually lots of programs
that can be given (E)BNF grammars as input and automatically produce
code for parsers for the given grammar. In fact, this is the most common
way to produce a compiler: by using a so-called compiler-compiler that
takes a grammar as input and produces parser code in some
programming language.​

Of course, compilers do much more checking than just grammar checking
(such as type checking) and they also produce code. None of these things
are described in an (E)BNF grammar, so compiler-compilers usually have
a special syntax for associating code snippets (called actions) with the
different productions in the grammar.​

The best-known compiler-compiler is YACC (Yet Another Compiler
Compiler), which produces C code, but others exist for C++, Java, Python
as well as many other languages.

Parsing

The easiest way

Top-down parsing (LL)

The easiest way of parsing something according to a grammar in use
today is called LL parsing (or top-down parsing). It works like this: for each
production find out which terminals the production can start with. (This is
called the start set.)

Then, when parsing, you just start with the start symbol and compare the
start sets of the different productions against the first piece of input to see
which of the productions have been used. Of course, this can only be
done if no two start sets for one symbol both contain the same terminal. If
they do there is no way to determine which production to choose by
looking at the first terminal on the input.​

LL grammars are often classified by numbers, such as LL(1), LL(0) and so
on. The number in the parenthesis tells you the maximum number of
terminals you may have to look at at a time to choose the right production
at any point in the grammar. So for LL(0) you don't have to look at any
terminals at all, you can always choose the right production. This is only
possible if all symbols have only one production, and if they only have one
production the language can only have one string. In other words: LL(0)
grammars are not interesting.​

The most common (and useful) kind of LL grammar is LL(1) where you
can always choose the right production by looking at only the first terminal
on the input at any given time. With LL(2) you have to look at two symbols,
and so on. There exist grammars that are not LL(k) grammars for any
fixed value of k at all, and they are sadly quite common.

An LL analysis example

As a demonstration, let's do a start set analysis of the sample grammar
above. For the symbol D this is easy: all productions have a single digit as
their start set (the one they produce) and the D symbol has the set of all
ten digits as its start set. This means that we have at best an LL(1)
grammar, since in this case we need to look at one terminal to choose the
right production.​

With DL we run into trouble. Both productions start with D and thus both
have the same start set. This means that one cannot see which production
to choose by looking at just the first terminal of the input. However, we can
easily get round this problem by cheating: if the second terminal on input
is not a digit we must have used the first production, but if they both are
digits we must have used the second one. In other words, this means that
this is at best an LL(2) grammar.​

I actually simplified things a little here. The productions for DL alone don't
tells us which terminals are allowed after the first terminal in the D @
production, because we need to know which terminals are allowed after a
DL symbol. This set of terminals is called the follow set of the symbol, and
in this case it is '.' and the end of input. ​

The FN symbol turns out to be even worse, since both productions have
all digits as their start set. Looking at the second terminal doesn't help
since we need to look at the first terminal after the last digit in the digit list
(DL) and we don't know how many digits there are until we've read them
all. And since there is no limit on the number of digits there can be, this
isn't an LL(k) grammar for any value of k at all (there can always be more
digits than k, no matter which value of k value you choose).​

Somewhat surprisingly perhaps, the S symbol is easy. The first production
has '-' as its start set, the second one has all digits. In other words, when
you start parsing you'll start with the S symbol and look at the input to

decide which production was used. If the first terminal is '-' you know that
the first production was used. If not, the second one was used. It's only the
FN and DL productions that cause problems.

An LL transformation example

However, there is no need to despair. Most grammars that are not LL(k)
can fairly easily be converted to LL(1) grammars. In this case we'll need to
change two symbols: FN and DL.​

The problem with FN is that both productions begin with DL, but the
second one continues with a '.' and another DL after the initial DL. This is
easily solved: we change FN to have just one production that starts with
DL followed by FP (fractional part), where FP can be nothing or '.' followed
by a DL, like this:

 FN := DL FP
 FP := @ | '.' DL

Now there are no problems with FN anymore, since there's just one
production, and FP is unproblematic because the two productions have
different start sets. End of input and '.', respectively.

The DL is a tougher nut to crack, since the problem is the recursion and
it's compounded by the fact that we need at least one D to result from the
DL. The solution is to give DL a single production, a D followed by DR
(digits rest). DR then has two productions: D DR (more digits) or @ (no
more digits). The first production has a start set of all digits, while the
second has '.' and end of input as its start set, so this solves the problem.

This is the complete LL(1) grammar as we've now transformed it:

 S := '-' FN | FN
 FN := DL FP
 FP := @ | '.' DL
 DL := D DR
 DR := D DR | @
 D := '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

The slightly harder way

Bottom-up parsing (LR)

A harder way to parse is the one known as shift-reduce or bottom-up
parsing. This technique collects input until it finds that it can reduce an
input sequence with a symbol. This may sound difficult, so I'll give an
example to clarify. We'll parse the string '3.14' and see how it was
produced from the grammar. We start by reading 3 from the input:

 3

and then we look to see if we can reduce it to the symbol it was produced
from. And indeed we can, it was produced from the D symbol, which we
replace the 3 with. Then we note that we can produce the D from DL and
replace the D with DL. (The grammar is ambiguous, which means that we

can reduce further to FN, which would be wrong. For simplicity we just
skip the wrong steps here, but an unambiguous grammar would not allow
these wrong choices.) After that we read the . from the input and try to
reduce it, but fail:

 D

 DL

 DL .

This can't be reduced to anything, so we read the next character from the
input: 1. We then reduce that to a D and read the next character, which is
4. 4 can be reduced to D, then to DL, and then the "D DL" sequence can
be further reduced to a DL.

 DL .

 DL . 1

 DL . D

 DL . D 4

 DL . D D

 DL . D DL

 DL . DL

Looking at the grammar we quickly note that FN can produce just this "DL
. DL" sequence and do a reduction. We then note that FN can be
produced from S and reduce the FN to S and then stop, as we've
completed the parse.

 DL . DL

 FN

 S

As you may have noted we could often choose whether to do a reduction
now or wait until we had more symbols and then do a different reduction.
There are more complex variations on this shift-reduce parsing algorithm,
in increasing complexity and power: LR(0), SLR, LALR and LR(1). LR(1)
usually needs unpractically large parse tables, so LALR is the most
commonly used algorithm, since SLR and LR(0) are not powerful enough
for most programming languages.

LALR and LR(1) are too complex for me to cover here, but you get the
basic idea.

LL or LR?

This question has already been answered much better by someone else,
so I'm just quoting his news message in full here:

I hope this doesn't start a war...

First - - Frank, if you see this, don't shoot me. (My boss is Frank
DeRemer, the creator of LALR parsing...)

(I borrowed this summary from Fischer&LeBlanc's "Crafting a Compiler")

 Simplicity - - LL
 Generality - - LALR
 Actions - - LL
 Error repair - - LL
 Table sizes - - LL
 Parsing speed - - comparable (me: and tool-dependent)

Simplicity - - LL wins
==========
The workings of an LL parser are much simpler. And, if you have to
debug a parser, looking at a recursive-descent parser (a common way to
program an LL parser) is much simpler than the tables of a LALR parser.

Generality - - LALR wins
==========
For ease of specification, LALR wins hands down. The big
difference here between LL and (LA)LR is that in an LL grammar you must
left-factor rules and remove left recursion.

Left factoring is necessary because LL parsing requires selecting an
alternative based on a fixed number of input tokens.

Left recursion is problematic because a lookahead token of a rule is
always in the lookahead token on that same rule. (Everything in set A
is in set A...) This causes the rule to recurse forever and ever and
ever and ever...

To see ways to convert LALR grammars to LL grammars, take a look at my
page on it:
 http://www.jguru.com/thetick/articles/lalrtoll.html

Many languages already have LALR grammars available, so you'd have to
translate. If the language _doesn't_ have a grammar available, then I'd
say it's not really any harder to write a LL grammar from scratch. (You
just have to be in the right "LL" mindset, which usually involves
watching 8 hours of Dr. Who before writing the grammar... I actually
prefer LL if you didn't know...)

Actions - - LL wins
=======
In an LL parser you can place actions anywhere you want without
introducing a conflict

Error repair - - LL wins
============
LL parsers have much better context information (they are top-down
parsers) and therefore can help much more in repairing an error, not to
mention reporting errors.

Table sizes - - LL
===========
Assuming you write a table-driven LL parser, its tables are nearly half
the size. (To be fair, there are ways to optimize LALR tables to make
them smaller, so I think this one washes...)

Parsing speed - comparable (me: and tool-dependent)

--Scott Stanchfield in article
<33C1BDB9.FC6D86D3@scruz.net> on

comp.lang.java.softwaretools Mon, 07 Jul 1997.

More information

John Aycock has developed an unusually nice and simple to use parsing
framework in Python called SPARK, which is described in his very
readable paper.

The definitive work on parsing and compilers is 'The Dragon Book', or
Compilers : Principles, Techniques, and Tools, by Aho, Sethi and
Ullman. Beware, though, that this is a rather advanced and mathematical
book.

A free online alternative, which looks rather good, is this book, but I can't
comment on the quality, since I haven't read it yet.

Henry Baker has written an article about parsing in Common Lisp,
which presents a simple, high-performant and very convenient framework
for parsing. The approach is similar to that of compiler-compilers, but
instead relies on the very powerful macro system of Common Lisp.

One syntax for specifying BNF grammars can be found in RFC 2234.
Another can be found in the ISO 14977 standard.

Appendices

Acknowledgements

Thanks to:

Jelks Cabaniss, for encouraging me to turn the news article into a
web article, and for providing very useful criticism of the article once
it appeared in web form.
C. M. Sperberg-McQueen for extra historical information about the
name of BNF.
Scott Stanchfield for writing the great comparison of LALR and LL. I
have asked for permission to quote this, but have received no reply,
unfortunately.
James Huddleston for correcting me on John Backus' name.
Dave Pawson for correcting a bad link.

Last update 2008-08-22, by Lars M. Garshol.

Created 06/17/04 OIT National-Louis University

Selected Windows Keyboard Shortcuts

CTRL + C Copy
CTRL + X Cut
CTRL + V Paste
CTRL + Z Undo
CTRL + Y Redo
CTRL + A Select All
CTRL + F4 Close the Active Document
CTRL + Esc Display the Start Menu
CTRL + Dragging Item Copy the Selected Item
F1 Display Help
F2 Rename the Selected Item
F3 Search for a File or Folder
F4 Display the Address Bar in My

Computer
F5 Update the Active Window
F6 Cycle through Screen Elements
F10 Activate the Menu Bar in Active

Program
ALT + Enter Display Properties of Selected Item
ALT + Spacebar Open Shortcut for Active Window
ALT + F4 Close the Active Document
ALT + Tab Switch Between Open Items
ALT + Esc Cycle Through Items in Order

Opened
SHIFT + Delete Permanently Delete an Item
SHIFT + F10 Display selected Item’s Shortcut

Menu
SHIFT + Insert CD Prevent CD from Automatically

Playing
WIN Display Start Menu
WIN + D Minimize All Windows
WIN +Shift +M Undo Minimize All Windows
WIN + E Display Windows Explorer
WIN + F Display Search Utility
WIN + R Display Run utility
WIN + L Lock Computer
WIN + U Open Utility Manager

THE ONE PAGE LINUX MANUAL
A summary of useful Linux commands

Version 3.0 May 1999 squadron@powerup.com.au

Starting & Stopping

shutdown -h now Shutdown the system now and do not
reboot

halt Stop all processes - same as above

shutdown -r 5 Shutdown the system in 5 minutes and
reboot

shutdown -r now Shutdown the system now and reboot

reboot Stop all processes and then reboot - same
as above

startx Start the X system

Accessing & mounting file systems

mount -t iso9660 /dev/cdrom
/mnt/cdrom

Mount the device cdrom
and call it cdrom under the
/mnt directory

mount -t msdos /dev/hdd
/mnt/ddrive

Mount hard disk “d” as a
msdos file system and call
it ddrive under the /mnt
directory

mount -t vfat /dev/hda1
/mnt/cdrive

Mount hard disk “a” as a
VFAT file system and call it
cdrive under the /mnt
directory

umount /mnt/cdrom Unmount the cdrom

Finding files and text within files

find / -name fname Starting with the root directory, look
for the file called fname

find / -name ”*fname*” Starting with the root directory, look
for the file containing the string fname

locate missingfilename Find a file called missingfilename
using the locate command - this
assumes you have already used the
command updatedb (see next)

updatedb Create or update the database of files
on all file systems attached to the linux
root directory

which missingfilename Show the subdirectory containing the
executable file called missingfilename

grep textstringtofind
/dir

Starting with the directory called dir ,
look for and list all files containing
textstringtofind

The X Window System

xvidtune Run the X graphics tuning utility

XF86Setup Run the X configuration menu with
automatic probing of graphics cards

Xconfigurator Run another X configuration menu with
automatic probing of graphics cards

xf86config Run a text based X configuration menu

Moving, copying, deleting & viewing files

ls -l List files in current directory using
long format

ls -F List files in current directory and
indicate the file type

ls -laC List all files in current directory in
long format and display in columns

rm name Remove a file or directory called
name

rm -rf name Kill off an entire directory and all it’s
includes files and subdirectories

cp filename
/home/dirname

Copy the file called filename to the
/home/dirname directory

mv filename
/home/dirname

Move the file called filename to the
/home/dirname directory

cat filetoview Display the file called filetoview

man -k keyword Display man pages containing
keyword

more filetoview Display the file called filetoview one
page at a time, proceed to next page
using the spacebar

head filetoview Display the first 10 lines of the file
called filetoview

head -20 filetoview Display the first 20 lines of the file
called filetoview

tail filetoview Display the last 10 lines of the file
called filetoview

tail -20 filetoview Display the last 20 lines of the file
called filetoview

Installing software for Linux

rpm -ihv name.rpm Install the rpm package called name

rpm -Uhv name.rpm Upgrade the rpm package called
name

rpm -e package Delete the rpm package called
package

rpm -l package List the files in the package called
package

rpm -ql package List the files and state the installed
version of the package called
package

rpm -i --force package Reinstall the rpm package called
name having deleted parts of it (not
deleting using rpm -e)

tar -zxvf archive.tar.gz or
tar -zxvf archive.tgz

Decompress the files contained in
the zipped and tarred archive called
archive

./configure Execute the script preparing the
installed files for compiling

User Administration

adduser accountname Create a new user call accountname

passwd accountname Give accountname a new password

su Log in as superuser from current login

exit Stop being superuser and revert to
normal user

Little known tips and tricks

ifconfig List ip addresses for all devices on
the machine

apropos subject List manual pages for subject

usermount Executes graphical application for
mounting and unmounting file
systems

/sbin/e2fsck hda5 Execute the filesystem check utility
on partition hda5

fdformat /dev/fd0H1440 Format the floppy disk in device fd0

tar -cMf /dev/fd0 Backup the contents of the current
directory and subdirectories to
multiple floppy disks

tail -f /var/log/messages Display the last 10 lines of the system
log.

cat /var/log/dmesg Display the file containing the boot
time messages - useful for locating
problems. Alternatively, use the
dmesg command.

* wildcard - represents everything. eg.

cp from/* to will copy all files in the
from directory to the to directory

? Single character wildcard. eg.

cp config.? /configs will copy all files
beginning with the name config. in
the current directory to the directory
named configs.

[xyz] Choice of character wildcards. eg.

ls [xyz]* will list all files in the current
directory starting with the letter x, y,
or z.

linux single At the lilo prompt, start in single user
mode. This is useful if you have
forgotten your password. Boot in
single user mode, then run the
passwd command.

ps List current processes

kill 123 Kill a specific process eg. kill 123

Configuration files and what they do

/etc/profile System wide environment variables for
all users.

/etc/fstab List of devices and their associated mount
points. Edit this file to add cdroms, DOS
partitions and floppy drives at startup.

/etc/motd Message of the day broadcast to all users
at login.

etc/rc.d/rc.local Bash script that is executed at the end of
login process. Similar to autoexec.bat in
DOS.

/etc/HOSTNAME Conatins full hostname including domain.

/etc/cron.* There are 4 directories that automatically
execute all scripts within the directory at
intervals of hour, day, week or month.

/etc/hosts A list of all know host names and IP
addresses on the machine.

/etc/httpd/conf Paramters for the Apache web server

/etc/inittab Specifies the run level that the machine
should boot into.

/etc/resolv.conf Defines IP addresses of DNS servers.

/etc/smb.conf Config file for the SAMBA server. Allows
file and print sharing with Microsoft
clients.

/etc/X11/XF86Confi
g

Config file for X-Windows.

~/.xinitrc Defines the windows manager loaded by
X. ~ refers to user’s home directory.

File permissions

If the command ls -l is given, a long list of file names is
displayed. The first column in this list details the permissions
applying to the file. If a permission is missing for a owner,
group of other, it is represented by - eg. drwxr-x—x

Read = 4

Write = 2

Execute = 1

File permissions are altered by giving the
chmod command and the appropriate
octal code for each user type. eg

chmod 7 6 4 filename will make the file
called filename R+W+X for the owner,
R+W for the group and R for others.

chmod 7 5 5 Full permission for the owner, read and
execute access for the group and others.

chmod +x filename Make the file called filename executable
to all users.

X Shortcuts - (mainly for Redhat)

Control|Alt + or - Increase or decrease the screen
resolution. eg. from 640x480 to
800x600

Alt | escape Display list of active windows

Shift|Control F8 Resize the selected window

Right click on desktop
background

Display menu

Shift|Control Altr Refresh the screen

Shift|Control Altx Start an xterm session

Printing

/etc/rc.d/init.d/lpd start Start the print daemon

/etc/rc.d/init.d/lpd stop Stop the print daemon

/etc/rc.d/init.d/lpd
status

Display status of the print daemon

lpq Display jobs in print queue

lprm Remove jobs from queue

lpr Print a file

lpc Printer control tool

man subject | lpr Print the manual page called subject
as plain text

man -t subject | lpr Print the manual page called subject
as Postscript output

printtool Start X printer setup interface

~/.Xdefaults Define configuration for some X-
applications. ~ refers to user’s home
directory.

Get your own Official Linux Pocket Protector - includes
handy command summary. Visit:

www.powerup.com.au/~squadron

v2.0.1

Mission ControlMission ControlMission Control

⌃ ↑⌃ ↑ View Mission Control

⌃ ↓⌃ ↓ Show appʼs windows

F11F11 Show desktop
F12F12 Show Dashboard
⌃ ← ⌃ → Move between spaces

⇥⇥ Show windows for next app after ⌃ ↓
spacebarspacebar Enlarge window under cursor after ⌃ ↑

Screen CaptureScreen Capture

⇧ ⌘ 3 Screen to file

⇧ ⌃ ⌘ 3 Screen to clipboard

⇧ ⌘ 4 Area to file (then space to get window)

⇧ ⌃ ⌘ 4 Area to clipboard (then space to get window)

⇧ shift ⌃ control ⌥ option ⌘ command ⇥ tab ↩ return ⌫ delete ⏏ eject ⎋ esc

Switching Applications and WindowsSwitching Applications and Windows

⌘ ⇥ Advance to next app

⌘ ` Next window in current app

⌥ ⌘ D Hide/Show DockText EditingText EditingText EditingText Editing

⌘ ←⌘ ← ⌘ → Go to the start/end of the line

⌘ ↑ ⌘ ↑ ⌘ ↓ Go to the start/end of the document

⌥ ←⌥ ← ⌥ → Go to the previous/next word

⌥ ↑⌥ ↑ ⌥ ↓ Go to the previous/next paragraph

(Add ⇧ with any of the above to select)(Add ⇧ with any of the above to select)(Add ⇧ with any of the above to select)(Add ⇧ with any of the above to select)

⌘X ⌘C ⌘V Cut / Copy / Paste

⌘ A⌘ A⌘ A Select All

⇧ ⌘ L⇧ ⌘ L ⇧ ⌘ Y With selection: web search / sticky note

Finder CommandsFinder CommandsFinder Commands

⌘ space⌘ space Spotlight menu
⌘ ⌥ space⌘ ⌥ space Spotlight window
⌘ ⌫⌘ ⌫ Move to trash
⇧ ⌘ ⌫⇧ ⌘ ⌫ Empty Trash
⇧ ⌥ ⌘ ⌫⇧ ⌥ ⌘ ⌫ Force Empty Trash
⌘ N⌘ N New Finder window
⇧ ⌘ N⇧ ⌘ N New Folder
⌘ I⌘ I Get Info
⌥ ⌘ I⌥ ⌘ I Show Inspector
⌘ Y or space⌘ Y or space Quick Look
⌘ E⌘ E Eject selected volume
⌘ J⌘ J Show view options
⌘ K⌘ K Connect to server
⇧ ⌘ A⇧ ⌘ A Open Applications folder
⇧ ⌘ C⇧ ⌘ C Open Computer folder
⌘ ↑⌘ ↑ Open enclosing folder
⌘ F Find

Universal Access Display ControlsUniversal Access Display ControlsUniversal Access Display Controls

⌥ ⌘ 8⌥ ⌘ 8 Toggle zoom feature (turn on to use zoom)

⌥ ⌘ = ⌥ ⌘ - Zoom in / out (also ⌃ and mouse scroll)

⌃ ⌥ ⌘ 8⌃ ⌥ ⌘ 8 Reverse screen

Keyboard Control FocusKeyboard Control Focus

⌃ F2 Focus on menu bar

⌃ F3 Focus on Dock

⌃ F5 Focus on window toolbar

⌃ F8 Focus on menu bar status icons

Then, use ← → ↑↓ to navigate, ↩ to select, and esc to exitThen, use ← → ↑↓ to navigate, ↩ to select, and esc to exit

Application CommandsApplication CommandsApplication CommandsApplication Commands

⌘ N New window ⌘ , App preferences

⌘ O Open file ⌘ H Hide app

⌘ W Close window ⌥ ⌘ H Hide others

⌘ S Save ⌘ T Show fonts panel

⇧ ⌘ S Save As ⇧ ⌘ C Show colors panel

⌘ P Print ⇧ ⌘ / Help

⌘ Q Quit ⌃ ⌘ F Full Screen Mode

Power ShortcutsPower Shortcuts

⌥ ⌘ ⏏ Sleep

⌃ ⌘ ⏏ Restart

⌃ ⌥ ⌘ ⏏ Shut down

⇧ ⌃ ⏏ Sleep display

⌃ ⏏ Power options dialog
Startup KeysStartup Keys

⌥ Choose boot volume

⌥ ⌘ P R Reset PRAM

⌘ S Single user mode boot

⌘ R Disk Utility and Internet recovery

T Go into Target disk mode

Mac OS X Lion Power User Keyboard Shortcuts
Visit MacMost.com for Mac and iPhone video tutorials, news, reviews and commentary.

Note: Keyboard shortcuts can be disabled or customized in the System Preferences.
See http://macmost.com/j-keyshort for more shortcuts and to learn how to create your own." Copyright © 2011 MacMost

How To Properly Comment Your Code
Uncommented Code The 6.189 staff received this code to grade.

There’s a bunch of problems with it. A quick scan of it reveals no info as to which of our 250 students wrote this
code. What is the name of the file? What does it do? At a glance, we are lost. This code would receive a grade of
a �.

Commented Code The staff next received this file.

We can clearly see Alyssa’s name and the name of her file. Further she has well-commented what the lines of her
program do. This code would receive a grade of +. You should be like Alyssa! You should comment wherever
you can - put comments that explain what you’re doing, and if you’re doing something tricky or unique be sure to
explain that, as well. A good goal is to have 1 comment for every 1-4 lines of code. Be sure to not only document
what your code is doing, but, as you begin writing more advanced code, you should document what was intentionally
left out, optimized away, tried and discarded, etc - basically, any design decision you make.

MIT OpenCourseWare
http://ocw.mit.edu

6.189 A Gentle Introduction to Programming
January IAP 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

 Programming
Paradigms

2. Overview of the four main programming
paradigms
In this section we will characterize the four main programming paradigms, as identified
in Section 1.2.

As the main contribution of this exposition, we attempt to trace the basic discipline and
the idea behind each of the main programming paradigms.

With this introduction to the material, we will also be able to see how the functional
programming paradigm corresponds to the other main programming paradigms.

2.1 Overview of the imperative paradigm 2.3 Overview of the logic paradigm
2.2 Overview of the functional paradigm 2.4 Overview of the object-oriented

paradigm

2.1. Overview of the imperative paradigm
Contents Up Previous Next Slide Subject index Program index Exercise index

First do this and next
do that

The 'first do this, next do that' is a short phrase which really in a nutshell describes the
spirit of the imperative paradigm. The basic idea is the command, which has a measurable
effect on the program state. The phrase also reflects that the order to the commands is
important. 'First do that, then do this' would be different from 'first do this, then do that'.

In the itemized list below we describe the main properties of the imperative paradigm.

Characteristics:

Discipline and idea

Digital hardware technology and the ideas of Von Neumann

Incremental change of the program state as a function of time.

Execution of computational steps in an order governed by control
structures

We call the steps for commands

Straightforward abstractions of the way a traditional Von Neumann

computer works

Similar to descriptions of everyday routines, such as food recipes and car
repair

Typical commands offered by imperative languages

Assignment, IO, procedure calls

Language representatives

Fortran, Algol, Pascal, Basic, C

The natural abstraction is the procedure

Abstracts one or more actions to a procedure, which can be called as
a single command.

"Procedural programming"

We use several names for the computational steps in an imperative language. The word
statement is often used with the special computer science meaning 'a elementary
instruction in a source language'. The word instruction is another possibility; We prefer to
devote this word the computational steps performed at the machine level. We will use the
word 'command' for the imperatives in a high level imperative programming language.

A procedure abstracts one or more actions to a procedure, which can be activated as a
single action.

2.2. Overview of the functional paradigm
Contents Up Previous Next Slide Subject index Program index Exercise index

We here introduce the functional paradigm at the same level as imperative programming
was introduced in Section 2.1.

Functional programming is in many respects a simpler and more clean programming
paradigm than the imperative one. The reason is that the paradigm originates from a
purely mathematical discipline: the theory of functions. As described in Section 2.1, the
imperative paradigm is rooted in the key technological ideas of the digital computer,
which are more complicated, and less 'clean' than mathematical function theory.

Below we characterize the most important, overall properties of the functional
programming paradigm. Needless to say, we will come back to most of them in the
remaining chapters of this material.

Evaluate an expression and use the resulting value
for something

Characteristics:

Discipline and idea

Mathematics and the theory of functions

The values produced are non-mutable

Impossible to change any constituent of a composite value

As a remedy, it is possible to make a revised copy of composite
value

Atemporal

Time only plays a minor role compared to the imperative paradigm

Applicative

All computations are done by applying (calling) functions

The natural abstraction is the function

Abstracts a single expression to a function which can be evaluated
as an expression

Functions are first class values

Functions are full-fledged data just like numbers, lists, ...

Fits well with computations driven by needs

Opens a new world of possibilities

2.3. Overview of the logic paradigm
Contents Up Previous Next Slide Subject index Program index Exercise index

The logic paradigm is dramatically different from the other three main programming
paradigms. The logic paradigm fits extremely well when applied in problem domains that
deal with the extraction of knowledge from basic facts and relations. The logical
paradigm seems less natural in the more general areas of computation.

Answer a question via search for
a solution

Below we briefly characterize the main properties of the logic programming paradigm.

Characteristics:

Characteristics:

Discipline and idea

Automatic proofs within artificial intelligence

Based on axioms, inference rules, and queries.

Program execution becomes a systematic search in a set of facts, making
use of a set of inference rules

2.4. Overview of the object-oriented paradigm
Contents Up Previous Next Slide Subject index Program index Exercise index

The object-oriented paradigm has gained great popularity in the recent decade. The
primary and most direct reason is undoubtedly the strong support of encapsulation and
the logical grouping of program aspects. These properties are very important when
programs become larger and larger.

The underlying, and somewhat deeper reason to the success of the object-oriented
paradigm is probably the conceptual anchoring of the paradigm. An object-oriented
program is constructed with the outset in concepts, which are important in the problem
domain of interest. In that way, all the necessary technicalities of programming come in
second row.

Send messages between objects to simulate the temporal
evolution of a set of real world phenomena

As for the other main programming paradigms, we will now describe the most important
properties of object-oriented programming, seen as a school of thought in the area of
computer programming.

Characteristics:

Discipline and idea

The theory of concepts, and models of human interaction with real
world phenomena

Data as well as operations are encapsulated in objects

Information hiding is used to protect internal properties of an object

Objects interact by means of message passing

A metaphor for applying an operation on an object

In most object-oriented languages objects are grouped in classes

Objects in classes are similar enough to allow programming of the
classes, as opposed to programming of the individual objects

Classes represent concepts whereas objects represent phenomena

Classes are organized in inheritance hierarchies

Provides for class extension or specialization

This ends the overview of the four main programming paradigms. From now on the main
focus will be functional programming in Scheme, with special emphasis on examples
drawn from the domain of web program development.

Generated: Tuesday July 2, 2013,
09:27:19

5.1.16 Real Programmers (Ed Post), see also Sec. 2.1

First reference occurs in Real Programmers use FORTRAN, see Section 2.1 on page 10.

98

5.1.17 Seven Topics in Python, see also Sec. 5.1.1

First reference occurs in Seven Topics in Python, see Section 5.1.1 on page 28.

99

5.1.18 Seven Topics in Python (Haug-Warberg), see also Sec. 5.1.1

First reference occurs in Seven Topics in Python, see Section 5.1.1 on page 28.

100

Epydoc
Automatic API Documentation Generation for Python

Overview

Epydoc is a tool for generating
API documentation for Python
modules, based on their
docstrings. For an example of
epydoc's output, see the API
documentation for epydoc itself
(html, pdf). A lightweight markup
language called epytext can be
used to format docstrings, and to
add information about specific
fields, such as parameters and
instance variables. Epydoc also
understands docstrings written in
reStructuredText, Javadoc, and
plaintext. For a more extensive
example of epydoc's output, see
the API documentation for
Python 2.5.

Documentation
Epydoc manual

Installing
Epydoc
Using Epydoc
Python
Docstrings
The Epytext
Markup
Language
Epydoc Fields
reStructuredText
and Javadoc
Reference
Documentation

Related
Information

Open
Source
License
Change
Log
History
Future
Directions
Related
Projects
Regression
Tests

API
Documentation

Frequently
Asked
Questions

Feedback
Report a bug
Suggest a feature
Author: Edward Loper

Latest Release

The latest stable release is Epydoc 3.0. If you wish to keep up
on the latest developments, you can also get epydoc from the
subversion repository. See Installing Epydoc for more
information.

Screenshots

News

Epydoc 3.0 released [January 2008]
Epydoc version 3.0 is now available on the SourceForge
download page. See the What's New page for details. Epydoc is
under active development; if you wish to keep up on the latest
developments, you can get epydoc from the subversion
repository. If you find any bugs, or have suggestions for
improving it, please report them on sourceforge.

Presentation at PyCon [March 2004]
Epydoc was presented at PyCon by Edward Loper. Video and
audio from the presentation are available for download.

Home Installing Epydoc Using Epydoc Epytext

The Epytext Markup Language

A Brief Introduction
Epytext is a simple lightweight markup language that lets you add formatting and structue to docstrings. Epydoc
uses that formatting and structure to produce nicely formatted API documentation. The following example (which
has an unusually high ratio of documentaiton to code) illustrates some of the basic features of epytext:

def x_intercept(m, b):
 """
 Return the x intercept of the line M{y=m*x+b}. The X{x intercept}
 of a line is the point at which it crosses the x axis (M{y=0}).

 This function can be used in conjuction with L{z_transform} to
 find an arbitrary function's zeros.

 @type m: number
 @param m: The slope of the line.
 @type b: number
 @param b: The y intercept of the line. The X{y intercept} of a
 line is the point at which it crosses the y axis (M{x=0}).
 @rtype: number
 @return: the x intercept of the line M{y=m*x+b}.
 """
 return -b/m

You can compare this function definition with the API documentation generated by epydoc. Note that:

Paragraphs are separated by blank lines.
Inline markup has the form "x{...}", where "x" is a single capital letter. This example uses inline markup to
mark mathematical expressions ("M{...}"); terms that should be indexed ("X{...}"); and links to the
documentation of other objects ("L{...}").
Descriptions of parameters, return values, and types are marked with "@field:" or "@field arg:", where "field"
identifies the kind of description, and "arg" specifies what object is described.

Epytext is intentionally very lightweight. If you wish to use a more expressive markup language, I recommend
reStructuredText.

Epytext Language Overview
Epytext is a lightweight markup language for Python docstrings. The epytext markup language is used by epydoc to
parse docstrings and create structured API documentation. Epytext markup is broken up into the following
categories:

Block Structure divides the docstring into nested blocks of text, such as paragraphs and lists.

o Basic Blocks are the basic unit of block structure.

o Hierarchical blocks represent the nesting structure of the docstring.

Inline Markup marks regions of text within a basic block with properties, such as italics and hyperlinks.

Block Structure
Block structure is encoded using indentation, blank lines, and a handful of special character sequences.

Indentation is used to encode the nesting structure of hierarchical blocks. The indentation of a line is defined
as the number of leading spaces on that line; and the indentation of a block is typically the indentation of its
first line.
Blank lines are used to separate blocks. A blank line is a line that only contains whitespace.
Special character sequences are used to mark the beginnings of some blocks. For example, '-' is used as a
bullet for unordered list items, and '>>>' is used to mark doctest blocks.

The following sections describe how to use each type of block structure.

Paragraphs
A paragraph is the simplest type of basic block. It consists of one or more lines of text. Paragraphs must be left
justified (i.e., every line must have the same indentation). The following example illustrates how paragraphs can be
used:

Docstring Input Rendered Output

def example():
 """
 This is a paragraph. Paragraphs can
 span multiple lines, and can contain
 I{inline markup}.

 This is another paragraph. Paragraphs
 are separated by blank lines.
 """
 [...]

This is a paragraph. Paragraphs can span
multiple lines, and contain inline markup.

This is another paragraph. Paragraphs are
separated from each other by blank lines.

Lists
Epytext supports both ordered and unordered lists. A list consists of one or more consecutive list items of the same
type (ordered or unordered), with the same indentation. Each list item is marked by a bullet. The bullet for
unordered list items is a single dash character (-). Bullets for ordered list items consist of a series of numbers
followed by periods, such as 12. or 1.2.8..

List items typically consist of a bullet followed by a space and a single paragraph. The paragraph may be indented
more than the list item's bullet; often, the paragraph is intended two or three characters, so that its left margin lines
up with the right side of the bullet. The following example illustrates a simple ordered list.

Docstring Input Rendered Output

def example():
 """
 1. This is an ordered list item.

 2. This is a another ordered list
 item.

 3. This is a third list item. Note that
 the paragraph may be indented more
 than the bullet.
 """
 [...]

1. This is an ordered list item.
2. This is another ordered list item.
3. This is a third list item. Note that the

paragraph may be indented more than
the bullet.

List items can contain more than one paragraph; and they can also contain sublists, literal blocks, and doctest
blocks. All of the blocks contained by a list item must all have equal indentation, and that indentation must be
greater than or equal to the indentation of the list item's bullet. If the first contained block is a paragraph, it may
appear on the same line as the bullet, separated from the bullet by one or more spaces, as shown in the previous
example. All other block types must follow on separate lines.

Every list must be separated from surrounding blocks by indentation:

Docstring Input Rendered Output

def example():
 """
 This is a paragraph.
 1. This is a list item.
 2. This a second list
 item.
 - This is a sublist
 """
 [...]

This is a paragraph.

1. This is a list item.
2. This is a second list item.

This is a sublist.

Note that sublists must be separated from the blocks in their parent list item by indentation. In particular, the
following docstring generates an error, since the sublist is not separated from the paragraph in its parent list item by

indentation:

Docstring Input Rendered Output

def example():
 """
 1. This is a list item. Its
 paragraph is indented 7 spaces.
 - This is a sublist. It is
 indented 7 spaces.
 """
 #[...]

L5: Error: Lists must be indented.

The following example illustrates how lists can be used:

Docstring Input Rendered Output

def example():
 """
 This is a paragraph.
 1. This is a list item.
 - This is a sublist.
 - The sublist contains two
 items.
 - The second item of the
 sublist has its own sublist.

 2. This list item contains two
 paragraphs and a doctest block.

 >>> print 'This is a doctest block'
 This is a doctest block

 This is the second paragraph.
 """
 #[...]

This is a paragraph.

1. This is a list item.

This is a sublist.
The sublist contains two items.

The second item of the sublist has
its own own sublist.

2. This list item contains two paragraphs and a
doctest block.

>>> print 'This is a doctest block'
This is a doctest block

This is the second paragraph.

Epytext will treat any line that begins with a bullet as a list item. If you want to include bullet-like text in a
paragraph, then you must either ensure that it is not at the beginning of the line, or use escaping to prevent epytext
from treating it as markup:

Docstring Input Rendered Output

def example():
 """
 This sentence ends with the number
 1. Epytext can't tell if the "1."
 is a bullet or part of the paragraph,
 so it generates an error.
 """
 #[...]

L4: Error: Lists must be indented.

def example():
 """
 This sentence ends with the number 1.

 This sentence ends with the number
 E{1}.
 """
 #[...]

This sentence ends with the number 1.

This sentence ends with the number 1.

Sections
A section consists of a heading followed by one or more child blocks.

The heading is a single underlined line of text. Top-level section headings are underlined with the '='
character; subsection headings are underlined with the '-' character; and subsubsection headings are
underlined with the '~' character. The length of the underline must exactly match the length of the heading.
The child blocks can be paragraphs, lists, literal blocks, doctest blocks, or sections. Each child must have

equal indentation, and that indentation must be greater than or equal to the heading's indentation.

The following example illustrates how sections can be used:

Docstring Input Rendered Output

def example():
 """
 This paragraph is not in any section.

 Section 1
 =========
 This is a paragraph in section 1.

 Section 1.1

 This is a paragraph in section 1.1.

 Section 2
 =========
 This is a paragraph in section 2.
 """
 #[...]

Section 1

This is a paragraph in section 1.

Section 1.1

This is a paragraph in section 1.1.

Section 2

This is a paragraph in section 2.

Literal Blocks
Literal blocks are used to represent "preformatted" text. Everything within a literal block should be displayed
exactly as it appears in plaintext. In particular:

Spaces and newlines are preserved.
Text is shown in a monospaced font.
Inline markup is not detected.

Literal blocks are introduced by paragraphs ending in the special sequence "::". Literal blocks end at the first line
whose indentation is equal to or less than that of the paragraph that introduces them. The following example shows
how literal blocks can be used:

Docstring Input Rendered Output

def example():
 """
 The following is a literal block::

 Literal /
 / Block

 This is a paragraph following the
 literal block.
 """
 #[...]

The following is a literal block:

Literal /
 / Block

This is a paragraph following the literal block.

Literal blocks are indented relative to the paragraphs that introduce them; for example, in the previous example, the
word "Literal" is displayed with four leading spaces, not eight. Also, note that the double colon ("::") that
introduces the literal block is rendered as a single colon.

Doctest Blocks
Doctest blocks contain examples consisting of Python expressions and their output. Doctest blocks can be used by
the doctest module to test the documented object. Doctest blocks begin with the special sequence ">>>". Doctest
blocks are delimited from surrounding blocks by blank lines. Doctest blocks may not contain blank lines. The
following example shows how doctest blocks can be used:

Docstring Input Rendered Output

def example():
 """
 The following is a doctest block:

 >>> print (1+3,

The following is a doctest block:

>>> print (1+3,
... 3+5)
(4, 8)
>>> 'a-b-c-d-e'.split('-')

 ... 3+5)
 (4, 8)
 >>> 'a-b-c-d-e'.split('-')
 ['a', 'b', 'c', 'd', 'e']

 This is a paragraph following the
 doctest block.
 """
 #[...]

['a', 'b', 'c', 'd', 'e']

This is a paragraph following the doctest block.

Fields
Fields are used to describe specific properties of a documented object. For example, fields can be used to define the
parameters and return value of a function; the instance variables of a class; and the author of a module. Each field is
marked by a field tag, which consist of an at sign ('@') followed by a field name, optionally followed by a space and
a field argument, followed by a colon (':'). For example, '@return:' and '@param x:' are field tags.

Fields can contain paragraphs, lists, literal blocks, and doctest blocks. All of the blocks contained by a field must all
have equal indentation, and that indentation must be greater than or equal to the indentation of the field's tag. If the
first contained block is a paragraph, it may appear on the same line as the field tag, separated from the field tag by
one or more spaces. All other block types must follow on separate lines.

Fields must be placed at the end of the docstring, after the description of the object. Fields may be included in any
order.

Fields do not need to be separated from other blocks by a blank line. Any line that begins with a field tag followed
by a space or newline is considered a field.

The following example illustrates how fields can be used:

Docstring Input Rendered Output

def example():
 """
 @param x: This is a description of
 the parameter x to a function.
 Note that the description is
 indented four spaces.
 @type x: This is a description of
 x's type.
 @return: This is a description of
 the function's return value.

 It contains two paragraphs.
 """
 #[...]

Parameters:
x - This is a description of the parameter x to
a function. Note that the description is
indented four spaces.

(type=This is a description of x's
type.)

Returns:
This is a description of the function's return
value.

It contains two paragraphs.

For a list of the fields that are supported by epydoc, see the epydoc fields chapter.

Inline Markup
Inline markup has the form 'x{...}', where x is a single capital letter that specifies how the text between the braces
should be rendered. Inline markup is recognized within paragraphs and section headings. It is not recognized within
literal and doctest blocks. Inline markup can contain multiple words, and can span multiple lines. Inline markup
may be nested.

A matching pair of curly braces is only interpreted as inline markup if the left brace is immediately preceeded by a
capital letter. So in most cases, you can use curly braces in your text without any form of escaping. However, you
do need to escape curly braces when:

1. You want to include a single (un-matched) curly brace.
2. You want to preceed a matched pair of curly braces with a capital letter.

Note that there is no valid Python expression where a pair of matched curly braces is immediately preceeded by a
capital letter (except within string literals). In particular, you never need to escape braces when writing Python
dictionaries. See also escaping.

Basic Inline Markup
Epytext defines four types of inline markup that specify how text should be displayed:

I{...}: Italicized text.
B{...}: Bold-faced text.
C{...}: Source code or a Python identifier.
M{...}: A mathematical expression.

By default, source code is rendered in a fixed width font; and mathematical expressions are rendered in italics. But
those defaults may be changed by modifying the CSS stylesheet. The following example illustrates how the four
basic markup types can be used:

Docstring Input Rendered Output

def example():
 """
 I{B{Inline markup} may be nested; and
 it may span} multiple lines.

 - I{Italicized text}
 - B{Bold-faced text}
 - C{Source code}
 - M{Math}

 Without the capital letter, matching
 braces are not interpreted as markup:
 C{my_dict={1:2, 3:4}}.
 """
 #[...]

Inline markup may be nested; and it may span
multiple lines.

Italicized text
Bold-faced text
Source code
Math: m*x+b

Without the capital letter, matching braces are
not interpreted as markup: my_dict={1:2,
3:4}.

URLs
The inline markup construct U{text<url>} is used to create links to external URLs and URIs. 'text' is the text that
should be displayed for the link, and 'url' is the target of the link. If you wish to use the URL as the text for the link,
you can simply write "U{url}". Whitespace within URL targets is ignored. In particular, URL targets may be split
over multiple lines. The following example illustrates how URLs can be used:

Docstring Input Rendered Output

def example():
 """
 - U{www.python.org}
 - U{http://www.python.org}
 - U{The epydoc homepage<http://
 epydoc.sourceforge.net>}
 - U{The B{Python} homepage
 <www.python.org>}
 - U{Edward Loper<mailto:edloper@
 gradient.cis.upenn.edu>}
 """
 #[...]

www.python.org
http://www.python.org
The epydoc homepage
The Python homepage
Edward Loper

Documentation Crossreference Links
The inline markup construct 'L{text<object>}' is used to create links to the documentation for other Python objects.
'text' is the text that should be displayed for the link, and 'object' is the name of the Python object that should be
linked to. If you wish to use the name of the Python object as the text for the link, you can simply write L{object}``.
Whitespace within object names is ignored. In particular, object names may be split over multiple lines. The
following example illustrates how documentation crossreference links can be used:

Docstring Input Rendered Output

def example():
 """
 - L{x_transform}
 - L{search<re.search>}
 - L{The I{x-transform} function

x_transform
search
The x-transform function

 <x_transform>}
 """
 #[...]

In order to find the object that corresponds to a given name, epydoc checks the following locations, in order:

1. If the link is made from a class or method docstring, then epydoc checks for a method, instance variable, or
class variable with the given name.

2. Next, epydoc looks for an object with the given name in the current module.
3. Epydoc then tries to import the given name as a module. If the current module is contained in a package, then

epydoc will also try importing the given name from all packages containing the current module.
4. Epydoc then tries to divide the given name into a module name and an object name, and to import the object

from the module. If the current module is contained in a package, then epydoc will also try importing the
module name from all packages containing the current module.

5. Finally, epydoc looks for a class name in any module with the given name. This is only returned if there is a
single class with such name.

If no object is found that corresponds with the given name, then epydoc issues a warning.

Indexed Terms
Epydoc automatically creates an index of term definitions for the API documentation. The inline markup construct
'X{...}' is used to mark terms for inclusion in the index. The term itself will be italicized; and a link will be created
from the index page to the location of the term in the text. The following example illustrates how index terms can be
used:

Docstring Input Rendered Output

def example():
 """
 An X{index term} is a term that
 should be included in the index.
 """
 #[...]

An index term is a term that should be included in
the index.

Index
index term example
x intercept x_intercept
y intercept x_intercept

Symbols
Symbols are used to insert special characters in your documentation. A symbol has the form 'S{code}', where code
is a symbol code that specifies what character should be produced. The following example illustrates how symbols
can be used to generate special characters:

Docstring Input Rendered Output

def example():
 """
 Symbols can be used in equations:

 - S{sum}S{alpha}/x S{<=} S{beta}

 S{<-} and S{larr} both give left
 arrows. Some other arrows are
 S{rarr}, S{uarr}, and S{darr}.
 """
 #[...]

Symbols can be used in equations:

∑ α/x ≤ β

← and ← both give left arrows. Some other arrows
are →, ↑, and ↓.

Although symbols can be quite useful, you should keep in mind that they can make it harder to read your docstring
in plaintext. In general, symbols should be used sparingly. For a complete list of the symbols that are currently
supported, see the reference documentation for epytext.SYMBOLS.

Escaping
Escaping is used to write text that would otherwise be interpreted as epytext markup. Epytext was carefully
constructed to minimize the need for this type of escaping; but sometimes, it is unavoidable. Escaped text has the
form 'E{code}', where code is an escape code that specifies what character should be produced. If the escape code is
a single character (other than '{' or '}'), then that character is produced. For example, to begin a paragraph with a

dash (which would normally signal a list item), write 'E{-}'. In addition, two special escape codes are defined:
'E{lb}' produces a left curly brace ('{'); and 'E{rb}' produces a right curly brace ('}'). The following example
illustrates how escaping can be used:

Docstring Input Rendered Output

def example():
 """
 This paragraph ends with two
 colons, but does not introduce
 a literal blockE{:}E{:}

 E{-} This is not a list item.

 Escapes can be used to write
 unmatched curly braces:
 E{rb}E{lb}
 """
 #[...]

This paragraph ends with two colons, but does not
introduce a literal block::

- This is not a list item.

Escapes can be used to write unmatched curly
braces: }{

Graphs
The inline markup construct 'G{graphtype args...}' is used to insert automatically generated graphs. The following
graphs generation constructions are currently defines:

Markup Description
G{classtree classes...} Display a class hierarchy for the given class or

classes (including all superclasses & subclasses). If
no class is specified, and the directive is used in a
class's docstring, then that class's class hierarchy
will be displayed.

G{packagetree modules...} Display a package hierarchy for the given module or
modules (including all subpackages and
submodules). If no module is specified, and the
directive is used in a module's docstring, then that
module's package hierarchy will be displayed.

G{importgraph modules...} Display an import graph for the given module or
modules. If no module is specified, and the directive
is used in a module's docstring, then that module's
import graph will be displayed.

G{callgraph functions...} Display a call graph for the given function or
functions. If no function is specified, and the
directive is used in a function's docstring, then that
function's call graph will be displayed.

Characters
Valid Characters
Valid characters for an epytext docstring are space (\040); newline (\012); and any letter, digit, or punctuation, as
defined by the current locale. Control characters (\000-\010` and ``\013-\037) are not valid content characters.
Tabs (\011) are expanded to spaces, using the same algorithm used by the Python parser. Carridge-return/newline
pairs (\015\012) are converted to newlines.

Content Characters
Characters in a docstring that are not involved in markup are called content characters. Content characters are
always displayed as-is. In particular, HTML codes are not passed through. For example, consider the following
example:

Docstring Input Rendered Output

def example():
 """
 test

test

 """
 #[...]

The docstring is rendered as test, and not as the word "test" in bold face.

Spaces and Newlines
In general, spaces and newlines within docstrings are treated as soft spaces. In other words, sequences of spaces and
newlines (that do not contain a blank line) are rendered as a single space, and words may wrapped at spaces.
However, within literal blocks and doctest blocks, spaces and newlines are preserved, and no word-wrapping
occurs; and within URL targets and documentation link targets, whitespace is ignored.

Home Installing Epydoc Using Epydoc Epytext

Python Docstrings
Python documentation strings (or docstrings) provide a convenient way of
associating documentation with Python modules, functions, classes, and methods.
An object's docsting is defined by including a string constant as the first statement
in the object's definition. For example, the following function defines a docstring:

def x_intercept(m, b):
 """
 Return the x intercept of the line y=m*x+b. The x intercept of a
 line is the point at which it crosses the x axis (y=0).
 """
 return -b/m

Docstrings can be accessed from the interpreter and from Python programs using
the "__doc__" attribute:

>>> print x_intercept.__doc__
 Return the x intercept of the line y=m*x+b. The x intercept of a
 line is the point at which it crosses the x axis (y=0).

The pydoc module, which became part of the standard library in Python 2.1, can be
used to display information about a Python object, including its docstring:

>>> from pydoc import help

>>> help(x_intercept)
Help on function x_intercept in module __main__:

x_intercept(m, b)
 Return the x intercept of the line y=m*x+b. The x intercept of a
 line is the point at which it crosses the x axis (y=0).

For more information about Python docstrings, see the Python Tutorial or the
O'Reilly Network article Python Documentation Tips and Tricks.

Variable docstrings
Python don't support directly docstrings on variables: there is no attribute that can
be attached to variables and retrieved interactively like the __doc__ attribute on
modules, classes and functions.

While the language doesn't directly provides for them, Epydoc supports variable
docstrings: if a variable assignment statement is immediately followed by a bare
string literal, then that assignment is treated as a docstring for that variable. In
classes, variable assignments at the class definition level are considered class
variables; and assignments to instance variables in the constructor (__init__) are
considered instance variables:

class A:
 x = 22
 """Docstring for class variable A.x"""

 def __init__(self, a):
 self.y = a
 """Docstring for instance variable A.y

Variables may also be documented using comment docstrings. If a variable
assignment is immediately preceeded by a comment whose lines begin with the
special marker '#:', or is followed on the same line by such a comment, then it is
treated as a docstring for that variable:

#: docstring for x
x = 22
x = 22 #: docstring for x

Notice that variable docstrings are only available for documentation when the
source code is available for parsing: it is not possible to retrieve variable

Items visibility
Any Python object (modules, classes, functions, variables...) can be public or
private. Usually the object name decides the object visibility: objects whose name
starts with an underscore and doesn't end with an underscore are considered private.
All the other objects (including the "magic functions" such as __add__) are public.

For each module and class, Epydoc generates pages with both public and private
methods. A Javascript snippet allows you to toggle the visibility of private objects.

If a module wants to hide some of the objects it contains (either defined in the
module itself or imported from other modules), it can explicitly list the names if its
public names in the __all__ variable.

If a module defines the __all__ variable, Epydoc uses its content to decide if the
module objects are public or private.

Home Installing
Epydoc Using Epydoc Epytext

Scipy.org

NumPy
NumPy is the fundamental package for scientific computing with Python.
It contains among other things:

a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number
capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient
multi-dimensional container of generic data. Arbitrary data-types can be
defined. This allows NumPy to seamlessly and speedily integrate with a
wide variety of databases.

Numpy is licensed under the BSD license, enabling reuse with few
restrictions.

Getting Started

Getting Numpy
Installing the SciPy Stack
NumPy and SciPy documentation page
NumPy Tutorial
NumPy for MATLAB© Users
NumPy functions by category
NumPy Mailing List

More Information

NumPy Sourceforge Home Page
SciPy Home Page
Interfacing with compiled code
Older python array packages

About NumpyAbout Numpy

© Copyright 2013 Numpy developers. Created using Sphinx 1.1.3.

LicenseLicense

Old array packagesOld array packages

Exercise 1

Preisig, H A Chemical Engineering, NTNU

Topology :

A jacketed stirred tank – no mixing effects

Question

Suggest a very simple physical topology for a jacketed stirred tank.

Label all components of the graph.

M

Figure 1: A simple jacketed stirred tank reactor with an overflow

2014-01-06 page 1

Topology: Tank with external tubular heat exchanger

Question

Suggest a very simple physical topology for a stirred tank with a

heat exchanger in the form of half-pipes welded onto the surface.

Label all components of the graph.

M

Figure 2: A simple stirred tank reactor with a welded-on heat exchanger and an overflow

2012-09-12 page 2

Topology:

A jacketed stirred tank – with mixing effects

Question:

Suggest for a jacketed stirred tank reactor a topology that includes

some distribution effects in the jacket and a network mixing model

for the liquid contents.

M

Figure 3: A simple jacketed stirred tank reactor with an overflow

2014-01-07 page 3

Topology: A generic simple heat exchanger

Question

Suggest a very simple topology for a generic heat exchanger.

2014-01-07 page 4

Topology: A single-tube heat exchanger

Question

Suggest a topology that approximates the behaviour of a single-

tube heat exchanger by ”slicing” the tubes and thus generate a

chain of paired lumped systems.

Figure 4: A basic single-tube heat exchanger

2014-01-07 page 5

Topology: A simple distillation tray model

Question

Suggest a simple topology for a distillation tray.

2014-01-08 page 6

Toplogy: Butter in frying pan

Question

Suggest a topology that describes the bahiour of a piece of butter

melting in the pan.

Purpose: how long does it take to melt it.

2014-08-25 page 7

Regular Expression Search-and-
replace (TKP4106)

Zooball/Dove

"There is no reason anyone would want a computer in their home."

Ken Olsen, founder of DEC (1977)

Assignments

1. Read A Smalltalk about Modelling. The paper explains some of the
reasons why you should learn about computer languages in your natural
science study.

2. Install either Vim, Emacs, Smultron or TextPad on your computer. Change
the color preferences to light grey or pastel background, black text and low
brightness highlight colors. Never use a gleaming white background and
bright red, blue, green, etc. colors. The contrast will affect your eyes badly.
The reason is that you will at times be staring very intensively on the
screen for a long time to think hard about an algoritm or to find a bug. Now,
this work mode is very different from what you have experienced before
using e.g. word processors so you must learn to take care of your eyes!

3. Convert critical_data from XML (eXtensible Markup language) to CSV
(Comma Separated Variables) format. Often, it is safer to use semicolon
rather than comma as the field separator, especially if the fields
themselves contain commas (like many chemical component names do).
Or, you can enclose the field name in double quotes and still use comma
as the separator.

Note: There is a difference in line endings on Windows (carriage return +
newline), Mac (carriage return) and Unix (newline). In computer jargon
these characters are given ASCII codes 13 (CR) and 10 (NL) respectively.
Their regular expression equivalents are \r and \n. Modern editors are
aware this problem and you can change the newline character(s) to
whatever you like before saving the file. This will become important when
you are matching strings that span several lines in the file.
XML belongs to a world of its own, but we do not need to know
much about the language to solve this task. We only need to
identify the repetitive pattern that are used to store our

our data. The characteristic encoding of the XML-file is:

<?xml version="1.0" encoding="UTF-8"?>
<?doc id="" time="Wed Apr 23 21:51:57 CEST 2008" file="foobar"?>
<new class="Hash" length="464">
<hash class="String" value="ACETIC ANHYDRIDE"/>
<push class="Array" length="4">
<push class="DBpair" name="tc" value="569 K Reid77"/>
<push class="DBpair" name="pc" value="46.2 atm Reid77"/>
<push class="DBpair" name="vc" value="290 cc mol^{-1} Reid77"/>
<push class="DBpair" name="zc" value="0.287 Reid77"/>
</push>
<hash class="String" value="2,4-DIMETHYLHEXANE"/>
<push class="Array" length="4">
...
</new>

The output shall be on the form:

Name, Tc, Pc, Vc, Zc
, K, atm, cc mol^{-1},
"ACETIC ANHYDRIDE", 569, 46.2, 290, 0.287
...

4. Convert all files in Archive from their non-standard in-house format to CSV
format.
In programming, working with multiple source files is more like
a rule than an exception. For a couple of files I would probably
edit the changes by hand, but if the files grows in number to 5
or maybe 10 I would definitly look for a pattern to see if it is
possible to make simultaneous changes to all the files. The en-
coding of the data files does in this case follow a very simple
pattern:

DALEX76B
Alexandrov, A.A., Khasanahin, T.S., and Larkin, D.K.
Paper to the Working Group 1 of the IAPS, Kyoto, Japan, (1976).
T90(K) P(MPa) d(kg/m3)
96
423.114 55.568000 945.20639
423.114 40.152000 938.01591
...

The output shall be on the form:

T90, P, d
K, MPa, kg/m3
423.114, 55.568000, 945.20639
423.114, 40.152000, 938.01591
...

5. Make sure the output files can be opened without trouble in Excel or
OpenOffice.

Regular expressions belong to the simplest of all languages. An exerpt from
Wikipedia informs us that: "In computing, a regular expression, also referred to
as regex or regexp, provides a concise and flexible means for matching strings

of text, such as particular characters, words, or patterns of characters. A regular
expression is written in a formal language that can be interpreted by a regular
expression processor." Regular expressions are of widespread use for analyzing
text, defining programming language syntax and for generic search-and-replace
in editors. A very short overview of the basic commands is given below:

^ Start of a string
$ End of a string
. Any character (except \n)
* 0 or more of previous expression
+ 1 or more of previous expression
? 0 or 1 of previous expression

\w Matches any word character
\W Matches any non-word character
\s Matches any white-space character
\S Matches any non-white-space character
\d Matches any decimal digit
\D Matches any nondigit

[abc] Matches any single character included in the set
[^abc] Matches any single character not in the set
[a-z] Contiguous character ranges
(a|b) a or b
ab{2} Matches two b characters

(expr) Makes a backreference of whatever is matched.
 The backreference is made available as \1 or $1
 in many search-and-replace routines.

A few examples follow. The text string we want to analyze is: "Hello TKP4106!"

^.*$ Matches 'Hello TKP4106!'
^[a-zA-Z0-9 !]*$ Matches 'Hello TKP4106!'
^.*(o T).*$ Matches 'Hello TKP4106!' (\1=>'o T')
\w+ Matches 'Hello'
\s\w+ Matches ' TKP4106'
\d+ Matches '4106'
\W Matches ' '
\w*(\W+)\w*(\W+) Matches 'Hello TKP4106!' (\1=>' ' and \2=>'!')

You remember maybe the "burglar's language" from your childhood? It was a
simple translation of all consonants b, c, d, etc. into bob, coc, dod, etc. So,
"Python" would become "popytothohonon". This is hard for your tongue but it is
very easy to achieve with regular expressions:

Search for: ([^aeiouy\W])
Replace by: \1o\1

There are tons of regex documentation on the Web. This link to Regular

There are tons of regex documentation on the Web. This link to Regular
Expressions seems quite OK. Note, however, that there are many flavors of
regular expressions and that the syntax can (will) differ when you switch
between two different editors, operating systems or programming languages.

A Smalltalk† about modelling

Tore Haug-Warberg
Department of Chemical Engineering

NTNU (Norway)

5 June 2009

1 Background

Humanity is deeply rooted in the Enlightenment and the contemporary search for a ra-
tional description of Nature. Man is the only animal on planet Earth that systematically
investigate, interprete, and employ the basic laws of nature to his own benefit. It is not
too much to say that the understanding of the laws of nature has paved our road to
technological success, and to proliferation beyond our own control. But, notwithstand-
ing the tremendous success we have had with our technology there is always room for a
better understanding of natural phenomena and in particular those of complex nature.

We tend to think that a complex system must be technically intricate as well. That
is wrong. For example: Life at the kitchen sink is quite simple (technically), but at the
same time so complex (mathematically) that it is possible to enjoy a full academic career
trying to explain all the physical phenomena that are observed: Drop formation, water
twirls, shock fronts, bubble coalescence, foams, vortices, etc. This daily experience,
which we rarely appreciate, is quite contrary to the situation in the laboratory. There,
we try to eliminate all random factors in order to understand one particular phenomenon.
The outcome of the study can be a measured value of some kind, or the input to a refined
model of the phenomenom being studied. Actually, the old saying “seeing is believing”
is for us akin to “observing is explaining”. Every observable physical phenomenon must
find a rational explanation. There is no easy escape from this dilemma because we believe
so hard in our present understanding of the physics. But, there are unsurmountable
problems in explaining all the nitty-gritty details of Nature. We pretend, therefore, that
our models are too simple still.

Collecting many small pieces of information make us able to understand and model
parts of the world around us. At this point the use of computers has strengthen our capa-
bilities of formulating and solving complex physico-mathematical models for a diversed
set of industrial operations like fluid transport, chemical reaction, separation, casting,
electrolysis, extrusion and rolling. The continuum description of a full-sized control vol-
ume with stress–strain interactions and complicated geometry may now be formulated

†Smalltalk is a purely object-oriented programming language invented in the 1980s. It has later
inspired the development of Ruby—a modern scripting language of the same breed as Perl and Python.

1

and solved as systems of equations with millions of unknowns. Weather forecasting is
maybe the ultimate example.

2 Computer science

Modelling does also depend on numerical issues like rounding error, computation speed,
memory capacity and discretization schemes. Focus is thereby lifted from the under-
standing of the laws of nature to the understanding of numerics and computer lan-
guages. Most important maybe, is the observation that a physical model can be refined
indefinitly without coming to a full answer of “life, universe and everything”. All models
have to give in at some point of refinement. This has to do with the granularity of the
model. The calculation of fluid flow, for instance, does normally ignore the propagation
of sound waves. So, if sound waves are important, the model will fail. It does not matter
how many parameters we introduce, or how clever we are tweaking the numbers. It does
simply fail. We say that the model must be validated against experiments to be trusted.
Another unfortunate situation occurs when the model gives consistently wrong results.
Changing the direction of gravity for instance would cause a stone to fall upwards. Apart
from this flaw all the derived results could be correct. There is no way a computer can
understand or check this out without human interaction. The programmer must verify
that the equations are solved correctly. Our first statement about modelling is therefore:

Validation: The model is made right (experiment decides)

Verification: The right model is made (programmer decides)

The secret is to make sure that the model has the right granularity with respect to what
it is supposed to do, and to choose an implementation that makes the best out of the
time available and the human resources. The old rule of thumb that one line of code is
equivalent to one working hour is still valid. For bigger projects devoted to advanced
modelling this number may easily drop to two lines per day. It is impossible to give a
totally satisfactory implementation guide to all kinds of physical problems, but it pays to
keep a close eye at the physics (mostly conservation laws), the solution methods, and the
program structure. Ideally, a physico-mathematical model consists of four main parts:

1. A deterministic∗ function (the model)

2. Model parameters (perhaps quite many and ill-organized)

3. A numerical solver (normally linearized)

4. Calculated results (vector fields or matrices maybe)

Considering these four parts of the model from the very beginning will inevitably limit
the modelling task to comply with the available human resources. But even the best

∗Quantum mechanics makes an interesting case in physical modelling since it is not strictly deter-
ministic.

2

modelling practise gives no clue about how the model is going to be used. Should it be
a stand-alone tool or made part of a program library? Is it required to make a compiled
program or will an interpreted script do? In higher education it would be very beneficial
if the joint modelling efforts from all the math and science classes were put into a small
toolbox that the students could bring out from university into their future jobs. The
current situation is nearly the opposite and that is not prosperous for academia. To
shed some light on this topic I shall like to present a somewhat personal view on the
links between programming languages, modelling and model uses:

Languages |= Mathematics |= Physics

|= Modelling |= Simulation

|= Animation |= GUI

The binary operator |= means a dependency—in the sense that Mathematics rely on
a (formal) Language, Physics rely on Mathematics, Modelling rely on Physics, etc. In
the late medievial period European universities taught natural languages (Greek and
Latin mostly), medicine, theology and astronomy. About 300 years ago mathematics
and physics entered the scene as subjects of their own, while modelling and simulation
were not commonplace till after WWII. These subjects were quite early moved out of
the university, however, and safely placed in governmental research institutes, mostly
connected to defense and aero-space industries. Animation belongs to the computer
science era, and Graphical User Interfaces (GUI) had basically to await the introduction
of the Windows 3.1 operating system in the late 1980s.

3 Natural sciences

As a consequence of our expanding knowlegde it becomes increasingly harder to give
priority to one particular subject on the cost of the others. Like Figure 1 says: What
is the most important subject to teach first? Languages or GUI? Not an easy question
because mathematics is a language of its own and a textbook is a kind of a graphical
user interface. Or, perhaps the subjects should be taught in parallell? There are no
definit answers to these questions, yet we must choose what to teach, when to teach and
how to teach it. It is interesting to note that our education system which started out
teaching natural languages several hundreds of years ago has by now ended up as a big
consumer of formal language procedures and computer programs.

Classic knowledge has in a way been replaced by synthetic know-how. Just think
about the use of Internet as a platform for collecting and retrieving information. The
funny thing is that this change has not been taken into account in the natural science
curriculums we see today. Retrospectively, the computer was born in a top secret physics
lab but quickly moved out to become an everyday entertainment machine. It shall be
our challenge to bring it back into scientific teaching as a mind extender—not a mind
boggler. In order to do this we need to understand the buzzwords mentioned above, and
we need to make a choice about where we should put our efforts. The worst scenario is
doing a little of everything which easily ends up in nothing.

3

Languages

GUI

L
an

gu
ag
es G

U
I

Languages

GUI

Figure 1: What is the most important subject to teach first? Languages or GUI? Or,
perhaps the subjects should be taught in parallell?

Let it be my bold statement that the university must focus on the teaching of formal
Languages, Mathematics and Physics. This is a very conservative approach, but on top
of this we should introduce Modelling as a separate issue from day one at the university.
This does not mean that the students shall run commercial software with advanced
graphical interfaces. It means, however, that the computer (language) development has
come to a point where it is possible to solve (non-linear) physical problems at a pace
that was unimaginable 15 years ago. So, rather than talking about models—not to say
model simplifications—we can teach the students how to model. Our focus can thereby
be shifted from mathematical details† to physical insight.

At the same time it is important to make a sharp distinction between modelling and
simulation. Modelling is the mathematical description of a physical event into a formal
language, while simulation is the systematic use of models to study a complete process.
Simulation is great for validation purposes and for our understanding of complex systems,
but it should definitly be kept out of the classroom because it does not bring in any new
understanding of the basics. The control people may disagree with me here, but I am
talking about basics in the sense of physics—not about systems behaviour.

The situation is a somewhat different when it comes to Animation and GUI since
these subjects are touched upon already in the elementary school. Moreover, the World
Wide Web is a gigantic software enterprice which impossibly can be kept out of the
classroom. It is also true that the Ministries of Education worldwide think these topics
are especially important, maybe because “seeing is believing”. I believe these simplistic
thoughts are harmful, however, because only a small fraction of the resources spent on
developing computer games, movies, music and entertainment find its way back to where
it all started; namely increasing the knowlegde of the world around us. E.g. the Avatar
(2009) movie, which by all means was a trendsetter, is a good example on how reality and
fiction can be seamlessly merged using a good deal of computing power. But, however
breathtaking the movie is, it does not increase our understanding of the world around
us.

It is also a common misconception that kids in general get very excited, and want to
learn science, by simply watching animations and simulations on the computer screen.

†The mathematicians do not need to worry. There is plenty of room for a thorough mathematical
underpinning in all physical disciplines.

4

This is simply not true as virtually all students today have watched animated TV pro-
grams and fabulous action movies since they were 3 years old. The professors are enthu-
siastic, but the students think it is downright boring. However, it is our duty to teach
the students natural sciences, and even though it is sad to watch how the universities
in Norway are lacking a good strategy on how to cope with this undertaking—now that
we definitly have entered the computer age, we must do something. In my opinion this
something should be a mix of traditional mathematics, physics and chemistry, inter-
sparsed with modelling as a tool for learning. The second statement about modelling
(and computer science in natural science education) is therefore that we should limit our
focus to:

Languages |= Mathematics |= Physics |= Modelling

It is necessary to put some emphasis on the learning of formal languages to understand
what can be done on a computer, not only how it can be done. The common double–
clicking–machine is good for everyday surfing on the web and manipulating song lists,
but it has nothing to do with scientific computing. The situation today is that all
students are trained in their mother tongue, and in one or two foreign languages. This
is very good but it is worth a second thought that they are not equally well trained in
speaking any of the computer languages. Quite interestingly though, since they may
easily spend 3–8 hours behind the screen every day. Some people would claim that
there are more than 5000 computer languages today and that the students cannot learn
everything, but formal languages are quite simplistic and follow the same basic ideas:
Alphabet, vocabulary, syntax and semantics. The crucial point is that the students must
learn how to express their thoughts (model = structure + physics + math) in at least
one such language. To ignore this focus is like traveling to a foreign country without
knowing the local lingo: You will be nothing but a tourist. In my opinion students of
natural sciences at NTNU should definitly not be computer tourists. They should know
how to master their new frontier.

5

5.3.2 Regular Expressions, see also Sec. 5.1.8

First reference occurs in Regex (Stephen Ramsay), see Section 5.1.8 on page 71.

132

Exercise 2

Preisig, H A Chemical Engineering, NTNU

1 Physical topology 2

1.1 How to do it

Suggest for all the below-defined processes an abstraction showing

• Lumped capacities (storage) of extensive conserved quantities (component mass,
mass, energy, momentum) as circles. These are capacities where the intensive prop-
erties are assumed constant over the whole spatial domain they occupy. Lumps for
which a steady-state assumption is made, that is one assumes the lump to be of
negligible capacity, a line is used instead of the circle. Latter assumption is often
called a pseudo-steady state assumption. It is a time-scale assumption!

• Connections

– mass connection with straight lines

– heat connections as wiggled lines

– work connections as dashed lines

Show more than one possible abstraction (physical topology) when ever you can and argue
why you do it as you do, thus give the assumptions that underlay your topology.

1.2 The different plants

• Kettle, a hot water heater you may have in your kitchen. The kettle is of the type
with the heating plate on the bottom.
Purpose: switching it off when water is boiling.

• Transporting fruit in containers is a non-trivial problem as the fruit must breathe
and ripens or rots, thus undergoes chemical changes, which are associated with
a thermal effect. Latter can be quite significant. Think about a hay stack, for
example.
Purpose: Dynamics of the changes in the fruit’s quality.

• Hot glass of water.
Purpose 1: Dynamics of cooling down.
Purpose 2: Loosing mass.

• Hot glass of water covered with a lid.
Purpose as above.

• Piece of butter melting in the pan.
Purpose: how long does it take to melt it.

2012-09-12 page 1

1 Suggested solution

The solutions given below are sample solutions. Such modelling does not have a unique
answer, thus the given topologies are possible variations of the theme.

1.1 Kettle

The process is shown in the figure below and so is a possible abstraction.

lid
handle

temp sensor

steam phase

liquid phase

plate heater

steam outlet

outlet

This abstraction assumes that

• The contents of the tank consists of two phases

• Each ideally mixed

• The jacket is ideally mixed

• The heat transfer is uniform

• The heater has a significant capacity

• The wall has an insignificant effect on the dynamics

• No heat losses to the environment

• No capacity effects of the construction

• Two gas streams are essential, the one that escapes through the top directly into
the room and the other which is pushed passed the temperature sensor. The latter
usually being quite small.

• The conditions in the room do not change with time.

2012-09-12 page 1

A possible abstraction could look something like this:

LH

G

S

E

R

C

Here E:: energy reservoir, R:: room, H:: heater, L:: liquid, G:: gas, steam, S:: sensor, C::
controller.

1.2 Fruit Container

The container is equipped with an air-conditioning unit, which adjusts the conditions in
the container. The solids, here the fruit is loosely packet into the container.

air conditioning
container

This abstraction assumes that

• The dynamics of the air conditioning is neglected in fact it is modelled as a reservoir
of conditioned air.

• The air space is split into two parts:

– a volume which is exchanged fast, the part which has little resistance between
the air inlet and the outlet.

2012-09-12 page 2

– a volume for the air of the free room between the solids.

• The solids as one big lump together, thus all behave the same.

• Each of these lumps is well mixed

• The fruit exchanges heat and mass

• The container exchanges heat with the environment

• Air is ejected into the environment

A T E F

O

Here A :: air conditioning unit (idealised), O :: outside, T :: fast-reacting air space of the
container, E :: Air in the immediate environment of the fruit, F :: fruit, lumped together
as a single phase or system, thus all are assumed to behave the same.

1.3 Water glass

This is a seemingly simple system. If we are interested in how it is cooling down, we look
into a shorter time scale then when we are interested in evaporation being the only way
it can loose mass.

The process is:

The topology capturing the cooling-down process may be:

2012-09-12 page 3

C W

A

R

With R :: the room, C :: the container’s material, here probably glass, W :: the water
body, assumed to be uniform in all intensive properties, A :: the air above the water in
the glass, also assumed to be uniform.

Obviously this is a simple representation of the process. Improvements can be made,
in terms of adding descriptive power. This can for example be that one views the air
above the water as a one-dimensional distributed air body and the heat and mass flow as
diffusion processes.

Another meaningful extension could be to model the heat loss to the support surface of
the glass. This can make a lot of sense if it is heated or cooled, purposely or not.

Changing the time scale and looking at the evaporation process, the exchanged heat is
probably not making a whole of a lot of difference, except than that the initial evaporation
rate is higher if one does not model the heat losses through conduction.

1.4 Water glass with lid

Adding a lid inhibits the convective mass transfer and thus the energy loss through this
mechanism. the heat loss is now mainly driven by condensing the steam on the lid, which
then flows, drips back into the water. Thus we have now two mass streams in and out of
the air space above the water and we have a heat stream from the condensation to the lid
inside the glass. Outside, the heat is lost through conduction into the surrounding air.
This latter process is by no means simple. Increasing the air flow around the glass will
affect the rate of energy transfer from the glass’ surface to the passing-by air. The heat
conduction stream shown from the water to the air space above is probably insignificant
compared to the convective streams as long as the water is hot. Later it may become the
main exchange.

2012-09-12 page 4

C W

A

R

L D

1.5 Frying pan

The pan is on a hot plate. It has a thick metal bottom, and a piece of butter in it. The
butter will form a film as it melts.

B

M

F

PHE

E :: electricity reservoir, H :: heater, hot plate, P :: bottom of the pan, F :: liquid butter
film between pan and solid butter, M :: molten butter not under the solid butter.

As the butter is melting, it forms a film and thus gets separated from the pan’s bottom.
The melted butter flows out into a body of liquid butter that is also heated by the pan
and since the butter is in this melt, it will likely also get some heat from the molten butter
again.

2012-09-12 page 5

Documenting your Code (TKP4106)

Zooball/Chicken

"Real Programmers write programs, not documentation."

The real programmer

Assignments

1. Instal Python v2.7.x on your computer. You are going to run Python from the
terminal also called the command window (we don't use IDE's — do we?). I
suggest you change the color preferences of your terminal to black screen and
amber or green text. This sounds like an echo from the old days of
monochrome displays, but it stands the test even today. The terminal is for
punching in cryptic commands and have maybe thousands of lines of output
pour over your screen. It is mainly for your information, not for producing
readable code. A black screen is more relaxing to the eye than a bright
screen.

2. Instal epydoc on your computer.
3. a. Download the Python stub program atoms.py.

b. Run epydoc on the stub file. Use stylesheet TKP4106.css. The syntax is
explained further down the page.

c. Learn how epydoc uses epytext for rendering its output.
d. Publish the HTML output from epydoc on your home page.

4. Download the Python scripts morse.py and antimorse.py for translating back
and forth between the Latin and Morse alphabets. Learn how you can run
these scripts in the terminal window. Study Python strings in general and
method calls like sys.stdin, re.sub and keywords like import, if-elif-
else and print in particular.

The source code documentation can be made at two levels. The traditional
approach is to write lucid comments directly in the code — either above a block of
code of major significance, say an if-else test or a for loop — or in-line to the
right of each code statement. The block comment is easier to format and can be
shaped into a paragraph of its own, while the in-line comment has the nicety that it
vanishes if the statement should ever be deleted (a comment which is out of sync
with the source code is incredibly misleading). I tend to use both comment styles in
my programming of small stand-alone scripts like the Matlab script shown below.

Note that all the comments have flush right margin. This helps the reading a lot.
Especially if the you have a context sensitive editor which is almost certainly the
case.

%Simplex algorithm applied to solve a limited LP-problem. The sy-
%ntax is [x,b,A,it] = LP(x,b,A,c). The starting point is a mini-
%mization problem on the form
%
% min(c'*y_{k+1})
% A*y_{k+1} = A*y_{k}
% y_{k+1}>= 0
% where:
% y(b) = x (basis variables)
% y(f) = 0 (free variables)
%
% x = solution vector (basis variables) [m x 1]
% b = column indices of basis variables in A [m x 1]
% A = coefficient matrix where rank(A) = m >1 . [m x n]
% c = cost vector [n x 1]
% it = number of iterations spent in this function
%
%Copyright Tore Haug-Warberg 2008 (course TKP4175, KP8108, NTNU)
%
 function [x,b,A,it] = LP(x,b,A,c)
%
 f = 1:length(c); % temporary list of all variable indices
 f(b) = []; . % remove basis variables =>free variables
%
 for it=1:prod(size(A)) % restricted no of iterations for simplex
 dldx = c(f)' - c(b)'*A(:,f); % derivatives of d(c'*x)/dx(f)
 if all(dldx>=0) % all derivatives are non-negative
 return % converged, further progress impossible
 else % there is at least one negative derivative
 i = find(dldx<0); % consider negative derivatives only
 B = repmat(x,1,length(i)); % repeated right hand side
 H = A(:,f(i))./(B+eps); % resiprocal limiting factors
 if all(max(H)<=0) % entire column is zero or unbounded prob
 error('Unbounded problem') % no solution to this problem
 else % there is at least one regularly bounded free variable
 j = find(max(H)>0); % find new basis candidate
 [tmp,k] = max(dldx(i(j))); % most promising basis variable
 [tmp,l] = max(H(:,j(k))); % corresponding row index in A
 fpiv = i(j(k)); % f-index of new basis variable
 bpiv = find(A(l,b)==1); % b-index of old basis variable
 tmp = b(bpiv); % temporary storage
 b(bpiv) = f(fpiv); % replace old basis var with new one
 f(fpiv) = tmp; % replace old free variable with new one
 x = A(:,b)\x; % calculate new basis solution
 A = A(:,b)\A; % calculate new coefficient matrix
 end
 end
 end
 error(['Not converged in ',num2str(prod(size(A))),' iterations'])

The second approach is to use some kind of lightweight formatting, called mark-up.
This makes it possible to produce stand-alone documentation without intervening
the code itself. This approach is suitable for larger projects but it requires a bit of
metaprogramming, i.e. there is "coding in the coding". It is important, therefore, that

the mark-up stays out of the way without cluttering the code. This is the
documentation form used in many programming languages today and tools like e.g.
Doxygen makes it possible to churn out PDF and HTML documentation from many
different sources of code written in C, C++, Fortran, Ruby, Python, etc. A simpler
tool that goes with Python is epydoc. It builds on epytext, a kind of docstring
format. An example is shown below. The code is admittedly polluted by artifacts like
@summary, @author and other so-called metacommands, but the benefit of doing
this extra formatting more than outweights the drawback. From running the source
code through epydoc

$ epydoc -v --css=TKP4106.css --parse-only atoms.py

an HTML Epydoc output file is generated. Realize how the documentation looks
quite the same independent of the programmer's personal coding style.

"""
@summary: Chemical formula parsing suite. Bla-bla.
@author: Tore Haug-Warberg
@organization: Department of Chemical Engineering, NTNU, Norway
@contact: haugwarb@nt.ntnu.no
@license: GPLv3
@requires: Python 2.3.5 or higher
@since: 2011.06.30 (THW)
@version: 0.9
@todo 1.0: Bla-bla.
@change: started (2011.06.30)
@change: continued (2011.07.12)
@note: Bla-bla.
"""

import re

def atoms(formula, debug=False, stack=[{}], \
 atom=r'([A-Z][a-z]?)(\d+)?', ldel=r'\(', rdel=r'\)(\d+)?'):

 """
 The 'atoms' parser takes a chemical formula on standard form - something
 like 'COOH(C(CH3)2)3CH3' - and breaks it into a dictionary of recognized
 atoms and their respective occurences {'C': 11, 'H': 22, 'O': 2}. The
 parsing is performed left-to-right in a recursive manner which means it
 can handle nested parentheses.

 @param formula: a chemical formula 'COOH(C(CH3)2)3CH3'
 @param debug: True or False flag
 @param stack: an initial list of dictionaries
 @param atom: string equivalent of RE matching atom name including an
 optional number 'He', 'N2', 'H3', etc.
 @param ldel: string equivalent of RE matching the left delimiter '('
 @param rdel: string equivalent of RE matching the right delimiter in-
 cluding an optional number ')', ')3', etc.

 @type formula: aString
 @type debug: aBoolean
 @type stack: aList
 @type atom: aRE on raw string format
 @type ldel: aRE on raw string format
 @type rdel: aRE on raw string format

 @return: aDictionary e.g. {'C': 11, 'H': 22, 'O': 2}
 """

The secret of documentation lies in documenting your code from day one. Always
make ready for documentation. Never wait. It will be too late before you know. In
your future job you will be constantly assigned new tasks, which of course are more
important than the one you are doing at the moment. By adopting a suitable
documentation style you will always be able to return to your programs after a
shorter or longer break. Without such a standard you will be lost. As a spin-off you
can also produce documents that are valuable to your colleagues. It does not
matter how clever you are in programming if things only work on your
desktop!

5.5.1 The real programmer, see also Sec. 2.1

First reference occurs in Real Programmers use FORTRAN, see Section 2.1 on page 10.

143

5.5.2 epydoc, see also Sec. 5.1.19

First reference occurs in Epydoc (sourceforge), see Section 5.1.19 on page 101.

144

5.5.3 Verbatim: “atoms.py”

1 """
2 @summary: Chemical formula parser. <pass: your description>
3 @author: <pass: your name>
4 @organization: Department of Chemical Engineering, NTNU, Norway
5 @contact: <pass: your address>
6 @license: <pass: GPLv3 or whatever>
7 @requires: Python <pass: x.y.z> or higher
8 @since: <pass: yyyy.mm.dd> (<pass: your initials>)
9 @version: <pass: x.y.z>

10 @todo 1.0: <pass: bla-bla>
11 @change: started (<pass: yyyy.mm.dd>)
12 @change: <pass: last change description> (<pass: yyyy.mm.dd>)
13 @note: <pass: bla-bla>
14 """
15

16 def atoms(formula, debug=False, stack=[], delim=0, \
17 atom=r’<pass>’, ldel=r’<pass>’, rdel=r’<pass>’):
18 """
19 The ’atoms’ parser <pass: your description>.
20

21 @param formula: a chemical formula ’COOH(C(CH3)2)3CH3’
22 @param debug: True or False flag
23 @param stack: list of dictionaries { ’atom name’: int, ... }
24 @param delim: number of left-delimiters that have been opened and not yet
25 closed.
26 @param atom: string equivalent of RE matching atom name including an
27 optional number ’He’, ’N2’, ’H3’, etc.
28 @param ldel: string equivalent of RE matching the left-delimiter ’(’
29 @param rdel: string equivalent of RE matching the right-delimiter
30 including an optional number ’)’, ’)3’, etc.
31

32 @type formula: <pass>
33 @type debug: aBoolean
34 @type stack: <pass>
35 @type delim: <pass>
36 @type atom: aRE on raw string format
37 @type ldel: <pass>
38 @type rdel: <pass>
39

40 @return: aList [aDictionary, aDictionary, ...]
41 e.g. [{’C’: 11, ’H’: 22, ’O’: 2}]
42 """
43

44 import re
45

46 # Empty strings do always pose problems. Test explicitly.
47 pass
48

49 # Initialize the dictionary stack. Can’t be done in the function header be-
50 # cause Python initializes only once. Subsequent calls to this function will
51 # then increment the same dictionary rather than making a new one.
52 stack = stack or [{}]
53

54 # Python has no switch - case construct. Match all possibilities first and
55 # test afterwards:
56 re_atom = pass
57 re_ldel = pass
58 re_rdel = pass
59

60 # Atom followed by an optional number (default is 1).
61 if re_atom:
62 tail = formula[len(re_atom.group()):]
63 head = pass
64 num = pass
65

66 if stack[-1].get(head, True): # verbose testing of Hash key
67 pass # increment occurence
68 else:
69 pass # initialization

145

70

71 if debug: print [head, num, tail]
72

73 # Left-delimiter.
74 elif re_ldel:
75 tail = pass
76 delim += pass
77

78 stack.append({}) # will be popped from stack by next right-delimiter
79

80 if debug: print [’left-delimiter’, tail]
81

82 # Right-delimiter followed by an optional number (default is 1).
83 elif re_rdel:
84 tail = pass
85 num = pass
86 delim -= pass
87

88 if delim < 0:
89 raise SyntaxError("un-matched right parenthesis in ’%s’"%(formula,))
90

91 for (k, v) in stack.pop().iteritems():
92 stack[-1][k] = pass
93

94 if debug: print [’right-delimiter’, num, tail]
95

96 # Wrong syntax.
97 else:
98 raise SyntaxError("’%s’ does not match any regex"%(formula,))
99

100 # The formula has not been consumed yet. Continue recursive parsing.
101 if len(tail) > pass
102 atoms(pass, pass, pass, pass, pass, pass, pass)
103 return stack
104

105 # Nothing left to parse. Stop recursion.
106 else:
107 if delim > 0:
108 raise SyntaxError("un-matched left parenthesis in ’%s’"%(formula,))
109 if debug: print stack[-1]
110 return stack

146

5.5.4 epytext, see also Sec. 5.1.20

First reference occurs in Epytext markup (sourceforge), see Section 5.1.20 on page 102.

147

5.5.5 docstring, see also Sec. 5.1.21

First reference occurs in Python Docstrings (Sourceforge), see Section 5.1.21 on page 112.

148

 Home Trees Indices Help
Module atoms_stub [hide private]

[frames] | no frames]

Module atoms_stub

Author: <pass: your name>

Organization: Department of Chemical Engineering, NTNU, Norway

Contact: <pass: your address>

License: <pass: GPLv3 or whatever>

Requires: Python <pass: x.y.z> or higher

Since: <pass: yyyy.mm.dd> (<pass: your initials>)

Version: <pass: x.y.z>

To Do (1.0): <pass: bla-bla>

Change Log:
started (<pass: yyyy.mm.dd>)
<pass: last change description> (<pass: yyyy.mm.dd>)

Note: <pass: bla-bla>

Functions [hide private]

 atoms(formula, debug=False, stack=[], delim=0, atom=r'<pass>',
ldel=r'<pass>', rdel=r'<pass>')
The 'atoms' parser <pass: your description>.

Function Details [hide private]

atoms(formula, debug=False, stack=[], delim=0, atom=r'<pass>',
ldel=r'<pass>', rdel=r'<pass>')

The 'atoms' parser <pass: your description>.

Parameters:
formula (<pass>) - a chemical formula 'COOH(C(CH3)2)3CH3'
debug (aBoolean) - True or False flag
stack (<pass>) - list of dictionaries { 'atom name': int, ... }
delim (<pass>) - number of left-delimiters that have been opened and
not yet closed.
atom (aRE on raw string format) - string equivalent of RE matching
atom name including an optional number 'He', 'N2', 'H3', etc.
ldel (<pass>) - string equivalent of RE matching the left-delimiter '('
rdel (<pass>) - string equivalent of RE matching the right-delimiter
including an optional number ')', ')3', etc.

Returns:
aList [aDictionary, aDictionary, ...] e.g. [{'C': 11, 'H': 22, 'O': 2}]

 Home Trees Indices Help
Generated by Epydoc 3.0.1 on Tue Jan 8 12:24:23 2013 http://epydoc.sourceforge.net

Exercise 3

Preisig, H A Chemical Engineering, NTNU

1 Question: Linear algebra 01

Refresh basic linear algebra

1.1 Problem Definition

Given the objects:

scalar a

column vector x :=




x1

x2
...

xn


 := [xi]i:=1,...,n

column vector b :=




1
2

−3




row vector xT :=
[
x1 x2 . . . xn

]

matrix A :=




a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m

...
... . . .

...
an,1 an,2 . . . an,m


 := [ai,j]i:=1,...,n ; j:=1,...,m

matrix B :=




b1,1 b1,2 . . . b1,p
b2,1 b2,2 . . . b2,p

...
... . . .

...
bo,1 bo,2 . . . bo,p


 := [bi,j]i:=1,...,o ; j:=1,...,p

matrix C :=




−1 0 2 −3 1.5
3 −2 4 1 2.5
2 1.5 −2 0 −3
0 1 3.5 −1.2 −4




matrix D :=




3 6 5 −5
4 −2 −1 7
5 3 4 1
3 −4 4 2
10 −2 2 1
3 −2 4 1




matrix E :=




e1,1 e1,2 e1,3 e1,4
e2,1 e2,2 e2,3 e2,4
e3,1 e3,2 e3,3 e3,4
e4,1 e4,2 e4,3 e4,4




2012-09-11 page 1

matrix F :=




1 2 3
3 0 4
2 1 5




matrix A1 :=




3 6 5
4 −2 −1
5 3 4




matrix A2 :=




2 2 3
4 −1 2

−6 −6 −9




matrix A3 :=




2 2 3
−6 −6 −9
4 −1 2




2012-09-11 page 2

1.2 What to do

Fill in the details of the operations indicating the conditions that apply for the dimensions
of the objects and what the dimensions are of the results.

dimensions dim a :=?

dimensions dimx :=?

dimensions dimA :=?

dimensions dimB :=?

dimensions dimC :=?

scalar ax :=?

transposition xT :=?

transposition AT :=?

sum A+B :=?

product AB :=?

product xT x :=?

product AT A :=?

product AB :=?

element (2,3) and (3,4) of product DC :=?

inverse E−1 :=?

inverse F−1 :=?

Solution for A1x = b x :=?

Solution for A2x = b x :=?

Solution for A3x = b x :=?

2 Programming: Matrix input

2.1 Objectives

Expand on your programming skills in particular on regular expressions

2.2 Assignment

Write a python program that takes the command line input, a string, and converts it into
an internal object, a list of lists.

The command line input, a string, is a definition of a vector or matrix, whereby we use
the syntax of MatLab. Your Python-internal representation is a list of lists which is also
the ouput.

• matrix delimiters are the two rectangular brackets, ([) and (])

2012-09-11 page 3

• column separators are either a comma (,) or a space

• row delimiters are either semicolon (;) or a new line

Show that your code works for the inputs:

• [1, 2, 3; 4, 5, 6]

• [1.0, 2.9 3; 4, 0.5E1, 6.0]

Gives a proper error message :

• if the dimension conditions are not met [1, 2; 3, 4, 5]

• if the notation is wrong: (1, 2; 3, 4)

2012-09-11 page 4

1 Suggested solution: Linear algebra 01

dim a := 1 , (1)

dimx := n , (2)

dimA := n×m, (3)

dimB := o× p , (4)

dimC := 4× 5 . (5)

ax := a




x1

x2
...

xn


 =




a x1

a x2
...

a xn


 (6)

The dimension of this result is n (or n× 1).

xT :=
[
x1 x2 . . . xn

]
(7)

The dimension of this result is n (or 1× n).

AT :=




a1,1 a2,1 . . . an,1
a1,2 a2,2 . . . an,2

...
... . . .

...
a1,m a2,m . . . an,m


 (8)

The dimension of this result is m× n.

2012-09-11 page 1

The condition necessary for calculating a sum of matrices is that the dimensions of both
matrices must be equal, therefore in this case: o = n and p = m.

A+B :=




a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m

...
... . . .

...
an,1 an,2 . . . an,m


 +




b1,1 b1,2 . . . b1,m
b2,1 b2,2 . . . b2,m

...
... . . .

...
bn,1 bn,2 . . . bn,m


 (9)

:=




a1,1 + b1,1 a1,2 + b1,2 . . . a1,m + b1,m
a2,1 + b2,1 a2,2 + b2,2 . . . a2,m + b2,m

...
... . . .

...
an,1 + bn,1 an,2 + bn,2 . . . an,m + bn,m


 (10)

The dimension of this result is n×m.
The condition necessary for calculating a product of matrices is that the column-dimension
of the first matrix equals the row-dimension of the second matrix, therefore in this case:
o = m.

AB :=




a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m

...
... . . .

...
an,1 an,2 . . . an,m







b1,1 b1,2 . . . b1,p
b2,1 b2,2 . . . b2,p

...
... . . .

...
bm,1 bm,2 . . . bm,p


 (11)

:=




a1,1b1,1 + a1,2b2,1 + . . .+ a1,mbm,1 . . . a1,1b1,p + a1,2b2,p + . . .+ a1,mbm,p

a2,1b1,1 + a2,2b2,1 + . . .+ a2,mbm,1 . . . a2,1b1,p + a2,2b2,p + . . .+ a2,mbm,p
... . . .

...
an,1b1,1 + an,2b2,1 + . . .+ an,mbm,1 . . . an,1b1,p + an,2b2,p + . . .+ an,mbm,p




(12)

The dimension of this result is n× p.
The condition necessary for making a product of matrices is also applied for this case,
because the column-dimension of the first is the row-dimension of the second: n.

xT x :=
[
x1 x2 . . . xn

]




x1

x2
...

xn


 (13)

:=
[
x2
1 + x2

2 + . . .+ x2
n

]
(14)

The dimension of this result is 1.

2012-09-11 page 2

The dimension of AT is m× n, therefore the necessary condition in this case is: m = n.

AT A :=




a1,1 a2,1 . . . an,1
a1,2 a2,2 . . . an,2

...
... . . .

...
a1,n a2,n . . . an,n







a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
... . . .

...
an,1 an,2 . . . an,n


 (15)

:=




a21,1 + a22,1 + . . .+ a2n,1 . . . a1,1a1,n + a2,1a2,n + . . .+ an,1an,n
a1,2a1,1 + a2,2a2,1 + . . .+ an,2an,1 . . . a1,2a1,n + a2,2a2,n + . . .+ an,2an,n

... . . .
...

a1,1a1,n + a2,1a2,n + . . .+ an,1an,n . . . a21,n + a22,n + . . .+ a2n,n




(16)

The dimension of this result is n× n.

The multiplication of matrices C and D is as below

DC :=




25 −9.5 2.5 3 24.5
−12 9.5 26.5 −22.4 −24
12 1 17.5 −13.2 −1
−7 16 −11 −15.4 −25.5
−12 8 11.5 −33.2 0
−1 11 −6.5 −12.2 −16.5




(17)

To get the inverse of a matrix the matrix has to be square and the determinand non-zero.
At least the former is the case. Therefore:

E−1 =
adj(E)

|E| , (18)

with
adj(E) = [rij]

T ,

and
rij := (−1)i+j det(E

ij
).

|E| = e1,1e2,2e3,3e4,4 − e1,1e2,2e3,4e4,3 − e1,1e3,2e2,3e4,4 − e1,1e3,2e2,4e4,3

+ e1,1e4,2e2,3e3,4 − e1,1e4,2e2,4e3,3 − e2,1e1,2e3,3e4,4

+ e2,1e1,2e3,4e4,3 + e2,1e3,2e1,3e4,4 − e2,1e3,2e1,4e4,3

− e2,1e4,2e1,3e3,4 + e2,1e4,2e1,4e3,3 + e3,1e1,2e2,3e4,4

− e3,1e1,2e2,4e4,3 − e3,1e2,2e1,3e4,4 + e3,1e2,2e1,4e4,3

+ e3,1e4,2e1,3e2,3 − e3,1e4,2e1,4e2,3 − e4,1e1,2e2,3e3,4

+ e4,1e1,2e2,4e3,3 + e4,1e2,2e1,3e3,4 − e4,1e2,2e1,4e3,3

− e4,1e3,2e1,3e2,4 + e4,1e3,2e1,4e2,3 (19)

2012-09-11 page 3

adj(E) =




∣∣∣∣∣∣

e2,2 e2,3 e2,4
e3,2 e3,3 e3,4
e4,2 e4,3 e4,4

∣∣∣∣∣∣

∣∣∣∣∣∣

e2,1 e2,3 e2,4
e3,1 e3,3 e3,4
e4,1 e4,3 e4,4

∣∣∣∣∣∣

∣∣∣∣∣∣

e2,1 e2,2 e2,4
e3,1 e3,2 e3,4
e4,1 e4,2 e4,4

∣∣∣∣∣∣

∣∣∣∣∣∣

e2,1 e2,2 e2,3
e3,1 e3,2 e3,3
e4,1 e4,2 e4,3

∣∣∣∣∣∣
∣∣∣∣∣∣

e1,2 e1,3 e1,4
e3,2 e3,3 e3,4
e4,2 e4,3 e4,4

∣∣∣∣∣∣

∣∣∣∣∣∣

e1,1 e1,3 e1,4
e3,1 e3,3 e3,4
e4,1 e4,3 e4,4

∣∣∣∣∣∣

∣∣∣∣∣∣

e1,1 e1,2 e1,4
e3,1 e3,2 e3,4
e4,1 e4,2 e4,4

∣∣∣∣∣∣

∣∣∣∣∣∣

e1,1 e1,2 e1,3
e3,1 e3,2 e3,3
e4,1 e4,2 e4,3

∣∣∣∣∣∣
∣∣∣∣∣∣

e1,2 e1,3 e1,4
e2,2 e2,3 e2,4
e4,2 e4,3 e4,4

∣∣∣∣∣∣

∣∣∣∣∣∣

e1,1 e1,3 e1,4
e2,1 e2,3 e2,4
e4,1 e4,3 e4,4

∣∣∣∣∣∣

∣∣∣∣∣∣

e1,1 e1,2 e1,4
e2,1 e2,2 e2,4
e4,1 e4,2 e4,4

∣∣∣∣∣∣

∣∣∣∣∣∣

e1,1 e1,2 e1,3
e2,1 e2,2 e2,3
e4,1 e4,2 e4,3

∣∣∣∣∣∣
∣∣∣∣∣∣

e1,2 e1,3 e1,4
e2,2 e2,3 e2,4
e3,2 e3,3 e3,4

∣∣∣∣∣∣

∣∣∣∣∣∣

e1,1 e1,3 e1,4
e2,1 e2,3 e2,4
e3,1 e3,3 e3,4

∣∣∣∣∣∣

∣∣∣∣∣∣

e1,1 e1,2 e1,4
e2,1 e2,2 e2,4
e3,1 e3,2 e3,4

∣∣∣∣∣∣

∣∣∣∣∣∣

e1,1 e1,2 e1,3
e2,1 e2,2 e2,3
e3,1 e3,2 e3,3

∣∣∣∣∣∣




(20)

The two first elements in the adjoint matrix are calculated:

det



∣∣∣∣∣∣

e2,2 e2,3 e2,4
e3,2 e3,3 e3,4
e4,2 e4,3 e4,4

∣∣∣∣∣∣


 = e2,2 (e3,3e4,4 − e3,4e4,3)−e2,3 (e3,2e4,4 − e3,4e4,2)+e2,4 (e3,2e4,3 − e3,3e4,2)

det



∣∣∣∣∣∣

e2,1 e2,3 e2,4
e3,1 e3,3 e3,4
e4,1 e4,3 e4,4

∣∣∣∣∣∣


 = e2,1 (e3,3e4,4 − e3,4e4,3)−e2,3 (e3,1e4,4 − e3,4e4,1)+e2,4 (e3,1e4,3 − e3,3e4,1)

The dimension of this matrix is the same as the dimension of E, namely 4× 4.

F−1 =




0.444 0.778 −0.889
0.778 0.111 −0.556

−0.333 −0.333 0.667


 (21)

2012-09-11 page 4

x = A1
−1 b =




1.129
3.742

−4.968


 (22)

The determinant of A2 and A3 are zero. So, x cannot be calculated. The second matrix

equation has infinite solutions, because the first and the last are linear dependent, so the
system is underdetermined, whilst the third matrix equation A3 x = b has no feasible

solution.

2 Suggested solution: Matrix input

Design

The input to the program is a string, which must be processed using a Matlab-like syntax.

How to go about it:

• Check if input is a string

• Extract string between the two out bracktes, [string of rows]

• Split string of rows into rows

• Loop through all rows

– split current row into columns, which are matrix elements

– add a new empty rows

– loop through each element in the rows converting each element into a float

– check if number of elements in the current row is the same as in the previous
row

• return the list of lists

2012-09-11 page 5

2.1 A program

#!/usr/bin/env python

-*- coding: utf-8 -*-

"""

@summary: Convert a madlab matrix into a nested python list

@author: Eivind Haug-Warberg

@copyright: Tore Haug-Warberg

@organization: Department of Chemical Engineering, NTNU, Norway

@contact: haugwarb@nt.ntnu.no

@license: GPLv3

@requires: Python 2.7.1 or higher

@since: 2012.09.12 (EHW)

@version: 1.0

@todo 2.0:

@change: started (2012.09.20)

"""

def m2py(matstring, padding = None, debug = False):

"""

Convert a Matlab matrix string into a nested python list. The string must

start with optional white spaces and a left square bracket and end with

optional white spaces and a right square bracket. Inside the brackets,

there should be numbers (integer or float). Use commas "," or spaces " "

to terminate columns and semicolon ";" to terminate rows.

@param matstring: Input matrix given as a Matlab string

@param padding: Object used for padding missing matrix elements

@param debug: True or False flag

@type matstring: aString

@type padding: anObject

@type debug: aBoolean

@return: aList [aList [aFloat, aFloat, ...]]

e.g. [[1.0, 0.0, ...], [0.0, 1.0, ...],

[-1.0, 0.0, ...], [0.0, -1.0, ...], ...]

"""

import re

check for string

if type(matstring) != str:

print ’Input must be string’

return None

extract string between the opening [and closing]

tokenlist = re.match(r’^\s*\[\s*(.*)\s*\]\s*$’,matstring)

if tokenlist == None:

print ’Input format is: [num1, num2, ...; num3, num4, ...; ...].’

return None

2012-09-11 page 6

for an empty string we return an empty list of lists

if tokenlist.group(1) == ’’:

return [[]]

define regular expression for the splitting into columns and rows

colsep = re.compile(r’\s*,?\s*’) # column delimiters are ’,’ and ’ ’

rowsep = re.compile(r’\s*;\s*’) # row delimiter is ’;’

split into rows first

rows = rowsep.split(tokenlist.group(1))

output = [] # allocate an empty list for the output

Display the number of rows.

if debug: print ’Number of rows: %s’%len(rows)

loop through all rows

for row in range(len(rows)):

output.append([]) # add new row

cols = colsep.split(rows[row]) # split into columns

for col in cols: # loop through columns

Display the position in the nested list.

if debug: print ’ Value of row ’ + str(len(output)) + ’, column ’ + \

str(len(output[-1]) + 1) + ’: ’

try:

output[-1].append(float(col))

except: # handle conversion exception

print ’Elements in matrix must be integers or floats’

return None

compare current length of the column with the previous one

in the first instance the two are the same.

if len(output[row]) != len(output[row-1]):

print ’matrix must have equal-length rows’

return None

return output

if __name__ == ’__main__’:

print ’\n -------------------------’

print ’Matlab matrix input to be converted into a list of lists’

temp_in = ’\ncase : %s’

temp_out = ’result: %s’

temp_issue = ’issue : %s’

a = ’[1,2,3;4,5,6]’

print temp_in %a

2012-09-11 page 7

print temp_out %m2py(a)

a = ’[1.0, 2.9 3; 4, 0.5E-1,6.0]’

print temp_in %a

print temp_out %m2py(a)

a = ’[1,2.; 3, 4, 5]’

print temp_in %a

print temp_out %m2py(a)

print temp_issue %’problem with the definition of the float’

a = ’1,2;3,4’

print temp_in %a

print temp_out %m2py(a)

a = ’[1,2.0 E-2,3;4, 1.5,2.0,-1]’

print temp_in %a

print temp_out %m2py(a)

print temp_issue %’problem with the definition of the float’

a = ’[1,2.0;1.5,2.0,-1]’

print temp_in %a

print temp_out %m2py(a)

print temp_issue %’row length’

2012-09-11 page 8

2.2 Test run

Matlab matrix input to be converted into a list of lists

case : [1,2,3;4,5,6]

result: [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]

case : [1.0, 2.9 3; 4, 0.5E-1,6.0]

result: [[1.0, 2.9, 3.0], [4.0, 0.05, 6.0]]

case : [1,2.; 3, 4, 5]

matrix must have equal-length rows

result: None

issue : problem with the definition of the float

case : 1,2;3,4

Input format is: [num1, num2, ...; num3, num4, ...; ...].

result: None

case : [1,2.0 E-2,3;4, 1.5,2.0,-1]

Elements in matrix must be integers or floats

result: None

issue : problem with the definition of the float

case : [1,2.0;1.5,2.0,-1]

matrix must have equal-length rows

result: None

issue : row length

s

2012-09-11 page 9

Parsing a Molecular Formula
(TKP4106)

Zooball/Lion

A language that doesn't affect the way you think about programming, is not worth knowing.

Alan J. Perlis (1982)

Assignments

1. a. Download the stub program atoms.py. Save the file in your local Python
folder. Keep the file name as indicated.

b. Learn about Python dictionaries and lists in general and about method
calls like re.match, len and keywords like def, pass, return in
particular. We shall also make use of a programming concept called
"recursiveness". A simple example is the calculation of, say, 5 factorial.
We can either program it like this:
def factorial(n=5):
 m = 1
 for i in range(1,n+1):
 m *= i
 return m

or, using recursive function calls:
def factorial(n=5):
 if n > 1:
 return n*factorial(n-1)
 else:
 return 1

Recursiveness gives beatiful albeit hard-to-debug computer code. There
are special languages devoted entirely to so-called functional
programming, like e.g. Lisp and Haskell, but Python is also quite well-
suited for such tasks.

2. Write a chemical formula parser called atoms that takes a string input and
returns a dictionary (hash table) of atom names (keys) and stoichiometric
numbers (values). Like for instance:
atoms('COOH(C(CH3)2)3CH3') == [{'H': 22, 'C': 11, 'O': 2}]

Use atoms.py as template. Do not change any of the variable names
because this makes student's assistance and co-operation much harder!

Chemical formulas are — from a mass balance perspective — simple linear
algebraic expressions. This sounds perhaps a little strange at first, but the algebraic
rules for summation and multiplication are implicitly given by the formula. Take e.g.
water (H2O). The mass of one water molecule is H*2 + O*1 where H and O stand
for the atomic masses of hydrogen and oxygen. So, when we write H2O we really
mean H*2 + O*1. The same rule applies to more complicated molecules like for
instance COOH(C(CH3)2)3CH3. The mass is C*1 + O*1 + O*1 + (C*1 +
(C*1 + H*3)*2)*3 + C*1 + H*3. We see that the use of parentheses are just
like in everyday algebra. This means that it is possible to interpret — we shall
hereafter call it parse — the formula into a list of atoms and a corresponding list of
stoichiometric numbers. These two list are conveniently held together in what is
called a dictionary (hash table). In programming lingo we would say:

'COOH(C(CH3)2)3CH3' -> [{'H': 22, 'C': 11, 'O': 2}]

To make the syntax straight [{}] means a list of length one which contains an
empty dictionary. Note that for technical reasons the hash table is put inside a list
(an array). This makes later use of the code easier (the exact reason is not visible at
the moment). To write a parser we must know a little about Backus-Naur Formalism
(BNF). The idea is quite simple, but it is hard to explain in words. An example
serves better. Here is the BNF description of a floating decimal number:

 S := FN | '-' FN
 FN := DL | DL '.' DL
 DL := D | D DL
 D := '0' | '1' | ... | '9'

Here S stands for sentence, FN for floating number, DL for digit list and D for digit.
These are called the production rules. They are on the form SYMBOL := SYMBOL
| TERMINAL. A symbol is something that is defined by := while a terminal is a
literal string in quotes. We see that our number is composed of the terminals -, ., 0,
1, ••• 9. OK, fine. Let's see if the BNF can represent a number for us. Starting at the
top of the production list we continue making arbitrary decisions till there is nothing
more to decide:

 S <- the starting point
 '-' FN <- used 2nd rule for S
 '-' DL '.' DL <- used 2nd rule for FN
 '-' D '.' D DL <- used 1st rule for left DL and 2nd rule for right DL
 '-' D '.' D D <- used 1st rule for last DL
 '-' '3' '.' '1' '4' <- used 4th, 2nd and 5th rules for the three D's

The outcome of the random process is -3.14 which is a perfectly legal float.
However, the BNF is quite tedious and therefore EBNF has been developed (E
stands for Extended). It uses ? for zero or one (occurences), + for one or many, and
* for zero or many. The same number defined in EBNF is:

 S := '-' ? D + ('.' D +) ?
 D := '0' | '1' | ... | '9'

This is definitly simpler and it is also quite close to Regular Expressions (re) notation
in Python. Actually, there are many dialects of RE but they are all close to this form:

 S := (-)?([0-9]+)(\.([0-9]+))?

 or even simpler:

 S := -?\d+(\.\d+)?

The idea is now to use S inside a program to match all occurences of floating point
numbers. This is an incredible strong concept as it opens up for the programming of
programming languages (making parsers and compilers). Now, back to our
chemical formula we need only three regular expressions:

1) An atom name (chemical symbol) followed by nothing or an integer.
2) A left delimiter (left parenthesis).
3) A right delimiter (right parenthesis) followed by nothing or an integer.

At the moment these expressions will do all right:

 ATOM := ([A-Z][a-z]?)(\d+)?
 LDEL := \(
 RDEL := \)(\d+)?

I have'nt mentioned it yet, but there are a few reserved characters in RE's. These
include: ., -, +, (,), [,], {, }, ?, |, ^ and $. Any use of these characters as
terminal strings must be preceeded by \ (a backspace). The technique is called
"escaping" in the local lingo.

The trick is now to make use of ATOM, LDEL and RDEL to break the chemical
formula into bits and pieces using recursive function calls starting at the left end of
the formula. Exactly how this procedure should be written is made part of your
assigment (but you have got the license to ask).

5.7.1 Verbatim: “atoms.py”

1 """
2 @summary: Chemical formula parser. <pass: your description>
3 @author: <pass: your name>
4 @organization: Department of Chemical Engineering, NTNU, Norway
5 @contact: <pass: your address>
6 @license: <pass: GPLv3 or whatever>
7 @requires: Python <pass: x.y.z> or higher
8 @since: <pass: yyyy.mm.dd> (<pass: your initials>)
9 @version: <pass: x.y.z>

10 @todo 1.0: <pass: bla-bla>
11 @change: started (<pass: yyyy.mm.dd>)
12 @change: <pass: last change description> (<pass: yyyy.mm.dd>)
13 @note: <pass: bla-bla>
14 """
15

16 def atoms(formula, debug=False, stack=[], delim=0, \
17 atom=r’<pass>’, ldel=r’<pass>’, rdel=r’<pass>’):
18 """
19 The ’atoms’ parser <pass: your description>.
20

21 @param formula: a chemical formula ’COOH(C(CH3)2)3CH3’
22 @param debug: True or False flag
23 @param stack: list of dictionaries { ’atom name’: int, ... }
24 @param delim: number of left-delimiters that have been opened and not yet
25 closed.
26 @param atom: string equivalent of RE matching atom name including an
27 optional number ’He’, ’N2’, ’H3’, etc.
28 @param ldel: string equivalent of RE matching the left-delimiter ’(’
29 @param rdel: string equivalent of RE matching the right-delimiter
30 including an optional number ’)’, ’)3’, etc.
31

32 @type formula: <pass>
33 @type debug: aBoolean
34 @type stack: <pass>
35 @type delim: <pass>
36 @type atom: aRE on raw string format
37 @type ldel: <pass>
38 @type rdel: <pass>
39

40 @return: aList [aDictionary, aDictionary, ...]
41 e.g. [{’C’: 11, ’H’: 22, ’O’: 2}]
42 """
43

44 import re
45

46 # Empty strings do always pose problems. Test explicitly.
47 pass
48

49 # Initialize the dictionary stack. Can’t be done in the function header be-
50 # cause Python initializes only once. Subsequent calls to this function will
51 # then increment the same dictionary rather than making a new one.
52 stack = stack or [{}]
53

54 # Python has no switch - case construct. Match all possibilities first and
55 # test afterwards:
56 re_atom = pass
57 re_ldel = pass
58 re_rdel = pass
59

60 # Atom followed by an optional number (default is 1).
61 if re_atom:
62 tail = formula[len(re_atom.group()):]
63 head = pass
64 num = pass
65

66 if stack[-1].get(head, True): # verbose testing of Hash key
67 pass # increment occurence
68 else:
69 pass # initialization

166

70

71 if debug: print [head, num, tail]
72

73 # Left-delimiter.
74 elif re_ldel:
75 tail = pass
76 delim += pass
77

78 stack.append({}) # will be popped from stack by next right-delimiter
79

80 if debug: print [’left-delimiter’, tail]
81

82 # Right-delimiter followed by an optional number (default is 1).
83 elif re_rdel:
84 tail = pass
85 num = pass
86 delim -= pass
87

88 if delim < 0:
89 raise SyntaxError("un-matched right parenthesis in ’%s’"%(formula,))
90

91 for (k, v) in stack.pop().iteritems():
92 stack[-1][k] = pass
93

94 if debug: print [’right-delimiter’, num, tail]
95

96 # Wrong syntax.
97 else:
98 raise SyntaxError("’%s’ does not match any regex"%(formula,))
99

100 # The formula has not been consumed yet. Continue recursive parsing.
101 if len(tail) > pass
102 atoms(pass, pass, pass, pass, pass, pass, pass)
103 return stack
104

105 # Nothing left to parse. Stop recursion.
106 else:
107 if delim > 0:
108 raise SyntaxError("un-matched left parenthesis in ’%s’"%(formula,))
109 if debug: print stack[-1]
110 return stack

167

5.7.2 Backus-Naur Formalism, see also Sec. 5.1.10

First reference occurs in BNF and EBNF (L. M. Garshol), see Section 5.1.10 on page 75.

168

Exercise 4

Preisig, H A Chemical Engineering, NTNU

1 Question: Networks 1.1

Given the topology for a stirred tank:

reservoir

lumped system

distributed system

mass flow
heat flow
work flow
signal

valve
measurement

controller

discrete-event system

b b switch

H

C

M F

J T

P

Figure 1: A simple topology of a model for a jacketed stirred tank reactor

1. Complete labelling of the graph by adding the labels for the streams

2. Write the incidence list for

• all connections

• mass only

• heat only

• work only

3. What are the incidence matrices for the mass flow network, the energy-flow network?

4. Write a python program that takes the incidence list and generates the incidence
matrices, Give the incidence list as tuples of strings, where the strings are the
identifiers for the source and sink nodes. Generate the index map for the systems,
the numerical incidence list and then the incidence matrix. So input is a string
representing the list of tuples of strings. The output is the numerical incidence
matrix in printed form.

2012-09-11 page 1

2 Question: Networks 1.2

In the lecture notes, the section on networks, a set of equations appears as an example,
which formulates a transfer network as a function of the effort variables in the connected
systems.

Φ̇a = −Φ̂a|b

Φ̇b = +Φ̂a|b + Φ̂c|b − Φ̂b|d

Φ̇c = −Φ̂c|b

Φ̇d = +Φ̂b|d

which when substituted becomes:

Φ̇a = +ca|b (πb − πa)

Φ̇b = −ca|b (πb − πa)− cc|b (πb − πc) + cb|d (πd − πb)

Φ̇c = +cc|b (πb − πc)

Φ̇d = −cb|d (πd − πb)

Please explain how you can formulate in the abstract form which is shown below:

Φ̇ = −FCFT π

3 Question: Networks 1.3

Figure 2 shows the conceptual process flowsheet for production of crude methanol. As
the reactor only converts a limited amount of syngas into methanol, the un-reacted gas
is recycled. A purge makes sure that the impurities do not accumulate in the recycle.
The feed specifications are shown in Table below and the main reaction going on in the
reactor are:

CO2 + 3H2 ⇄ CH3OH +H2O ∆H0
rx = −49316 kJ

kmol

CO2 +H2 ⇄ CO +H2O ∆H0
rx = 41157 kJ

kmol

feed

compressor 1compressor 2

compressor 3

reactor

flash drum

HEX 1

HEX 2 HEX 3

HEX 4

purge

product

throttle valve

Figure 2: Simple flowsheet of a methanol plant

2012-09-11 page 2

Table 1: Feed specifications
Component Formula content

Methane CH4 10
Carbon Monoxide CO 12
Carbon Dioxide CO2 8

Hydrogen H2 70

3.1 Tasks

• Sketch a very simple topology of the methanol flowsheet. For the system definition,
stay on the unit level where appropriate.

• Identify the species in each node in the topology.

• Generate the global species set.

• Write a python program that gets the species set in the respective nodes as input.
Each species set is a vector of strings, whereby each string represents a species. For
example, the species set for the feed would be [′CH4′,′ CO′,′ CO2′,′ H2′].
Several nodes contain the same set of species. You may define domains, which
contain nodes with the same species sets. The output shall be the index map for
each species set in the respective domain. The following tasks should be done:

– process the input string

– generate the global species set as a list of strings

– generate the index map:
[
1, . . . , ♯ species

]

– generate selection matrix for each domain

– compute the index set for the species in each domain

– generate the output

4 Question: Shell balance 01

Assume a heating wire with a cylindrical insulation in a uniform environment. The dimen-
sion of wire is negligible. Derive the model equation, a PDE in radial co-ordinates, for the
computation of the temperature profile in the insulation. State clearly your assumptions.

2012-09-27 page 3

1 Solution: Networks 1.1

The topology graph contains the following arcs:

A :=
[
n̂H|J , n̂J |C , n̂F |T , n̂T |P , q̂J |T , ŵM |T

]

For the mass only, it is the first 4 elements, the heat only is the 5th and the work only is
the last.

The incidence matrices is constructed quickly by generating a table with the rows labelled
with the systems and the columns with the streams. Since the streams carry the informa-
tion of the reference direction (source | sink), one only needs to fill in the −1 in the source
row and the +1 in the sink row. For readability we label the rows and the columns.

For the mass:

In :=

n̂H|J n̂J |C n̂F |T n̂T |P
T +1 -1
J +1 -1
H -1
C +1
M
F -1
P +1

For energy we need all, the mass streams, as they carry energy in the form of internal,
kinetic and potential energy, and we need the heat and work streams:

IE :=

n̂H|J n̂J |C n̂F |T n̂T |P q̂J |T ŵM |T
T +1 -1 +1 +1
J +1 -1 -1
H -1
C +1
M -1
F -1
P +1

Note that the ”mass” incidence matrix is part of the ”energy” incidence matrix reflecting
the fact that mass flow induces energy flow.

2 Solution: Networks 1.2

In a first step we can write:

Φ̇ = FC




πb − πa

πc − πb

πd − πc

πd − πb




2012-09-11 page 1

with:

F :=

a|b b|c c|d b|d
a -1
b +1 -1 -1
c +1 -1
d +1 +1

and:
C := diag

[
ca|b cb|c cc|d cb|d

]

The vector of differences in the effort variables contains the negative signs of the respective
column in the F-matrix. So this vector can be generated by:




πb − πa

πc − πb

πd − πc

πd − πb


 := FT π

2012-09-11 page 2

3 Solution: Networks 1.3

1)

Hot

F
C1

HEX1

H1

K1

V

G1L1

C2

HEX2

H2

K2

REAC

K3

HEX3

FLASH

L3
HEX4

K4

Prod

Cold

G2L2

C3

M1

M2

M3

M4
S1

S4

S3

S2

B1

B2

Purge

W

Figure 1: Topology of a methanol plant

2012-09-11 page 3

2) What is where?

Hot

F

C1

Purge

HEX1

H1

K1

V

G1L1

C2

HEX2

H2

K2

REAC

K3

HEX3

FLASH

L3

HEX4

K4

Prod

Cold

G2L2

C3

M1

M2

M3

M4
S1

S4

S3

S2

B1

B2

domain util: coolant

domain gas: H2, CO, CO2,CH4

domain reac: H2, CO, CO2,CH4, MeOH , H2O

domain prod: MeOH , H2O

Figure 2: Domains with the same components in the topology of a methanol plant

3) Species set:=
[
H2 CO CO2 CH4 CH3OH H2O Cooling F luid

]

The selection matrices are defined for the four domains which have common set of species:

Domain gas:H2, CO, CO2, CH4

S1 =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




2012-09-11 page 4

Domain reac: H2, CO, CO2, CH4,MeOH, H2O

S2 =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0




Domain Prod: MeOH, H2O

S3 =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




Domain util: Coolant

S4 =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1




By multiplying the selection matrix to the vector of components, the existence of species
in each node will be checked. For example,

a1 = S1 a =




1
2
3
4
0
0
0




where a in the index vector of the species.

2012-09-11 page 5

3.0.1 Program

#!/usr/bin/env python

-*- coding: utf-8 -*-

def make_stream(si,stot):

descr = si[0]

species = si[1]

mat = [[int(i == j) for i in stot[1]] for j in si[1]]

indices = mprod(mat, [[i+1] for i in range(0, len(stot[1]))])

return {’Description’: descr, ’Species’: species, ’Matrix’: mat, \

’Indices’: indices}

from mprod import mprod

def methprod(domains,debug):

Makes a list of all the species.

stot = set([])

[[stot.add(specie) for specie in domain[1]] for domain in domains]

stot = list(stot); stot.sort()

Displays all the species.

if debug:

print ’Debugging :’

print ’Total species: %s’%stot

Makes the index dictionary.

indices = {}

for specie in stot:

indices[specie] = indices.get(specie,len(indices) + 1)

Dispalys the indices.

if debug: print ’Index values: %s’%indices

Makes an empty matrix (this will be the incidence matrix soon.

mat = [[0 for i in stot] for j in domains]

Displays the empty matrix.

if debug: print ’Empty matrix: %s’%mat

Fills ’1’ into the places where a specie occures in a domain.

for i in range(0, len(domains)):

for specie in domains[i][1]:

mat[i][indices[specie]-1] = 1

Displays the incidence matrix.

if debug: print ’Incidence matrix: %s’%mat

return stot, mat

if __name__ == ’__main__’:

print ’\n-------------------------------------’

print ’Incidence matrices test run’,

2012-09-11 page 6

print ’\n-------------------------------------’

species, mat = (methprod([(’Domain 1’,[’H2O’,’CO’]),(’Domain 2’,[’CH4’,’NO3’])],True)

print ’\n-------------------------------------’

print ’Resulting incidence matrix for the species set \n%s \n\nis:\n’%species

for i in range(len(mat)):

print ’row %s:%s’%(i,mat[i])

print ’\n-------------------------------------’

3.0.2 Output with debugging on

Incidence matrices test run

Debugging :

Total species: [’CH4’, ’CO’, ’H2O’, ’NO3’]

Index values: {’CO’: 2, ’H2O’: 3, ’CH4’: 1, ’NO3’: 4}

Empty matrix: [[0, 0, 0, 0], [0, 0, 0, 0]]

Incidence matrix: [[0, 1, 1, 0], [1, 0, 0, 1]]

Resulting incidence matrix for the species set

[’CH4’, ’CO’, ’H2O’, ’NO3’]

is:

row 0:[0, 1, 1, 0]

row 1:[1, 0, 0, 1]

4 Solution: Shell balance 01

Conforming with the assumption of uniform environment, the temperature changes only
in the radial direction. The geometry is shown in Figure 4:

Let the extensive quantity be Φ and its flux ϕ̂. Then a balance over a small volume
element ∆V is

dΦ

dt
:= Ar ϕ̂|r − Ar+∆r ϕ̂|r+∆r

with

Ar+∆r ϕ̂|r+∆r :≈ Ar ϕ̂|r +
∂A ϕ̂

∂r

∣∣∣∣
r+∆r

2012-09-11 page 7

r

r +∆r

substitution yields:

dΦ

dt
:= Ar ϕ̂|r −

(
Ar ϕ̂|r +

∂A ϕ̂

∂r

∣∣∣∣
r

∆r

)

:= − ∂A ϕ̂

∂r

∣∣∣∣
r

∆r

:= − ∂A

∂r

∣∣∣∣
r

ϕ̂∆r −Ar
∂ϕ̂

∂r

∣∣∣∣
r

∆r

:= −Ar

r
ϕ̂∆r −Ar

∂ϕ̂

∂r

∣∣∣∣
r

∆r

:= −
(
1

r
ϕ̂+

∂ϕ̂

∂r

∣∣∣∣
r

)
Ar ∆r

where we used the fact that the area being a linear function of r.

Next we divide by the volume and take the limit:

lim
∆V→0

dΦ/∆V

dt
:= −

(
1

r
ϕ̂+

∂ϕ̂

∂r

∣∣∣∣
r

)

∂ϕ

∂t
:= −

(
1

r
ϕ̂+

∂ϕ̂

∂r

∣∣∣∣
r

)

For the energy balance at constant pressure, the extensive quantity is enthalpy H and
the partial enthalpy is cp ρ T with cp :: the specific heat capacity and ρ :: the density. The
flux ϕ̂ for an isotropic material is −k ∂T

∂r
, with k being the heat conductivity. Assuming

the properties being constant not only with respect to the direction (isotropic) but also
to the state, in this case temperature, then:

∂ϕ

∂t
:= −

(
1

r
ϕ̂+

∂ϕ̂

∂r

∣∣∣∣
r

)

∂cp ρ T

∂t
:=

1

r
k
∂T

∂r

∣∣∣∣
r

+
∂

∂r

∣∣∣∣
r

k
∂T

∂r

∣∣∣∣
r

cp ρ
∂T

∂t
:=

k

r

∂T

∂r

∣∣∣∣
r

+ k
∂2T

∂r2

∣∣∣∣
r

∂T

∂t
:=

k

cp ρ

(
1

r

∂T

∂r

∣∣∣∣
r

+
∂2T

∂r2

∣∣∣∣
r

)

2012-09-11 page 8

∂T

∂t
:= α

(
1

r

∂T

∂r

∣∣∣∣
r

+
∂2T

∂r2

∣∣∣∣
r

)

introducing the definition α := k
cp ρ

:: the heat diffusivity.

2012-09-11 page 9

The Atom Matrix (TKP4106)

Zooball/Penguin

"Spell Check Song"

I have a spelling checker.
It came with my PC.

It plane lee marks four my revue
Miss steaks aye can knot see.

Eye ran this poem threw it.
Your sure real glad two no.

Its very polished in its weigh,

• • •

Spell Check Song

Assignments

1. Write a procedure atom_matrix for calculating the formula matrix of an
ordered set a substances from their chemical formulas (given as a list of
strings). Make the output a list of lists of integers [[int11, int12,
...], [in21, int22, ...], ...]. Use the stub program
atom_matrix.py as template.

2. Spin-off (not compulsory): Write a procedure molecular_weight for
calculating the molecular weight of a substance given its chemical formula
(string). Make the output a list of two integers [int1,int2] where Mw =
int1/int2 and all the digits of int1 are significant. Use the stub
program molecular_weight.py as template.

3. Learn about Python sets (as in "set" theory) and about method calls like
str.sort and keywords like list in particular. We shall also start talking
about the list iterator for x in xlist and the List comprehension [a+b
for (a, b) in zip(alist, blist)].

Python is a programming language which to a large extent is built on the concept
of lists and list comprehensions. Mix it with recursive function calls and you have
a powerful programming environment! About the difference between for-loops,
list comprehension and recursive function calls I shall say this much:

1. For-loops are for casual problems without any particular data structure.

2. List comprehension is a Good Thing if you are dealing entirely with lists.
3. Recursive programming is The Way of making lists of arbitrary length when

termination (convergence) can be guaranteed.

Three stylistic examples follow. Let args be a list, or any other data structure
with an iterator implemented, that is a method which visits the members of the
list once - and exactly once. objects arg of unknown types. fun is a function
that takes one arg and do something about it, and err is a second function that
evaluates the convergence criterion for the sequence:

 # Imperative for-loop:
 for arg in args:
 fun(arg)
 pass

 # List comprehension:
 [fun(arg) for arg in args]

 # Recursive function call:
 def rc(arg, fun, err, seq=[]):
 if err(arg, fun): rc(fun(arg), fun, err, seq)
 seq.insert(0, arg)
 return seq

Note that in the two first cases fun appears as a function in the mathematical
sense. In the last case, however, fun (and err) appear as function objects
given to cr. They are sometimes called functors to remind you of functionals in
mathematics. Think about integrals. This is a mathematical operation awaiting
your function of interest in order to produce a number. rc is doing the same. It
awaits a starting point arg and two functors fun and crit in order to produce
the convergence sequence seq. If you are new to Python this sounds Greek
maybe, but give it a chance! Invent a few problems and increase your
knowledge••• A minimal example is the convergence of x_n+1 = x_n*x_n =>
0 for x_0 < 1 and n => infinity. A possible implementation is:

 # Perfectly general Fixed Point Iteration.
 def rc(arg, fun, err, seq=[]):
 if err(arg, fun): rc(fun(arg), fun, err, seq)
 seq.insert(0, arg)
 return seq

 # Your function implementation.
 def myfun(arg):
 return arg**2

 # Your termination criteria.
 def myerr(arg, fun):
 if abs(arg-fun(arg)) > 0: return True
 return False

 args = rc(0.999, myfun, myerr)
 print args

The sequence converges beatifully to zero (make sure to run the program
yourself in order to achieve a better understanding of the matter):

 [0.999,
 0.99800100000000003,
 0.99600599600100004,

 etc.

 3.3406915454655646e-29,
 1.1160220001945103e-57,
 1.2455051049181556e-114,
 1.5512829663771860e-228,
 0.0]

Back to business••• The formula (atom) matrix of a mixture — an ordered set of
substances called a component list — is defined as a stoichiometry matrix where
each of the columns is assigned to a substance and each of the rows is
assigned to a chemical element (atom). The column sequence must correspond
to the given component list, while the rows may come in any order. One simple
example illustrates the concept:

 [
 [2, 4, 0, 2], # H
 [1, 0, 2, 0], # O
 [0, 1, 1, 0] # C
]

This is the formula (atom) matrix corresponding to the component list: H2O, CH4,
CO2 and H2. The generalization into more complex mixtures is straightforward.
We shall, however, calculate the matrix by first parsing each formula into a
dictionary telling how many atoms there are of each kind and then transcribe the
dictionaries into a list of lists of stoichiometric numbers. For the simple example
given above the programmatic actions look like:

 ['H2O', 'CH4', 'CO2', 'H2']

 =>

 [
 {'H':2, 'O':1},
 {'C':1, 'H':4},
 {'C':1, 'O':2},
 {'H':2}
]

 =>

 [
 [2, 4, 0, 2], # H
 [1, 0, 2, 0], # O
 [0, 1, 1, 0] # C
]

In order to do so we need to learn about lists and dictionaries, and about
iterators and list comprehensions in Python. Recursive functions are also into
this picture since our formula parser is built on that principle.

5.9.1 Verbatim: “atom matrix.py”

1 """
2 @summary: Return the (atoms x species) formula matrix for a given list of
3 chemical formulas.
4 @author: Tore Haug-Warberg
5 @organization: Department of Chemical Engineering, NTNU, Norway
6 @contact: haugwarb@nt.ntnu.no
7 @license: GPLv3
8 @requires: Python 2.3.5 or higher
9 @since: 2011.08.30 (THW)

10 @version: 0.9
11 @todo 1.0:
12 @change: started (2011.08.30)
13 """
14

15 def atom_matrix(formulas, debug=False):
16 """
17 Calculate an atom stoichiometry matrix which is conformal to the chemical
18 formulas given in list ’formulas’.
19

20 @param formulas: list of chemical formulas e.g. [’H2O’, ’CO2’, ...]
21 @param debug: True or False flag
22

23 @type formulas: <pass>
24 @type debug: aBoolean
25

26 @return: aList [aList [aNumber, aNumber, ...]]
27 e.g. [[2, 0, ...], [1, 2, ...], [0, 1, ...], ...]
28 """
29

30 from atoms import atoms
31

32 import sys
33

34 if sys.version_info < (2, 4):
35 from sets import Set # deprecated since version 2.4
36 stack = [] # list of parsed formulas (dictionaries) e.g. {’H’:2, ’O:1’}
37 syms = Set() # set of unique atom names (chemical symbols)
38 else:
39 stack = [] # list of parsed formulas (dictionaries) e.g. {’H’:2, ’O:1’}
40 syms = set() # set of unique atom names (chemical symbols)
41

42 # Build ’stack’ and ’syms’.
43 for formula in formulas:
44 stack.append({})
45 pass # update chemical symbols Set
46

47 syms = list(syms) # transform set into list before sorting!
48 syms.sort() # sort atom names lexicographically (in-place sorting)
49

50 arr = [] # the atom stoichiometry ’matrix’
51

52 # Build ’arr’.
53 for sym in syms: # for all atoms
54 arr.append([]) # make a new row of stoichiometric coefficients
55 for hsh in stack: # for all formulas
56 pass # fill in with values in the last row
57

58 return arr # size is (m x n) where n = len(formulas) and m = len(syms)

185

5.9.2 Verbatim: “molecular weight.py”

1 """
2 @summary: Return molecular weight tuple (val, err) for a given formula.
3 @author: Tore Haug-Warberg
4 @organization: Department of Chemical Engineering, NTNU, Norway
5 @contact: haugwarb@nt.ntnu.no
6 @license: GPLv3
7 @requires: Python 2.3.5 or higher
8 @since: 2011.08.30 (THW)
9 @version: 0.9

10 @todo 1.0:
11 @change: started (2011.08.30)
12 """
13

14 def molecular_weight(formula, debug=False, mw=[]):
15 """
16 Calculate molecular weight (mass per mole) of a substance with chemical
17 composition equal to ’formula’. The atomic masses of the elements are (by
18 default) taken from: M. E. Wieser, Atomic Weights of the Elements 2005, Pure
19 Appl. Chem., Vol. 78, No. 11, pp. 2051-2066, 2006 (see code), unless explic-
20 itly provided by the user (in list ’mw’). The calculated molecular weight
21 is returned as a scaled integer, i.e. val[0], where all the digits are sign-
22 ificant. The order of magnitude of the scaling is returned as a second value
23 val[1] such that the actual Mw = val[0]/val[1].
24

25 @param formula: a chemical formula ’COOH(C(CH3)2)3CH3’
26 @param debug: True or False flag
27 @param mw: list of tuple (’name’, ’symbol’, number, mass, uncertainty)
28

29 @type formula: <pass>
30 @type debug: aBoolean
31 @type mw: <pass>
32

33 @return: theList [anInt, anInt]
34 """
35

36 # Chemical formula parser and transcendental math.
37 from atoms import atoms
38 import math
39

40 stack = pass # parse formula into [{’Symbol’:int, ’Symbol’:int, ...}]
41

42 if not stack: return [0, 1] # no atom stoichiometry is available
43

44 hsh = pass # continue with {’Symbol’:int, ’Symbol’:int, ...}
45

46 # Enter periodic table information: The ’mw’ list is either given as input
47 # to the function ’molecular_weight’ or it is an empty list in which case it
48 # must be properly defined here.
49 mw = mw or \
50 [
51 (’carbon’, ’C’, 6, 12.0107, 8E-5),
52 (’hydrogen’, ’H’, 1, 1.00794, 7E-6)
53]
54

55 val = 0.0 # molecular weight [amu]
56 err = 0.0 # truncation error (approx. uncertainty)
57 m = 0 # number of elements recognized in the formula
58

59 # Calculate ’val’, ’err’ og ’m’.
60 for tup in mw:
61 if hsh.has_key(tup[1]):
62 pass # increment molecular weight
63 pass # increment error (uncrtainty)
64 pass # increment the number of elements in the formula
65 else:
66 pass
67

68 if m != len(hsh): raise SyntaxError("weird atom in ’%s’"%(formula,)) #
69

186

70 n = abs(int(math.log10(err))) # calculate order of magnitude (abs value)
71

72 if debug: print [val, err, n]
73

74 return [int(round(val*10**n)), 10**n] # make sure last digit is significant

187

Exercise 5

Preisig, H A Chemical Engineering, NTNU

1 Question

The Plant

Subject of the exercise is the plant shown below. The plant mixes two components, namely
A and W. The W is supplied from a reservoir, say water from the tab, whilst A is taken
from a tank. The A tank is periodically filled, which is not shown on the scheme. A is
pumped into the mixing tank, whilst W is flowing in freely. The product is taken from
the bottom and communicates to the storage tank freely. No control on the latter, the
flow is driven by the level differences. The S tank is a storage tank, which is somewhat
larger than the mixing tank. A discrete consumer is drawing from the storage, whereby
discrete implies that the consumer takes material at a constant rate over a given period
of time. All tanks have an overflow for safety. M overflows on the top into S, whilst the
A-tank and the S-tank overflow into a catchment.

reservoir
lumped system

distributed system

mass flow
heat flow
work flow
signal

valve
measurement

controller

event-dyn system

b b switch

W

A M S

C

CW

CC

VW

VC

sW sC

P

D

Figure 1: A complex mixing plant

The units in the plant are:

• W :: infinite source of solvent W

• A :: finite large source of component A, is refurbished periodically, which is not
shown.

• P :: pump for moving material from A-tank to M-tank

• M :: mixing tank

• S :: product storage tank

• C :: consumer

2012-09-22 page 1

• D :: catchment for possible spill

• VW :: valve W flow

• VC :: valve product flow controlled by the consumer

• CW :: controller for W flow

• CC :: controller for product flow

• sW :: set point for level

• sC :: set point for product flow set by the consumer

1.1 Topology

Provide a simple topology for the overall process. No evaporation takes place.

1.2 Model of a part

We isolate a part we already know, namely the infinite source W, and the mixing tank M
extended with the storage tank and the overflow.

reservoir
lumped system

distributed system

mass flow
heat flow
work flow
signal

valve
measurement

controller

event-dyn system

b b switch

W

M S
CW

VW

sW
D

Figure 2: The core of the plant with a single feed and an overflow

• Establish topology for this part

• Write a scalar mass balance for the M and S. Scalar because we have only one
component, namely W.

• Add transfer laws for the four mass streams.

• Add all the additional equations that link the mass in the tank with the observations
and the effort variables. The tanks are cylindrical with a given cross sectional area.
The density of the material is constant, the reservoir pressures are known, the

2012-09-22 page 2

controller is a proportional controller with negative feedback, thus u := −kc (sM −
hM), with sM :: the setpoint for the level, hM :: the level in tank M and kc a
proportional gain.

• NOTE: do not substitute the equations into the mass balances. Instead leave them
as separate algebraic equations.

• Define state x, input u and output y for the M-S plant section. Wrap the secondary
variables such as flows x̂, the effort variables into a vector z and the characteristic
quantities like cross sectional area of the tanks, we collect in a vector Θ

• Rewrite model in an extended state-space notation using the above-defined symbols.

1.3 Dynamics

We now look at a simplified plant and focus on its dynamics.

reservoir
lumped system

distributed system

mass flow
heat flow
work flow
signal

valve
measurement

controller

event-dyn system

b b switch

W

S

C

CW

CC

VW

VC

sW

sC

P

D

Figure 3: The simplified plant to simulate

To simplify the plant we have removed the A component handling completely and com-
bined the mixing with the storage tank. So we de facto deal only with a tank for which
we define a geometry because we measure the level in the tank. Again to simplify the
problem we assume a cylindrical container with a given cross section area and a given
maximum volume. For the simulation, we assume that we have a history of the consumer
behaviour, thus a how much mass flow is leaving the S container.

The simplified model is:

ẋ(t) = x̂W (t)− x̂C(t) (1)

x̂W (t) := ΘW uW (t) (2)

y(t) := Θh x(t) (3)

y(k) := y(k∆t) t ∈ [k t, (k + 1)∆t) (4)

uW (k) := Θp (ys(k)− y(k)) (5)

uW (t) := uW (k) t ∈ [k t, (k + 1)∆t) (6)

x̂C(t) := uC(k) t ∈ [k t, (k + 1)∆t) (7)

2012-09-27 page 3

How does this work? The dynamics are given by a continuous function (1). The rest of
the plant works in discrete time, meaning that the values only change at the time k∆t
and stay constant until just before the next samples are taken. So at the beginning of the
interval, one knows the measurement and can compute the state and also the consumption
is known at that point in time, remaining constant until the next time event. Equation
(4,6,7) say that things stay constant from the beginning of the time interval until right
before the next time event, when the sample is taken and the controls are computed.

• Sketch the signals to get an insight on how this works.

• Substitute to get a single ordinary differential equation.

• Integrate both sides over the arbitrary time interval t ∈ [k t, (k + 1)∆t).

• The result is a difference equation

• Write a program that computes the history of the state given

– the initial state x(t := 0) := 0.5 and Θ := [0.4, 3, 0.6]T

– the history of the input uC as a vector of numbers: uC(k := 1,, 100) := [...]
The first 10 values are 0.1, the next 10 are 0.2, the next 20 are 0.15, the next
10 are 0.25, the next 20 are 0.05 and the rest 0.2.

– the setpoint ys(k) := 0.6 to be constant over the time.

– change the controller gain Θ2 to see what happens. What happens if the
product |1−ΘW ΘpΘh| gets larger than 1 ?

– Output data as text file so you can plot it.

2012-09-27 page 4

1 Suggested Solutions

1.1 Topology

DSM

reservoir

lumped system

distributed system

controller

stationary system

measurement

mass flow
signal

CC

A

C

VW

VC

sC

W

CW MM MS

MA

sM hM,max hS,max

P

SM SS

SA

n̂W |M n̂M |O|S n̂S|D

n̂M |Sn̂A|P

n̂A|D

n̂P |M

b bb b

b b

switch
valve

b b

Figure 1: Topology of the complex mixing plant

2012-09-22 page 1

1.2 Simplified plant

DSM

reservoir

lumped system

distributed system

controller

event-dyn system

measurement

mass flow
signal

VW

W

CW MM MS

sM hM,max hS,max

SM SS

n̂W |M n̂M |O|S n̂S|D

n̂M |S

b bb b

switch
valve

b b

Figure 2: Topology of the simplified mixing plant

The two mass balances are:

ṅM = +n̂W |M − n̂M |S − n̂M |O|S

ṅS = +n̂M |S + n̂M |O|S − n̂S|D

The flows:

d(λa, λb) := sign (λb − λa)
√

|λb − λa|
s(λ) := 1/2 (1 + sign (λ))

n̂W |M := −kW |M uW d(pW , pM)

n̂M |S := −kM |S d(pM , pS)

n̂M |O|S := s(hM − hM,max) n̂W |M

n̂S|D := s(hS − hS,max) (n̂M |S + n̂M |O|S)

The measurements and state limits for the systems s ∈ [W,M]:

Vs := ρ−1 nS

hs :=
Vs

As

2012-09-22 page 2

The driving forces:

pW := constant

pM := ρ g hM

pS := ρ g hS

Control:

uW := −kc (sM − hM)

Given:

pW :: pressure of reservoir

ka|b :: for the two pressure-driven streams

As :: cross sectional area fors ∈ [M.S]

sW :: set point for the level controller

State space notation:

state x := [nM , nS]
T

measurements y := [hM , hS]
T

input u := [pW , pD, sM , hM,max, hS,max, uW]

secondary states z := [n̂W |M , n̂M |S, n̂M |O|S, n̂S|D, VM , VS, hM , hS, pM , pS]
T

parameters Θ := [kW |M , kM |S, AM , AS, ρ, g, kc]
T

1.2.1 State-Space version

Balances:

ẋ1 = +z1 − z2 − z3

ẋ2 = +z2 + z3 − z4

Flows:

z1 := −Θ1 u6 d(u1, z9)

z2 := −Θ2 d(z9, z10)

z3 := s(z7 − u4) z1

z4 := s(z8 − u5) (z1 + z3)

Volumes:

z5 := Θ−1
5 x1

z6 := Θ−1
5 x2

2012-09-22 page 3

Levels:

z7 := z5Θ
−1
3

z8 := z6Θ
−1
4

Pressures

z9 := Θ5Θ6 z7

z10 := Θ5Θ6 z8

u1 :: constant & given

u2 :: constant & given

u3 :: constant & given

u4 :: constant & given

u5 :: constant & given

u6 := −Θ7 d(u3, z7)

2012-09-22 page 4

2 Suggested Solutions: Dynamics

Crimp model to a single ODE:

ẋ := x̂W (t)− x̂C(t)

:= ΘW uW (t)− uC(k)

:= ΘW uW (k)− uC(k)

:= ΘW Θp (ys(k)− y(k))− uC(k)

:= ΘW Θp (ys(k)−Θh x(k))− uC(k)

The right-hand-side is now constant for the duration of the time interval t ∈ [k∆t, (k +
1)∆t] and we get:

∫ (k+1)∆t

k∆t+ǫ

ẋ dt :=

∫ (k+1)∆t

k∆t+ǫ

ΘW Θp (ys(k)−Θh x(k))− uC(k) dt

(x(k + 1)− x(k)) ∆t := (ΘW Θp (ys(k)−Θh x(k))− uC(k))

∫ (k+1)∆t

k∆t+ǫ

dt

:= (ΘW Θp (ys(k)−Θh x(k))− uC(k)) ∆t

x(k + 1)− x(k) := ΘW Θp (ys(k)−Θh x(k))− uC(k)

x(k + 1) := x(k) + ΘW Θp (ys(k)−Θh x(k))− uC(k)

:= x(k)−ΘW ΘpΘh x(k) + ΘW Θp ys(k)− uC(k)

:= (1−ΘW ΘpΘh) x(k) + ΘW Θp ys(k)− uC(k)

2012-09-27 page 5

A program in Matlab

% dynamics (solution)

%

% 2012-09-25 Preisig, H A

% parameters

% flow constant, controller gain, geometry

P = [0.4, 3, 0.8]’;

1-P(1)*P(2)*P(3)

% initial conditions & allocate array

x = zeros(100,1);

x(1) = 0.5;

ys = 0.7;

u = [0.1 * ones(10,1)

0.2 * ones(20,1)

0.15 * ones(20,1)

0.25 * ones(10,1)

0.05 * ones(20,1)

0.20 * ones(20,1)];

for k = 1:99

x(k+1) = (1-P(1)*P(2)*P(3)) *x(k) + P(1) * P(2) * ys - u(k);

end

plot([u, P(3) * x, ys*ones(100,1)])

legend(’input’,’level’,’setpoint’)

s = num2str(P’)

title([’Tank level history, parameters (flow const, controller gain, geometry) :: ’, s])

xlabel(’time’)

ylabel(’normed level’)

ax = axis();

ax(3:4) = [0,1]

axis(ax)

2012-09-27 page 6

Results

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

n
o

rm
ed

 le
ve

l

Tank level history, parameters (flow const, controller gain, geometry) :: 0.4 3 0.8

input
level
setpoint

2012-09-27 page 7

A program in Python

#!/usr/bin/env python

-*- coding: utf-8 -*-

"""

@summary: Simulates a simple tank with P control

@author: Preisig, H A

@copyright: Preisig, H A

@organization: Department of Chemical Engineering, NTNU, Norway

@contact: heinz.preisig@chemeng.ntnu.no

@license: GPLv3

@requires: Python 2.7.1 or higher

@since: 2012.10.05

@version: 1.0

@todo 2.0:

@change: 2012.10.08

"""

def matnums(val, cols):

return [val for i in range(0,cols)]

def matfunc(f=’dynamics_01.dat’, debug = False):

txtfile = open(f,’w’)

Parameters

Flow constant, controller gain, geometry

P = [0.4, 3, 0.8]

range_k = range(0,100)

print ’Stability argument: ’,1-P[0]*P[1]*P[2]

Initial condition

x = [0.5]

y = [P[2] * x[0]]

ys = 0.7

u = matnums(0.1, 10) + matnums(0.2, 20) + matnums(0.15, 20) + \

matnums(0.25, 10) + matnums(0.05, 20) + matnums(0.2, 20)

for k in range_k:

x.append((1 - P[0] * P[1] * P[2]) * x[k] + P[0] * P[1] * ys - u[k])

y.append(P[2] * x[-1])

if debug:

print str(u[k]) + ’, ’ + str(y[k]) + ’, ’ + str(ys)

else:

print>>txtfile, (k+1), str(u[k]), str(y[k]), str(ys)

2012-09-27 page 8

if not debug: print ’Data written to file :’, f

txtfile.close()

return (range_k, \

[x[i] for i in range_k], \

[y[i] for i in range_k], \

ys, \

[u[i] for i in range_k], \

P \

)

if __name__ == ’__main__’:

matfunc(debug=False)

2012-09-27 page 9

Independent Reactions (TKP4106)

Zooball/Fish

Reasons computers are male:

In order to get their attention, you have to turn them on.
They have a lot of data but are still clueless.
They are supposed to help you solve your problems, but half the time they cause the problem.
As soon as you commit to one, you realize that if you had waited a little longer, you could have had a
better model.

Computers are male

Assignments

1. Write a procedure rref for calculating the row-reduced-echelon rref(A)
= inv(G)*A of a given matrix A. Matrix G is formally required, but it will
never show up in the code. The return values shall be matrix B = [B1^T,
0]^T where B is of the same shape as A, rank(A) = rank(B1), and
pivots(B) = [None|anInt, ...] identifying the pivot elements used
in the elimination process (row pivoting only). That is rref(A) => B,
rank(B1), pivots(B). Use the stub program rref.py as template.

2. Based on the output of rref write another procedure for calculating the
nullspace N of A such that [A^T, N] makes an invertible basis for the
vector space. That is null(A) => N, rank(N) where
rank(A)+rank(N)=rowdim(A). Use the stub program null.py as
template.

Read this whitepaper about The mass balance if you need a more thorough
explanation of the nullspace theory than you will find on the current page.

From formula matrix A we can calculate a row-reduced-echelon form B1 by
doing Gauss elimination on the rows of A. This process will require row
permuations if one of the pivot elements becomes zero, but it does without any
column permutations. Let inv(G) be a matrix that is doing the steps needed.
Then, by definition rref(A) = inv(G)A. The shape of rref(A) is the same
as A but it may have one or more rows being fully zero (filling out the lower part
of the matrix) even when A is dense. Hence, rref(A) = [B1^T, 0]^T where

the 0 matrix may or may not exist.

The next operation is to make an elementary matrix E1 by putting all non-pivot
columns in B1 to zero. These are the columns that have not been fully row-
reduced (an invertible matrix has, by the way, no such columns). This process is
hard to explain in words, but the examples below are quite illuminating.

From B1 and E1 we can easily calculate E1*B1-I. This matrix has the property
that B1(E1*B1-I) = 0. Prove it! Furthermore, we can show (after a second or
maybe third thought) that A(E1*B1-I) = 0. This means the non-zero columns
of E1*B1-I define the null space of A. Hence N = (E1*B1-I).

Our first example is a one-component mixture of water. Water (H2O) has 2
hydrogen atoms and 1 oxygen atom. The formula matrix and the corresponding
Gauss elimination is shown below:

A = [[2] 'H'
 [1]] 'O'

Step #1: 0.5*R1
Step #2: R2 - R1

rref(A) = [[1]
 [0]]

inv(G) = [[0.5 0]
 [-0.5 1]]

B1 = [[1]]

rank = 1

pivots = [0]

E1 = [[1]]

E1*B1-I = [[0]]

N = [[]]

The second example is a binary mixture of water monomer and water dimer
(H2O, (H2O)2). Note that A is a square matrix, albeit with two linearly dependent
rows. rref(A) has therefore a zero row at the end which means B1 has only 1
row while A got 2. We say that A is rank deficient, which means there is the
possibility of a chemical reaction in the mixture. From the stoichiometry of N we
can deduce 2*H2O - 1*(H2O)2 = 0 or 2*H2O = (H2O)2. The two forms
are equivalent.

A = [[2 4] 'H'
 [1 2]] 'O'

Elimination step 1: 0.5*R1

Elimination step 2: R2 - R1

rref(A) = [[1 2]
 [0 0]]

inv(G) = [[0.5 0]
 [-0.5 1]]

B1 = [[1 2]]

rank = 1

pivots = [0 None]

E1 = [[1]]
 [0]]

E1*B1-I = [[0 2]
 [0 -1]

N = [[2]
 [-1]]

The third example is a binary mixture of hydrogen and oxygen (H2, O2). Again, A
is a square matrix but this time it is non-singular. This means there are no
chemical reaction possible.

A = [[2 0] 'H'
 [0 2]] 'O'

Elimination step 1: 0.5*R1
Elimination step 2: 0.5*R2

rref(A) = [[1 0]
 [0 1]]

inv(G) = [[0.5 0]
 [0 0.5]]

B1 = [[1 0]
 [0 1]]

rank = 2

pivots = [0 1]

E1 = [[1 0]]
 [0 1]]

E1*B1-I = [[0 0]
 [0 0]

N = [[]
 []]

The fourth example is a quinary mixture of formaldehyde, carbon monoxide,
hydrogen, water and oxygen (CHOH, CO, H2, H2O, O2). This is an almost
fullblown example (it does not require row permutations though) because the
elimination process leaves a non-pivot column in the middle of A. The rank of A
is 3 (all rows are independent) and the row-size is 5. That means there are 2
degrees of freedom which manifest themselves as chemical reactions. From the
stoichiometry matrix N we get: 1*CHOH - 1*CO - 1*H2 = 0 and -2*CHOH +
2*CO + 2*H2O - 1*O2 = 0, or, alternatively, CHOH = CO + H2 and 2*CO
+ 2*H2O = 2*CHOH + O2.

A = [[1 1 0 0 0] 'C'
 [2 0 2 2 0] 'H'
 [1 1 0 1 2]] 'O'

Elimination step 1: R2 - 2*R1
Elimination step 2: R3 - 1*R1
Elimination step 3: -0.5*R2
Elimination step 4: R1 - 1*R2
Elimination step 5: R1 - 1*R3
Elimination step 6: R2 + 1*R3

rref(A) = [[1 0 1 0 -2]
 [0 1 -1 0 2]
 [0 0 0 1 2]]

inv(G) = [[1 0.5 -1]
 [0 -.5 1]
 [-1 0 1]]

B1 = [[1 0 1 0 -2]
 [0 1 -1 0 2]
 [0 0 0 1 2]]

rank = 3

pivots = [0 1 None 3 None]

E1 = [[1 0 0]
 [0 1 0]
 [0 0 0]
 [0 0 1]
 [0 0 0]]

E1*B1 - I = [[0 0 1 0 -2]
 [0 0 -1 0 2]
 [0 0 -1 0 0]
 [0 0 0 0 2]
 [0 0 0 0 -1]]

N = [[1 -2]
 [-1 2]
 [-1 0]
 [0 2]
 [0 -1]]

5.11.1 Verbatim: “rref.py”

1 """
2 @summary: Calculate the row-reduced echelon form of a given matrix.
3 @author: Tore Haug-Warberg
4 @organization: Department of Chemical Engineering, NTNU, Norway
5 @contact: haugwarb@nt.ntnu.no
6 @license: GPLv3
7 @requires: Python 2.3.5 or higher
8 @since: 2011.08.30 (THW)
9 @version: 0.8

10 @todo 1.0:
11 @change: started (2011.08.30)
12 """
13

14 def rref(amat, debug=False):
15 """
16 Calculate the row-reduced-echelon of ’amat’ using Gauss elimination of the
17 rows. There is partial pivoting only - ie no column permutations. The output
18 is a matrix of the same shape as ’amat’::
19

20 | 0 ... 0 1 * ... 0 * ... 0 * ... * |
21 | 0 ... 0 0 0 ... 1 * ... 0 * ... * |
22 | 0 ... 0 0 0 ... 0 0 ... 0 * ... * |
23 rref(amat) = | : : : : : : : : : |
24 | 0 ... 0 0 0 ... 0 0 ... 1 * ... * |
25 | 0 ... 0 0 0 ... 0 0 ... 0 0 ... 0 |
26 | : : : : : : : : : |
27 | 0 ... 0 0 0 ... 0 0 ... 0 0 ... 0 |
28

29 Notice the zero blocks at the left and bottom of ’rref(amat)’. For chemical
30 formula matrices the left block is always missing while the bottom block is
31 present in the case ’amat’ is rank deficient (more atoms than components for
32 example). The ’rank’ of ’rref(amat)’ is equal to the number of non-zero
33 rows. The ’pivots’ list holds the position of all the pivot elements used in
34 the elimination, i.e. [None, ..., None, i, None, ..., j, None, ..., k, None,
35 ..., None] in the example above. Note: The output matrix elements are con-
36 verted to Float irrespective of what comes in (Int or Float).
37

38 @param amat: Input matrix given as a list of lists of numbers
39 @param debug: True or False flag
40

41 @type amat: aList [aList [aNumber, aNumber, ...], ...]
42 @type debug: aBoolean
43

44 @return: aList [rref(amat), anInt, aList [None | anInt, ...]]
45 """
46

47 if not(amat) or not(amat[0]):
48 raise ArithmeticError("zero rows in amat ’%s’"%(amat,))
49

50 amat = pass # make work copy and convert to float
51 pivots = range(0, len(amat[0])) # assume len(amat[0] = len(amat[1]) = ...
52 rank = 0 # initialize number of non-zero rows in amat
53

54 if debug: print ’\nrref() :\n’ + \
55 ’\ninput amat = ’ + str(amat)
56

57 for c in pivots: # consider all columns of amat
58 piv, val = 0, 0.0 # starting pivot row, pivot value
59 for r in range(pass, pass) # partial pivoting of remaining rows
60 arc = pass # current amat[row,column] element
61 if abs(arc) > abs(val): # new pivot candidate found
62 pass # change pivot row, pivot value
63

64 if debug:
65 print ’\namat : ’ + str(amat) + \
66 ’\ncolumn : ’ + str(c) + \
67 ’\npivot element: ’ + str(piv) + \
68 ’\npivot value : ’ + str(val)
69

205

70 if val != 0.0: # a non-zero pivot value was found
71 pass # swap rows
72

73 for j in range(pass, pass) # start pivot row scaling
74 pass # make amat[rank][c] = 1
75

76 # Note reversed order in row elimination. You either has to do this,
77 # or use a temporary variable. If you use j in range(c,len(pivots))
78 # then amat[i][c] is changed at the very beginning of the loop which
79 # screws up the algorithm.
80 for i in range(pass, pass) # start row elimination
81 if i == rank: continue # ignore pivot row
82 for j in range(pass, pass) # reversed row elimination
83 pass # make amat[i][c] = 0
84

85 rank += 1 # increase the rank
86 else: # zero pivot value
87 pivots[c] = None # current column is not a free variable
88

89 if debug:
90 print ’\noutput amat : ’ + str(amat) + \
91 ’\nrank : ’ + str(rank) + \
92 ’\npivots : ’ + str(pivots)
93

94 return [amat, rank, pivots]

206

5.11.2 Verbatim: “null.py”

1 """
2 @summary: Calculate the nullspace of a given matrix.
3 @author: Tore Haug-Warberg
4 @organization: Department of Chemical Engineering, NTNU, Norway
5 @contact: haugwarb@nt.ntnu.no
6 @license: GPLv3
7 @requires: Python 2.3.5 or higher
8 @since: 2011.08.30 (THW)
9 @version: 0.9

10 @todo 1.0:
11 @change: started (2011.08.30)
12 """
13

14 def null(amat, debug=False):
15 """
16 Calculate the nullspace of ’amat’ from rref(amat) and fiddling around with
17 the Gauss elimination structure. The result is that amat*null(amat) = zero.
18 That’s all. No fancy mathematics like e.g. orthonormalization of the null-
19 space.
20

21 @param amat: Input matrix given as a list of lists of numbers
22 @param debug: True or False flag
23

24 @type amat: aList [aList [aNumber, aNumber, ...], ...]
25 @type debug: aBoolean
26

27 @return: aList [aList [aFloat, aFloat, ...]]
28 e.g. [[1.0, 0.0], [0.0, 1.0], [-1.0, 0.0], [0.0, -1.0], ...]
29 """
30

31 # Row-reduced-echelon-form.
32 from rref import rref
33

34 bmat, rank, pivots = rref(amat, debug)
35

36 if debug:
37 print ’\nnull() :\n’ + \
38 ’\ninput bmat = ’ + str(bmat) + \
39 ’\ninput rank = ’ + str(rank) + \
40 ’\ninput pivots = ’ + str(pivots)
41

42 # Insert -1 along the main diagonal for each of the dependent variables.
43 for r in [i for i in range(0,len(pivots)) if pivots[i] == None]:
44 pass
45 pass
46

47 # Strip off rows that have been pushed outside the matrix boundary (they are
48 # anyway fully zero).
49 pass
50

51 # Remove the columns corresponding to independent variables in the nullspace
52 # solution.
53 for r in range(0,len(pivots)):
54 if debug:
55 print ’\nbmat : ’ + str(bmat) + \
56 ’\nrow : ’ + str(r)
57

58 # Remove independent variables by popping from right to left.
59 for c in [pass]:
60 pass
61

62 if debug: print ’\noutput bmat : ’ + str(bmat)
63

64 return bmat

207

Plug Flow Reactor. Part I

Tore Haug-Warberg
Department of Chemical Engineering

NTNU (Norway)

23 August 2011
(completed after 120 hours of writing, programming and testing)

1 The mass balance

ḃın ḃout

A

z z +∆z

b(t, z,∆z)

ξ̇

From Einstein’s mass–energy
equivalence E = mc2 we know that
energy and mass are in principle
convertible state properties. At
least so for relativistic processes
and nuclear reactions. In every-
day physics and chemistry the mass
changes are so small, however, that

we are not able to measure them correctly, and for all practical purposes we may there-
fore assume that mass and energy are independent properties. The mass balance of an
open system can then be written

M(t, z,∆z) =

t∫

0

Ṁın dτ −
t∫

0

Ṁout dτ .

In this equation M is used (rather than m) for the total mass to conform with thermody-
namic practise where extensive quantities are designated by capital letters. The balance
of total mass is an absolute must for all non-nuclear systems, but for multicomponent
mixtures of chemical origin we can go a bit further. The balance principle does not only
apply to the total mass, but to the mass of each individual atom in the mixture. Or,
we may consider the mole number Bi of each atom since the atomic masses are constant
properties of the atoms. This means that the mass Mi = Bi∗Mw,i of atom i is conserved
if Bi is conserved. Let b =̂ [B1, B2, · · ·] be a vector of mole numbers for all the atoms
in the mixture. The mass balance of an open chemical system is then

b(t, z,∆z) =

t∫

0

ḃın dτ −
t∫

0

ḃout dτ

1

To proceed we need to embroider the concepts of chemical formulas and chemical reac-
tions. Quite interestingly, we can in the present context look upon chemical formulas
as algebraic expressions written on a very condensed form. Take for instance iron(II)-
acetate: Fe(CH3COO)2 · 4H2O. Using standard rules of operation (from IUPAC) the
formula expands to:

Fe(CH3COO)2 · 4H2O = Fe + 2 · (2C + 3H + 2O) + 4 · (2H + O)

= Fe + 4C + 14H + 8O

Convince yourself that this expression evaluates to the molecular weight of iron(II)-
acetate provided the symbols Fe, C, H and O are assigned to the atomic masses of the
chemical elements in question. You can also verify that the summation of pair products
(a number times a symbol) are the only operations needed in the calculation. This makes
matrix algebra a useful tool since the inner product of matrix algebra is just that—a
summation of pair products. By considering a mixture of known chemical substances it
is possible to make a corresponding list of all atoms encountered in the mixture. The
link between these two lists is the so-called formula matrix. Let again b =̂ [B1, B2, · · ·]
and this time also n =̂ [N1, N2, · · ·] where Ni is the mole number of compound i often
referred to as substance i. Using matrix algebra we can now write:

b = An

The stoichiometric coefficients of each substance, of which iron(II)-acetate is one exam-
ple, are collected into the corresponding columns of A. Albeit quite trivial, the principle
is best served by a concret example. Take e.g. the combustion of methane (CH4) in air
(0.78N2, 0.21O2 and 0.01Ar) to the reaction products CO, CO2, H2O, H2, OH, H and
NO. Altogether there are 11 substances and 5 atoms in the mixture:

A =

CH4 N2 O2 Ar CO CO2 H2O H2 OH H NO


1 0 0 0 1 1 0 0 0 0 0
4 0 0 0 0 0 2 2 1 1 0
0 2 0 0 0 0 0 0 0 0 1
0 0 2 0 1 2 1 0 1 0 1
0 0 0 1 0 0 0 0 0 0 0




C
H
N
O
Ar

, (1)

and, to make what we are talking about absolutely clear:

n =
(
NCH4 NN2 NO2 NAr NCO NCO2 NH2O NH2 NOH NH NNO

)T
,

b =
(
BC BH BN BO BAr

)T
.

The mass balance is now written

An(t, z,∆z) =

t∫

0

Aṅın dτ −
t∫

0

Aṅout dτ , (2)

2

but A is usually a singular matrix (except for mixtures of pure elements) which pro-
hibits a simple solution to these equations. The physical reasoning is that there can
occur chemical transpositions in the system taking one set of substances (reactants) into
another set of substances (products). This transposition is called chemical reaction. It is
known by experiment that chemical reactions can change the composition of the system
without altering the mole numbers of the atoms. The mathematical explanation of the
phenomena lies in the nullspace of A. It is defined as a matrix N such that AN = 0
and where

(
AT N

)
constitutes an invertible matrix of full rank. From the definition

of the nullspace it is clear that whatever happens in the column space of N it will not
affect the atoms vector b. To make this situation very clear we shall consider a closed
system that is changed from one compositional state 1 to another state 2. The equations
describing the changes are listed below:

b2 = b1

An2 = An1

A(n2 − n1) = 0

A∆n = 0

If we now calculate ∆n as a linear combination of the columns of N we have a full-blown
solution to the mass balance problem of the closed system:

∆n = Nξ ⇒ A∆n = ANξ = 0

The elements ξi of the solution vector ξ are the extents of reaction for each independent
reaction in the system. With this understanding in mind we can recast the mass balance
into

n(t, z,∆z) =

t∫

0

ṅın dτ −
t∫

0

ṅout dτ +

t∫

0

z+∆z∫

z

ANξ̇ dζ dτ , (3)

where A stands for the cross-sectional area of the reactor (perpendicular to the flow)
and ξ̇ is the vector of independent reaction rates (moles per unit time and volume). It
is easy to verify that Eq. 3 is a solution of Eq. 2. Multiplying by A on both sides of
the equation makes the chemical reaction integral drop out because AN = 0. Eq. 2 is
thereby reduced to Eq. 3.

To calculate actual numbers for ξi we need to model either the reaction kinetics or
the thermodynamic equilibria (or both) in the mixture, and to do this we must couple
the mass balance equations with the energy and impulse balances of the system. This
is our ultimate goal explained in the Part III of this paper entitled Modelling Issues.

We must first concentrate on the nullspace calculation, however, and find a clear-cut
and solid way to do the matrix operations that are needed. There are several nullspace
algorithms on the market but we shall define our own. The reasons are twofold: Firstly,
the problems we are dealing with are on a tiny scale (5–20 variables) and there is no
need for a very fast and numerically secure algorithm. Secondly, bringing in an advanced
nullspace algorithm has the disadvantage that we do not learn much about simpler things

3

like Gauss-elimination, row dependencies and matrix ranks. Calculating the row reduced
echelon (starcaise) form B = rref(A) = G-1A is one way to define the nullspace. Let G
be an invertible matrix doing a sequence of zero or more steps of Gauss-elimination to
reach the following result:

B =̂

(
B1

0

)
= G-1A =




0 · · · 0 1 ∗ · · · 0 ∗ · · · 0 ∗ · · ·
0 · · · 0 0 0 · · · 1 ∗ · · · 0 ∗ · · ·
...

. . .
...

...
...

. . .
...

...
. . .

...
...

. . .

0 · · · 0 0 0 · · · 0 0 · · · 1 ∗ · · ·
0 · · · 0 0 0 · · · 0 0 · · · 0 0 · · ·
...

. . .
...

...
...

. . .
...

...
. . .

...
...

. . .

0 · · · 0 0 0 · · · 0 0 · · · 0 0 · · ·




The matrix element ∗ can be any real number (i.e. not necessarily 0 or 1) or a missing
element (in which case the whole column is missing).

The elimination process is properly defined for all matrices regardless their shape
and content, but columns that are fully zero have no meaning in thermodynamics (they
correspond to chemical formulas without any atoms). Rows that are fully zero are on
the other hand physically acceptable, and is in fact quite inevitable for single component
systems with two or more atoms. Note also that there are two special cases of B: If A
is invertibel then B1 = I and G = A-1. If A = 0 then B1 is empty and G = I. From
B1 we can define the elementary matrix

ET
1 =




0 · · · 0 1 0 · · · 0 0 · · · 0 0 · · ·
0 · · · 0 0 0 · · · 1 0 · · · 0 0 · · ·
...

. . .
...

...
...

. . .
...

...
. . .

...
...

. . .

0 · · · 0 0 0 · · · 0 0 · · · 1 0 · · ·




by putting all ∗ to zero. Thus dim(ET
1) = dim(B1). The product of E1 and B1 is thereby

a square matrix with either 0 or 1 along the diagonal. Hence E1B1 − I is a similarly
shaped matrix with either −1 or 0 along the diagonal. In order to see this clearly we
remove for a moment all ellipsises · · · , ... and . . . from the matrix expression:

E1B1 − I =




−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 ∗ 0 ∗ 0 ∗
0 0 0 −1 0 0 0 0
0 0 0 0 0 ∗ 0 ∗
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 0 −1




The outcome of the manipulation is that B(E1B1 − I) = 0. This property follows from
the definition of E1 which implies B1E1 =̂ Irank(A)×rank(A). Furthermore:

B(E1B1 − I) =̂

(
B1

0

)
(E1B1 − I) =

(
I
0

)
B1 −

(
B1

0

)
= 0

4

It also means we have captured the nullspace of A since A = GB. If B(E1B1 − I) is
zero then A(E1B1 − I) is zero because G is an invertible (non-singular) matrix. What
remains now is to extract N by selecting the non-zero columns of E1B1 − I. Let E2 be
an elementary selection matrix doing these operations. Then:

N =̂ (E1B1 − I)E2

Each column of N corresponds to a chemical reaction with coefficients taken from the
elements of that column. From its physical interpretation N is also called the reaction
stoichiometry matrix of the system.

Let A = (1 2) be the atomic matrix of a chemical system comprised of component
A and its dimer A2. We shall find the reaction stoichiometry of this system using the
matrix formulations above. The result is

A =
(
1 2

)

B1 = B =
(
1 2

)

ET
1 =

(
1 0

)

E1B1 =

(
1 2
0 0

)

E1B1 − I =

(
0 2
0 −1

)

N =̂ (E1B1 − I)E2 =

(
2

−1

)

where B1E1 = (1 2)(1 0)T = (1) ≡ Irank(A)×rank(A). Note: The stoichiometry
matrix N is in chemical lingo written 2A ⇔ A2. Left as an exercise for the reader is
finding all six(!) reactions in the methane – air system mentioned in Eq. 1.

After this lenghty digression of nullspaces and chemical reactions we shall finally
continue with the mass balance in Eq. 3. The forthcoming discussion has much in
common with the energy balance in Part II of this paper, but the mass balance is
inherently simpler then seen from a modelling point of view. To continue we shall first
require the partial derivative of n at a fixed spatial position z with respect to time is:

(
∂n

∂t

)

z

= ṅz − ṅz+∆z +

z+∆z∫

z

ANξ̇ dζ

As is also explained in the second paper this equation has a very special meaning when-
ever the physical situation is such that it allows the left hand side to be put to zero.
This is the celebrated steady state which reduces the differential equation to an algebraic
equation on the form:

ṅz+∆z − ṅz =

z+∆z∫

z

ANξ̇ dζ

5

The mole flows can be factored into the flow of total mass and a composition term:

ṅ = Ṁc

The mass balance is then reduced to:

(Ṁc)z+∆z − (Ṁc)z =

z+∆z∫

z

ANξ̇ dζ

From the mass conservation principle we know that (for steady-state flow):

Ṁz+∆z − Ṁz = 0

Division by Ṁz+∆z = Ṁz =̂ Ṁ on both sides of the equation yields:

cz+∆z − cz =

z+∆z∫

z

ANṀ -1ξ̇ dζ

In the limit of ∆z → 0 we get:

lim
∆z→0

(cz+∆z − cz) = ANṀ -1ξ̇∆z

or rearranged:

lim
∆z→0

cz+∆z − cz
∆z

= ANṀ -1ξ̇

We immediately recognize the left hand side as the partial derivative of c with respect to
z. On the right hand side we can make the definition r =̂ Ṁ -1ξ̇ standing for the specific
reaction yield (moles per unit mass and volume). The mass balance for a steady state
reactor is finally written: (

∂c

∂z

)s-s

= ANr

To solve this equation we need N and a kinetic model for r(z, c). An algorithm for
calculating N is discussed in this paper, but the calculation of r has to await a more
thorough discussion of thermodynamic state variables in Parts II and III of this paper.
The reason is that r is a strong function of thermodynamic variables like temperature
and pressure in addition to the composition variable c.

There is another formal issue here which must not be forgotten: The mass balance
is written as a partial derivative with respect to the spatial co-ordinate. This is odd
since c is by no means a function of z. It only depends on z through the solution of
the differential equation. The thread to this discussion will be picked up in conjunction
with the energy balance in Part II.

6

Exercise 6

Preisig, H A Chemical Engineering, NTNU

1 Question: Topology of a fermentation plant

Subject of the exercise is the plant shown in Figure 1. It represents a fermentation
plant that is attached to a sugar manufacturing facility. When producing sugar, one of
the main waste streams contains some remaining sugar besides a lot of organic waste
materials, which are mostly solid. So this added facility is to ferment the remaining sugar
into EtOH through a yeast fermentation. The plan section takes the waste stream ”as is”
into the fermenter.

sugar + inert

purge

distillation
HEX 1

waste

EtOH/water

Figure 1: A biofuel production plant

For the purpose of the exercise we make a number of assumptions so as to simplify the
overall picture:

• Feed contains water, dissolved sugar and solid inert impurities.

• The yeast is solid and added at the beginning. It acts like a catalyst and is thus not
shown in the reaction, even though it is growing and dying.

• The filter operates ideally, meaning the solids are completely separated. None passes
over into the liquid stream.

• The process operates in continuous mode. In practice the fermentation goes bad
ever so often and the plant needs to be cleaned and the fermentation process must
be re-initiated.

• The distillation is rather ideal, thus produces azeotrope EtOH and water on the top,
whilst no EtOH leaves through the bottom stream, but all the other liquid waste
products are appearing in the bottom.

2012-09-27 page 1

The main reactions, or the ones we consider, are:

C6H12O6 → 2CH3CH2OH + 2CO2

C6H12O6 → 2CH3CHOHCOOH

The second reaction produces lactic acid as the by-product of fermentation process

Tasks:

• Sketch the topology of the ethanol production plant.

• How would you show the initialisation process in the topology?

• Have a closer look at the filter. Any alternatives ? What was your assumption for
the filter part? What will be different if we assume the filter is relatively large or
small compared to the fermenter ?

2 Question: Reactions

Ethylene and propylene are two of the important products from petrochemical industries.
They are produced by different methods, e.g. cracking. During cracking, the saturated
hydrocarbons are cracked in a furnace with high temperature. The products include
Hydrogen, Praffines, Olefines, Diolefines, Aromatics and water. The following equations
are just to name a few of cracking reactions.

C2H6 → C2H4 +H2

C4H10 → C2H6 + C2H4

C4H10 → CH4 + C3H6

C8H18 → C6H14 + C2H4

C12H26 → C9H20 + C3H6

Write the species-atom matrix.

2012-09-27 page 2

3 Question: Dynamics

Consider the process from the previous assignment as shown in Figure 2.

reservoir
lumped system

distributed system

mass flow
heat flow
work flow
signal

valve
measurement

controller

event-dyn system

b b switch

W

S

C

CW

CC

VW

VC

sW

sC

P

D

Figure 2: The simplified plant to simulate

The simplified model is:

ẋ(t) = x̂W (t)− x̂C(t)

x̂W (t) := ΘW uW (t)

y(t) := Θh x(t)

y(k) := y(k∆t) t ∈ [k t, (k + 1)∆t)

e(k) := ys(k)− y(k)

uW (k) := uW (k − 1) + ΘP

((
1 +

∆t

ΘI

)
e(k)− e(k − 1)

)

uW (t) := uW (k) t ∈ [k t, (k + 1)∆t)

x̂C(t) := uC(k) t ∈ [k t, (k + 1)∆t)

In contrast to the first assignment, we now use a discrete PI controller so as to remove
the offset from the response.

The parameter vector Θ := [ΘW ,Θh,ΘP ,ΘI]
T

• Substitute to get a single ordinary differential equation.

• Integrate both sides over the arbitrary time interval t ∈ [k t, (k + 1)∆t).

• The result is a difference equation

• Write a program that computes the history of the state given

– the initial state x(t := 0, 1) := [0.5, 0.45] and Θ := [0.4, 0.8, 0.02, 0.01]T

– sampling time is 1

– the history of the input uC as a vector of numbers: uC(k := 1,, 100) := [...]
The first 10 values are 0.1, the next 10 are 0.2, the next 20 are 0.15, the next
10 are 0.25, the next 20 are 0.05 and the rest 0.2.

2012-09-27 page 3

– the setpoint ys(k) := 0.5 to be constant over the time.

– change the controller proportional gain ΘP and the integral constant ΘI to see
what happens.

– Output data as text file so you can plot it (k, ys, y, uC).

3.1 On the side

The equation for continuous PI controller is

u := P

(
e+

1

Ti

∫
e dt

)

The derivative is approximated as

du

dt
≈ u(k)− u(k − 1)

∆t
≈ 1− q−1

∆t
u(k)

where q is the shift operator defined by the equation

u(k + 1) := q u(k)

So,

u(k) := P

(
e(k) +

∆t

Ti

1

1− q−1
e(k)

)

u(k) := P

(
1 +

∆t

Ti

1

1− q−1

)
e(k)

u(k)
(
1− q−1

)
= P

((
1− q−1

)
+

∆t

Ti

)
e(k)

= P

(
1 +

∆t

Ti

− q−1

)
e(k)

The final expression for u(k) is

u(k) := u(k − 1)− P e(k − 1) + P

(
1 +

∆t

Ti

)
e(k)

4 Question: Linear algebra 02

The following matrices are given:

A :=




2 2 −4 3 8 1
3 1 −2 1 2 2
2 1 3 0 −3 1




2012-09-27 page 4

B :=




1 3 −3
−3 7 −3
−6 6 −2




C :=




10 2 8
2 1 1
4 7 −3




D :=
[
0
]

E :=
[
1
]

Tasks

• Calculate the null space for A,B and C:

• What does N(B) = 0 means?

• Find the eigen values and eigen vectors of B

• What is the size of null space matrices for D and E

2012-09-27 page 5

1 Suggested solution: Topology fermenter plant

1.1 Overall view

To make things easier to read, we approach the topology of the fermenter plant in bits
and pieces, beginning with a global view whereby the units are mainly made visible. We
use rectangular boxes for units or parts of them:

bb

condensor

column

boiler

cooler

fermenter

filter

feed motor room

yeast

cold

hot

purge

distillate

bottom

drain

pump

split

split

mix mix

init

distillation

energy

Figure 1: Topology of a biofuel production plant

Note that we use the sludge as a composite phase in this approach.

2012-09-28 page 1

1.2 The reactor part

Next we zoom into reactor part. Notice that we now split into two phases. The sludge
is split into a solid phase and a liquid phase assuming the reaction is taking place in the
solid phase, rational being that the yeast is a biological cell structure, which appears in
the ”solid” phase, in contrast to the liquid phase that provides the sugar and takes the
liquid products. The split into two phases may not benecessary. One could also handle

sludge

sludge

RLRS
bb

fermenter

feed motor room

yeast RG

cooler

pump
sludge

solid liquid

Figure 2: Topology of the fermenter

this in a pseudo-phase. This is an example on how one could define a topology that ”sees”
it as two phases.

2012-09-28 page 2

1.3 Heat exchanger

The heat exchanger cools both phases and since the solid phase is dispersed in the liquid
phase, it seems approriate to again define it as a pseudo-phase, thus a sludge though now
with a different composition.

cold

drain

filter

fermenter

FCF

Figure 3: Topology of the cooler

2012-09-28 page 3

1.4 Filter

From the topology point of view,this is a really interesting unit. If one thinks about to
also describe the filter-cake build up, for example this unit becomes really complex but
also interesting. Many alternatives are possible. The one below is just one of them.

FS

pumpcooler

distillationFL

filter plate

filter

purge

Figure 4: Topology of the filter

2012-09-28 page 4

1.5 Distillation

A good old friend, the distillation column. Each tray simplified to two phases with varying
volume, thus the volume-work arrow. The condenser is described as a drop-condensation
unit in which the heat transfer occurs both through the gas phase and the liquid phase
in contrast to film condenstion, where it is mostly the liquid that is being cooled directly.
The main heat transfer in the boiler is through the wall to the liquid phase. In some
boilers there may also be a heat transfer into the gas phase, but that is usually a very
small part in contrast to the other heat flow

boiler

steam

bottom product

B

LCGC

K

L1G1

L2G2

L3G3

LBGB

drain

distillate

coolant drain

condenser

column

Figure 5: Topology of the distillation

2012-09-28 page 5

2 Solution: Reactions

species =
[
C2H6 C2H4 H2 C4H10 CH4 C3H6 C8H18 C6H14 C12H26 C9H20

]

index =
[
1 2 3 4 5 6 7 8 9 10

]

1 2 3 4 5 6 7 8 9 10
C 2 2 0 4 1 3 8 6 12 9
H 6 4 2 10 4 6 18 14 26 20

2012-09-28 page 6

3 Dynamics

Like the previous assignment, the variables are substituted in the main equation:

ẋ := x̂W (t)− x̂C(t)

:= ΘW uW (t)− uC(k)

:= ΘW uW (k)− uC(k)

:= ΘW

[
uW (k − 1)−ΘP

((
1− ∆t

ΘI

)
e(k − 1) + e(k)

)]
− uC(k)

:= ΘW

[
uW (k − 1)−ΘP

((
1− ∆t

ΘI

)
(ys(k − 1)−Θh x(k − 1)) + (ys(k)−Θh x(k))

)]
− uC(k)

The right-hand-side is now constant for the duration of the time interval t ∈ [k∆t, (k +
1)∆t] and we get:

∫ (k+1)∆t

k∆t+ǫ

ẋ dt :=

∫ (k+1)∆t

k∆t+ǫ

RHS dt

x(k + 1) =

(
1−ΘW ΘP Θh

(
1 +

∆t

ΘI

))
x(k)

+ ΘW ΘpΘh x(k − 1)

+ ΘW uW (k − 1)

+ ΘW Θp

(
1 +

∆t

ΘI

)
ys(k)−ΘW Θp ys(k − 1)

− uC(k)

This should be solved in an iterative manner. For every step, we need to have the error
e(k) and uW (k), so that we can calculate x(k + 1).

e(k) = ys −Θh x(k)

uW (k) = uW (k − 1) + ΘP

((
1 +

∆t

ΘI

)
e(k)− e(k − 1)

)

x(k + 1) = x(k) + ΘW uW (k)− uC(k)

2012-09-28 page 7

A program in Matlab

% dynamics_02 (solution)

% simple tank controlled by a discrete PI controller

%

% 2012-10-09 Preisig, H A

% parameters

% flow constant, controller gain, geometry

% parameters : water flow, geometry, prop const, integral const

P = [0.4, 0.8, 2, 0.4]’;

% initial conditions & allocate array

dt = 1; % sampling time

x = zeros(100,1); % pre-allocate space

u_W(1) = 0;

x(1) = 0.5;

x(2) = .45;

ys = 0.5;

e(1) = ys-P(3)*x(1);

u = [0.1 * ones(10,1)

0.2 * ones(20,1)

0.15 * ones(20,1)

0.25 * ones(10,1)

0.05 * ones(20,1)

0.20 * ones(20,1)];

for k = 2:99

e(k) = ys - P(2) * x(k);

u_W(k) = u_W(k-1) + P(3) * ((1 + dt/P(4)) * e(k) - e(k-1));

x(k+1) = x(k) + P(1) * u_W(k) - u(k);

end

y = P(2)*x;

plot([u, y, ys*ones(100,1)])

legend(’input’,’level’,’setpoint’)

s = num2str(P’);

title([’Tank level history -- parameters (flow const, controller gain, geometry) : ’

xlabel(’time’)

ylabel(’normed level’)

2012-09-28 page 8

Results

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

no
rm

ed
 le

ve
l

Tank level history −− parameters (flow const, controller gain, geometry) : 0.4 0.8 2 0.4

input
level
setpoint

2012-09-28 page 9

A python program

#!/usr/bin/env python

-*- coding: utf-8 -*-

"""

@summary: Simulates a simple tank with PI control

@author: Preisig, H A

@copyright: Preisig, H A

@organization: Department of Chemical Engineering, NTNU, Norway

@contact: heinz.preisig@chemeng.ntnu.no

@license: GPLv3

@requires: Python 2.7.1 or higher

@since: 2012.10.05

@version: 1.0

@todo 2.0:

@change: 2012.10.08

"""

def matnums(val, cols):

return [val for i in range(0,cols)]

def matfunc(f=’dynamics_02.dat’, debug = False):

txtfile = open(f,’w’)

Parameters

Flow constant, geometry,controller gain, controller integral const

P = [0.4, 0.8, 2, 0.4]

range_k = range(0,100)

dt = 1.0

Initial condition

x = [0.5, 0.45]

ys = 0.7

y = [P[1] * x[0], P[1] * x[1]]

u_W = [0]

e = [ys-y[0]]

u = matnums(0.1, 10) + matnums(0.2, 20) + matnums(0.15, 20) + \

matnums(0.25, 10) + matnums(0.05, 20) + matnums(0.2, 20)

for k in range_k[1:-1]:

e.append(ys - P[1] * x[k])

u_W.append(u_W[-1] + P[2] * ((1+dt/P[3]) * e[k] - e[k-1]))

x.append(x[-1] + P[0] * u_W[k] - u[k])

y.append(P[1]*x[-1])

if debug:

print str(u[k]) + ’, ’ + str(y[k]) + ’, ’ + str(ys)

2012-09-28 page 10

else:

print>>txtfile, (k+1), str(u[k]), str(y[k]), str(ys)

if not debug: print ’Data written to file :’, f

txtfile.close()

return (range_k, \

[x[i] for i in range_k], \

[y[i] for i in range_k], \

ys, \

[u[i] for i in range_k], \

P \

)

if __name__ == ’__main__’:

matfunc(debug=False)

Launcher

#!/usr/bin/env python

-*- coding: utf-8 -*-

"""

@summary: launches the dynamics_02 simulation and plots results

@author: Preisig, H A

@copyright: Preisig, H A

@organization: Department of Chemical Engineering, NTNU, Norway

@contact: heinz.preisig@chemeng.ntnu.no

@license: GPLv3

@requires: Python 2.7.1 or higher

@since: 2012.10.05

@version: 1.0

@todo 2.0:

@change: 2012.10.08

"""

from dynamics_02 import matfunc

from gnuplot import gnuplot

import os

#files, extensions and title template

d = ’dynamics_02’

ext = ’.dat’

title = ’Tank level with parameters: %s’

2012-09-28 page 11

(k, x, y, ys, u, P) = matfunc()

p = gnuplot(title=title%P, xmin=0, xmax=100, ymin=0.0, ymax = 1.0)

p.add(d+ext, x=1, y=2, width=2, color=’red’,title=’mass’)

p.add(d+ext, x=1, y=3, width=2, color=’blue’, title =’level’)

p.add(d+ext, x=1, y=4, width=2, color=’green’, title = ’setpoint’)

p.plot(d)

try: os.remove(d+ext)

except: pass

try: os.remove(d+’.pyc’)

except: pass

try: os.remove(’gnuplot.pyc’)

except: pass

GnuPlot wrapper

#!/usr/bin/env python

-*- coding: utf-8 -*-

"""

@summary: Wrapper for gnu plot

@author: Eivind Haug-Warberg

@copyright: Tore Haug-Warberg

@organization: Department of Chemical Engineering, NTNU, Norway

@contact: haugwarb@nt.ntnu.no

@license: GPLv3

@requires: Python 2.7.1 or higher

@since: 2012.09.12 (EHW)

@version: 1.0

@todo 2.0:

@change: 2012.09.27

"""

import os

import string

import time

import subprocess

import re

This is a template for the plot ${keyword} will be replaced.

TEMPLATE = \

’’’

#!/sw/bin/gnuplot -persist

set terminal postscript \\

2012-09-28 page 12

eps noenhanced monochrome\\

dashed defaultplex \"${textfont}\" ${textsize}

set output \"${filename}.eps\"

set title \"${title}\"

set size ${xsize},${ysize}

set xlabel \"${xlabel}\"

set ylabel \"${ylabel}\"

set xrange [${xmin}:${xmax}]

set yrange [${ymin}:${ymax}]

set mxtics ${xtics}

set mytics ${ytics}

set samples ${samples}

set key font \",${keytextsize}\" spacing ${keylinespace} \\

${keyboxposition} ${keyshow}

set multiplot

’’’

This is the plot template for a graph.

ADDGRAPH = \

’’’

set key at 0,${ykeybox}

plot ${plotobject} ${title} with ${style} linetype ${type} \\

linewidth ${width} linecolor rgb \"${color}\"

’’’

ADDLIST = \

’’’

set key at 10,${ykeybox}

plot \’-\’ using ${columns} ${title} with ${style} linetype ${type}\\

linewidth ${width} linecolor rgb \"${color}\"

’’’

Default input for gnuplot initalization.

KWARGS = {’title’: ’GNUplot created: %s’%time.asctime(), ’samples’: 3000, \

’xsize’: 1, ’xlabel’: ’x’, ’xmin’: -1, ’xmax’: 1, ’xtics’: 1, \

’ysize’: 1, ’ylabel’: ’f(x)’, ’ymin’: -1, ’ymax’: 1, ’ytics’: 1, \

’textfont’: ’Helvetica’, ’textsize’: 18, ’keytextsize’: 10, \

’keylinespace’: 0.6, ’keyboxposition’: ’right’, ’keyshow’: ’nobox’ \

}

class gnuplot():

CALLED WHEN A PLOT IS INITALIZED.

2012-09-28 page 13

def __init__(self, filename=’’, **kwargs):

kw = {} # Creates a new dictionary to store input.

kw.update(KWARGS) # Put the default input into the new dictionary.

kw.update(kwargs) # Updates the default input with input fron user.

This block will add an unformated, commented out python template on the

top of the plot template. Has no other function than documentation.

self.template = ’#’*80 + ’\n# Template for the gnuplot class\n’ + ’#’*80

for line in re.split(r’\n’,TEMPLATE): self.template += ’\n# %s’%line

Format the python template, and add it to our gnuplot template.

self.template += string.Template(TEMPLATE).safe_substitute(kw)

CALLED WHEN A PLOT IS ADDED.

def add(self, plotobject, x=1, y=2, error=False, ykeybox = False, \

title =’notitle’, **kwargs):

if os.path.isfile(plotobject): # Tests if the input object is a file.

if error: # "error" is the third data row when you plot error bars.

error = ’:%s’%error # Add a colon in the beginnin of the error string.

Creates a dictionary for the defaul error plot layout.

kw = {’style’: ’yerrorbars’, ’type’: 1, ’width’: 1}

If "error" has no value, you’re doing a normal plot. we’ll set error

to be an empty string, to generalize the code later, create a

dictionary for default the "y-to-x-plot" layout.

else: error, kw = ’’, {’style’: ’lines’, ’type’: 1, ’width’: 2}

If title is set to auto, generate a automaic title.

if title == ’auto’:

title = ’Datafile: %s (%s:%s%s)’ % (plotobject, x, y, error)

Make a gnuplot formated string for doing a plot from file.

plotobject = ’\"%s\" using %s:%s%s’ % (plotobject, x, y,error)

else:

This block is executed when you don’t plot from files, in other words,

when you plot from a mathematical function. Generate an automatic

title, just like on line 78, and create a dictionary for the default

function layout.

if title == ’auto’: title = ’Function: %s’%plotobject

kw = {’style’: ’lines’, ’type’: 1, ’width’: 1}

kw.update({’color’: ’black’}) # All plots are black by default.

kw.update(kwargs) # Add the input to the default layout dictionary.

If you’re plotting something as with points, you may want to configurate

the point look too.

if re.match(r’.*points’,kw[’style’]):

kw[’style’] += ’ pointtype %s pointsize %s’ % (kw.get(’pointtype’,1), \

2012-09-28 page 14

kw.get(’pointsize’,1))

If a title was given, format it right, so the legend ca nbe added.

if title != ’notitle’: title = ’title \"%s\"’%title

Read the last line in the gnuplot template. If there is only white

spaces in it, it can for sure not say "plot" there. A new plot must be

started. If there was not only white spaces on the last line, a plot

has been started earlier, you can continue adding graphs to this plot

by using commas.

#if re.match(r’^\s*$’,re.split(r’\n’,self.template)[-1]):

self.template += ’plot ’

#else: self.template += ’, \\\n \\\n ’

if not ykeybox:

plots = 0

lines = re.split(r’\n’,self.template)

for line in lines:

if re.match(’^set\s*key\s*at.*$’,line): plots += 1

print plots

ykeybox = 0.95 - plots * 0.07

Update kw with all the local variables in this namespace, and format the

python template to a gnuplot template, and add the the plot template to

the main template.

kw.update(locals())

self.template += string.Template(ADDGRAPH).safe_substitute(kw)

CALLED WHEN PLOT FROM LIST IS ADDED

def addlist(self, x, y=False, error=False, title=’notitle’, **kwargs):

if not y: y, x = x, range (1, len(x) + 1)

if error:

columns = ’1:2:3’

kw = {’style’: ’yerrorbars’, ’type’: 1, ’width’: 1, ’color’: ’black’}

error += [’e’]

print 1

else:

columns = ’1:2’

kw = {’style’: ’lines’, ’type’: 1, ’width’: 2, ’color’: ’black’}

error = [’’ for i in range(len(x)+1)]

kw.update(kwargs)

if title != ’notitle’: title = ’title \"%s\"’%title

kw.update(locals())

2012-09-28 page 15

if re.match(r’.*points’,kw[’style’]):

kw[’style’] += ’ pointtype %s pointsize %s’ % (kw.get(’pointtype’,1), \

kw.get(’pointsize’,1))

#if re.match(r’^\s*$’,re.split(r’\n’,self.template)[-1]):

self.template += ’plot ’

#else: self.template += ’, \\\n \\\n ’

self.template += string.Template(ADDLIST).substitute(kw)

x.append(’e’); y.append(’e’)

for i in range(0,len(x)):

self.template += ’\n %s %s %s’ % (x[i], y[i], error[i])

self.template += ’\n’

CALLED WHEN PLOT IS CREATED

def plot(self,filename, clean=False):

In order to do a plot with direct input (not from file), do you need to

start a gnuplot process and then enter the plotting commands. If we do

this by using os.system(), this program will pause until the plotting

process is finished, and then enter the plotting commands in the

terminal, not in gnuplot. What we need to do is to make a subprocess,

and give our input to that process, instead of the terminal.

plot = subprocess.Popen([’gnuplot’], stdin=subprocess.PIPE)

plot.communicate(string.Template(self.template).safe_substitute({’filename’: filename}))

ps2pdf is not installed by default, so catch the possible error.

try: os.system(’ps2pdf %s.eps’ %filename)

except: print ’Can not convert %s.ps to PDF by using ps2pdf.’ % filename

#if clean: os.remove(’%s.ps’ % filename) # Remove the .ps file if you want.

CALLED WHEN PLOT IS SAVED

def save(self,filename,output = False):

with open(filename, ’w’) as template: # Open the given file.

if output: template.write(string.Template(self.template \

).safe_substitute({’filename’: output}))

else: template.write(self.template)

CALLED WHEN PLOT IS LOADED

def load(self,filename, clean = False):

with open(filename, ’r’) as template: # Open the given file in read mode.

self.template = template.read() # Read the text that it contains.

if clean: os.remove(filename) # Remove the template file if you want.

2012-09-28 page 16

2012-09-28 page 17

Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

f(
x)

x

Tank level with parameters: [0.4, 0.8, 2, 0.4]

mass
level

setpoint

2012-09-28 page 18

4 Solution: Linear Algebra 02

A :=




2 2 −4 3 8 1
3 1 −2 1 2 2
2 1 3 0 −3 1




The matrix is converted to the row echelon form via the row operations below

R1 −
2

3
R2 → R2

R1 − R3 → R3

So,

A :=




2 2 −4 3 8 1
0 4

3
−8
3

7
3

20
3

−1
3

0 1 −7 3 11 0




The second element in Row three is removed by

R2 −
4

3
R3 → R3

A :=




2 2 −4 3 8 1
0 4

3
−8
3

7
3

20
3

−1
3

0 0 20
3

−5
3

−8 −1
3




Now we start with the upper triangular part

R2 −
2

3
R1 → R1

A :=




−4
3

0 0 1
3

4
3

−1
0 4

3
−8
3

7
3

20
3

−1
3

0 0 20
3

−5
3

−8 −1
3




R3 +
20

8
R2 → R2

A :=




−4
3

0 0 1
3

4
3

−1
0 10

3
0 25

6
26
3

−7
6

0 0 20
3

−5
3

−8 −1
3




2012-09-27 page 19

We should have identity matrix in the left. So, each row is divided by the values in the
diagonal of the reduced matrix.

A :=




1 0 0 −1
4

−1 3
4

0 1 0 5
4

26
10

−7
20

0 0 1 −1
4

−6
5

−1
20




So,

N(A) :=




1
4

1 −3
4−5

4
−26
10

7
20

1
4

6
5

1
20

1 0 0
0 1 0
0 0 1




B :=




1 3 −3
−3 7 −3
−6 6 −2




For every matrix B ∈ Rm×n, we have

rank(B) + dim(N(B)) = n

Since B is full rank, the null space of B is empty. This means that there is no degrees of
freedom and there is a unique solution.

C :=




10 2 8
2 1 1
4 7 −3




The Upper triangular matrix which is derived from C is

C :=




10 2 8
0 −3 3
0 0 0




As it is seen, there is no pivot in the third column. Looking at C, it is noted that the
third column is actually a linear combination of the first two columns.

Col 3 = Col 1− Col 2

2012-09-27 page 20

We can for example choose
[
1 −1 −1

]
as a solution to null space. Note that all linear

combinations of solutions to the null space are also solutions to the null space. The null
space of E is a matrix of size 1 × 1 and could be any number. The matrix F does not
have any null space, since it is invertible.

2012-09-27 page 21

Root solvers (TKP4106)

Zooball/Elephant

Reasons computers are female

No one but their creator understands their internal logic.
The native language they use to communicate with other computers is incomprehensible to everyone
else.
Even your smallest mistakes are stored in long-term memory for later retrieval.
As soon as you make a commitment to one, you find yourself spending half your paycheck on
accessories for it.

Computers are female

Assignments

1. Write a procedure sqrt for solving x=sqrt(y) using Newton-Raphson
iteration. Variable y is supposed to be a known number taken in from the
command line and you are asked to find x. Note: You cannot iterate on x-
sqrt(y)=0 directly because this problem already requires sqrt() which
is an unknown function (without importing the math module in Python).
Rather, you should consider iterating on x**2-y=0. Use the stub program
sqrt.py as template.

2. Play around with sqrt() and see if you can trick it somehow. Make it
diverge in other words.

3. Write a procedure pv for solving pv(p,t,v,ntot)=0 using Newton-
Raphson iteration. Variables p, t, v and ntot are supposed to be known
numbers taken in from the command line. However, v is a starting value
only and will change during the iteration. Note: You must avoid unphysical
solutions. That is to say negative volumes. Use the stub program pv.py as
template.

4. Play around with pv() and learn more about Newton-Raphson iteration
sequences. Run it a couple of thousand times at different starting values to
see how stable it is. Observe that the iteration method is of 2nd order. I.e.
that it doubles the significant digits in every iteration (at some point in the
iteration history).

Start reading about The energy balance to get into the thinking of physical

Start reading about The energy balance to get into the thinking of physical
problem formulations, equations of state and numerical solvers.

Most of the time we will be using Newton-Raphson iteration in this course for
solving non-linear equations, but there is something called recursive iteration
(using the Banach fix-point theorem) which can be very efficient. Perhaps you
know this type of iteration as 'direct substitution'. It is worth while looking at - now
that we know a little Python.

1. Write a recursive procedure for iterating x_k+1 = x_k**2 starting at x_0
< 1.

Have a look at for_lc_rc.py for some compelling thoughts on how this iteration
can be achieved.

%Predefined.

HTML text.

5.13.1 Verbatim: “sqrt.py”

1 """
2 @summary: Calculate the square root of any set of positive numbers using
3 Newton-Raphson iteration on::
4

5 x*x - y = 0
6

7 where y is the given number. In the implementation below y and x
8 are not plain numbers but lists of numbers.
9 @author: Tore Haug-Warberg

10 @organization: Department of Chemical Engineering, NTNU, Norway
11 @contact: haugwarb@nt.ntnu.no
12 @license: GPLv3
13 @requires: Python 2.3.5 or higher
14 @since: 2011.10.13 (THW)
15 @version: 1.0
16 @todo 2.0: nothing
17 @change: started (2011.10.13)
18 @note: On a Unix terminal you can use the script like this:
19

20 >>> python sqrt.py
21 >>> python sqrt.py <y1> <y2> <...>
22

23 y1 = aNumber
24 y2 = aNumber
25 ... = aNumber
26

27 """
28

29 def sqrt(y, x, debug=False, norm=1e999):
30

31 if debug:
32 print x
33

34 dy = pass # calc max(abs(residual))
35

36 if dy < 1.0e-8 and dy >= norm: # iterate till the bitter end
37 return x
38

39 else:
40 return pass # sqrt(y, x_k+1, debug, dy)
41

42 # Test the code. Feed it pretty bad starting values...
43 #
44 if __name__ == ’__main__’:
45

46 import sqrt
47 import sys
48

49 # User problem.
50 if len(sys.argv) > 1:
51 y1 = [float(yi) for yi in sys.argv[1:]]
52 x0 = y1
53 debug = False
54

55 # Default problem.
56 else:
57 y1 = [2, 3, 4]
58 x0 = [1.0e-10, 1, 1.0e10]
59 debug = True
60

61 print sqrt.sqrt(y1, x0, debug)

242

5.13.2 Verbatim: “pv.py”

1 """
2 @summary: Solve p^{ig}(v) = p1 using Newton-Raphson iteration.
3 Step size is controlled in order to avoid v < 0.
4 @author: Tore Haug-Warberg
5 @organization: Department of Chemical Engineering, NTNU, Norway
6 @contact: haugwarb@nt.ntnu.no
7 @license: GPLv3
8 @requires: Python 2.3.5 or higher
9 @since: 2011.10.13 (THW)

10 @version: 0.9
11 @todo 1.0:
12 @change: started (2011.10.13)
13 @note: On a Unix terminal you can use the script like this:
14

15 >>> python pv.py
16 >>> python pv.py <p1> <t> <v0> <ntot>
17

18 p1 = pressure [kbar]
19 t = temperature [kK]
20 v0 = initial volume [dm3]
21 ntot = total number of moles [mol]
22

23 """
24

25 def pv(p1, t=0.29815, v0=1.0, ntot=1.0, debug=False):
26

27 converged = False # convergence flag
28 norm = 1.0 # convergence control variable
29 eps = 1.0e-8 # convergence tolerance
30 v = v0 # start volume
31 r = 0.083145119843087 # gas constant [10^5 J mol^{-1} kK^{-1}]
32

33 # Solve p(v) = p1 using Newton’s method.
34 while not converged:
35 dpdv = pass # Jacobian
36 dp = pass # pressure residual
37 dv = pass # volume change
38 converged = abs(dv) < eps and abs(dv) >= norm # decreasing norm?
39 norm = abs(dv) # new norm
40

41 # The model fails if ’v’ becomes negative volume. Shorten the iteration
42 # step till the updated volume is positive. Raise an exception if the
43 # step becomes too small.
44 while v+dv < 0.0:
45 if abs(dv) < eps:
46 raise SyntaxError("cannot converge p(v) = p1 relation")
47 pass # reduce the step length (heuristic rule)
48 pass # update volume
49 if debug:
50 print "norm=%8.3g; v=%16.15g;" % (norm, v)
51

52 return v
53

54 # Test the code.
55 #
56 if __name__ == ’__main__’:
57

58 import pv
59 import sys
60

61 # User problem.
62 if len(sys.argv) == 5:
63 p1 = float(sys.argv[1])
64 t = float(sys.argv[2])
65 v0 = float(sys.argv[3])
66 ntot = float(sys.argv[4])
67 debug = False
68

69 # Default problem.

243

70 else:
71 p1 = 0.2 # given pressure [kbar]
72 t = 0.8 # temperature [kK]
73 v0 = 1.0 # initial volume [dm3]
74 ntot = 13.0 # total mole number [mol]
75 debug = True
76

77 print ’\nInput:’
78 print ’p1=%8.6f; T=%8.6f; V0=%8.6f; Ntot=%8.6f\n’ % (p1, t, v0, ntot)
79 print ’\nOutput:\nV1=%8.6f\n’ % (pv.pv(p1, t, v0, ntot, debug),)

244

Plug Flow Reactor. Part II

Tore Haug-Warberg
Department of Chemical Engineering

NTNU (Norway)

16 October 2011
(completed after 120 hours of writing, programming and testing)

1 The energy balance

(U̇ + pV̇)ın (U̇ + pV̇)out

Q̇

C

z z +∆z

U(t, z,∆z)

The derivation of a rigorous
energy balance for any real-life sys-
tem, of which the idealized Plug
Flow Reactor (PFR) is one sim-
ple example, demands a tour de
continuum mécanique which defi-
nitely is beyond the scope of this
little text. But, we cannot ignore

the energy balance alltogether so we must somehow pick up a model description that is
mathematically succinct and at the same time physically correct. The following deriva-
tion is a humble attempt to reach a reasonably clear disposition of the subject.

Let U(t, z,∆z) be the internal energy of a control volume with one inlet and one
outlet. The material flow into the control volume, and out from it, is assumed to
be perpendicular to the control surfaces which are situated at z and z + ∆z. This
simplification reduces the traditional inner product of the surface normal (vector) and
the (vectorial) flows of heat, displacement work, and energy, into their scalar counterparts
called Q̇, pV̇ and U̇ . Note that we shall only consider the flow of internal energy U̇ while
in the general case we might need to include terms for potential energy, kinetic energy,
surface energy, electromagnetic energy and so forth. But, because the picture becomes
immensely complicated when every possible term is included, it is important to simplify
the model as much as possible without loosing the grip of reality. According to the
aforementioned simplifications and the principle of energy conservation we shall write

U(t, z,∆z) = U◦ +

t∫

0

(
U̇ + pV̇

)
z
dτ −

t∫

0

(
U̇ + pV̇

)
z+∆z

dτ +

t∫

0

(Q̇− Ẇs) dτ

where Ẇs is the mechanical “shaft” work applied to the reactor. Normally it is close to
zero. Subscripts z and z+∆z are used to denote physical properties that are calculated

1

at these two spatial positions. This is not to say that U̇ and pV̇ are functions of z per
se. They have co-ordinates of their own which in a way are defined at every point in
space and time. This subtlety is discussed further down the text.

In the current context we may put the integration constant U◦ to zero. It implies
that a material system with zero mass has zero energy. This is an important thermo-
dynamic consideration which is true for all chemical systems in the absence of strong
electromagnetic radiation.

The symbols Q̇, V̇ and U̇ stand for the transported heat, volume and energy (per
unit time) and has nothing to do with the derivative of a mathematical function, say F ,
which is defined like:

(
∂F

∂t

)
=̂ lim

∆t→0

(
F (t+∆t)− F (t)

∆t

)

x1,x2,···

This means we need to distinguish clearly between the transportation Ḟ and the time
derivative (∂F/∂t). The scientific units are the same but their interpretations are entirely
different1. In other papers you may find F̂ being used rather than the dotted form favored
here. The meaning is the same though.

To continue, U and U from which U̇ is derived look quite similar, but they do actually
measure two different aspects of internal energy. U is a mathematical construction
(we may call it a functional) which has no simple physical description, while U is a
thermodynamic state function U(S, V,N1, N2, · · ·) which by definition is independent of
time. That is to say U(x, t1, z1) = U(x, t2, z2) = . . . for fixed values of entropy, volume
and mole numbers (collected into one vector x). To be a state function U must represent
the energy of an isotropic system in equilibrium with respect to certain restricted changes
in the state variables S, V , N1, N2, etc. (the definition of state variables is made broader
later in this text). Hence, it is generally true that (∂U/∂t) = 0 while (∂U/∂t) 6= 0. To
proceed, we introduce from thermodynamic theory that H =̂ U + pV . This definition
also works for the transported enthalpy:

Ḣ =̂ U̇ + pV̇ (1)

1Formal arguments can be raised against this conjecture. Consider a functional F that describes the
amount of energy, mass or any other extensive property that has passed the control surface at z over
the time period [0, t]. Then

F(t, z) =

t∫

0

Aḟ dτ

where ḟ is the flux (amount per unit area and time) of F , and A is the cross-sectional area of the
transport. The time derivative of F is

(
∂F
∂t

)

z

= Aḟ =̂ Ḟ

So, in a sense Ḟ is really a partial derivative, but it must be understood that F has no explicit (and time
independent) function expression like e.g. the thermodynamic and kinetic models we are using. Most
students have problems in understanding the fundamental difference between dF/dt and (∂F/∂t) and I
therefore hesitate in calling Ḟ a derivative because it will bring even more confusion into the subject.

2

It works because p (the pressure) is an intensive state variable which is independent of
the magnitude of the volume flow. At the same time we want to integrate the total heat
flux over the external surface of the reactor section

Q̇ =

z+∆z∫

z

Cq̇ dζ , (2)

where C is the circumference of the reactor and q̇ is the heat flux (per unit time and
surface area). Note that dζ rather than dz is acting as an integrator for q̇. We use
this convention (Greek integrator—Latin variable) to make sure we do not mix up the
integrator symbol with the symbol of either the upper or the lower limit of the integral2.
This makes the integral a function of z while ζ is consumed during the integration.

It is customary to neglect the heat flow in the axial direction which is why the
integral is carried out over the outer surface only. However, strictly speaking there is
an order-of-magnitude analysis missing here but this is left as an exercise for the reader.
The internal energy of the control volume is then:

U(t, z,∆z) =

t∫

0

(
Ḣz − Ḣz+∆z

)
dτ +

t∫

0

z+∆z∫

z

Cq̇ dζ dτ

This states the energy balance of a simple plug flow reactor. On the form given it is
particularly useful for testing and verifying the accuracy of numerical integrators used
in dynamic simulation studies, but this is not our goal. We shall proceed instead by
calculating the partial derivative U at a fixed spatial position z with respect to time:

(
∂U
∂t

)

z,∆z

= Ḣz − Ḣz+∆z +

z+∆z∫

z

Cq̇ dζ (3)

On the current form Eq. 3 leads to a partial differential equation (PDE) in time and space
which is considered to be a hard numerical task. But, there are relevant simplifications.
In particular we shall study the behaviour of closed systems without throughput of mass
and steady state (time independent) systems.

1.1 First law of thermodynamics

A special form of the energy balance applies to closed systems. Here, closed means
Ḣz = Ḣz+∆z = 0. This appears to be outside the scope of our PFR model but it is
still in reach of the thermodynamic formalism. In a system of this kind energy changes

2Dealing mostly with closed and definite integrals we may not even realise the problem, but as we move
on to indefinite integrals (antiderivatives) the symbol clash becomes very noticeable. In thermodynamics
we define for example the residual function Gr,p(p) =̂

∫ p

0
(V (π)− V ıg(π)) dπ where π is an integrator (over

pressure) and p is the system pressure. The convolution integral F (t) =
∫ t

0
ϕ(τ)ψ(t− τ) dτ used in signal

theory is another example. The mutual roles of τ and t must here be sorted out beforehand.

3

solely because heat is expelled to, or brought in from, the environment. For the change
of U we can then write:

(dU)c-s =
z+∆z∫

z

Cq̇ dζ dt

Backsubstitution of Q̇ from Eq. 2 yields the simpler form: dU = Q̇ dt. A similar argument
holds also for any kind of external work even though it by coincidence has been excluded
in Eq. 3. The reason is that the PFR model is not subject to any volume change nor is it
equipped with a mechanical stirrer. If we had decided to include external work (positive
when work is delivered by the system) the energy equation would have been extended
to dU = Q̇ dt− Ẇ dt.

Taken a bit further it customary to say that Q̇ dt = δQ and Ẇ dt = δW where δQ
and δW stand for the non-exact differentials of Q and W . Non-exact means that U does
not depend on Q and W in a definite way. I.e. there exists no function U(Q,W) such
that when Q and W are given then U is also given. This should be quite intuitive all the
time U is the energy of a material system where the masses of the chemical constituents
must also play a role.

In fact, Q and W are path dependent functions of the thermodynamic state, and also
of the spatial co-ordinates and of time. They are not state functions in any way and they
do not constitute a part of the system. Rather, they express the transportation of energy
across the system border. Inside the system, however, heat and work can only be stored
as internal energy. There are in other words no “heat content” or “energy content”
of the system, only the ability to exchange heat and work with the environment. We
therefore talk about “heat potential” and “work potential” to stress the fact that energy
(the thermodynamic potential) has to be converted back and forth between heat and
work all the time.

Finally, before we leave the discussion of the closed system we shall make a precise
interpretation of U and U . It has already been stated that U is a constructed energy
function—a functional—that serves the need of an accumulation term in the energy
equation. From the discussion given above it is clear that U does not change in a closed
system unless there is heat or work exchange with the environment. If there are no
interactions of any kind, then all experiments made over the past 200 years indicate that
U gradually becomes undistinguishable from U . That is:

Ueq =̂ lim
t→∞

U → U

The two functions U and U are identical whenever their function values are the same
over the entire definition domain3. In this case U is constant throughout the experiment
so how can it then become gradually undistinguishable from U? The experiment tells
us that U does not change in a closed system over time. Our postulate says that U
is identical to U when all internal agitation and transients have died out. Before that
the measurements of any intensive variables like temperature, pressure and chemical

3E.g. the two functions f(x) = cos2(x)+ sin2(x) and g(x) = 1 are mathematically identical for x ∈ R.

4

potentials give unreliable readings even though the function values are the same at
any time. It is only then all the readings are stable we can say that U ≡ U in the
mathematical understanding of the statement. We call this the equilibrium state of the
system. It has an incredible simple representation in the sense that only n+2macroscopic
variables are needed in order to establish the value of U(S, V,N1, N2, · · · , Nn). From a
microscopic point of view this is really incredible because there are 6NA

∑
i Ni mechanical

degrees of freedom when all the particles in the system are considered as a Newtonian
universe. Thermodynamic systems are much simpler, however, because experimentally
only the statistically most relevant state is being observed, and since thermodynamics is
a phenomenological science the observations and theory go hand in hand. This means
we can write the energy balance of a closed system as

(dU)c-s = δQ− δW

which is precisely the first law of thermodynamics. The energy balance in Eq. 3 fulfills
in other words the requirements of the first law of thermodynamics albeit in disguise.
It must be understood, however, that the usability of U = Ueq hinges on the fact that
the relaxation time of the equilibrium process must be smaller than the time scale of
the simulation. This may, or may not, be the case, but for the present purpose we shall
assume that U has the meaning of U ; at least locally for each point in space—if not for
the entire system.

1.2 Steady state solution

Eq. 3 has another special meaning whenever the physical situation is such that it allows
the left hand side to be put to zero. It is the celebrated steady state which reduces the
differential equation to a time-independent algebraic equation on the form:

(Ḣz+∆z − Ḣz)
s-s =

z+∆z∫

z

Cq̇ dζ

Despite its simple form the last equation has a wide range of applicability. It is valid for
any type of fluid flow, inviscid or not, gas or liquid, one-phase or multi-phase, and with
or without chemical reactions.

Just like the displacement work in Eq. 1 was factored into pV̇ , the transported
enthalpy can be factored into the transported mass and a term called the specific enthalpy
h:

Ḣ = hṀ

The inherent scaling properties, namely that Ẇ = pV̇ and Ḣ = hṀ , are deeply rooted in
thermodynamic theory and are examples of the so-called Euler homogeneous functions.
The energy balance is then reduced to:

(hṀ)z+∆z − (hṀ)z =

z+∆z∫

z

Cq̇ dζ

5

From the mass conservation principle we know that (for steady-state flow):

Ṁz+∆z − Ṁz = 0

Division by Ṁz+∆z = Ṁz =̂ Ṁ on both sides of the equation yields:

hz+∆z − hz =

z+∆z∫

z

C
q̇

Ṁ
dζ

In the limit of ∆z → 0 we get:

lim
∆z→0

(hz+∆z − hz) = C
q̇

Ṁ
∆z

or rearranged:

lim
∆z→0

hz+∆z − hz
∆z

= C
q̇

Ṁ

We immediately recognize the left hand side as the partial derivative of h with respect to
z. On the right hand side we can make the definition q =̂ q̇/Ṁ standing for the specific
heat load (energy per unit mass and area). The energy balance for a steady state reactor
with only internal energy flow is then:

(
∂h

∂z

)s-s

= Cq

The anti-derivative of the energy balance defines the so-called enthalpy equation (please
note the integral on the right side is zero for an adiabatic reactor without external heat
load):

h(z) = h(0) +

z∫

0

C(ζ)q(ζ) dζ

At this point we need to worry about the mathematical notation we are using. The
operations are formally correct up to the point where ∆z → 0, but here it stops. At
some finite value of ∆z it becomes smaller than the resolution of the measurement. Or, it
may in fact become smaller than the effective size of the molecules comprising the system
and on this tiny scale h looses its meaning since it requires a big number of colliding
molecules to establish a thermodynamic state variable. Hence, the derivative (∂h/∂z)
does not exist in proper. It is only the finite difference hz+∆z − hz that is physically
measureable, and then only if ∆z is sufficiently large. This is not a practical problem
in most cases, but for e.g. high-vacuum systems we must take precautions because the
distance covered between two successive collisions of the molecules can be of the order
millimeters or even centimeters.

Our second worry is that h is not a function of the spatial co-ordinate z. It is in fact
a function of the state variables T , v =̂ V/M , c1 =̂ N1/M , c2 =̂ N2/M , etc. when any
of the modern pressure explicit equations of state are being used in the modelling (most

6

of them are descendants of the Van der Waals equation of state from 1873). Hence,
(∂h/∂z) does not exist other than as a formal expression, but from differential calculus
we know that dh/dz takes the same numerical value as (∂h/∂z) when all the degrees of
freedom except one (i.e. z) are locked. However, the total differential of h is

dh =

(
∂h

∂T

)

v,c1,c2,···
dT +

(
∂h

∂v

)

T,c1,c2,···
dv

+

(
∂h

∂c1

)

T,v,c2,c3,···
dc1 +

(
∂h

∂c2

)

T,v,c1,c3,···
dc2 + · · ·

or given a more compact form:

dh = ∂Th · dT + ∂vh · dv + ∂c1h · dc1 + ∂c2h · dc2 + · · ·
Inventing a new notation “over the night” is not something I usually recommend, but
we will run out of paper pretty soon unless we do something about the partial deriva-
tives flourishing all over the place. Dividing by dz (which is an algebraic quantity
remember—and by the way quite different from ∂z which is an operator) gives the dif-
ferential quotient:
(
dh

dz

)
=

(
∂h

∂T

)

v,c1,c2,···

(
dT

dz

)
+

(
∂h

∂v

)

T,c1,c2,···

(
dv

dz

)

+

(
∂h

∂c1

)

T,v,c2,c3,···

(
dc1
dz

)
+

(
∂h

∂c2

)

T,v,c1,c3,···

(
dc2
dz

)
+ · · ·

or, using our shorter notation:

∇h = ∂Th · ∇T + ∂vh · ∇v + ∂c1h · ∇c1 + ∂c2h · ∇c2 + · · ·
This is precisely the expression we are looking for. The crux of the matter is that ∇h
takes the same numerical value as (∂h/∂z), but to carry on we need to first solve an
equation system that settles the values of ∇T , ∇v, ∇c1, ∇c2, etc. This is done by
simultaneously solving the energy, momentum and mass balances at the inlet of the
reactor and integrating the solution variables along the spatial co-ordinate z. The how’s
and why’s are fully explained in Part III of this paper entitled Modelling Issues. The
implicitness of the conservation statement is so fundamental to the thermodynamisist,
however, that it is really deserves an introductory example. The internal workings of
the so-called Jacobian transformation is explained below.

1.3 Calculation example

Doing matrix algebra by hand is hard work but there is no other way we can get an
understanding of how the linearization really works. So, to gain the insight we shall
practise on a minimalistic 2× 2 example. Assume a problem on the form:

H ıg(T, V) =̂ C ıg
P T = H◦

pıg(T, V) =̂
NRT

V
= p◦

7

where N is constant, and H◦ and p◦ are conserved quantities. Let x =̂ (T V) and
y =̂ (H p). To solve y(x) = y◦ we first linearize y(x) and then attempt to solve the
equations iteratively using the Newton–Raphson method:

yk +

(
∂y

∂xT

)

k

(xk+1 − xk) = y◦

Rearrangment gives:
xk+1 = xk − J-1

k (yk − y◦)

where

Jk =̂

(
∂y

∂xT

)

k

=




(
∂H

∂T

)

V

(
∂H

∂V

)

T(
∂p

∂T

)

V

(
∂p

∂V

)

T




k

so that:

J-1
k =

(
C ıg
P 0

NR
V −NRT

V 2

)-1

k

=
−1

C ıg
P

NRT
V 2

(
−NRT

V 2 0

−NR
V C ıg

P

)

k

=




1
C ıg
P

0

V
C ıg
P
T

−V 2

NRT




k

The remaining algebra is straightforward:

(
T

V

)

k+1

=

(
T

V

)

k

−




1
C ıg
P

0

V
C ıg
P
T

−V 2

NRT




k



(

C ıg
P T

NRT
V

)

k

−
(

H

p

)

◦




Iteration example: H◦ = 104 J, p◦ = 106 Pa,N = 1mol, C ıg
P = 5

2R, R = 8.3145 J mol-1K-1:

k T [K] V [m3]

0 298.15 0.001
1 481.087257201275 0.00221018092537634
2 481.087257201275 0.00319913692002833
3 481.087257201275 0.00383965458178457
4 481.087257201275 0.00399357233671433
6 481.087257201275 0.00399998967128617
7 481.087257201275 0.00399999999997333
8 481.087257201275 0.004

The Newton–Raphson iteration is a so-called second order method. One characteristic
feature is that the number of significant digits will double in each iteration sufficiently
close to the solution (iteration 3 onward). Verify this behaviour. From the table it is
also clear that T converges in one step whilst V requires 8 iterations. Give a reason for
this observation4. Finally, it should be mentioned that the Newton–Raphson method is
sensitive to the starting values. E.g. try to start the iteration at V = 0.01 rather than
V = 0.001. Suggest a possible fix to the algorithm in this case5.

4 V. and T both in linear strictly is H(T,V)

5 necessary. is restriction length Step update. volume Unphysical

8

1.4 Epilogue

I have in this little text sought to establish a fairly rigorous derivation of the energy
balance for an idealized plug flow reactor. It is neither highly sophisticated nor does it
require advanced mathematics. Still, it is not of a kind that is eagerly agreed upon by
the chemical engineering community—be it professors, students or working professionals.
Many people find the painstaking calculations of differentials and partial derivatives
confusing and of little practical interest, but the latter is definitly wrong. The very fact
that ∇T , ∇v and ∇ci are solution variables of a set of model equation whereas ∂Th, ∂vh
and ∂cih are explicit (or sometimes implicit) state functions establishing the coefficient
matrix of the model equations is so important that it can hardly be overemphasized.

The culprit in this controversy might be the teaching of dy/dx = y′ in highschool
mathematics. By doing so the students learn that dy/dx is synonymous with y′ =̂
(∂y/∂x) and that the rest of the story is just syntactic sugar. For one-variable systems
I can agree that the difference is subtle, but for many-variable systems it is not. The
discussion has much in common with the use of substantial derivatives in fluid mechanics
which says: dy/dt = (∂y/∂t) + (∂y/∂x1) dx1/dt+ (∂y/∂x2) dx2/dt+ · · · . In this case I
think it can hardly be misunderstood that dy/dt and (∂y/∂t) are different mathematical
objects—and very different ones as well.

9

Exercise 7

Preisig, H A Chemical Engineering, NTNU

1 Question: Water treatment plant

The activated sludge unit is part of any modern munici-
pal waste-water treatment plant. It operates in two major
modes, aerobic and anaerobic. Any such cleaning unit must
provide for both modes of operation and preferably in a way
so that the water is exposed to switching conditions several
times. Combining this requested feature with space limita-
tions brought about the design of circular reactors, which
include aerobic and anaerobic sections in sequences. The de-
sign is called the carousel design. It builds on a circular main
flow, feeding sewage water at one location and taking out cleaned water at the other loca-
tion. Air is injected in one or several places to generate aerobic conditions in some parts
of the reactor. The air injection also acts as mixer. Away from the air injection, the
oxygen contents decreases quite rapidly leaving the rest of the reactor to operate in the
anaerobic mode, so with no oxygen present.

air feed / mixing

feed

outlet

We are to model the water treatment plant as a series of compartments for which the
scheme is given in the Figure above. Relevant species are: A:: species to be oxidized, B::
species to be reduced, D:: inert species, O:: oxidant, R:: reductant, W :: water

• Establish an abstract topology (capacities and transport) reflecting the main dy-
namics of the process. Add labels to indicate capacities and streams.

• Show in a table on what balance equation has to be written for what capacity in
terms of component masses and energy.

2012-10-03 page 1

2 Question: Reactions 02

Consider the following reactions are present in an ideally stirred tank reactor:

A
k1→ B

k2→ C (1)

(2)

where k2 >> k1 and the rate of reactions of first order functions of the concentrations.

Tasks

1. Write the species balances.

2. Use the order of magnitude assumption of k2 >> k1 to do a singular perturbation
on the balance of species B showing that it is equivalent to pseudo steasy state for
species B.

3. Eliminate the composition of species B from the balance equations.

3 Question: Shell balance 02

We want to model the diffusion of component A coupled with the following reaction in a
spherical catalyst

A → B

where

ñA = −k cA

Our objective is to determine the variation of the concentration. The mass flux is only in
the radial direction and is calculated from Fick’s law:

ˆ̂nA = −DAB
d cA
d r

Note that the flux ˆ̂n is the flow per unit area.

2012-10-05 page 2

1 Solution: Carrousel

1.1 Topology

air

in

outN1

N2

N3N4N5

N6N7

A1

A2 A3

A5 A6

A4

1.2 What balances

system A B D O R W
Ai x x x x x x
Ni x x x x x

2012-10-03 page 1

2 Solution Reactions 02

Writing the balance for each species we will have:

ṅ = ñ

The production rate is:

ñ := V NT ξ̃

ξ̃ := Kg(c)

c := V −1 n

The stoichiometry is:

N :=

[
−1 1 0
0 −1 1

]

The frequency functions are:
g(c) := c

end the reaction constant matrix:

K := diag
[
k1 k2

]

If we now substitute to get the extended equations:

ṅA = −k1 cA

ṅB = k1 cA − k2 cB

ṅc = k2 cB

The order of magnitude assumption is that k2 >> k1. Thus we are going to use k2 as
the singular perturbation parameter by deviding the second balance equation, namely the
one for the species B by k2.

1

k2
ṅB =

k1
k2

cA − cB

ǫ ṅB =
k1
k2

cA − cB

Taking the limit gives us the behaviour of the B-balance for larger time scales:

lim
ǫ→0

ǫ ṅB =
k1
k2

cA − cB

So,

0 =
k1
k2

cA − cB

2012-10-05 page 2

and

cB =
k1
k2

cA

which simplifies the model to:

ṅA = −k1 cA

and

ṅc = k2
k1
k2

cA

= k1 cA

3 Solution: Shell balance 02

Conforming with the assumption of uniform environment, the temperature changes only
in the radial direction. The geometry is shown in Figure 3:

r

r +∆r

Let the extensive quantity be Φ and its flux ϕ̂. Then a balance over a small volume
element ∆V is

dΦ

dt
:= Ar ϕ̂|r − Ar+∆r ϕ̂|r+∆r

with

Ar+∆r ϕ̂|r+∆r :≈ Ar ϕ̂|r +
∂A ϕ̂

∂r

∣∣∣∣
r+∆r

2012-10-05 page 3

substitution yields:

dΦ

dt
:= Ar ϕ̂|r −

(
Ar ϕ̂|r +

∂A ϕ̂

∂r

∣∣∣∣
r

∆r

)

:= − ∂A ϕ̂

∂r

∣∣∣∣
r

∆r

:= − ∂A

∂r

∣∣∣∣
r

ϕ̂|r ∆r − Ar
∂ϕ̂

∂r

∣∣∣∣
r

∆r

:= −2Ar

r
ϕ̂|r ∆r − Ar

∂ϕ̂

∂r

∣∣∣∣
r

∆r

:= −
(
2

r
ϕ̂|r +

∂ϕ̂

∂r

∣∣∣∣
r

)
Ar ∆r

where we used the fact that the area being a quadratic function of r. Thus we used:

∂A

∂r
:=

∂4 π r2

∂r
:= 8 π r

Next we divide by the volume and take the limit:

lim
∆V→0

dΦ/∆V

dt
:= −

(
2

r
ϕ̂|r +

∂ϕ̂

∂r

∣∣∣∣
r

)

∂ϕ

∂t
:= −

(
2

r
ϕ̂+

∂ϕ̂

∂r

∣∣∣∣
r

)

The flux ϕ̂ for an isotropic material is −DAB
∂cA
∂r

, with DAB being the diffusivity param-
eter. Thus substiting this flux relation into the above equation gives

k
∂cA
∂t

:= DAB

(
2

r

∂cA
∂r

∣∣∣∣
r

+
∂2cA
∂r2

∣∣∣∣
r

)

2012-10-05 page 4

Solving a Set of Non-Linear
Equations (TKP4106)

Zooball/Beaver

"••• one of the main causes of the fall of the Roman Empire was that, lacking zero, they had no way to
indicate successful termination of their C programs."

Robert Firth

Assignments

1. Write a procedure solve for solving a set of linear equations using the
Row-Reduced-Echelon form of matrix A. Hint: For the linear equation
system A X = B we get rref([A | B]) = [I | X] according to the
definition of rref. Object B is a "matrix" in this case. If it so happens that B
has a single column b we end up with the special case A x = b, but there
is not much to save, neither in time nor in programming lines, from
disregarding the general solution. So, go for it! Use the stub program
solve.py as template.

2. Linearize the energy balance and the pressure specification of the Plug
Flow Reactor. Combine it with the mass balance into one simultaneous set
of linear(ized) equations. Write a solver that iterates on T, v, c_1,
c_2, ... to find a thermodynamic state which is constrained by h, p,
c_1, c_2, Use the stub program hpn.py as template.

3. It can also be worth while programming the matrix (inner) product for later
use. Use the stub program mprod.py as template.

Continue reading about The energy balance if you need further guidance to the
understanding of energy, enthalpy, thermodynamics and the mapping between
different co-ordinate systems.

%Predefined.

HTML text.

5.15.1 Verbatim: “solve.py”

1 """
2 @summary: Calculate xmat from amat * xmat = bmat.
3 @author: Tore Haug-Warberg
4 @organization: Department of Chemical Engineering, NTNU, Norway
5 @contact: haugwarb@nt.ntnu.no
6 @license: GPLv3
7 @requires: Python 2.3.5 or higher
8 @since: 2011.08.30 (THW)
9 @version: 0.8

10 @todo 1.0:
11 @change: started (2011.08.30)
12 """
13

14 def solve(amat, bmat, debug=False):
15 """
16 Solve the linear equation system amat * xmat = bmat using rref(augm) where
17 augm = [amat | bmat] is the row augmented matrix [amat[0] + bmat[0], ...].
18

19 @param amat: Input matrix given as a list of lists of numbers
20 @param bmat: Right hand specification given as a list of lists of numbers
21 @param debug: True or False flag
22

23 @type amat: aList [aList [aNumber, aNumber, ...], ...]
24 @type bmat: <pass>
25 @type debug: <pass>
26

27 @return: aList [aList [aFloat, aFloat, aFloat]]
28 e.g. [[1.0, 2.0, ...], [3.0, 4.0, ...], [5.0, 6.0, ...], ...]
29 """
30

31 # Row-reduced-echelon-form.
32 from rref import rref
33

34 if not(amat) or not(amat[0]):
35 pass # raise exception
36

37 if len(amat) != len(amat[0]):
38 pass # raise exception
39

40 if not(bmat) or not(bmat[0]):
41 pass # raise exception
42

43 if len(bmat) != len(amat[0]):
44 pass # raise exception
45

46 augm = pass # augmented matrix [amat | bmat]
47

48 augm, rank, pivots = rref(augm, debug)
49

50 if rank != len(amat):
51 pass # raise exception
52

53 return pass # return solution

261

5.15.2 Verbatim: “hpn.py”

1 """
2 @summary: Solve (H, p, N1, N2, ..., N5) versus (T, V, N1, N2, ..., N5) for the
3 ideal gas equation of state. The pertinent equations are::
4

5 H = sum_i (h(T)_i * N_i)
6 h(T)_i = h0_i + int_{T0}^{T} (cp(T)_i * dT)
7 Cp = sum_i (cp(T)_i * N_i)
8 cp(T)_i = c1_i + c2_i*t + c3_i*t**2 + c4_i*t**3
9 p = ntot *R * T / V

10 ntot = sum_i (N_i)
11

12 The strategy is to implement a standard Newton-Raphson iterator and
13 solve::
14

15 (tvn)^{k+1} = (tvn)^{k} + d(tvn)
16 d(tvn) = inv(jac) * (y1 - hpn)
17

18 repeatedly until the norm of d(tvn) is not decreasing anymore. On
19 the right side ’y1’ is a given constraint "matrix"::
20

21 [[H1],
22 [p1],
23 y1 = [N1_1],
24 [N1_2],
25 ...
26]
27

28 and ’hpn’ is a similarly shaped "matrix" of ideal gas properties
29 calculated as functions of T, V, and N_1, ... N_5::
30

31 [[H],
32 [p],
33 hpn = [N1],
34 [N2],
35 ...
36]
37

38 The Jacobian of H, p, N1, N2, ... with respect to T, V, N1, N2, ...
39 is on the form::
40

41 [[dH/dT, dH/dV, dH/dN1, dH/dN2, ...],
42 [dp/dT, dp/dV, dp/dN1, dp/dN2, ...],
43 jac = [dN1/dT, dN1/dV, dN1/dN1, dN1/dN2, ...],
44 [dN2/dT, dN2/dV, dN2/dN1, dN2/dN2, ...],
45 ...
46]
47

48 @author: Tore Haug-Warberg
49 @organization: Department of Chemical Engineering, NTNU, Norway
50 @contact: haugwarb@nt.ntnu.no
51 @license: GPLv3
52 @requires: Python 2.3.5 or higher
53 @since: 2011.10.13 (THW)
54 @version: 0.0.1
55 @todo 1.0:
56 @change: started (2011.11.13)
57 @note:
58

59 Test the program entering one of the following lines from the command line::
60

61 >>> python hpn.py
62 >>> python hpn.py <H1> <p1> <N1_1> ... <N1_5>
63 >>> python hpn.py <H1> <p1> <N1_1> ... <N1_5> <T0> <V0> <N0_1> ... <N0_5>
64

65 H1 = final enthalpy [10^5 J]
66 p1 = final pressure [kbar]
67 N1_1 = final mole number of component 1 [mol]
68 ...
69 N1_5 = final mole number of component 5 [mol]

262

70 T0 = initial temperature [kK]
71 V0 = initial volume [dm3]
72 N0_1 = initial mole number of component 1 [mol]
73 ...
74 N0_5 = initial mole number of component 5 [mol]
75

76 """
77

78 import tkp4106
79

80 def hpn_vs_tvn_solver(y1, x0, eps=1.0e-8, maxiter=50):
81

82 fix_rgas = 0.083145119843087 # gas constant
83 var_t = x0[0][-1] # temperature [kK]
84 var_v = x0[1][-1] # volume [dm3]
85 var_n = [ni[-1] for ni in x0[2:]] # mole numbers [mol]
86 par_h0 = [-.45898, 0.00000, 0.00000, 0.00000, -.74520] # h0 [10^5 J/mol]
87 par_c1_cp = [0.27310, 0.31150, 0.27140, 0.20786, 0.01925] # Cp coefficient
88 par_c2_cp = [0.23830, -.13570, 0.09274, 0.00000, 0.52130] # Cp coefficient
89 par_c3_cp = [0.17070, 0.26800, -.13810, 0.00000, 0.11970] # Cp coefficient
90 par_c4_cp = [-.11850, -.11680, 0.07645, 0.00000, -.11320] # Cp coefficient
91

92 converged = False # convergence flag
93 norm = 1.0 # convergence control variable
94 ni = 0 # number of iterations
95 nc = len(var_n) # number of components in mixture
96

97 while not converged:
98 ni += 1
99

100 t = var_t
101 v = var_v
102 n = var_n
103 r = fix_rgas
104

105 ntot = sum(n)
106

107 # Initialization of enthalpy and its derivatives.
108 state_h = 0.0
109 state_h_t = 0.0
110 state_h_v = 0.0
111 state_h_n = [0.0]*nc
112

113 state_p = pass # p(T,V,n)
114 state_p_t = pass # (dp/dT)_{V,n}
115 state_p_v = pass # (dp/dV)_{T,n}
116 state_p_n = pass # (dp/dn[i])_{T,V,n[j]}
117

118 state_n = n
119 state_n_t = pass # (dn/dT)_{V,n}
120 state_n_v = pass # (dn/dV)_{T,n}
121 state_n_n = [int(i==j) for i in xrange(0,nc) for j in xrange(0,nc)]
122

123 t0 = 0.29815 # standard state temperature
124

125 for i in xrange(0, nc):
126 hti = par_h0[i] + \
127 pass + \
128 pass + \
129 pass + \
130 pass # int_{t0}^{T} cp[i](t) dt
131 cpi = par_c1_cp[i] + \
132 par_c2_cp[i]*t + \
133 par_c3_cp[i]*t**2 + \
134 par_c4_cp[i]*t**3 # cp[i](T)
135 state_h += pass # H(T,V,n)
136 state_h_t += pass # (dH/dT)_{V,n}
137 state_h_v += pass # (dH/dV)_{T,n}
138 state_h_n[i] = pass # (dH/dn[i])_{T,V,n[j]}
139

140 hpn = [[state_h]] + [[state_p]] + [[ni] for ni in state_n]
141

263

142 dh = [state_h_t] + [state_h_v] + state_h_n # dH/d(T,V,n)
143 dp = pass # dp/d(T,V,n)
144 dn = [\
145 [state_n_t[i]] +
146 [state_n_v[i]] + \
147 state_n_n[i*nc:(i+1)*nc] for i in xrange(0, nc)\
148] # dn/d(T,V,n)
149

150 jac = pass # d(H,p,n)/d(T,V,n)
151

152 dy = pass # y1 - (H,p,n)
153 dx = tkp4106.solve(jac, dy)
154 tmp = max([abs(dxi[-1]) for dxi in dx])
155 converged = abs(tmp) < eps and abs(tmp) >= norm
156 norm = abs(tmp)
157 print "norm=%8.3g;" % (norm,)
158 if not converged and ni >= abs(maxiter):
159 raise SyntaxError("max iterations (%s) exceeded" % (ni,))
160 var_t += pass # update temperature
161 var_v += pass # update volume
162 var_n = pass # update mole numbers
163

164 tvn = [[var_t]] + [[var_v]] + [[ni] for ni in var_n]
165 hpn = [[state_h]] + [[state_p]] + [[ni] for ni in state_n]
166

167 return [tvn, hpn]
168

169 # Test the code.
170 #
171 if __name__ == ’__main__’:
172

173 import hpn
174 import sys
175

176 # Read in H1, p1 and n1, plus T0, V0 and n0 from the command line.
177 if len(sys.argv) == 7+7+1:
178 x0 = [[float(x0i)] for x0i in sys.argv[8:]] # T, V, n
179 y1 = [[float(y1i)] for y1i in sys.argv[1:8]] # H, p, n
180

181 # Read in H1, p1 and n1 from the command line. Use default T0, V0 and n0.
182 elif len(sys.argv) == 7+1:
183 x0 = [[0.29815], [0.001], [2.0], [1.5], [0.5], [3.0], [1.0]] # T, V, n
184 y1 = [[float(y1i)] for y1i in sys.argv[1:]] # H, p, n
185

186 # Use default H1, p1 and n1, plus default T0, V0 and n0.
187 else:
188 x0 = [[0.29815], [0.001], [2.0], [1.5], [0.5], [3.0], [1.0]] # T, V, n
189 y1 = [[0], [0.1], [1.0], [2.5], [1.5], [2.0], [3.0]] # H, p, n
190

191 tvn, hpn = hpn.hpn_vs_tvn_solver(y1, x0)
192

193 print ’\nInput:’
194 print "T0=%12.6g; V0=%12.6g; n0=%s;" % (x0[0][-1], x0[1][-1], x0[2:])
195 print "H1=%12.6g; p1=%12.6g; n1=%s;" % (y1[0][-1], y1[1][-1], y1[2:])
196

197 print ’\nOutput:’
198 print "T =%12.6g; V =%12.6g; n =%s;" % (tvn[0][-1], tvn[1][-1], tvn[2:])
199 print "H =%12.6g; p =%12.6g; n =%s;" % (hpn[0][-1], hpn[1][-1], hpn[2:])

264

5.15.3 Verbatim: “mprod.py”

1 """
2 @summary: Calculate the full matrix product cmat = amat * bmat.
3 @author: Tore Haug-Warberg
4 @organization: Department of Chemical Engineering, NTNU, Norway
5 @contact: haugwarb@nt.ntnu.no
6 @license: GPLv3
7 @requires: Python 2.3.5 or higher
8 @since: 2011.08.30 (THW)
9 @version: 0.9

10 @todo 1.0:
11 @change: started (2011.08.30)
12 """
13

14 def mprod(amat, bmat, debug=False):
15 """
16 Matrix multiplication of amat * bmat = cmat.
17

18 @param amat: <pass>
19 @param bmat: <pass>
20 @param debug: <pass>
21

22 @type amat: aList [aList [aNumber, aNumber, ...], ...]
23 @type bmat: <pass>
24 @type debug: <pass>
25

26 @return: aList [aList [aFloat, aFloat, aFloat]]
27 e.g. [[1.0, 2.0, ...], [3.0, 4.0, ...], [5.0, 6.0, ...], ...]
28 """
29

30 if not(amat) or not(amat[0]):
31 pass # raise exception
32

33 if not(bmat) or not(bmat[0]):
34 pass # raise exception
35

36 if len(bmat) != len(amat[0]):
37 pass # raise exception
38

39 # Output matrix has dimension: rows(amat) x columns(bmat).
40 cmat = [[0 for b in bmat[0]] for a in amat]
41

42 for i pass # rows in amat = rows in cmat
43 for j pass # columns in bmat = columns in cmat
44 for k pass # columns in amat = rows in bmat
45 pass # calculate cmat[i][j]
46

47 return cmat

265

Plug Flow Reactor. Part II

Tore Haug-Warberg
Department of Chemical Engineering

NTNU (Norway)

16 October 2011
(completed after 120 hours of writing, programming and testing)

1 The energy balance

(U̇ + pV̇)ın (U̇ + pV̇)out

Q̇

C

z z +∆z

U(t, z,∆z)

The derivation of a rigorous
energy balance for any real-life sys-
tem, of which the idealized Plug
Flow Reactor (PFR) is one sim-
ple example, demands a tour de
continuum mécanique which defi-
nitely is beyond the scope of this
little text. But, we cannot ignore

the energy balance alltogether so we must somehow pick up a model description that is
mathematically succinct and at the same time physically correct. The following deriva-
tion is a humble attempt to reach a reasonably clear disposition of the subject.

Let U(t, z,∆z) be the internal energy of a control volume with one inlet and one
outlet. The material flow into the control volume, and out from it, is assumed to
be perpendicular to the control surfaces which are situated at z and z + ∆z. This
simplification reduces the traditional inner product of the surface normal (vector) and
the (vectorial) flows of heat, displacement work, and energy, into their scalar counterparts
called Q̇, pV̇ and U̇ . Note that we shall only consider the flow of internal energy U̇ while
in the general case we might need to include terms for potential energy, kinetic energy,
surface energy, electromagnetic energy and so forth. But, because the picture becomes
immensely complicated when every possible term is included, it is important to simplify
the model as much as possible without loosing the grip of reality. According to the
aforementioned simplifications and the principle of energy conservation we shall write

U(t, z,∆z) = U◦ +

t∫

0

(
U̇ + pV̇

)
z
dτ −

t∫

0

(
U̇ + pV̇

)
z+∆z

dτ +

t∫

0

(Q̇− Ẇs) dτ

where Ẇs is the mechanical “shaft” work applied to the reactor. Normally it is close to
zero. Subscripts z and z+∆z are used to denote physical properties that are calculated

1

at these two spatial positions. This is not to say that U̇ and pV̇ are functions of z per
se. They have co-ordinates of their own which in a way are defined at every point in
space and time. This subtlety is discussed further down the text.

In the current context we may put the integration constant U◦ to zero. It implies
that a material system with zero mass has zero energy. This is an important thermo-
dynamic consideration which is true for all chemical systems in the absence of strong
electromagnetic radiation.

The symbols Q̇, V̇ and U̇ stand for the transported heat, volume and energy (per
unit time) and has nothing to do with the derivative of a mathematical function, say F ,
which is defined like:

(
∂F

∂t

)
=̂ lim

∆t→0

(
F (t+∆t)− F (t)

∆t

)

x1,x2,···

This means we need to distinguish clearly between the transportation Ḟ and the time
derivative (∂F/∂t). The scientific units are the same but their interpretations are entirely
different1. In other papers you may find F̂ being used rather than the dotted form favored
here. The meaning is the same though.

To continue, U and U from which U̇ is derived look quite similar, but they do actually
measure two different aspects of internal energy. U is a mathematical construction
(we may call it a functional) which has no simple physical description, while U is a
thermodynamic state function U(S, V,N1, N2, · · ·) which by definition is independent of
time. That is to say U(x, t1, z1) = U(x, t2, z2) = . . . for fixed values of entropy, volume
and mole numbers (collected into one vector x). To be a state function U must represent
the energy of an isotropic system in equilibrium with respect to certain restricted changes
in the state variables S, V , N1, N2, etc. (the definition of state variables is made broader
later in this text). Hence, it is generally true that (∂U/∂t) = 0 while (∂U/∂t) 6= 0. To
proceed, we introduce from thermodynamic theory that H =̂ U + pV . This definition
also works for the transported enthalpy:

Ḣ =̂ U̇ + pV̇ (1)

1Formal arguments can be raised against this conjecture. Consider a functional F that describes the
amount of energy, mass or any other extensive property that has passed the control surface at z over
the time period [0, t]. Then

F(t, z) =

t∫

0

Aḟ dτ

where ḟ is the flux (amount per unit area and time) of F , and A is the cross-sectional area of the
transport. The time derivative of F is

(
∂F
∂t

)

z

= Aḟ =̂ Ḟ

So, in a sense Ḟ is really a partial derivative, but it must be understood that F has no explicit (and time
independent) function expression like e.g. the thermodynamic and kinetic models we are using. Most
students have problems in understanding the fundamental difference between dF/dt and (∂F/∂t) and I
therefore hesitate in calling Ḟ a derivative because it will bring even more confusion into the subject.

2

It works because p (the pressure) is an intensive state variable which is independent of
the magnitude of the volume flow. At the same time we want to integrate the total heat
flux over the external surface of the reactor section

Q̇ =

z+∆z∫

z

Cq̇ dζ , (2)

where C is the circumference of the reactor and q̇ is the heat flux (per unit time and
surface area). Note that dζ rather than dz is acting as an integrator for q̇. We use
this convention (Greek integrator—Latin variable) to make sure we do not mix up the
integrator symbol with the symbol of either the upper or the lower limit of the integral2.
This makes the integral a function of z while ζ is consumed during the integration.

It is customary to neglect the heat flow in the axial direction which is why the
integral is carried out over the outer surface only. However, strictly speaking there is
an order-of-magnitude analysis missing here but this is left as an exercise for the reader.
The internal energy of the control volume is then:

U(t, z,∆z) =

t∫

0

(
Ḣz − Ḣz+∆z

)
dτ +

t∫

0

z+∆z∫

z

Cq̇ dζ dτ

This states the energy balance of a simple plug flow reactor. On the form given it is
particularly useful for testing and verifying the accuracy of numerical integrators used
in dynamic simulation studies, but this is not our goal. We shall proceed instead by
calculating the partial derivative U at a fixed spatial position z with respect to time:

(
∂U
∂t

)

z,∆z

= Ḣz − Ḣz+∆z +

z+∆z∫

z

Cq̇ dζ (3)

On the current form Eq. 3 leads to a partial differential equation (PDE) in time and space
which is considered to be a hard numerical task. But, there are relevant simplifications.
In particular we shall study the behaviour of closed systems without throughput of mass
and steady state (time independent) systems.

1.1 First law of thermodynamics

A special form of the energy balance applies to closed systems. Here, closed means
Ḣz = Ḣz+∆z = 0. This appears to be outside the scope of our PFR model but it is
still in reach of the thermodynamic formalism. In a system of this kind energy changes

2Dealing mostly with closed and definite integrals we may not even realise the problem, but as we move
on to indefinite integrals (antiderivatives) the symbol clash becomes very noticeable. In thermodynamics
we define for example the residual function Gr,p(p) =̂

∫ p

0
(V (π)− V ıg(π)) dπ where π is an integrator (over

pressure) and p is the system pressure. The convolution integral F (t) =
∫ t

0
ϕ(τ)ψ(t− τ) dτ used in signal

theory is another example. The mutual roles of τ and t must here be sorted out beforehand.

3

solely because heat is expelled to, or brought in from, the environment. For the change
of U we can then write:

(dU)c-s =
z+∆z∫

z

Cq̇ dζ dt

Backsubstitution of Q̇ from Eq. 2 yields the simpler form: dU = Q̇ dt. A similar argument
holds also for any kind of external work even though it by coincidence has been excluded
in Eq. 3. The reason is that the PFR model is not subject to any volume change nor is it
equipped with a mechanical stirrer. If we had decided to include external work (positive
when work is delivered by the system) the energy equation would have been extended
to dU = Q̇ dt− Ẇ dt.

Taken a bit further it customary to say that Q̇ dt = δQ and Ẇ dt = δW where δQ
and δW stand for the non-exact differentials of Q and W . Non-exact means that U does
not depend on Q and W in a definite way. I.e. there exists no function U(Q,W) such
that when Q and W are given then U is also given. This should be quite intuitive all the
time U is the energy of a material system where the masses of the chemical constituents
must also play a role.

In fact, Q and W are path dependent functions of the thermodynamic state, and also
of the spatial co-ordinates and of time. They are not state functions in any way and they
do not constitute a part of the system. Rather, they express the transportation of energy
across the system border. Inside the system, however, heat and work can only be stored
as internal energy. There are in other words no “heat content” or “energy content”
of the system, only the ability to exchange heat and work with the environment. We
therefore talk about “heat potential” and “work potential” to stress the fact that energy
(the thermodynamic potential) has to be converted back and forth between heat and
work all the time.

Finally, before we leave the discussion of the closed system we shall make a precise
interpretation of U and U . It has already been stated that U is a constructed energy
function—a functional—that serves the need of an accumulation term in the energy
equation. From the discussion given above it is clear that U does not change in a closed
system unless there is heat or work exchange with the environment. If there are no
interactions of any kind, then all experiments made over the past 200 years indicate that
U gradually becomes undistinguishable from U . That is:

Ueq =̂ lim
t→∞

U → U

The two functions U and U are identical whenever their function values are the same
over the entire definition domain3. In this case U is constant throughout the experiment
so how can it then become gradually undistinguishable from U? The experiment tells
us that U does not change in a closed system over time. Our postulate says that U
is identical to U when all internal agitation and transients have died out. Before that
the measurements of any intensive variables like temperature, pressure and chemical

3E.g. the two functions f(x) = cos2(x)+ sin2(x) and g(x) = 1 are mathematically identical for x ∈ R.

4

potentials give unreliable readings even though the function values are the same at
any time. It is only then all the readings are stable we can say that U ≡ U in the
mathematical understanding of the statement. We call this the equilibrium state of the
system. It has an incredible simple representation in the sense that only n+2macroscopic
variables are needed in order to establish the value of U(S, V,N1, N2, · · · , Nn). From a
microscopic point of view this is really incredible because there are 6NA

∑
i Ni mechanical

degrees of freedom when all the particles in the system are considered as a Newtonian
universe. Thermodynamic systems are much simpler, however, because experimentally
only the statistically most relevant state is being observed, and since thermodynamics is
a phenomenological science the observations and theory go hand in hand. This means
we can write the energy balance of a closed system as

(dU)c-s = δQ− δW

which is precisely the first law of thermodynamics. The energy balance in Eq. 3 fulfills
in other words the requirements of the first law of thermodynamics albeit in disguise.
It must be understood, however, that the usability of U = Ueq hinges on the fact that
the relaxation time of the equilibrium process must be smaller than the time scale of
the simulation. This may, or may not, be the case, but for the present purpose we shall
assume that U has the meaning of U ; at least locally for each point in space—if not for
the entire system.

1.2 Steady state solution

Eq. 3 has another special meaning whenever the physical situation is such that it allows
the left hand side to be put to zero. It is the celebrated steady state which reduces the
differential equation to a time-independent algebraic equation on the form:

(Ḣz+∆z − Ḣz)
s-s =

z+∆z∫

z

Cq̇ dζ

Despite its simple form the last equation has a wide range of applicability. It is valid for
any type of fluid flow, inviscid or not, gas or liquid, one-phase or multi-phase, and with
or without chemical reactions.

Just like the displacement work in Eq. 1 was factored into pV̇ , the transported
enthalpy can be factored into the transported mass and a term called the specific enthalpy
h:

Ḣ = hṀ

The inherent scaling properties, namely that Ẇ = pV̇ and Ḣ = hṀ , are deeply rooted in
thermodynamic theory and are examples of the so-called Euler homogeneous functions.
The energy balance is then reduced to:

(hṀ)z+∆z − (hṀ)z =

z+∆z∫

z

Cq̇ dζ

5

From the mass conservation principle we know that (for steady-state flow):

Ṁz+∆z − Ṁz = 0

Division by Ṁz+∆z = Ṁz =̂ Ṁ on both sides of the equation yields:

hz+∆z − hz =

z+∆z∫

z

C
q̇

Ṁ
dζ

In the limit of ∆z → 0 we get:

lim
∆z→0

(hz+∆z − hz) = C
q̇

Ṁ
∆z

or rearranged:

lim
∆z→0

hz+∆z − hz
∆z

= C
q̇

Ṁ

We immediately recognize the left hand side as the partial derivative of h with respect to
z. On the right hand side we can make the definition q =̂ q̇/Ṁ standing for the specific
heat load (energy per unit mass and area). The energy balance for a steady state reactor
with only internal energy flow is then:

(
∂h

∂z

)s-s

= Cq

The anti-derivative of the energy balance defines the so-called enthalpy equation (please
note the integral on the right side is zero for an adiabatic reactor without external heat
load):

h(z) = h(0) +

z∫

0

C(ζ)q(ζ) dζ

At this point we need to worry about the mathematical notation we are using. The
operations are formally correct up to the point where ∆z → 0, but here it stops. At
some finite value of ∆z it becomes smaller than the resolution of the measurement. Or, it
may in fact become smaller than the effective size of the molecules comprising the system
and on this tiny scale h looses its meaning since it requires a big number of colliding
molecules to establish a thermodynamic state variable. Hence, the derivative (∂h/∂z)
does not exist in proper. It is only the finite difference hz+∆z − hz that is physically
measureable, and then only if ∆z is sufficiently large. This is not a practical problem
in most cases, but for e.g. high-vacuum systems we must take precautions because the
distance covered between two successive collisions of the molecules can be of the order
millimeters or even centimeters.

Our second worry is that h is not a function of the spatial co-ordinate z. It is in fact
a function of the state variables T , v =̂ V/M , c1 =̂ N1/M , c2 =̂ N2/M , etc. when any
of the modern pressure explicit equations of state are being used in the modelling (most

6

of them are descendants of the Van der Waals equation of state from 1873). Hence,
(∂h/∂z) does not exist other than as a formal expression, but from differential calculus
we know that dh/dz takes the same numerical value as (∂h/∂z) when all the degrees of
freedom except one (i.e. z) are locked. However, the total differential of h is

dh =

(
∂h

∂T

)

v,c1,c2,···
dT +

(
∂h

∂v

)

T,c1,c2,···
dv

+

(
∂h

∂c1

)

T,v,c2,c3,···
dc1 +

(
∂h

∂c2

)

T,v,c1,c3,···
dc2 + · · ·

or given a more compact form:

dh = ∂Th · dT + ∂vh · dv + ∂c1h · dc1 + ∂c2h · dc2 + · · ·
Inventing a new notation “over the night” is not something I usually recommend, but
we will run out of paper pretty soon unless we do something about the partial deriva-
tives flourishing all over the place. Dividing by dz (which is an algebraic quantity
remember—and by the way quite different from ∂z which is an operator) gives the dif-
ferential quotient:
(
dh

dz

)
=

(
∂h

∂T

)

v,c1,c2,···

(
dT

dz

)
+

(
∂h

∂v

)

T,c1,c2,···

(
dv

dz

)

+

(
∂h

∂c1

)

T,v,c2,c3,···

(
dc1
dz

)
+

(
∂h

∂c2

)

T,v,c1,c3,···

(
dc2
dz

)
+ · · ·

or, using our shorter notation:

∇h = ∂Th · ∇T + ∂vh · ∇v + ∂c1h · ∇c1 + ∂c2h · ∇c2 + · · ·
This is precisely the expression we are looking for. The crux of the matter is that ∇h
takes the same numerical value as (∂h/∂z), but to carry on we need to first solve an
equation system that settles the values of ∇T , ∇v, ∇c1, ∇c2, etc. This is done by
simultaneously solving the energy, momentum and mass balances at the inlet of the
reactor and integrating the solution variables along the spatial co-ordinate z. The how’s
and why’s are fully explained in Part III of this paper entitled Modelling Issues. The
implicitness of the conservation statement is so fundamental to the thermodynamisist,
however, that it is really deserves an introductory example. The internal workings of
the so-called Jacobian transformation is explained below.

1.3 Calculation example

Doing matrix algebra by hand is hard work but there is no other way we can get an
understanding of how the linearization really works. So, to gain the insight we shall
practise on a minimalistic 2× 2 example. Assume a problem on the form:

H ıg(T, V) =̂ C ıg
P T = H◦

pıg(T, V) =̂
NRT

V
= p◦

7

where N is constant, and H◦ and p◦ are conserved quantities. Let x =̂ (T V) and
y =̂ (H p). To solve y(x) = y◦ we first linearize y(x) and then attempt to solve the
equations iteratively using the Newton–Raphson method:

yk +

(
∂y

∂xT

)

k

(xk+1 − xk) = y◦

Rearrangment gives:
xk+1 = xk − J-1

k (yk − y◦)

where

Jk =̂

(
∂y

∂xT

)

k

=




(
∂H

∂T

)

V

(
∂H

∂V

)

T(
∂p

∂T

)

V

(
∂p

∂V

)

T




k

so that:

J-1
k =

(
C ıg
P 0

NR
V −NRT

V 2

)-1

k

=
−1

C ıg
P

NRT
V 2

(
−NRT

V 2 0

−NR
V C ıg

P

)

k

=




1
C ıg
P

0

V
C ıg
P
T

−V 2

NRT




k

The remaining algebra is straightforward:

(
T

V

)

k+1

=

(
T

V

)

k

−




1
C ıg
P

0

V
C ıg
P
T

−V 2

NRT




k



(

C ıg
P T

NRT
V

)

k

−
(

H

p

)

◦




Iteration example: H◦ = 104 J, p◦ = 106 Pa,N = 1mol, C ıg
P = 5

2R, R = 8.3145 J mol-1K-1:

k T [K] V [m3]

0 298.15 0.001
1 481.087257201275 0.00221018092537634
2 481.087257201275 0.00319913692002833
3 481.087257201275 0.00383965458178457
4 481.087257201275 0.00399357233671433
6 481.087257201275 0.00399998967128617
7 481.087257201275 0.00399999999997333
8 481.087257201275 0.004

The Newton–Raphson iteration is a so-called second order method. One characteristic
feature is that the number of significant digits will double in each iteration sufficiently
close to the solution (iteration 3 onward). Verify this behaviour. From the table it is
also clear that T converges in one step whilst V requires 8 iterations. Give a reason for
this observation4. Finally, it should be mentioned that the Newton–Raphson method is
sensitive to the starting values. E.g. try to start the iteration at V = 0.01 rather than
V = 0.001. Suggest a possible fix to the algorithm in this case5.

4 V. and T both in linear strictly is H(T,V)

5 necessary. is restriction length Step update. volume Unphysical

8

1.4 Epilogue

I have in this little text sought to establish a fairly rigorous derivation of the energy
balance for an idealized plug flow reactor. It is neither highly sophisticated nor does it
require advanced mathematics. Still, it is not of a kind that is eagerly agreed upon by
the chemical engineering community—be it professors, students or working professionals.
Many people find the painstaking calculations of differentials and partial derivatives
confusing and of little practical interest, but the latter is definitly wrong. The very fact
that ∇T , ∇v and ∇ci are solution variables of a set of model equation whereas ∂Th, ∂vh
and ∂cih are explicit (or sometimes implicit) state functions establishing the coefficient
matrix of the model equations is so important that it can hardly be overemphasized.

The culprit in this controversy might be the teaching of dy/dx = y′ in highschool
mathematics. By doing so the students learn that dy/dx is synonymous with y′ =̂
(∂y/∂x) and that the rest of the story is just syntactic sugar. For one-variable systems
I can agree that the difference is subtle, but for many-variable systems it is not. The
discussion has much in common with the use of substantial derivatives in fluid mechanics
which says: dy/dt = (∂y/∂t) + (∂y/∂x1) dx1/dt+ (∂y/∂x2) dx2/dt+ · · · . In this case I
think it can hardly be misunderstood that dy/dt and (∂y/∂t) are different mathematical
objects—and very different ones as well.

9

Exercise 8

Preisig, H A Chemical Engineering, NTNU

1 Question: Dynamics 03 - ODE integration

We want to write a integrator for solving ordinary differential equations. The idea is that
one has a generic integrator, which one used to solve a user-defined system of ordinary
differential equations.

ẋ = f(x, θ)

x(t) :=

∫ t

0

ẋ dτ

There are many numerical methods known that can be utilised to construct a generic
integrator module. The chosen structure should be such that the integrator can be re-
used in terms of being able to combine it with any user-defined ODE system.

1. Euler method

2. Rung-Kutta method (RK4)

Given the differential equation:

ẋ = −0.1 x; x(0) = 10

1. Demonstrate the working code using a step size of 0.1 and 10 integrating from 0-50.

2. Compare solutions with the exact solution, meaning the values calculated from an
analytical solution.

2 Question: Topology 05

The subject of the problem is the plant in Figure 1. It is a Liquid/liquid extraction
process to separate the caffeine from coffee.

Tasks:

• Sketch the topology of the decaffeinated coffee plant.

• Provide a table which shows the existence of components in the capacities assuming
ideal separation.

2012-10-11 page 1

mixer-settler

ethyl acetate (gas)

heating - dissolving caffeine

cooling - recrystalization

coffee beans ethyl acetate

mixer-settler

ethyl acetate evaporator

ethyl acetate (liquid)

filter

decaffinated beans

caffeine crystals

ethanol

condenser

purge

Figure 1: A Caffein Extraction plant

3 Question: Reactions 03

When CO2 exists in natural gas prior to combustion, its presence has several disadvan-
tages: the heating value is lowered, the gas volume to be handled and transported is
increased and the CO2 being a greenhouse gass is released into the atmosphere. Cur-
rently several technologies are pursued for separating CO2 from natural gas. Here, we
consider the process of carbon dioxide adsorption on activated carbon. The process is a
fixed bed in a tube, with the fixed bed being the activated carbon in one or the other
geometrical form (left in Figure 2). For the purpose of modelling we first assume two sep-

2012-10-11 page 2

arate phases in a simplified geometry (middle in Figure 2), which we next further simplify
to a series of stages in which the gas phase is well mixed and moves from stage to stage,
whilst the solid phase is stagnant (right in Figure 2):

Sour gas

Sweet gas

Sour gas

Sweet gas

Sour gas

Sweet gas

Figure 2: A simple topology of a CO2 adsorption process

Thus we view the column as a stack of stages each of which we model as shown in Figure
3.

G S1

previous stage

next stage

S2 S3 S4

I

Figure 3: A simple topology of a CO2 adsorption stage

The G represents the gas phase whilst the solid is compartmentalised in the horizontal

2012-10-11 page 3

direction, here into 4 separate lumps. The adsorption reaction is

CO2 + C∗ ka⇋
kb

CO2 · · ·C

where C∗ is the active carbon and the CO2 · · ·C is the CO2 adsorbed on the C. The
forward reaction is first order in CO2 concentration and C∗ concentration, whilst the
backward reaction is first order in CO2 · · ·C concentration.

We assume that the transport in the solid is governed by a simple transfer law which
is proportional to the negative discrete gradient of the composition of the two coupled
capacities.

For the transport into the solid between G and S1 we assume, that the transport in the gas
phase is very fast compared to the transport into the solid. Consequently the composition
on the surface I is the same as in the gas phase. For the transport into the solid then we
need to make a correction due to the fact that we assume a pseudo-homogeneous phase
for the solid with the diffusing gas.

n̂I|S1,CO2 := −kI|S1 (ǫ
−1 cS1,CO2 − cG,CO2)

For the definition of the composition of the CO2 in the solid phase and diffusing gas, we use
a constant volume. All kinetic data are based on the pseudo phase, with ǫ accounting for
the pseudo-phase porosity a measure for the ratio of free space and solid phase material.
The individual volume piece would be the volume of the complete solid phase divided by
the number of stages and divided by the number of solid lumps per stage.

Assume:

1. isothermal condtions

2. all properties that you require constant

3. all volumes to be constant

Tasks

1. Write the species balance for all lumps, that is G Si, i := 1, 2, 3, 4

2. Add the transfer laws

3. Add the reactions

4. Fill in the relations linking the variables in the transfer law and reaction kinetics
with the state.

2012-10-11 page 4

1 Solution: Dynamics 03

ẋ = −0.1 x

Euler method

The euler method is

xn+1 = xn + h f(tn, xn)

First, f(t0, x0) should be calculated. We have

f(t0, x0) = −1

Assuming the step size to b h = 1, we have,

x1 = x0 + h f(t0, x0) = 10 + (−1) = 9

The above steps should be repeated to find x2, x3, ...

x2 = x1 + h f(t1, x1) = 9 + (−0.9) = 8.1

x3 = x2 + h f(t2, x2) = 8.1 + (−0.81) = 7.29

Rung kutta method

The RK4 method for this problem is given by the following equations:

xn+1 = xn +
1

6
(k1 + 2 k2 + 2 k3 + k4)

tn+1 = tn + h

where xn+1 is the RK4 approximation of x(tn+1), and

k1 = h f (tn, xn)

k2 = h f

(
tn +

1

2
h, xn +

1

2
k1

)

k3 = h f

(
tn +

1

2
h, xn +

1

2
k2

)

k4 = h f

(
tn +

1

2
h, xn + k3

)

By substituting the initial value and iterating, the sequence of x is calculated

x =
[
10 9.0484 8.1873 7.4082 6.0653

]

2012-10-11 page 1

Analytical solution

By integrating both sides of the equation we will have By substituting the initial value
and iterating, the sequence of x is calculated

x∫

x0

ẋ =

t∫

0

−0.1 x

x∫

x0

dx

x(t)
=

t∫

0

−0.1 dt

x(t) := e−0.1 t x0

1.1 Matlab Code

The matlab code consist of a suite of functions:

• Main program

• Integrator, which goes over the time interval in steps

• Euler step: executes one R-K step

• Runge-Kutta step: executes one R-K step

• ODEs

1.1.1 Launcher

1 %
2 % test problem for Runke Kutta 4 and Euler
3

4 %
5 % 2012-10-23 Preisig, H A
6 %%
7

8 t end = 10;
9 step = 0 .1 ;

10 x0 = 10;
11 par = −0.1;
12

13 [t , x] = Integrator (@RK4 Step, @TestModel, t end , step , x0 , par) ;
14

15 figure (1)
16 plot(t , x , ’b ’)
17 hold on
18

19 %%
20 [t , x] = Integrator (@Euler Step , @TestModel, t end , step , x0 , par) ;
21

22 plot(t , x , ’ r ’)
23

24 %%
25 plot(t , x0∗exp(−0.1∗t) , ’xk ’)

2012-10-11 page 2

26 %%
27

28 legend(’Runge−Kutta ’ , ’ Euler ’ , ’Exact ’)
29 t i t le (’Test of Euler and Runge Kutta integrat ion on dx = 0.1∗x ’)
30 xlabel (’ t ’)
31 ylabel (’x ’)
32 hold o f f

1.1.2 Integrator

1 %
2 % implements the integration of a system of differential equations
3 % using a specified integration method.
4 %
5 % 2012-10-23 Preisig, H A
6 %%
7

8 function [t , x] = Integrator (INTEGRATOR, ODE, t end , step , x0 , par)
9 %

10 % ODE :: rhs of the ode’s as function of t and x
11 % t_end :: end time, starting time is always 0
12 % step :: step size
13 % x0 :: initial conditions
14 % par :: parameters
15 % x :: trajectory
16

17 n = t end/step ;
18 x = zeros(length(x0) , n) ;
19 t=x ;
20 x (: , 1) = x0 ;
21

22 for i = 2:n
23 t (i) = t (i−1) + step ;
24 x (: , i) = feval (INTEGRATOR, ODE, t (i) , x (: , i−1), step , par) ;
25 end

1.1.3 Runge-Kutta step

1 %
2 % Runke Kutta 4 step
3 %
4 % 2012-10-23 Preisig, H A
5 %%
6

7

8 function x next = RK4 Step(ODE, t , x , h , par)
9

10 % t :: current time k’th step
11 % x :: current x so x(k)
12 % x_next :: next x, so x(k+1)
13 % t :: current time
14 % h :: step size
15 % par :: parameters
16

17 k1 = feval (ODE, t , x , par) ; % slope at the beginning of interval
18 k2 = feval (ODE, t + 0.5∗h , x + 0.5∗k1 , par) ; % slope at midpoint using k1
19 k3 = feval (ODE, t + 0.5∗h , x + 0.5∗k2 , par) ; % slope at midpoint using k2
20 k4 = feval (ODE, t + h, x + k3 , par) ; % slope at end
21 x next = x + (h/6)∗(k1 + 2∗k2 + 2∗k3 + k4) ; % make step

1.1.4 Euler step

2012-10-11 page 3

1 %
2 % Euler step
3 %
4 % 2012-10-23 Preisig, H A
5 %%
6

7

8 function x next = Euler Step (ODE, t , x , h , par)
9

10 % t :: current time k’th step
11 % x :: current x so x(k)
12 % x_next :: next x, so x(k+1)
13 % t :: current time
14 % h :: step size
15 % par :: parameters
16

17 k1 = feval (ODE, t , x , par) ; % slope at the beginning of interval
18 x next = x + h ∗ k1 ; % make step

1.1.5 Test model

1 %
2 % test problem dx = -0.1*x
3 %
4 % 2012-10-23 Preisig, H A
5

6

7 %%
8 function dx = TestModel(t , x , par)
9

10 dx = par (1) ∗ x ;

Figure 1 shows the analytical solution and the approximations from Euler and RK4 meth-
ods.

0 1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

t

x

Test of Euler and Runge Kutta integration on dx = 0.1*x

Runge−Kutta
Euler
Exact

Figure 1: The matlab graphics for the test problem

2012-10-11 page 4

1.2 Python code

The Python code has two pieces: The first implements a class of integrators, which
are plugged into the second module, which contains the whole problem, integrator and
differential equations.

Note that the model can be subclassed defining another model as demonstrated in the
main program section of the module.

1.2.1 Integrators

1 ’’’
2 2012-10-11 created
3 2012-10-13 step returns dt, dxdt and x_new
4

5 @author: Preisig, Heinz A
6 @organization: NTNU, Chemical Engineering
7 ’’’
8

9 class Stepper (object) :
10 ’’’
11 Implements different "steppers" for computing ODE integrals.
12 ’’’
13

14 def i n i t (s e l f , model , dt) :
15 ’’’
16 Keeps the model and the (initial) time step.
17 ’’’
18 s e l f .model = model
19 s e l f . dt = dt
20

21 class Euler(Stepper) :
22 ’’’
23 Implements the Euler method.
24 ’’’
25

26 def step (s e l f , t , x) :
27 dxdt = s e l f .model . rhs (t , x)
28 x new = x + dxdt ∗ s e l f . dt ;
29 return s e l f . dt , dxdt , x new
30

31 class RungeKutta(Stepper) :
32 ’’’
33 Implements the Runge-Kutta 3:4 method.
34 Pending...
35 ’’’
36

37 def step (s e l f , t , x) :
38 h = s e l f . dt
39 k1 = h ∗ s e l f .model . rhs (t , x)
40 k2 = h ∗ s e l f .model . rhs (t + 0.5 ∗ h , x + 0.5 ∗ k1)
41 k3 = h ∗ s e l f .model . rhs (t + 0.5 ∗ h , x + 0.5 ∗ k2)
42 k4 = h ∗ s e l f .model . rhs (t + h , x + k3)
43 x new = x + (1.0 / 6.0) ∗ (k1 + 2.0 ∗ k2 + 2.0 ∗ k3 + k4)
44 dxdt = (x new − x) / h
45 return s e l f . dt , dxdt , x new

1.2.2 The model module

1 ’’’

2012-10-11 page 5

2 In this module, the term "model" is used for the complete "thing" including the
3 differential equation *and* the integrator.
4

5 2012-10-11 created (HAP).
6 2012-10-13 extended to multiple integrators and demo for re-use (HAP).
7 2012-10-16 replaced an ugly if-elif-else testing of the ode solver method with a
8 first class function object (THW).
9

10 2012-10-11 created
11 2012-10-13 extended to multiple integrators and demo for re-use
12

13 @author: Preisig, Heinz A
14 @organization: NTNU, Chemical Engineering
15 ’’’
16

17 import Integrator 04 as ODE
18 import math
19 import gnuplot
20

21 class Model :
22 ’’’
23 The model is the differential equations and the integrator
24 ’’’
25

26 def i n i t (s e l f , x0=0.0 , dt=1.0 , par=[] , odesolver=ODE. Euler) :
27 ’’’
28 The initialization gets the initial conditions, the parameters, and the
29 step size for the time stepper - being an integrator.
30

31 @param x0: initial conditions
32 @param dt: time step
33 @param par: list of parameters
34 ’’’
35 s e l f . t = [0] # keeps the time
36 s e l f . dxdt = [] # the time derivative of the state
37 s e l f . x = [x0] # keeps the state over time
38 s e l f . par = par
39

40 # plug in desired integrator
41 s e l f . integrator = odesolver(s e l f , dt) # plug in the integrator
42

43 def rhs (s e l f , t , x) :
44 ’’’
45 <USER SPECIFIC>
46

47 Returns the value of the time derivative of the current state and stores
48 the newly calculated derivative.
49 ’’’
50 dxdt = s e l f . par [0] ∗ x
51 return dxdt
52

53 def integrateTimeInterval (s e l f) :
54 ’’’
55 Integrate over the given time interval; thus updating time *and* state.
56 ’’’
57 x = s e l f . x[−1]
58 t = s e l f . t [−1]
59 dt , dxdt , x new = s e l f . integrator . step (t , x)
60 s e l f . dxdt . append(dxdt)
61 s e l f . x . append(x new)
62 s e l f . t . append(t + dt)
63

64 class MyModel(Model) :
65 def rhs (s e l f , t , x) :
66 dxdt = s e l f . par [0] ∗ x

2012-10-11 page 6

67 return dxdt
68

69 i f name == ’ main ’ :
70

71 #prepare for plotting
72 plot = gnuplot . gnuplot (xlabel=’ t ’ , y label=’x ’ , xmin=0, xmax=5, ymin=0, ymax=10, \
73 t i t l e=’ integrat ion two exponential using Euler and R−K, exact (+
74

75 # instantiate models
76 x0 = 10
77 dt = 0.1
78 par1 = [−2]
79 par2 = [−1]
80

81 # default model with Euler
82 m = Model(x0=x0 , dt=dt , par=par1 , odesolver=ODE. Euler) # initialise object
83 for i in range (0 , 5) : # step through the time interval
84 m. integrateTimeInterval ()
85

86 plot . addl ist (m. x , co lor=’ blue ’) # add to plot
87 print ’\nDefault model r e su l t s (Euler) : ’ , m. x
88

89 # default model with Runge Kutta
90 m = Model(x0=x0 , dt=dt , par=par1 , odesolver=ODE.RungeKutta) # initialise object
91 for i in range (0 , 5) : # step through the time interval
92 m. integrateTimeInterval ()
93

94 plot . addl ist (m. x , co lor=’ green ’) # add to plot
95 print ’\nDefault model r e su l t s (Runge Kutta) : ’ , m. x
96

97

98 # my model Euler
99 m = MyModel(x0=x0 , dt=dt , par=par2) # initialise object

100 for i in range (0 , 5) : # step through the time interval
101 m. integrateTimeInterval ()
102

103 plot . addl ist (m. x , co lor=’ blue ’) # add to plot
104 print ’My model r e su l t s (Euler) : ’ , m. x
105

106 # my model Runge Kutta
107 m = MyModel(x0=x0 , dt=dt , par=par2 , odesolver=ODE.RungeKutta)

initialise object
108 for i in range (0 , 5) : # step through the time interval
109 m. integrateTimeInterval ()
110

111 plot . addl ist (m. x , co lor=’ green ’) # add to plot
112 print ’My model r e su l t s (Runge Kutta) : ’ , m. x
113

114

115 # comparison with exact solution
116

117 t = 0
118 x exact = []
119 for i in range (0 , 5) :
120 t = i ∗ dt
121 x exact . append(math. e ∗∗ (par1 [0] ∗ t) ∗ 10)
122

123 print ’Exact value f i r s t model : ’ , x exact
124 plot . addl ist (x exact , co lor=’ red ’ , s ty le=’ points ’) # add to plot
125

126 t = 0
127 x exact = []
128 for i in range (0 , 5) :
129 t = i ∗ dt
130 x exact . append(math. e ∗∗ (par2 [0] ∗ t) ∗ 10)

2012-10-11 page 7

131

132 print ’Exact value f i r s t model : ’ , x exact
133 plot . addl ist (x exact , co lor=’ red ’ , s ty le=’ points ’) # add to plot
134

135 #plotting
136 plot . plot (’model 04 ’)

2012-10-11 page 8

2 Suggested solution: Decaffination plant

EtOH

L6

G2

K1

K2

CRYSTALLIZATION

EVAPORATOR

Caffein

K3S5L6

beans EA

S1L1

S2L2

B1

S3L3

S4L4

B1

Decaff

G1

L5

MIXER+SETTLER MIXER+SETTLER

CONDENSOR

FILTER

Figure 2: Topology of a Caffein Extraction plant

2012-10-11 page 9

3 Solution: Reaction 03 - CO2 adsorption

1. Writing the balance for each species we will have:

ṅG := n̂f − n̂p − n̂G|I

ṅi := n̂a − n̂b + ñi

where,

i := S1, S2, S3, S4

a|b ∈ I|1, 1|2, 2|3, 3|4

2. Transport: The flow in the gas phase is pressure driven from stage to stage:

n̂g := cg V̂g ; g ∈ [f, p]

V̂g := −kg

{
(pG − pG−1); g := f

(pG+1 − pG); g := p

The diffusion into the solid, the activated carbon, we model with a transfer law
that is linear in the discrete concentration gradient, though with a correction, as we
model the solid, which is porous as a pseudo-homogeneous system. Thus

n̂I|S1,CO2
:= −kI|S1

(ǫ−1 cS1,CO2 − cG,CO2)

For the transport inside the solid we have:

n̂Si|Si+1,CO2 := −kSi|Si+1
(cSi+1,CO2 − csi,CO2)

3. The production rate is:

ñi := V NT ξ̃

change of extent of reaction ξ̃ := Kg(c)

reaction constant matrix K := diag
[
kf kb

]

reaction constant matrix N :=

[
νf
νb

]

dependency on the concetrations

[
gf(c)
gb(c)

]
:=

[
cSi,CO2 cSi,C∗

cSi,CO2···C

]

4. For the definition of the composition of the CO2 in the solid phase and diffusing
gas, we use a constant volume. All kinetic data are based on the pseudo phase. The
individual volume piece would be the volume of the complete solid phase divided
by the number of stages and divided by the number of solid lumps per stage.

cG := V −1
G nG

p
G
:= V −1

G nGRT

T :: given

VG :: given

cSi,CO2 := V −1
Si

nSi,CO2

VSi
:: given

2012-10-11 page 10

The Plug Flow Reactor (TKP4106)

Zooball/Kangaroo

At a computer expo (COMDEX), Bill Gates reportedly compared the computer industry with the auto
industry and stated: "If GM had kept up with the technology like the computer industry has, we would all be

driving $25.00 cars that got 1,000 miles to the gallon." In response to Bill's comments, General Motors
issued a press release (by Mr. Welch himself) stating: If GM had developed technology like Microsoft, we

would all be driving cars with the following characteristics:

For no reason at all, your car would crash twice a day.
Every time they repainted the lines on the road, you would have to buy a new car.
Only one person at a time could use the car, unless you bought Car95 or CarNT, and then added
more seats.
Apple would make a car powered by the sun, reliable, five times as fast, and twice as easy to drive,
but would run on only five per cent of the roads.
The airbag would say 'Are you sure?' before going off.
Occasionally, for no reason, your car would lock you out and refuse to let you in until you
simultaneously lifted the door handle, turned the key, and grabbed the radio antenna.
You would press the start button to shut off the engine.
• • •

General Motors vs. Bill Gates

Assignments

1. Download the thermodynamics module srk_ammonia.py.
2. Download the flowsheet module flowsheet.py.
3. a. Download the ammonia reactor module ammonia_reactor.py.

b. Beware the integrating namespace tkp4106.py.
c. Finish the initialization of p(V) = p0 in Section 2.
d. Make sure the equation is solved correctly.

4. Run ammonia_reactor.py from the command line:
python ammonia_reactor.py rk2 explicit 12 1

until you hit an error in the integration method
hpn_vs_tvn_integrator(), confer Section 6 in that file. You may have
a problem getting past feed.get_cfw() in Section 3. That is probably
because you have not implemented tkp4106.molecular_weight()

which is referenced in srk_ammonia.py. Fix this problem by hard-coding
the missing values in-place.

Start reading about Modelling issues to understand the three physical principles
(energy, momentum, mass) that lie behind the Plug-Flow-Reactor model, and
also the meaning of linearization.

%Predefined.

HTML text.

5.17.1 Verbatim: “srk ammonia.py”

1 """
2 @summary: Mock-up thermodynamic class for ammonia reactor calculations.
3 Based on ideal gas as a function of T, V, n i.e. *not* T, p, n.
4 Pressure has therefore to be iterated if necessary. This is part
5 of the training of our students though...
6 @author: Tore Haug-Warberg
7 @organization: Department of Chemical Engineering, NTNU, Norway
8 @contact: haugwarb@nt.ntnu.no
9 @license: GPLv3

10 @requires: Python 2.3.5 or higher
11 @since: 2011.10.04 (THW)
12 @version: 0.6
13 @todo 1.0:
14 @change: started (2011.10.04)
15 @note: Bla-bla.
16 """
17

18 class Model:
19 ’’’Ideal gas implemented on the form of Helmholtz energy A(T, V, nvec).’’’
20 def __init__(self, args):
21

22 # Turn component names into lower case before any comparisons are made.
23 args = [arg.lower() for arg in args]
24

25 # from string import lower # alternative conversion
26 # args = map(lower, args) # alternative conversion
27

28 # The model component list is hard-coded. This may change in the future,
29 # but so far we must live with the hack.
30 import tkp4016
31

32 # Molecular weight [10^10 g/mol].
33 mw = lambda str: \
34 [1.0e-10*n/m for (n, m) in [tkp4106.molecular_weight(str)]].pop()
35

36 cfw = [(’ammonia’ , ’NH3’, mw(’NH3’)),
37 (’nitrogen’, ’N2’ , mw(’N2’)),
38 (’hydrogen’, ’H2’ , mw(’H2’)),
39 (’argon’ , ’Ar’ , mw(’Ar’)),
40 (’methane’ , ’CH4’, mw(’CH4’))]
41

42 tmp = [c for (c, f, w) in cfw]
43

44 # Check that given components are in range of model.
45 for arg in args:
46 if not arg in tmp:
47 raise SyntaxError("unknown component ’%s’" % (arg,))
48

49 tmp = [c for (c, f, w) in cfw if c in args]
50

51 # Check that given components are in correct order.
52 if not tmp == args:
53 print ’Warning: component list: %s\n’ \
54 ’ reordered to: %s’ % (args, tmp)
55

56 # Select values from list ’v’ being True in list ’b’.
57 compact = lambda b, v: [vi for (bi, vi) in zip(b, v) if bi]
58

59 # Make Boolean flags (True | False) for extraction of data.
60 flags = [c in args for (c, f, w) in cfw]
61 self.cfw = compact(flags, cfw) # extract (component name, formula, mw)s
62 nc = len(self.cfw) # number of chemical components in mixture
63

64 # Enthalpies of formation and standard entropies from DIPPR (1996) data-
65 # base. Heat capacity parameters from Reid, Poling and Prausnitz (1987)
66 # book. These are the data needed for calculating other state variables.
67 # The units are:
68 # temperature [kK]
69 # pressure [kbar]

291

70 # volume [dm3]
71 # mole number [mol]
72 # energy [10^5 J]
73 # mass [10^10 g]
74 # time [s]
75 # The reason for these odd choices is numerical stability.
76 #
77 self.dict = {\
78 ’fix_rgas’:0.083145119843087,
79 ’var_t’:0.29815,
80 ’var_v’:0.001,
81 ’var_n’:[1.0]*nc,
82 ’par_h0’:compact(flags, [-.45898, 0.00000, 0.00000, 0.00000, -.74520]),
83 ’par_s0’:compact(flags, [1.92660, 1.91500, 1.30571, 1.54737, 1.86270]),
84 ’par_c1_cp’:compact(flags, [0.2731, 0.3115, 0.27140, 0.20786, 0.01925]),
85 ’par_c2_cp’:compact(flags, [0.2383, -.1357, 0.09274, 0.00000, 0.52130]),
86 ’par_c3_cp’:compact(flags, [0.1707, 0.2680, -.13810, 0.00000, 0.11970]),
87 ’par_c4_cp’:compact(flags, [-.1185, -.1168, 0.07645, 0.00000, -.11320])
88 }
89

90 # Run self.__call__() to calculate derived ’state’ properties.
91 self()
92

93 def __call__(self, **args):
94 for (k, v) in args.iteritems():
95 self.dict[k] = v # store input arguments (if any)
96

97 t = self.dict[’var_t’]
98 v = self.dict[’var_v’]
99 n = self.dict[’var_n’]

100 r = self.dict[’fix_rgas’]
101

102 if t<0 or v<0 or min(n)<0:
103 return False
104

105 self.dict[’state_t’] = t
106 self.dict[’state_v’] = v
107 self.dict[’state_n’] = n
108

109 ntot = sum(n)
110 mtot = sum([ni*wi for (ni, wi) \
111 in zip(n, [w for (c, f, w) in self.cfw])])
112

113 self.dict[’state_ntot’] = ntot # total number of moles [mol]
114 self.dict[’state_mtot’] = mtot # total mass [10^10 g]
115

116 nc = len(n)
117 eye = [int(i==j) for i in xrange(0,nc) for j in xrange(0,nc)]
118

119 self.dict[’state_t_t’] = 1.0
120 self.dict[’state_t_v’] = 0.0
121 self.dict[’state_t_n’] = [0.0]*nc
122 self.dict[’state_v_t’] = 1.0
123 self.dict[’state_v_v’] = 0.0
124 self.dict[’state_v_n’] = [0.0]*nc
125 self.dict[’state_n_t’] = [0.0]*nc
126 self.dict[’state_n_v’] = [0.0]*nc
127 self.dict[’state_n_n’] = eye
128

129 t0 = 0.29815 # reference temperature [kK]
130 p0 = 0.00101325 # standard state pressure [kbar]
131

132 self.dict[’state_p’] = ntot*r*t/v
133 self.dict[’state_p_t’] = ntot*r/v
134 self.dict[’state_p_v’] =-ntot*r*t/v**2
135 self.dict[’state_p_n’] = [r*t/v]*nc
136 self.dict[’state_h’] = 0.0
137 self.dict[’state_h_t’] = 0.0
138 self.dict[’state_h_v’] = 0.0
139 self.dict[’state_h_n’] = [0.0]*nc
140 self.dict[’state_mu’] = [0.0]*nc
141 self.dict[’state_mu0’] = [0.0]*nc

292

142

143 import math
144

145 for i in xrange(0, nc):
146 hti = self.dict[’par_h0’][i] + \
147 self.dict[’par_c1_cp’][i]*(t-t0) + \
148 self.dict[’par_c2_cp’][i]*(t**2-t0**2)/2.0 + \
149 self.dict[’par_c3_cp’][i]*(t**3-t0**3)/3.0 + \
150 self.dict[’par_c4_cp’][i]*(t**4-t0**4)/4.0
151 cpi = self.dict[’par_c1_cp’][i] + \
152 self.dict[’par_c2_cp’][i]*t + \
153 self.dict[’par_c3_cp’][i]*t**2 + \
154 self.dict[’par_c4_cp’][i]*t**3
155 sti = self.dict[’par_s0’][i] + \
156 self.dict[’par_c1_cp’][i]*math.log(t/t0) + \
157 self.dict[’par_c2_cp’][i]*(t-t0) + \
158 self.dict[’par_c3_cp’][i]*(t**2-t0**2)/2.0 + \
159 self.dict[’par_c4_cp’][i]*(t**3-t0**3)/3.0
160 self.dict[’state_h’] += hti*n[i]
161 self.dict[’state_h_t’] += cpi*n[i]
162 self.dict[’state_h_n’][i] = hti
163 self.dict[’state_mu’][i] = hti - t*sti + r*t*math.log(n[i]*r*t/v/p0)
164 self.dict[’state_mu0’][i] = hti - t*sti
165

166 return True
167

168 def __getitem__(self, key):
169 return self.dict[key]
170

171 def __setitem__(self, key, val):
172 self.dict[key] = val
173 return None
174

175 def __str__(self):
176 return ’T=%8.6f; p=%8.6f; H=%8.5f; V=%8.6f’ % \
177 (self.dict[’state_t’],
178 self.dict[’state_p’],
179 self.dict[’state_h’],
180 self.dict[’state_v’])
181

182 def get_cfw(self):
183 return self.cfw

293

5.17.2 Verbatim: “flowsheet.py”

1 """
2 @summary: Flowsheet module. UnitParentClass is an ’abstract’ class used for
3 implementing features that are common to all unit operations (so far
4 Stream and Reactor). Common features are (in regular Python syntax)::
5

6 obj[’variable_name’] # __getitem__(’variable_name’)
7 obj[’variable_name’] = value # __setitem__(’variable_name’, value)
8 obj() # __call__()
9 print obj # __str__()

10 obj.component_list() # [(name, formula), ...]
11 obj.connect(another_obj) # obj[var_t] = another_obj[var_t], ...
12 obj.functor(name, fun, args) # obj.name(*args) => fun(z, *args)
13

14 The module also contains a collection of functions for calculating the
15 pressure drop, heat exchange, kinetics, Jacobian matrix, etc. of a
16 unit operation object.
17

18 @author: Tore Haug-Warberg
19 @organization: Department of Chemical Engineering, NTNU, Norway
20 @contact: haugwarb@nt.ntnu.no
21 @license: GPLv3
22 @requires: Python 2.3.5 or higher
23 @since: 2011.10.04 (THW)
24 @version: 0.5
25 @todo 1.0: Finish methods arrhenius(), tubeandshell()
26 @change: started (2011.10.04)
27 @note:
28 """
29

30 import srk_ammonia
31 import math
32

33 # Unit operation parent class. It should have been an abstract class (that is a
34 # class without a constructor), but this is not straightforward in Python. Note
35 # that ’UnitParentClass’ represents a thermodynamic state object, it is *NOT* a
36 # flow object since there is no concept of time here.
37 class UnitParentClass:
38 ’’’Base class for unit operation objects.’’’
39 def __init__(self, tag, module, component_list):
40 self.model = module.Model(component_list)
41 self.tag = tag
42 self.module = module
43 self.functors = {}
44

45 def __getitem__(self, key):
46 return self.model[key]
47

48 def __setitem__(self, key, val):
49 self.model[key] = val
50 return None
51

52 def __call__(self, **args):
53 return self.model(**args)
54

55 def __str__(self):
56 return "’" + self.tag + "’; " + str(self.model)
57

58 def get_cfw(self):
59 return self.model.get_cfw()
60

61 def get_module(self):
62 return self.module
63

64 def connect(self, arg):
65 self.model[’var_t’] = arg.model[’var_t’]
66 self.model[’var_v’] = arg.model[’var_v’]
67 self.model[’var_n’] = arg.model[’var_n’]
68 self.model()
69 for (name,fun) in arg.functors.iteritems():

294

70 setattr(self.__class__, name, fun)
71

72 def functor(self, *args):
73 fun = lambda self, x=None: args[1](self, x, *args[2])
74 setattr(self.__class__, args[0], fun)
75 self.functors[args[0]] = fun
76 return self
77

78 def duplicate(self, tag, arg={}):
79 component_list = [name for (name, formula, mw) in self.get_cfw()]
80 module = self.get_module()
81 obj = self.__class__(tag, module, component_list)
82 obj.connect(self)
83 return obj
84

85

86 # Derived process Stream class.
87 class Stream(UnitParentClass):
88 ’’’Syntactic sugar.’’’
89 pass
90

91 # Derived chemical Reactor class.
92 class Reactor(UnitParentClass):
93 ’’’Syntactic sugar.’’’
94 pass
95

96 # Global functions used in reactor simulation. Connect to UnitParentClass object
97 # using so-called ’lambda’-functions, see method ’functor()’ in this file.
98 def constantpdrop(obj, z, dp):
99 """

100 Constant pressure drop (dp/dz = constant) along the unit.
101 @param obj: unit operation object
102 @param z: axial position
103 @param dp: pressure drop [kbar] per reactor length
104 @type obj: aUnitParentClass
105 @type z: aFloat
106 @type dp: aFloat
107 @return: aFloat
108 """
109 return dp
110

111 def constantcooling(obj, z, duty):
112 """
113 Constant heat transfer (dQ/dz = constant) along the unit.
114 @param obj: unit operation object
115 @param z: axial position
116 @param duty: heat transfer [1.0e5 J] per reactor length
117 @type obj: aUnitParentClass
118 @type z: aFloat
119 @type duty: aFloat
120 @return: aFloat
121 """
122 return duty
123

124 def tubeandshell(obj, z, ua, t0):
125 """
126 Heat transfer calculation for a ’tube-and-shell’ heat exchanger.
127 @param obj: unit operation object
128 @param z: axial position
129 @type obj: aUnitParentClass
130 @type z: aFloat
131 @return: aFloat
132 """
133 return ua*(t0 - obj[’state_t’])
134

135 def constantrate(obj, z, nmat, k):
136 """
137 Constant reaction rate (r = constant) along the unit.
138 @param obj: unit operation object
139 @param z: axial position
140 @param nmat: reaction stoichiometry matrix
141 @param k: extent of reactions (one for each column of nmat)

295

142 @type obj: aUnitParentClass
143 @type z: aFloat
144 @type nmat: aList [aList [aFloat, aFloat, ...]]
145 @type k: aList [aFloat, aFloat, ...]
146 @return: aList [aFloat, aFloat, ...]
147 """
148 return [sum([nui*ki for (nui, ki) in zip(nu, k)]) for nu in nmat]
149

150 def firstorder(obj, z, nmat, keyc, k):
151 """
152 First order kinetics with respect to given ’key’ components.
153 @param obj: unit operation object
154 @param z: axial position
155 @param nmat: reaction stoichiometry matrix
156 @param keyc: key components (one for each column of nmat)
157 @param k: rate constants (one for each column of nmat)
158 @type obj: aUnitParentClass
159 @type z: aFloat
160 @type nmat: aList [aList [aFloat, aFloat, ...]]
161 @type keyc: aList [anInt, anInt, ...]
162 @type k: aList [aFloat, aFloat, ...]
163 @return: aList [aFloat, aFloat, ...]
164 """
165 return [\
166 sum([nui*obj[’state_n’][ci]*ki for (nui, ci, ki) in zip(nu, keyc, k)]) \
167 for nu in nmat\
168]
169

170 def arrhenius(obj, z, nmat, keyc, k, a, t0):
171 """
172 Arrhenius chemical reaction kinetics.
173 @param obj: unit operation object
174 @param z: axial position
175 @type obj: aUnitParentClass
176 @type z: aFloat
177 @return: aList [aFloat, aFloat, ...]
178 """
179 return [\
180 sum([nui*(math.exp(-a/obj[’state_t’]/obj[’fix_rgas’])/math.exp(-a/t0/obj[’fix_rgas’]))*obj[’state_n’][ci]*ki for (nui, ci, ki) in zip(nu, keyc, k)]) \
181 for nu in nmat\
182]
183

184 # Matrix-like thermodynamic state functions. Explicit in temperature, volume and
185 # mole numbers.
186 def hpn_vs_tvn_jacobian(obj, null=None):
187 """
188 Thermodynamic Jacobian of d(H,p,N1,N2,...)/d(T,V,N1,N2,...) calculated as
189 [[dH/dT, dH/dV, dH/dN1, ...], [dp/dT, ...], ...].
190 @param obj: unit operation object
191 @param null: not used
192 @type obj: aUnitParentClass
193 @type null: anObject
194 @return: aList [aList [aFloat, aFloat, ...]]
195 """
196 nc = len(obj[’state_n’])
197 dh = [obj[’state_h_t’]] + [obj[’state_h_v’]] + obj[’state_h_n’]
198 dp = [obj[’state_p_t’]] + [obj[’state_p_v’]] + obj[’state_p_n’]
199 dn = [\
200 [obj[’state_n_t’][i]] +
201 [obj[’state_n_v’][i]] +
202 obj[’state_n_n’][i*nc:(i+1)*nc] for i in xrange(0, nc)\
203]
204 return [dh] + [dp] + dn
205

206 def hpn(obj, null=None):
207 """
208 Thermodynamic constraint function [[H], [p], [N1], [N2],...].
209 @param obj: unit operation object
210 @param null: not used
211 @type obj: aUnitParentClass
212 @type null: anObject
213 @return: aList [[aFloat], [aFloat], ...]

296

214 """
215 return [[obj[’state_h’]]] + \
216 [[obj[’state_p’]]] + [[ni] for ni in obj[’state_n’]]
217

218 # Enthalpy, pressure, composition solver. No fall-back solution for erroneous
219 # thermodynamic calculations (cross your fingers). This is quite easy to program
220 # but it causes a mild code bloat and is left as an exercise for the interested
221 # reader.
222 import tkp4106
223

224 def hpn_vs_tvn_solver(obj, y1, eps, maxiter=50):
225 """
226 Thermodynamic equation solver. Iterates on ’tvn’ = (T,V,N1,N2,...) to meet a
227 given specification ’y1’ = (H,p,N1,N2,...).
228 @param obj: unit operation object
229 @param y1: [[H],[p],[N1],[N2],...] specification
230 @param eps: convergence criterion (upper bound)
231 @param maxiter: maximum number of iterations (negative value implies a fixed
232 number of iterations).
233 @type obj: aUnitParentClass
234 @type y1: aList [aList [aFloat, aFloat, ...]]
235 @type eps: aFloat
236 @type maxiter: anInt
237 @return: aUnitParentClass
238 """
239 converged = False # convergence flag
240 norm = 1.0 # convergence control variable
241 nc = len(obj[’state_n’]) # number of chemical components in mixture
242 ni = 0 # number of iterations
243 while not converged:
244 ni += 1
245 dy = pass # y1 - (h,p,n)
246 dx = tkp4106.solve(obj.jac(), dy)
247 tmp = max([abs(dxi[-1]) for dxi in dx])
248 converged = tmp < eps and tmp >= norm or (ni+maxiter) == 0
249 norm = tmp
250 if maxiter > 0:
251 print "norm=%8.3g; %s;" % (norm, obj)
252 if not converged and ni >= abs(maxiter):
253 raise ArithmeticError("max iterations (%s) exceeded" % (ni,))
254 obj[’var_t’]+= pass # dt
255 obj[’var_v’]+= pass # dv
256 obj[’var_n’] = pass # dn_i
257 obj()
258

259 return obj
260

261 # Numerical integration of enthalpy, pressure and composition problems. With or
262 # without chemical reactions.
263 def hpn_vs_tvn_integrator(method, obj, z0, z1, nz):
264 """
265 Thermodynamic integrator using Euler, RK2 or RK4 methods. Both explicit and
266 implicit update schemes are possible. The lambda function ’obj.update()’ is
267 supposed to exist and is used to iterate on ’tvn’ = (T,V,N1,N2,...) to meet
268 a given specification ’y1’ = (H,p,N1,N2,...) in one or more iterations. One
269 iteration means an explicit update. Iteration till full convergence is also
270 possible. This is the implicit update. In calculating the right side of the
271 differential equation three other lambda functions must exist: These are
272 ’obj.heatexchange()’, ’obj.pressureprofile()’ and ’obj.kinetics()’.
273 @author: Stud. Techn. Stig-Erik Nogva
274 @organization: Department of Chemical Engineering, NTNU, Norway
275 @param method: ’euler’, ’rk2’ or ’rk4’
276 @param obj: unit operation object
277 @param z0: start of integration
278 @param z1: end of integration
279 @param nz: number of integration steps
280 @type method: aString
281 @type obj: aUnitParentClass
282 @type z0: aNumber
283 @type z1: aNumber
284 @type nz: aNumber
285 @return: theUnitParentClass

297

286 """
287 objs = [] # utility list (Runge-Kutta needs intermediate states)
288 dz = float(z1-z0)/nz # integrator step size
289

290 for z in [z0+k*dz for k in xrange(0, nz)]:
291

292 # Calculate right side of ODE on the dot(y) = y(z) form.
293 yz = [obj.heatexchange(z)] + \
294 [obj.pressureprofile(z)] + obj.kinetics(z)
295

296 if method == ’euler’:
297 y1 = pass # (h,p,n) + yz*dz
298

299 elif method == ’rk2’:
300 while len(objs) < 2:
301 tmp = obj.duplicate(’RK2_’+str(len(objs))) # 1 intermediate obj
302 objs.append(tmp)
303

304 for i in range(0, len(objs)):
305 objs[i].connect(obj) # connect to master object in every step
306

307 # Obtain 1 auxiliary quantity
308 k1 = [yzi*dz for yzi in yz]
309 yk2 = [[yi[-1]+k1i] for (yi, k1i) in zip(objs[0].hpn(), k1)]
310 objs[0].update(yk2) # iterate on the intermediate state
311

312 yz2 = [objs[0].heatexchange(z+1.0*dz)] + \
313 [objs[0].pressureprofile(z+1.0*dz)] + \
314 objs[0].kinetics(z+1.0*dz)
315 k2 = [yzi*dz for yzi in yz2]
316 k = [k1i+k2i for (k1i, k2i) in zip(k1, k2)]
317

318 y1 = [[yi[-1]+(1/float(2))*ki] for (yi, ki) in zip(obj.hpn(), k)]
319

320 elif method == ’rk4’:
321 while len(objs) < 4:
322 tmp = obj.duplicate(’RK4_’+str(len(objs))) # 3 intermediate objs
323 objs.append(tmp)
324

325 for i in range(0, len(objs)):
326 objs[i].connect(obj) # connect to master object in every step
327

328 # Obtain the 4 auxiliary quantities
329 k1 = [yzi*dz for yzi in yz]
330 yk2 = [[yi[-1]+0.5*k1i] for (yi, k1i) in zip(objs[0].hpn(), k1)]
331 objs[0].update(yk2) # iterate on intermediate state 1
332

333 yz2 = [objs[0].heatexchange(z+0.5*dz)] + \
334 [objs[0].pressureprofile(z+0.5*dz)] + \
335 objs[0].kinetics(z+0.5*dz)
336 k2 = [yzi*dz for yzi in yz2]
337 yk3 = [[yi[-1]+0.5*k2i] for (yi, k2i) in zip(objs[1].hpn(), k2)]
338 objs[1].update(yk3) # iterate on intermediate state 2
339

340 yz3 = [objs[1].heatexchange(z+0.5*dz)] + \
341 [objs[1].pressureprofile(z+0.5*dz)] + \
342 objs[1].kinetics(z+0.5*dz)
343 k3 = [yzi*dz for yzi in yz3]
344 yk4 = [[yi[-1]+k3i] for (yi, k3i) in zip(objs[2].hpn(), k3)]
345 objs[2].update(yk4) # iterate on intermediate state 3
346

347 yz4 = [objs[2].heatexchange(z)] + \
348 [objs[2].pressureprofile(z)] + objs[2].kinetics(z)
349 k4 = [yzi*dz for yzi in yz4]
350 k = [k1i+2*k2i+2*k3i+k4i for (k1i, k2i, k3i, k4i) \
351 in zip(k1, k2, k3, k4)]
352

353 y1 = [[yi[-1]+(1/float(6))*ki] for (yi, ki) in zip(obj.hpn(), k)]
354

355 else:
356 raise NameError(’Method "’ + method + ’"’ + ’ not implemented yet’)
357

298

358 # Note: ’y1’ is the final [[H], [p], [N1], ...] after the step ’dz’ is
359 # taken. Lambda function ’obj.update()’ is responsible for updating the
360 # thermodynamic state accordingly.
361 obj.update(y1)
362

363 print "z=%5.3f; %s;" % (z+dz, obj)
364

365 return obj

299

5.17.3 Verbatim: “ammonia reactor.py”

1 """
2 @summary: A simple ammonia reactor calculation illustrating some principles
3 of OOP (Object Oriented Programming) in chemical engineering::
4

5 ’feed’ ---------------- ’outlet’
6) ------------> | ... ’rx’ ... | --------------> (
7 ----------------
8

9 The outcome of the study is a converged feed stream and an
10 integrated outlet from the reactor.
11 @author: Tore Haug-Warberg
12 @organization: Department of Chemical Engineering, NTNU, Norway
13 @contact: haugwarb@nt.ntnu.no
14 @license: GPLv3
15 @requires: Python 2.3.5 or higher
16 @since: 2011.10.04 (THW)
17 @version: 0.6
18 @todo 1.0:
19 @change: started (2011.10.04)
20 @note: This module defines the reaction chemistry (kinetics) and heat
21 transport for a minimal setup of an ammonia reactor. Nothing very
22 fancy, but there are 7 things to learn (see item numbering in
23 source code). From the command line run this script as::
24

25 >>> python ammonia_reactor.py ’euler|rk2|rk4’ \
26 ’implicit|explicit’ \
27 <nz> <maxiter>
28

29 nz = number of integration steps.
30 maxiter = maximum number of iterations spent on the thermodynamic
31 state calculations. If maxiter < 0 then exactly abs(maxiter)
32 iterations will be used independent of the residuals norm.
33 """
34

35 import srk_ammonia
36 import flowsheet
37 import tkp4106
38

39 # 1) There are 3 thermodynamic objects in action: ’feed’, ’rx’ and ’outlet’.
40 # Each object represents one - and only one - thermodynamic state. This means
41 # that ’rx’, describing a state that varies in space, has to be integrated over
42 # the length over the reactor. The reactor profiles of temperature, pressure,
43 # etc. are lost in the process of integration, however, because ’rx’ can keep
44 # only one (1) state at a time. It is of course possible to keep the profiles
45 # in memory as intermediate thermodynamic state objects, but this could easily
46 # be an overkill because explicit Euler integration requires somewhere in the
47 # range of 10,000 - 100,000 steps in order to reach 6 digits precision - which
48 # would eventually bind a substantital block of memory.
49 syngas = [’ammonia’, ’nitrogen’, ’hydrogen’]
50

51 feed = flowsheet.Stream(’Feed’, srk_ammonia, syngas)
52 outlet = flowsheet.Stream(’Outlet’, srk_ammonia, syngas)
53 rx = flowsheet.Reactor(’Rx’, srk_ammonia, syngas)
54

55 # Initialize feed stream.
56 feed[’var_t’] = 0.7 # temperature [kK]
57 feed[’var_v’] = 1.0 # volume [dm3]
58 feed[’var_n’] = [0.04, 0.24, 0.72] # mole fractions
59 feed() # run thermodynamics code
60 feed[’var_n’] = [ni/feed[’state_mtot’]/1e7 for ni in feed[’state_n’]] # [mol/kg]
61

62 # Re-initialize (change T and V to show extra flexibility).
63 feed(var_t=0.8, var_v=feed[’var_v’]/feed[’state_mtot’]/1e7)
64

65 print "Initial %s" % (feed,)
66

67 # 2) The feed stream has a specified pressure p0 whereas most thermodynamic equ-
68 # ations of state are explicit in volume (and temperature and composition). The
69 # relation p(V) = p0 must therefore be solved iteratively (using Newton’s

300

70 # method in this case).
71 eps = 1.0e-8 # convergence criterion
72 p0 = 0.25 # synthesis pressure [kbar]
73

74 print "\nNewton-Raphson solution of p(v) = p0:"
75

76 converged = False # convergence flag
77 norm = 1.0 # convergence control variable
78

79 # Solve p(v) = p0 using Newton’s method. The thermodynamics model respond to the
80 # free variable ’var_v’ and calculates pressure ’state_p’ and pressure
81 # derivative ’state_p_n’.
82 while not converged:
83 dpdv = pass # Jacobian (1 x 1)
84 dp = pass # pressure residual (1 x 1)
85 dv = tkp4106.solve(dpdv, dp)[0][-1] # volume change (scalar)
86 feed[’var_v’] += pass # update the model
87 converged = abs(dv) < eps and abs(dv) >= norm # continue till norm is steady
88 norm = abs(dv) # new norm
89

90 # The model fails if ’var_v’ becomes unphysical (negative volume typically).
91 # If this happens we must shorten the iteration step until the model says it
92 # is OK. An exception is raised if the step becomes too small.
93 while not feed():
94 if abs(dv) < eps:
95 raise ArithmeticError("cannot converge p(v) = p0 relation")
96 pass # step back to last successful state
97 pass # reduce the step length
98 pass # try once more
99 print "norm=%8.3g; %s;" % (norm, feed)

100

101 print "\nConverged %s" % (feed,)
102

103 # 3) Calculate the (atoms x component) matrix and the (components x reactions)
104 # stoichiometry from molecular formulas of the components in the mixture.
105 tmp = [formula for (name, formula, mw) in feed.get_cfw()]
106 amat = tkp4106.atom_matrix(tmp)
107 nmat = tkp4106.null(amat)
108

109 # 4) There is the use of functors in the simulation code. Their meaning is a bit
110 # magic to newbies, but to old-timers they offer a great way of code separation
111 # The key issue is that we can start writing algorithms (an Euler integrator in
112 # this case) requiring a certain functionality (pressure drop, heat exchange
113 # and reaction kinetics), without knowing the exact nature of the underlying
114 # functions. The properties are instead registered in the ’rx’ object using so-
115 # called lambda expressions calling the correct function run-time by dereferenc-
116 # ing the function pointer. In effect, the heat exchange, pressure drop and
117 # reaction kinetics can be changed in one place of the code without affecting
118 # the solution algorithm. It yields, in fact, a way of defining the transport
119 # properties externally without changing neither the unit operation class nor
120 # the integration method. The same idiom is also used for defining thermodynamic
121 # state derivatives (the Jacobian). In this case we want to control the exact
122 # meaning of ’y1’, ’y2’, ’x1’, ’x2’, etc. in d(y1,y2,...)/d(x1,x2,...).
123 rx.connect(feed)
124

125 # Select a ’key’ component for the reaction kinetics. Normalize the correspond-
126 # ing stoichiometric coefficient to -1. Make a shallow copy of matrix row before
127 # doing operations on ’nmat’. The algorithm works for single reactions only.
128 keyc = [name for (name, formula, mw) in rx.get_cfw()].index(’nitrogen’)
129 piv = list(nmat[keyc])
130 for i in xrange(0, len(nmat)):
131 for j in xrange(0, len(nmat[i])):
132 nmat[i][j] /= -piv[j]
133

134 # Declare transport properties and kinetics for the reactor. Non-linear example.
135 # rx.functor(’pressureprofile’, flowsheet.constantpdrop, [-.005]) # dp/dz
136 # rx.functor(’heatexchange’, flowsheet.tubeandshell, [30.0, 0.28]) # ua*(t-t0)
137 # rx.functor(’kinetics’, flowsheet.arrhenius, [nmat, [keyc], [4/3.0], 0.1, 0.8])
138

139 # Declare transport properties and kinetics for the reactor. Linear example.
140 rx.functor(’pressureprofile’, flowsheet.constantpdrop, [0.0]) # dp/dz
141 rx.functor(’heatexchange’, flowsheet.constantcooling, [-20.0]) # heat [1.0e5 J]

301

142 rx.functor(’kinetics’, flowsheet.firstorder, [nmat, [keyc], [4/3.0]]) # rx rates
143

144 # 5) Interact with the command line reader to get hold of the integrator scheme
145 # and the number of steps required for the integration.
146 import sys
147

148 method, iterator, nz, maxiter = sys.argv[1:]
149 nz, maxiter = int(nz), int(maxiter)
150

151 # Declare a thermodynamic iterator (for use inside the integrator).
152 if iterator == ’implicit’:
153 maxiter = abs(maxiter)
154

155 if iterator == ’explicit’:
156 maxiter =-abs(maxiter)
157

158 # Declare a thermodynamic function solver and state derivatives for the reactor.
159 rx.functor(’update’, flowsheet.hpn_vs_tvn_solver, [eps, maxiter]) # state update
160 rx.functor(’jac’, flowsheet.hpn_vs_tvn_jacobian, []) # Jacobian matrix
161 rx.functor(’hpn’, flowsheet.hpn, []) # constraint variables
162

163 # 6) Integrate over the reactor using the given integration ’method’ and the
164 # given ’iterator’ mechanism.
165 print "\n%s %s integration using %s steps:" % \
166 (iterator.capitalize(), method.capitalize(), nz)
167

168 flowsheet.hpn_vs_tvn_integrator(method, rx, 0, 1, nz)# integrate from z=0 to z=1
169

170 print "\nIntegrated %s" % (rx,)
171

172 # 7) Calculate the reactor outlet using an analytic solution based on the matrix
173 # exponential of the (constant) ODE coefficient. Let y = (h,p,c) and dot(y)=C*y
174 # Then y(z=1) = expm(C)*y(z=0) where ’expm’ is the matrix exponential of C:
175 #
176 # | 1 Q/p 0 0 0 |
177 # | 0 1 0 0 0 |
178 # expm = | 0 0 1 nu_0/nu_1(fac - 1) 0 |
179 # | 0 0 0 fac 0 |
180 # | 0 0 0 nu_2/nu_1(fac - 1) 1 |
181 #
182 # Here, ’Q’ is the heat load, ’p’ is the (constant) reactor pressure, ’nu_i’ are
183 # stoichiometric coefficients and ’fac’ is the resilience factor of the ’key’
184 # component.
185 import math
186

187 outlet.connect(rx) # inherit lambda functions from ’rx’
188 outlet(var_t=feed[’var_t’], var_v=feed[’var_v’], var_n=feed[’var_n’]) # re-init
189

190 # Calculate the resilience factor of the ’key’ component.
191 fac = math.exp(outlet.kinetics(0)[keyc]/outlet[’state_n’][keyc])
192

193 # Calculate the matrix exponential.
194 nc = len(outlet[’state_n’])
195 expm = [[float(i==j) for i in xrange(0,nc+2)] for j in xrange(0,nc+2)]# identity
196 expm[0][1] = outlet.heatexchange(0)/outlet[’state_p’] # heat transfer
197 expm[2+keyc][2+keyc] = fac # ’key’ component resilience
198 for i in [j for j in xrange(0,nc) if j != keyc]:
199 expm[2+i][2+keyc] = nmat[i][-1]/nmat[keyc][-1]*(fac-1.0) # other reactions
200

201 # Calculate the outlet state from y(z=1) = expm(C)*y(z=0).
202 y1 = tkp4106.mprod(expm, outlet.hpn())
203

204 print "\nNewton-Raphson solution of f(h,p,c) = 0:"
205

206 flowsheet.hpn_vs_tvn_solver(outlet, y1, eps, 20)
207

208 print "\nConverged %s" % (outlet,)

302

5.17.4 Verbatim: “tkp4106.py”

1 """
2 @summary: Increase local namespace with TKP4106 functionality.
3 @author: Tore Haug-Warberg
4 @organization: Department of Chemical Engineering, NTNU, Norway
5 @contact: haugwarb@nt.ntnu.no
6 @license: GPLv3
7 @requires: Python 2.3.5 or higher
8 @since: 2012.09.05 (THW)
9 @version: 0.9

10 @todo 1.0:
11 @change: started (2012.09.05)
12 """
13

14 from molecular_weight import molecular_weight
15 from tridiagmprod import tridiagmprod
16 from atom_matrix import atom_matrix
17 from atoms import atoms
18 from solve import solve
19 from mprod import mprod
20 from rref import rref
21 from null import null

303

5.17.5 ammonia reactor.py, see also Sec. 5.19.2

First reference occurs in ammonia reactor.py, see Section 5.19.2 on page 335.

304

5.17.6 srk ammonia.py, see also Sec. 5.17.1

First reference occurs in srk ammonia.py, see Section 5.17.1 on page 291.

305

Plug Flow Reactor. Part III

Tore Haug-Warberg
Department of Chemical Engineering

NTNU (Norway)

13 November 2011
(completed after 240 hours of writing, programming and testing)

1 Modelling issues

ḃın , pın ḃout , pout

(U̇ + pV̇)ın (U̇ + pV̇)out

Q̇

C

A

z z +∆z

b(t, z,∆z) , ξ̇

U(t, z,∆z)

From an academic perspective
the title of this text is a little pre-
tentious. It says “Modelling Is-
sues” which means quite a lot to
people devoting their professional
lives to the several aspects of chem-
ical reactor calculations, while it
means next to nothing for a novice

in the field. Let our perspective be something in between—that of an expert novice
maybe. On our behalf then, the idealized plug flow reactor is like the one depicted in
the figure. The mass and energy balances for steady state (s-s) operation of the reactor
were devloped in Parts I and II of this paper. In short we found that:

(
∂h [energymass-1]

∂z [length]

)s-s

= C [length] q [heatmass-1 area-1]

and

(
∂c [molemass-1]

∂z [length]

)s-s

= A [area]Nr [molemass-1 volume-1]

What is missing here is a momentum balance of the reactor. It is needed to resolve the
pressure distribution inside the reactor, which of course is of great interest for reactor
design and operation, but at the same time it is pulling our wagon too far. The cal-
culations are so involved and require so much input about reactor geometry, transport
properties and kinetics that we must do without. Our replacement of the momentum
balance is simply: (

∂p [pressure]

∂z [length]

)s-s

= ∇p [pressure]

1

That is to say we rely on an explicit pressure profile p(z) given at the outset of the
simulation (we shall most of the time use ∇p = 0).

Counting the number of equations there is 1 energy balance, 1 pressure profile and C
mass balances. That makes C +2 equations which are going to be solved simultanously
in C+2 variables. The big question is: What variables? In practise we cannot choose the
solution variables freely but must tackle whatever needs our models impose on us—i.e.
the models we use to evaluate h, q and r—and there is much fuzz about which variables
are the most versatile.

Chemical engineers traditionally use T , p, x1, x2, · · · that is temperature, pressure
and mole fractions. There is no theoretical reason for this choice except that these
variables are always reported in process flow diagrams. They are also quite natural in
the sense that they play a part of our sensation of the physical world.

Thermodynamicists think differently and usually prefer T , v, c1, c2, · · · that is
temperature, specific volume and specific concentrations. This choice is natural from a
theoretical point of view because most equations of state are given as p(T, v, c) models.
By iterating directly on the variables as they appear in the equation of state we can
formulate very consise and elegant solvers.

Being trained thermodynamicists and having a keen eye on aesthetics we shall stick
to the last alternative even though we then have to solve for pressure as a function
of volume rather than just specifying it. The equations we need to be solve can be
condensed into (see Parts I and II for an explanation of the syntax):

Energy: ∂Th · ∇T + ∂vh · ∇v + ∂c1h·∇c1+∂c2h·∇c2+ · · · = Cq

Momentum: ∂T p · ∇T + ∂vp · ∇v + ∂c1p·∇c1+∂c2p·∇c2+ · · · = ∇p

Mass (1): ∇c1 = A
∑

i

N1,iri

Mass (2): ∇c2 = A
∑

i

N2,iri

...
...

This set of equations is more easily handled using matrix algebra. To minimize the use
of extra symbols ∂ch and ∂cp are taken to be row vectors while r is (still) a column
vector: 


∂Th ∂vh ∂ch
∂T p ∂vp ∂cp
0 0 I







∇T
∇v
∇c


 =




Cq
∇p
ANr




The equations above illustrate the ambivalence we are facing with regard to p or v being
our primary iteration variable. In this case we shall iterate on v to satisfy ∇p given as
the gradient of a predefined function p(z). But, since pressure is a non-linear function
of v it implies that ∇p shows up on the right side while ∇T , ∇v and ∇c appear as
solution variables on the left side. If p had been a primary iteration variable we could
have dropped the second row in the equation set, but at the same time we had to handle
the p(v) inversion inside the equation of state. This is a questionable approach because

2

it involves a nested hierarchy of solvers which can cause all kinds of numerical problems.
Usually, it is safer to handle all the equations in one solver, at least so when the equations
are few in number like in this case. On a very condensed form we can write

J(x)∇x = f(z,x) (1)

which is the equation system we have to integrate in order to calculate the temperature
and concentration profiles of the reactor. Note carefully that J(x) is a purely ther-
modynamic state function while f(z,x) is a function of both the thermodynamic state
variables and the space co-ordinate. The mathematical definitions of J and f are not
known to us at this point—they are what we might call anonymous lambda-functions
in functional programming—but their semantic meaning is all clear. E.g. their scientific
units most conform1.

The separation of the problem into J and f tells us that the transport and kinetic
properties q and r, used in defining f on the right side, may require thermodynamic
information, while the Jacobian J is independent of the spatial co-ordinate and of the
transport properties. Anyhow, the anti-derivative of the reactor model is

x(z) = x◦ +

z∫

0

J(x)-1f(ζ,x) dζ ,

and the next question is how we can make an integrator for this problem. Basically,
there are three options: Analytic, explicit and implicit solutions. We shall have a look
at all three cases. Briefly stated there are few analytical solutions of practical interest,
but the few that exist are important for: i) our theoretical insight, and ii) serving as
test cases for numerical calculations. For the numerical solutions we must be aware that
words like “explicit” and “implicit” have two different meanings. The terms do either
refer to how the ODE is formulated, or they refer to how the integration is performed.
The distinction is quite subtle and the implementation details are bewildering—these
are the combinations we shall look at:

• Explicit ODE with explicit Euler integration (forward Euler).

• Implicit ODE with (semi)implicit Euler integration (backward Euler).

• Explicit ODE with explicit Runge–Kutta integration.

• Implicit ODE with explicit Runge–Kutta integration.

From a practical point of view it is easier to implement the explicit solvers compared to
the implicit ones, but at the same time they are numerically unstable. This is a classic
result from numerical mathematics which we should know about, but which is not so
important for the PFR we are studying. What we shall see is that the explicit model
formulation fails to conserve (even explicit) constraints in energy and pressure, while the
implicit formulation does this to our satisfaction.

1It also means that f (z,x) and f (z,x(y)), and f(z,y), shall refer to the same kind of function in
this document. The free variables change, and the function definitions need not be the same, but the
function values are always interpereted as the gradient in specific enthalpy, pressure and composition.

3

1.1 Analytic solutions

Equation 1 is written with the variables x =̂ [T, v, c] in mind but it applies equally
well to any other set of thermodynamic state variables yielding an invertible Jacobian
J. In particular we could try to replace x by y =̂ [h, p, c] which yields a much simpler
formulation. Note carefully that Jacobian reduces to J(y) ≡ I:

∇y = f(z,y) (2)

Now, if f(z,y) is written as a linear function in y we have the classic problem of an ordi-
nary differential equation (ODE) with constant coefficients. The standard formulation
of the problem is shown below (matrix C has nothing to do with the circumference C
used in the energy balance):

∇y = Cy

For PFRs that experience a constant circumference C, constant cross-sectional area
A, constant pressure drop ∇p, constant heat flux q, and constant reaction rates r or
first order kinetics ri ∝ cj(i), we can spell out four different cases of linear differential
equations with constant coefficients. To keep the algebra as simple as possible—but
not simpler—we shall assume one chemical reaction (i.e. dimN = dim c × 1) and a
dimensionless reactor length in the range z ∈ [0, 1]:

1)





∇h = 0
∇p = ∇p
∇c = ξN

2)





∇h = 0
∇p = ∇p
∇c = kc1N

3)





∇h = q
∇p = 0
∇c = ξN

4)





∇h = q
∇p = 0
∇c = kc1N

Here, ξ means the overall extent of reaction, q means the overall heat transfer and kc1
denotes the first order reaction with respect to component 1 (an arbitrary choice from
our side). A textual interpretation of the four cases follows:

Case Description

1 Adiabatic, fixed pressure drop, fixed extent of reaction
2 Adiabatic, fixed pressure drop, first order reaction
3 Fixed heat load, isobaric, fixed extent of reaction
4 Fixed heat load, isobaric, first order reaction

Behind the terminology of constant coefficients there is an implication that the equations
can be recast into matrix expressions. This is advantageous from a theoretical perspec-
tive because it renders a generic solution of the problem ∇y = Cy where C takes one

4

of the four shapes shown below:

C1 =




0 0 0 0
∇p
h 0 0 0
ξν1
h 0 0 0
ξν2
h 0 0 0




C2 =




0 0 0 0
∇p
h 0 0 0

0 0 kν1 0

0 0 kν2 0




C3 =




0 q
p 0 0

0 0 0 0

0 ξν1
p 0 0

0 ξν2
p 0 0




C4 =




0 q
p 0 0

0 0 0 0

0 0 kν1 0

0 0 kν2 0




Here, we have been assuming a two-component mixture with chemical reaction ν1A =
ν2B. More components can easily be added without violating the structure of the ma-
trices. The solution(s) can be written

y(z) = ezCy(0)

where ezC means the matrix exponential of zC. Covering the matrix theory in detail
would take us astray from the PFR subject, but it is important to know that what is
said next can be formalized—if not always as closed analytical formulas—at least in
the form of numerical calculations. But, for the C-matrices mentioned above we can
follow the simple approach and find the matrix exponentials by inspection because the
matrices have such simple structures. Writing out solutions of mathematical problems
without any further details is somewhat arrogant but I think that in this case it implies
less confusion—not more confusion—to do it quick and simple. You should verify the
results by backsubstituting into the matrix formula using y(0) = [h, p, c]z=0 though:

ezC1 =




1 0 0 0
z∇p
h 1 0 0

zξν1
h 0 1 0

zξν2
h 0 0 1




ezC2 =




1 0 0 0
z∇p
h 1 0 0

0 0 ezkν1 0

0 0 ν2
ν1

(
ezkν1 − 1

)
1




ezC3 =




1 zq
p 0 0

0 1 0 0

0 zξν1
p 1 0

0 zξν2
p 0 1




ezC4 =




1 zq
p 0 0

0 1 0 0

0 0 ezkν1 0

0 0 ν2
ν1

(
ezkν1 − 1

)
1




Case 4 is maybe the most interesting for the chemical engineering student since it gives
the opportunity to study PFRs with a maximum in temperature along the reactor. The
argument is simple: Consider an exothermic first order reaction with constant cooling.
A first order reaction means that the reaction rate will decrease monotonically along the
reactor. Then, by balancing the heat production in the middle the reactor with the heat

5

taken away at the same spot it should be clear that excess heat is produced at the inlet
and excess cooling is applied at the outlet. The result is a curved temperature profile
which of course looks more interesting than a flat one.

1.2 Explicit Euler-integration

Talking about numerical integration the word explicit means the differential equations
are stated without iterative calculations. So, how can that be arranged for a non-linear
problem? The short answer is it cannot, the long answer is we can make piecewise linear
approximations to the functions we want to integrate and solve each little sub-problem
explicitly. The outcome will not be the answer, but merely a numerical approximation
to it. There are many things to worry about in such calculations. Numerical accuracy
and stability are maybe the most important issues.

We shall not look very deep into the matter but try to understand what happens in a
numerical integrator and see how we can formulate the equations in a piecewise manner.
Our starting point is Eq. 1:

J(x)∇x = f(z,x)

Inverting J (yes, we must assume that the Jacobian is invertible—else the problem is
thermodynamically inconsistent) yields the explicit formula

∇x = J(x)-1f(z,x)

Then comes the piecewise approximation ∇x ≈ (∆z)-1∆x which is assumed to be valid
on the range [z, z +∆z]:

∆x = J(xz)
-1f(z,xz)∆z +O(∆z)2

The truncation error is of second order, that is O(∆z)2, but the integrated answer will
not be that accurate because the number of steps taken in the interval is proportional
to (∆z)-1 which means the integration error will be O(∆z)2(∆z)-1 = O(∆z)1, that is
of first order only. We shall later learn how to implement schemes of higher order,
namely the Runge–Kutta integration methods of 2nd and 4th order. From the definition
∆x =̂ xz+∆z − xz we can write the final update formula as:

xe-e
z+∆z =̂ xz + J(xz)

-1f(z,xz)∆z (3)

By applying this formula successively on the integration domain z ∈ [0, 1] we can cal-
culate the sequence x0, x∆z, x2∆z, · · · very easily. Furthermore, it is (almost) evident
that xNz will converge to the true solution x(Nz) when ∆z → 0 and N → ∞. But,
this requires an infinite number of steps which eventually would take infinite time on a
computer. Another problem of the numerical solution is that computers have fixed word
lengths. Irrational numbers are approximated inside the computer as decimal numbers
represented by 16, 32, 64, or 128 bits length. This gives a round-off error in (nearly)
every multiplication or division that is carried out. There is therefore a trade-off between
a smaller ∆z to achieve higher accuracy in the updating formula, and a not-so-small ∆z
to avoid excessive round-off errors (and to reduce the computation time).

6

1.3 Implicit Euler-integration

Physical theories build on a limited number of conservation laws. For example mass and
energy conservation is essentially what lies behind our PFR model. This is the strong
point of physics. The weaker part of the theory arises from the lack of appropriate
models expressed directly in the conserved properties. This branch of physics belongs
to thermodynamics. In our case the conservation laws are made linear in the thermody-
namic variables h, p, c, while in most cases the equation of state serving the calculation
of p (and h) is on the form p(T, v, c). Hence, to update the equation of state we need to
solve the relationships between T, v and h, p iteratively (the problem is strongly coupled
and non-linear). If these relationships are solved at each step taken from z to z + ∆z
the method is said to be implicit. Recall that for the explicit method in Eq. 3 there is
no need for an iterative solution because matrix inversion in itself is an explicit method.

Why should we worry about implicit integration then? It sounds complicated and if
explicit integration works why bother? The answer is simple, definite and instructive:
Explicit integration violates the conservation principle(s) because of the linearization
term that is behind Eq. 3. If this feature is considered to be unfortunate we should con-
sider implicit integration. This is because it solves the conservation equations accurately
at each step of the integration. It is not to say that the integration is more accurate, it
is only consistent. Consistently wrong you might say, but it is not inconsistent.

To write an implicit integrator we need to understand that the conservation laws put
constraints on y =̂ [h, p, c] while the thermodynamics, heat exchange, pressure drop and
kinetics models rely on x =̂ [T, v, c]. We must therefore be able to solve the relationship
x(y) by e.g. Newton–Raphson iteration (to obtain second order convergence) in parallell
with the integration task. This topic is also known as: Integration on manifolds, ge-
ometric integration, or Differential–Algebraic–Equations (DAEs) solving. The starting
point is the same as in Eq. 2 except for the implicit relation x(y) that sits on the right
side:

∇y = f(z,x(y))

Linearization (this time in y) yields:

∆y = f(z,x(yz+∆z))∆z +O(∆z)2

This is the fully implicit formulation of the problem, where “fully” indicates that the
right side is evaluated at the next location z + ∆z, i.e. not the current z. Solving this
problem with Newton–Raphson iteration is not so easy because it requires derivative
information about f(z,x(y)). We know very little about the structure of this function
and can hardly make anything ready on general terms, but for the relation x(y) we
know a lot. It is a thermodynamic mapping with a fixed structure awaiting only a
thermodynamic model to calculate the numbers run-time. We shall therefore restrict
ourselves to the following semi-implicit formulation of the problem

∆y = f(z,x(yz))∆z +O(∆z)2

where the right side is assumed constant at each position z. This yields the simpler
update formula:

7

yz+∆z =̂ yz + f(z,x(yz))∆z

Even though the formulation above is semi-implicit it is consistent with any conserva-
tion principle that yields a constant contribution on the right side (linear profile). The
method is therefore referred to as just “implicit” when there is no danger of misunder-
standing. Later on we shall see in practise how the method works for a problem with
linear enthalpy and pressure profiles. Notwithstanding these merits the semi-implicit
method is just an approximation with respect to changes that are not subject to con-
servation. Temperature is one example. So, even when the energy is conserved the
temperature profile is not necessarily correct. Incorrect is not the same as inconsistent
though.

To solve for yz+∆z we shall alter the values of x. We must then make some additional
calculations denoted as iterations 0, 1, · · · , k, k+1. Because the problem formulation is
semi-implicit we need derivatives for y versus x but not for f(z,x(y)). Linearization of
yz+∆z on the left side yields the following approximation:

yk
z + J(xk

z)∆xk ≈ y0
z + f(z,x(y0

z))∆z

By definition y0
z ≡ yz and we sincerely hope that y∞

z → yz+∆z. We cannot prove the
last property, but if it is correct the iteration process is said to converge locally. The
Newton–Raphson procedure may converge or it may diverge. Impossible to say in fact
without problem specific information. If it does converge, however, it shows second order
convergence. In practise this means that the number of significant digits will double in
each iteration when k is sufficiently large. What sufficiently large means is also hard to
say, but in normal cases it is typically in the range kcrit ∈ [3, 5]. Solving for ∆xk we get:

∆xk ≈ J(xk
z)

-1[y0
z + f(z,x(y0

z))∆z︸ ︷︷ ︸
yz+∆z

− yk
z] (4)

Note the underbrace above: yz+∆z comes in as a constant estimate on the right side such
that if (i.e. hopefully then) the iteration converges we get yk

z → y∞
z → yz+∆z which

makes ∆xk → 0. Finally, when the update norm satisfies
∣∣|∆xk

∣∣ | ≤ ǫ the iteration is
stopped. A suitable stop criterion must be set by us—or in practise the programmer.
The definition of ∆xk =̂ xk+1

z − xk
z leads to

xı-e,k+1
z =̂ xk

z + J(xk
z)

-1[yz+∆z − yk
z] (5)

which is the final update formula for the implicit Euler integration method. But, for
the special case k = 0 we can identify yz+∆z − yk

z on the right side being equal to
yz+∆z − y0

z = f(z,x(y0
z))∆z, see Eq. 4. This leaves the much simpler formula:

xı-e,1
z = x0

z + J(x0
z)

-1f(z,x(y0
z))∆z

Comparing the right side of this formula with the explicit Euler formula in Eq. 3 reveals
the following relationship (after noticing that x0

z ≡ xz and y0
z ≡ yz):

xı-e,1
z ≡ xe-e

z+∆z

8

The conclusion is that the first iteration of the implicit Euler scheme is identical to the
explicit Euler update (if, and only if, the update is calculated using Newton–Raphson
iteration). We can therefore say that the two integration methods are examples of
N ’th level explicit Euler schemes. For N = 1 we retain the classic Euler integration
and for N → ∞ we get implicit Euler integration, but in many cases it is enough to
make only 2 or 3 Newton–Raphson updates in order to reach a sufficiently converged
x-state. Thus, it makes sense to integrate several times trying out 1st, 2nd and 3rd level
updates to verify that the solution converges smoothly to a value that is independent
of the linearization. What cannot be controlled in this manner is the accuracy of the
integration. Usually, higher accuracy means higher order approximation methods like
for instance the Runge–Kutta familiy of non-stiff integrators. To control stiffness as well
(that is integrating ODEs showing a wide spread in the eigenvalues) we have to deal
with an entirely different approach using variable step length and precondition of the
equations. This is way outside the current scope.

1.4 Runge–Kutta integration

The Runge–Kutta methods belong to a family of explicit integrators often considered to
be the work horses of numerical integration. The members of this family are character-
ized by an order parameter n saying that the global integration error is proportional to
(∆z)n, where n is typically 2, 3, 4 and 5. A Runge–Kutta method of order 1 will then be
equivalent to explicit (forward) Euler integration. It can be argued that schemes of even
order are better “balanced” than schemes of odd order. The odd-ordered schemes are
therefore used for trunction error control, mostly, while the integration itself is carried
out with one of the even-ordered schemes.

We shall have a further look at second and fourth order schemes called RK2 and
RK4 throughout this text. These are explicit integration schemes, but the methods will
be defined such that we can choose to stay on the h, p, c manifold if we wish. It is
then important to know what “on” means. Just like for the explicit and (semi)implicit
Euler methods this question does not need be answered once and for all, but can await
us specifying (later) the number of iterations we would like to spend on the update of
T, v, c at each step of the integration.

1.5 Calculation example

A good calculation example must serve many needs. Firstly, it should be verifiable.
Only this way is it possible to prove (or disprove) that the equations are solved correctly.
Secondly, it should be familiar to the reader. An example that comes as a total surprise
can hardly serve as an example because the perspective is missing. Thirdly, it should
be realistic. An unrealistic example can perhaps be more intriguing but it adds nothing
to our physical experience. Forthly, it should contribute new insight. However, to come
up with an example that is both verifiable, familiar, realistic and new is not so easy.

The production of ammonia from nitrogen and hydrogen is a classical textbook ex-
ample. It is the most important of all the industrial reactions and without it we would

9

have been in the 19th century still. But, it has a very complicated reactor design and we
shall not try too hard to be realistic. Uniform cooling, zero pressure drop and first order
reaction is the best we can do if we also want to verify the calculation by comparing it
with an analytical solution, see also Section 1.1.

The ammonia reaction is exothermic and shows a substantial temperature increase
under normal operation. So, by matching the cooling duty with the reaction rate it is
possible to obtain a curved temperature profile along the reactor axis. The chemical
compositions vary exponentially along the same axis and for the reactor as a whole we
can expect a pronounced non-linear behaviour. This puts our solution method on trial.
We shall therefore investigate several integration schemes: explicit and implicit Euler,
and explicit RK2 and RK4 (Runge–Kutta 2nd and 4th order) with both explicit and
implicit function updates.

For the reactor calculation we need of course a set of differential equations, but we
also need to fill in with thermodynamic state information. Ideal gas is the simplest
non-trivial concept we can use in this case. The gas mixture of ammonia, nitrogen and
hydrogen is non-ideal at synthesis conditions, but the physical insight of the problem is
not changed very much by this fact. The only artifact we should know about is that
the ideal gas enthalpy is independent of pressure whereas the real enthalpy is not (this
feature can betray us badly at adiabatic conditions). The thermodynamic relations we
are using are listed below:

pıg =

∑
i ciRT

v

hıg =
∑

i

ci
(
∆fh

◦
i +

T∫

0.29815

c◦p,i(τ) dτ
)

where R =̂ 0.083145 . . . 105Jmol-1 kK-1, and where

∆fh
◦
NH3

[105Jmol-1]
= −0.45898; ∆fh

◦
N2

= ∆fh
◦
H2

= 0

and finally:

c◦p,NH3
(τ)

[105Jmol-1 kK-1]
= 0.27310 + 0.23830τ + 0.17070τ2 − 0.11850τ3

c◦p,N2
(τ)

[105Jmol-1 kK-1]
= 0.31150 − 0.13570τ + 0.26800τ2 − 0.11680τ3

c◦p,H2
(τ)

[105Jmol-1 kK-1]
= 0.27140 + 0.09274τ − 0.13810τ2 + 0.07645τ3

As explained at the beginning of this chapter the mixture is normalized to one kilogram
of material which implies that all enthalpies, volumes and mole numbers are reported as
specific quantities in the upcoming tables. This fixes the size of the problem. Everything

10

is on mass basis. The last statement can be a little bewildering because the reaction
stoichiometry is

N2+3H2 = 2NH3

which is independent of the system size. This equation reflects only the chemical stoi-
chiometry, however, and not the total conversion in the system. It is the kinetics model
that scales the chemical reaction equation to the size of the system. Now, to integrate
through the reactor we need to know the complete intensive state of the gas mixture at
the inlet. The initial temperature, pressure and composition (mole fractions) chosen in
this case are:

T◦ = 0.800 kK

p◦ = 0.250 kbar

z◦ = [0.04, 0.24, 0.72] [-]

The units of thermodynamics (kK, kbar, 105J, dm3 and mol) are maybe curious but they
are in fact judiciously selected to increase the numerical stability of the solvers. This issue
is hard to explain without the prior knowledge of numerical mathematics and fixed word-
length computers and we shall leave it open for the interested reader. Note also that the
initial pressure is a dependent variable in this case and that it must be iterated on since
the thermodynamic model is explicit in volume—not in pressure. Carrying on we shall
assume a uniform cooling profile along the reactor equal to ∇h = −20 105J, zero pressure
drop ∇p = 0kbar, and first order reaction of nitrogen equal to ∇cN2 = −(4/3)cN2 mol.
All gradients are defined per kilogram of material and per reactor length. The outcome
is a set of differential equations equivalent to Case 4 in Section 1.1:

∇y =̂ ∇




h
p

cNH3

cN2

cH2




→




−20
0

(8/3)cN2

−(4/3)cN2

−(4/1)cN2




The analytical solution is

y(z) =̂




h
p

cNH3

cN2

cH2




→




h◦ − 20z
p◦

c◦NH3
− 2(α− 1)c◦N2

αc◦N2

c◦H2
+ 3(α − 1)c◦N2




where α =̂ e−(4/3)z . The enthalpy, pressure and composition profiles are easily calculated
from the last formula and by iterating on temperature and volume at each step along
the reactor axis (we need in fact only one step to integrate the entire reactor) we can
calculate the profiles to our discretion. E.g. dividing the reactor into 5 segments yields
the following exact answer to our differential equation problem (reported in more familiar
units for the ease of reading):

11

z T
[K]

V
[dm3]

h
[MJ]

p
[bar]

cNH3

[mol]

cN2

[mol]

cH2

[mol]

0 800.000 30.0438 1.495255 250.000 4.5168 27.1006 81.3019
0.2 882.267 29.4106 1.095255 250.000 17.2037 20.7571 62.2714
0.4 919.963 27.6941 0.695255 250.000 26.9211 15.8985 47.6954
0.6 921.796 25.4676 0.295255 250.000 34.3638 12.1771 36.5313
0.8 894.927 23.0285 −.104745 250.000 40.0645 9.3268 27.9804
1 844.596 20.5069 −.504745 250.000 44.4307 7.1436 21.4309

The numbers printed in blue ink are the variables we want to investigate further using
a small assortment of homemade integrators. So, integrating from z = 0 to z = 1 in 3
steps (numbers being exact to 6 digits are printed in blue) yields:

Method N T
[K]

V
[dm3]

h
[MJ]

p
[bar]

Euler 1 923.156 21.7968 −0.522353 239.498
Euler 3 928.546 21.0031 −0.504745 250.001
RK2 1 828.557 20.4743 −0.507512 248.660
RK2 3 829.427 20.3859 −0.504745 250.000
RK4 1 844.365 20.5106 −0.504997 249.918
RK4 3 844.444 20.5057 −0.504745 250.000

Exact - 844.596 20.5069 −0.504745 250.000

We see that all the explicit methods fail: Euler-1 fails badly, RK2-1 fails less, while RK4-
1 is pretty close—but they all fail. The implicit methods behave differently. Except for
Euler-3 they are all correct in their predictions of enthalpy and pressure. This means
the energy and momentum balances are consistent with the underlying conservation
principles. The temperature and the volume are still off which means the calculations
are not correct—only consistent.

By increasing the number of integration steps we may hope to rectify the situation
and get truely correct answers. In fact, by integrating from z = 0 to z = 1 in 12 steps
(numbers being exact to 6 digits are still printed in blue) we get:

Method N T
[K]

V
[dm3]

h
[MJ]

p
[bar]

Euler 1 862.454 20.7456 −0.507013 248.550
Euler 3 863.160 20.6421 −0.504745 250.000
RK2 1 843.829 20.5017 −0.504892 249.982
RK2 3 843.875 20.5014 −0.504745 250.000
RK4 1 844.595 20.5069 −0.504746 250.000
RK4 3 844.596 20.5069 −0.504745 250.000

Exact - 844.596 20.5069 −0.504745 250.000

This time RK4-3 yields correct answers all over the line. The same resolution with
RK2-3 and Euler-3 would require 380 and 500,000 steps respectively. Note: The total
calculation effort is bigger because one step of RK4-3 requires 4 intermediate steps each

12

using 3 iterations in Eq. 5. The total number of steps is then 12*4*3 = 144. For RK2-
3 the total number of steps is 360*2*3 = 2160, and for Euler-3 it is 500,000*1*3 =
1,500,000. Notwithstanding the extra calculations required to fulfill the RK4 and RK2
steps, the conclusion is that higher order schemes are superior to lower order schemes
(of course I should say).

In interesting spin-off from this disussion is that there is no difference between implicit
and explicit problem formulations when we talk about numerical accuracy. I.e. explicit
Euler and implicit Euler yield the same accuracy as do RK2 with explicit and implicit
model formulations and the same for RK4. Buth then it comes to conservation laws we
see the difference. The implicit model formulation always yield correct enthalpies and
pressures whereas the explicit formulations do not. For RK4 the difference is in the last
digit only, but it is nevertheless present and it is visible.

13

Exercise 9

Preisig, H A Chemical Engineering, NTNU

1 Question: Topology 06

The subject of this problem is the plant shown in Figure 1. It is a drying process, which
is the final stage in producing starch from potatoes. To extract the starch, the potatoes
are first peeled by scratching of the outer surface, then crushed. The starch grains are
released from the destroyed cells and released into the water. The starch is solid and not
solvable in water. The mixture of solids and liquid phase changes as the process proceeds,
but from the outside it very much appears as a uniform phase, a pseudo phase, which we
describe as a sludge. From the sludeg, what is mainly being washed out is sugars and
other soluble components. After several stages of washing and filtrating the last filter set
is extracting the maximum of water in large drum filters. The wet starch is mixed in a
tank to even the water contents and finally dried in a very large tubular dryer in with hot
air.

mixing tank

sludge

water

dry starch

waste

dryer

air stack

feeder

cyclon

distributer

drum filters

filter

filtered air

Figure 1: A flowsheet of potato starch plant

• Sketch the topology of the potato starch plant.

2012-10-22 page 1

2 Objective

• Be familiar with a systematic approach and get consequently the job done quicker.
Things must become a routine.

• Re-write model in the system’s theory state-space notation

• The control formulation must clearly stand out

• Exercise linearisation

3 Problem Formulation

Level control in tanks is a standard non-linear problem because the outflow depends on
the level in the tank, which is also the quantity being measured. It is common to write
the problem in terms of the variable level and not the variable mass, which in addition
introduces the non-linearity associated with the change of diameter with height of the
tank. The geometry is given, thus R, the spheres radius is known. In addition, one would
have to consider also the change of density, if the composition or the temperature of the
fluid in the tank changes. Even if one ignores the change of density and assumes a single
component fluid, say water, the combination of the two remaining problems results in
surprisingly complicated equations as you will see.

r

R

0

h(t)

ξ

n̂2

n̂1

Assume constant density and the inflow being controlled as well as the outflow. The
volumetric flow rates at the input is controlled using a fast flow controller, which will
provide the desired inflow V̂1. The outflow is a function of the fluid level in the tank. We
assume the following simple valve equation applies:

V̂2 := c
√
h(t) , (1)

with c being the valve constant, which is what is manipulated and h(t) the level in the
tank as a function of time.

2012-10-22 page 2

Question: Simple model of a fermenter

Yeast fermentation of sugar and starch is one of the main processes for generating ethanol,
which today is also called a biofuel. The fermentation is usually done in a tank with mild
stirring. The cell is taking up the nutrient and ejects the waste, in this case we look at
only ethanoland acidic acid as being the fermentation products. Not knowing what the
reaction really is, we use here a simplified version:

C6H12O6 → 2CH3CH2OH + 2CO2

C6H12O6 → 2CH3CHOHCOOH

The individual yeast cell is the actual reactor. The tank act purely as container for the
nutrient solution with the yeast-reactors flowating about, taking up nutrient, here sugar
and ejecting the ethanol and the sideproduct acidic acid.

The nutrient is diffusing to the surface of the cell membrane, then through the membrane
and finally into the cell bulk, where the reaction is catalyse and the products diffuse in
the oposite direction into the tank contents, where they accumulate. Thermal effects are
neglected.

• Establish a simple picture of the plant

• Generate a physical topology assuming diffusion for the transfer systems

• Simplify physical topology assuming fast transfer system for the diffusion processes

• Colour it with the species

• Generate the component mass balances for the tank and a represenatitive yeast cell
(vector equations)

• Look carefully at the transfer system and suggest at least one appropriate model
for that part.

• Establish model for the distributed transfer system

• Establish model for the fast transfer system

• Establish model for reactions

• What additional definitions and transformation do you require ? Add them to
the equation system and check for the degree of freedom you have in your set of
equations.

2012-10-22 page 3

1 Suggested solution: Potato starch plant

SL1W1

S1S1

MIXER

Sludge Water

Waste

W2SL2

MIXER2

M1

M2

FILTERS

M3

M4

W3SL3

SL4

K1

W4

SL5G2

L1

G1

G3

Air

W5

DRYER

S2
G4

W6
Air stack

CYCLONE

Starch

Figure 1: Topology of the potato starch plant

2 Suggested Solution

The dynamic mass balance and the molar flows are then :

d

dt
n(t) = n̂1 − n̂2 (1)

n̂m := ρ V̂m ; m := 1, 2 (2)

V̂2 := c
√
h(t) (3)

Note: the density ρ is here given in moles per volume. With these definitions the differ-

2012-10-22 page 1

ential equation expands to :

d

dt
n(t) = ρ V̂1 − ρ c

√
h(t) (4)

where we use the molar density.
The common measurement available is the level in the tank. Thus the objective of the
remaining derivation is to recast the dynamics now represented in mass in terms of the
level. This a state variable transformation from mass to level is being saught.

We start with defining a relation between the mass and the next-associated geometrical
variable, namely the volume:

n(t) := ρ V (t) (5)

The volume is the integral of the area over the hight:

V (h(t)) :=

∫ h(t)

0

A(ξ) ξ (6)

Next the area is linked to the radius:

A(r) := π r2 (7)

Missing is the relation between radius and height, which can be found using geometrical
arguments, specifically Pytagoras. The relation between r and the ξ co-ordinate is:

r2 + (ξ − R)2 = R2 (8)

The variable transformation is thus using the chain rule:

dn(t)

dt
:= ρ

d

dt

(∫ h(t)

0

A(ξ) dξ

)
, (9)

:= ρ
∂

∂h

(∫ h(t)

0

A(ξ) dξ

)
dh

dt
, (10)

:= ρA(h(t))
dh(t)

dt
, (11)

:= ρ π r2
dh(t)

dt
, (12)

:= ρ π (R2 − (h−R)2)2
dh(t)

dt
, (13)

:= ρ π (2 hR− h2)
dh(t)

dt
, (14)

(15)

Which results the balance equation :

ρA(h(t))
d

dt
h(t) = ρ V̂1 − ρ c

√
h(t) (16)

Defining the state and the input

x(t) := h(t) (17)

2012-10-22 page 2

u(t) := V̂1 (18)

gives the model in the desired state-space represenation :

ρA(x(t))
d

dt
x(t) = ρ u(t)− ρ c

√
x(t) (19)

d

dt
x(t) =

u(t)− c
√
x(t)

π x(t) (−x(t) + 2R)
(20)

This model is obviously non-linear. Linearisation around a point xo, uo yields the two
matrices for the locally linearised model :

A := 1/2
c

xo3/2π (xo − 2R)
+

uo − c
√
xo

π xo2 (xo − 2R)
+

uo − c
√
xo

π xo (xo − 2R)2
(21)

B := − 1

π xo (xo − 2R)
(22)

3 Suggested Solution: Fermenter

3.1 Simple Topology: distributed transfer

tank

diffusion film

cell membrane cell bulk

diffusion film

T

IOMITO IMI IIB

B
O IM

3.2 Simple Topology: event-dynamic transfer

tank

diffusion film

cell membrane cell bulk

diffusion film

T

IOMITO IMI IIB

B
O IM

3.3 Simple Topology: event-dynamic transfer - coloured

All part contain all species.

2012-10-22 page 3

3.4 Model distributed transfer system

Using T for the tank, O for the outer diffusion film, M for the membrane, I for the inner
film and B for the bulk, the mass conservation gives

ṅT = −n̂TO−ε

0 = n̂TO−ε − n̂TO+ε

∂nO

∂t
= −∂n̂O

∂r
0 = n̂OM−ε − n̂OM+ε

∂nM

∂t
= −∂n̂M

∂r
0 = n̂MI−ε − n̂MI+ε

∂nI

∂t
= −∂n̂I

∂r
0 = n̂IB−ε − n̂IB+ε

ṅB = n̂IB−ε + ñB

Using Fick’s first law for the description of the transport

n̂r := −k
r

∂c

∂r

In this case one would have a jump at the interfaces. The alternative is to use the chemcial
potential as the effort variable, which then must be computed from the component mass
vector. In any case, the chemical potential comes into the model, either directly as effort
variable or as part of the computation of the jump at the interface.

3.5 Model of fast transfer system

Now the model has only two capacities and three-in-series transfer system. Taking the
connection equations out and slightly change the notation, we get:

ṅ = −n̂T |O

0 = n̂T |O − n̂O|I

0 = n̂O|I − n̂I|B

ṅ = n̂I|B + ñB

For the transport the same decision has to be taken, only that the driving force is now a
difference

n̂a|b := −K
A|B (µ

B
− µ

A
)

The additional equations are:

chem potential µ := µo +RT log x

2012-10-22 page 4

base chem potential µo :: given

temperature T :: given

mole fraction x := n−1 n

total mass n := eT n

one vector e := [1, 1, . . . , 1]T

For both lumped systems:
e given and n from integration knowing the initial conditions → n
→ x
→ T given and µo given R and mole fraction from above → µ
→ given K

A|B → n̂a|b
→ mass balances
→ with initial conditions given, integration closes the loop.

2012-10-22 page 5

Numerical Integration (TKP4106)

Zooball/Giraffe

"Another Glitch in the Call"

We don't need no indirection
We don't need no flow control
No data typing or declarations

Hey! You! Leave those lists alone!

Chorus:
All in all, it's just a pure-LISP function call.
All in all, it's just a pure-LISP function call.

• • •

We don't need no...

Assignments

1. Finish the equation solver hpn_vs_tvn_solver() in flowsheet.py.
2. Run ammonia_reactor.py from the command line:

python ammonia_reactor.py rk2 explicit 12 1
python ammonia_reactor.py rk2 explicit 12 3
python ammonia_reactor.py rk2 implicit 12 30
python ammonia_reactor.py rk4 explicit 12 1
python ammonia_reactor.py rk4 explicit 12 3
python ammonia_reactor.py rk4 implicit 12 30

3. Finish the Euler integration option in method
hpn_vs_tvn_integrator() in flowsheet.py.

4. Run ammonia_reactor.py from the command line:
python ammonia_reactor.py euler explicit 12 1
python ammonia_reactor.py euler explicit 12 3
python ammonia_reactor.py euler implicit 12 30

5. Compare the results you've got.

Continue reading about Modelling issues with focus on Euler and Runge-Kutta
integration.

%Predefined.

HTML text.

5.19.1 Verbatim: “flowsheet.py”

1 """
2 @summary: Flowsheet module. UnitParentClass is an ’abstract’ class used for
3 implementing features that are common to all unit operations (so far
4 Stream and Reactor). Common features are (in regular Python syntax)::
5

6 obj[’variable_name’] # __getitem__(’variable_name’)
7 obj[’variable_name’] = value # __setitem__(’variable_name’, value)
8 obj() # __call__()
9 print obj # __str__()

10 obj.component_list() # [(name, formula), ...]
11 obj.connect(another_obj) # obj[var_t] = another_obj[var_t], ...
12 obj.functor(name, fun, args) # obj.name(*args) => fun(z, *args)
13

14 The module also contains a collection of functions for calculating the
15 pressure drop, heat exchange, kinetics, Jacobian matrix, etc. of a
16 unit operation object.
17

18 @author: Tore Haug-Warberg
19 @organization: Department of Chemical Engineering, NTNU, Norway
20 @contact: haugwarb@nt.ntnu.no
21 @license: GPLv3
22 @requires: Python 2.3.5 or higher
23 @since: 2011.10.04 (THW)
24 @version: 0.5
25 @todo 1.0: Finish methods arrhenius(), tubeandshell()
26 @change: started (2011.10.04)
27 @note:
28 """
29

30 import srk_ammonia
31 import math
32

33 # Unit operation parent class. It should have been an abstract class (that is a
34 # class without a constructor), but this is not straightforward in Python. Note
35 # that ’UnitParentClass’ represents a thermodynamic state object, it is *NOT* a
36 # flow object since there is no concept of time here.
37 class UnitParentClass:
38 ’’’Base class for unit operation objects.’’’
39 def __init__(self, tag, module, component_list):
40 self.model = module.Model(component_list)
41 self.tag = tag
42 self.module = module
43 self.functors = {}
44

45 def __getitem__(self, key):
46 return self.model[key]
47

48 def __setitem__(self, key, val):
49 self.model[key] = val
50 return None
51

52 def __call__(self, **args):
53 return self.model(**args)
54

55 def __str__(self):
56 return "’" + self.tag + "’; " + str(self.model)
57

58 def get_cfw(self):
59 return self.model.get_cfw()
60

61 def get_module(self):
62 return self.module
63

64 def connect(self, arg):
65 self.model[’var_t’] = arg.model[’var_t’]
66 self.model[’var_v’] = arg.model[’var_v’]
67 self.model[’var_n’] = arg.model[’var_n’]
68 self.model()
69 for (name,fun) in arg.functors.iteritems():

329

70 setattr(self.__class__, name, fun)
71

72 def functor(self, *args):
73 fun = lambda self, x=None: args[1](self, x, *args[2])
74 setattr(self.__class__, args[0], fun)
75 self.functors[args[0]] = fun
76 return self
77

78 def duplicate(self, tag, arg={}):
79 component_list = [name for (name, formula, mw) in self.get_cfw()]
80 module = self.get_module()
81 obj = self.__class__(tag, module, component_list)
82 obj.connect(self)
83 return obj
84

85

86 # Derived process Stream class.
87 class Stream(UnitParentClass):
88 ’’’Syntactic sugar.’’’
89 pass
90

91 # Derived chemical Reactor class.
92 class Reactor(UnitParentClass):
93 ’’’Syntactic sugar.’’’
94 pass
95

96 # Global functions used in reactor simulation. Connect to UnitParentClass object
97 # using so-called ’lambda’-functions, see method ’functor()’ in this file.
98 def constantpdrop(obj, z, dp):
99 """

100 Constant pressure drop (dp/dz = constant) along the unit.
101 @param obj: unit operation object
102 @param z: axial position
103 @param dp: pressure drop [kbar] per reactor length
104 @type obj: aUnitParentClass
105 @type z: aFloat
106 @type dp: aFloat
107 @return: aFloat
108 """
109 return dp
110

111 def constantcooling(obj, z, duty):
112 """
113 Constant heat transfer (dQ/dz = constant) along the unit.
114 @param obj: unit operation object
115 @param z: axial position
116 @param duty: heat transfer [1.0e5 J] per reactor length
117 @type obj: aUnitParentClass
118 @type z: aFloat
119 @type duty: aFloat
120 @return: aFloat
121 """
122 return duty
123

124 def tubeandshell(obj, z, ua, t0):
125 """
126 Heat transfer calculation for a ’tube-and-shell’ heat exchanger.
127 @param obj: unit operation object
128 @param z: axial position
129 @type obj: aUnitParentClass
130 @type z: aFloat
131 @return: aFloat
132 """
133 return ua*(t0 - obj[’state_t’])
134

135 def constantrate(obj, z, nmat, k):
136 """
137 Constant reaction rate (r = constant) along the unit.
138 @param obj: unit operation object
139 @param z: axial position
140 @param nmat: reaction stoichiometry matrix
141 @param k: extent of reactions (one for each column of nmat)

330

142 @type obj: aUnitParentClass
143 @type z: aFloat
144 @type nmat: aList [aList [aFloat, aFloat, ...]]
145 @type k: aList [aFloat, aFloat, ...]
146 @return: aList [aFloat, aFloat, ...]
147 """
148 return [sum([nui*ki for (nui, ki) in zip(nu, k)]) for nu in nmat]
149

150 def firstorder(obj, z, nmat, keyc, k):
151 """
152 First order kinetics with respect to given ’key’ components.
153 @param obj: unit operation object
154 @param z: axial position
155 @param nmat: reaction stoichiometry matrix
156 @param keyc: key components (one for each column of nmat)
157 @param k: rate constants (one for each column of nmat)
158 @type obj: aUnitParentClass
159 @type z: aFloat
160 @type nmat: aList [aList [aFloat, aFloat, ...]]
161 @type keyc: aList [anInt, anInt, ...]
162 @type k: aList [aFloat, aFloat, ...]
163 @return: aList [aFloat, aFloat, ...]
164 """
165 return [\
166 sum([nui*obj[’state_n’][ci]*ki for (nui, ci, ki) in zip(nu, keyc, k)]) \
167 for nu in nmat\
168]
169

170 def arrhenius(obj, z, nmat, keyc, k, a, t0):
171 """
172 Arrhenius chemical reaction kinetics.
173 @param obj: unit operation object
174 @param z: axial position
175 @type obj: aUnitParentClass
176 @type z: aFloat
177 @return: aList [aFloat, aFloat, ...]
178 """
179 return [\
180 sum([nui*(math.exp(-a/obj[’state_t’]/obj[’fix_rgas’])/math.exp(-a/t0/obj[’fix_rgas’]))*obj[’state_n’][ci]*ki for (nui, ci, ki) in zip(nu, keyc, k)]) \
181 for nu in nmat\
182]
183

184 # Matrix-like thermodynamic state functions. Explicit in temperature, volume and
185 # mole numbers.
186 def hpn_vs_tvn_jacobian(obj, null=None):
187 """
188 Thermodynamic Jacobian of d(H,p,N1,N2,...)/d(T,V,N1,N2,...) calculated as
189 [[dH/dT, dH/dV, dH/dN1, ...], [dp/dT, ...], ...].
190 @param obj: unit operation object
191 @param null: not used
192 @type obj: aUnitParentClass
193 @type null: anObject
194 @return: aList [aList [aFloat, aFloat, ...]]
195 """
196 nc = len(obj[’state_n’])
197 dh = [obj[’state_h_t’]] + [obj[’state_h_v’]] + obj[’state_h_n’]
198 dp = [obj[’state_p_t’]] + [obj[’state_p_v’]] + obj[’state_p_n’]
199 dn = [\
200 [obj[’state_n_t’][i]] +
201 [obj[’state_n_v’][i]] +
202 obj[’state_n_n’][i*nc:(i+1)*nc] for i in xrange(0, nc)\
203]
204 return [dh] + [dp] + dn
205

206 def hpn(obj, null=None):
207 """
208 Thermodynamic constraint function [[H], [p], [N1], [N2],...].
209 @param obj: unit operation object
210 @param null: not used
211 @type obj: aUnitParentClass
212 @type null: anObject
213 @return: aList [[aFloat], [aFloat], ...]

331

214 """
215 return [[obj[’state_h’]]] + \
216 [[obj[’state_p’]]] + [[ni] for ni in obj[’state_n’]]
217

218 # Enthalpy, pressure, composition solver. No fall-back solution for erroneous
219 # thermodynamic calculations (cross your fingers). This is quite easy to program
220 # but it causes a mild code bloat and is left as an exercise for the interested
221 # reader.
222 import tkp4106
223

224 def hpn_vs_tvn_solver(obj, y1, eps, maxiter=50):
225 """
226 Thermodynamic equation solver. Iterates on ’tvn’ = (T,V,N1,N2,...) to meet a
227 given specification ’y1’ = (H,p,N1,N2,...).
228 @param obj: unit operation object
229 @param y1: [[H],[p],[N1],[N2],...] specification
230 @param eps: convergence criterion (upper bound)
231 @param maxiter: maximum number of iterations (negative value implies a fixed
232 number of iterations).
233 @type obj: aUnitParentClass
234 @type y1: aList [aList [aFloat, aFloat, ...]]
235 @type eps: aFloat
236 @type maxiter: anInt
237 @return: aUnitParentClass
238 """
239 converged = False # convergence flag
240 norm = 1.0 # convergence control variable
241 nc = len(obj[’state_n’]) # number of chemical components in mixture
242 ni = 0 # number of iterations
243 while not converged:
244 ni += 1
245 dy = pass # y1 - (h,p,n)
246 dx = tkp4106.solve(obj.jac(), dy)
247 tmp = max([abs(dxi[-1]) for dxi in dx])
248 converged = tmp < eps and tmp >= norm or (ni+maxiter) == 0
249 norm = tmp
250 if maxiter > 0:
251 print "norm=%8.3g; %s;" % (norm, obj)
252 if not converged and ni >= abs(maxiter):
253 raise ArithmeticError("max iterations (%s) exceeded" % (ni,))
254 obj[’var_t’]+= pass # dt
255 obj[’var_v’]+= pass # dv
256 obj[’var_n’] = pass # dn_i
257 obj()
258

259 return obj
260

261 # Numerical integration of enthalpy, pressure and composition problems. With or
262 # without chemical reactions.
263 def hpn_vs_tvn_integrator(method, obj, z0, z1, nz):
264 """
265 Thermodynamic integrator using Euler, RK2 or RK4 methods. Both explicit and
266 implicit update schemes are possible. The lambda function ’obj.update()’ is
267 supposed to exist and is used to iterate on ’tvn’ = (T,V,N1,N2,...) to meet
268 a given specification ’y1’ = (H,p,N1,N2,...) in one or more iterations. One
269 iteration means an explicit update. Iteration till full convergence is also
270 possible. This is the implicit update. In calculating the right side of the
271 differential equation three other lambda functions must exist: These are
272 ’obj.heatexchange()’, ’obj.pressureprofile()’ and ’obj.kinetics()’.
273 @author: Stud. Techn. Stig-Erik Nogva
274 @organization: Department of Chemical Engineering, NTNU, Norway
275 @param method: ’euler’, ’rk2’ or ’rk4’
276 @param obj: unit operation object
277 @param z0: start of integration
278 @param z1: end of integration
279 @param nz: number of integration steps
280 @type method: aString
281 @type obj: aUnitParentClass
282 @type z0: aNumber
283 @type z1: aNumber
284 @type nz: aNumber
285 @return: theUnitParentClass

332

286 """
287 objs = [] # utility list (Runge-Kutta needs intermediate states)
288 dz = float(z1-z0)/nz # integrator step size
289

290 for z in [z0+k*dz for k in xrange(0, nz)]:
291

292 # Calculate right side of ODE on the dot(y) = y(z) form.
293 yz = [obj.heatexchange(z)] + \
294 [obj.pressureprofile(z)] + obj.kinetics(z)
295

296 if method == ’euler’:
297 y1 = pass # (h,p,n) + yz*dz
298

299 elif method == ’rk2’:
300 while len(objs) < 2:
301 tmp = obj.duplicate(’RK2_’+str(len(objs))) # 1 intermediate obj
302 objs.append(tmp)
303

304 for i in range(0, len(objs)):
305 objs[i].connect(obj) # connect to master object in every step
306

307 # Obtain 1 auxiliary quantity
308 k1 = [yzi*dz for yzi in yz]
309 yk2 = [[yi[-1]+k1i] for (yi, k1i) in zip(objs[0].hpn(), k1)]
310 objs[0].update(yk2) # iterate on the intermediate state
311

312 yz2 = [objs[0].heatexchange(z+1.0*dz)] + \
313 [objs[0].pressureprofile(z+1.0*dz)] + \
314 objs[0].kinetics(z+1.0*dz)
315 k2 = [yzi*dz for yzi in yz2]
316 k = [k1i+k2i for (k1i, k2i) in zip(k1, k2)]
317

318 y1 = [[yi[-1]+(1/float(2))*ki] for (yi, ki) in zip(obj.hpn(), k)]
319

320 elif method == ’rk4’:
321 while len(objs) < 4:
322 tmp = obj.duplicate(’RK4_’+str(len(objs))) # 3 intermediate objs
323 objs.append(tmp)
324

325 for i in range(0, len(objs)):
326 objs[i].connect(obj) # connect to master object in every step
327

328 # Obtain the 4 auxiliary quantities
329 k1 = [yzi*dz for yzi in yz]
330 yk2 = [[yi[-1]+0.5*k1i] for (yi, k1i) in zip(objs[0].hpn(), k1)]
331 objs[0].update(yk2) # iterate on intermediate state 1
332

333 yz2 = [objs[0].heatexchange(z+0.5*dz)] + \
334 [objs[0].pressureprofile(z+0.5*dz)] + \
335 objs[0].kinetics(z+0.5*dz)
336 k2 = [yzi*dz for yzi in yz2]
337 yk3 = [[yi[-1]+0.5*k2i] for (yi, k2i) in zip(objs[1].hpn(), k2)]
338 objs[1].update(yk3) # iterate on intermediate state 2
339

340 yz3 = [objs[1].heatexchange(z+0.5*dz)] + \
341 [objs[1].pressureprofile(z+0.5*dz)] + \
342 objs[1].kinetics(z+0.5*dz)
343 k3 = [yzi*dz for yzi in yz3]
344 yk4 = [[yi[-1]+k3i] for (yi, k3i) in zip(objs[2].hpn(), k3)]
345 objs[2].update(yk4) # iterate on intermediate state 3
346

347 yz4 = [objs[2].heatexchange(z)] + \
348 [objs[2].pressureprofile(z)] + objs[2].kinetics(z)
349 k4 = [yzi*dz for yzi in yz4]
350 k = [k1i+2*k2i+2*k3i+k4i for (k1i, k2i, k3i, k4i) \
351 in zip(k1, k2, k3, k4)]
352

353 y1 = [[yi[-1]+(1/float(6))*ki] for (yi, ki) in zip(obj.hpn(), k)]
354

355 else:
356 raise NameError(’Method "’ + method + ’"’ + ’ not implemented yet’)
357

333

358 # Note: ’y1’ is the final [[H], [p], [N1], ...] after the step ’dz’ is
359 # taken. Lambda function ’obj.update()’ is responsible for updating the
360 # thermodynamic state accordingly.
361 obj.update(y1)
362

363 print "z=%5.3f; %s;" % (z+dz, obj)
364

365 return obj

334

5.19.2 Verbatim: “ammonia reactor.py”

1 """
2 @summary: A simple ammonia reactor calculation illustrating some principles
3 of OOP (Object Oriented Programming) in chemical engineering::
4

5 ’feed’ ---------------- ’outlet’
6) ------------> | ... ’rx’ ... | --------------> (
7 ----------------
8

9 The outcome of the study is a converged feed stream and an
10 integrated outlet from the reactor.
11 @author: Tore Haug-Warberg
12 @organization: Department of Chemical Engineering, NTNU, Norway
13 @contact: haugwarb@nt.ntnu.no
14 @license: GPLv3
15 @requires: Python 2.3.5 or higher
16 @since: 2011.10.04 (THW)
17 @version: 0.6
18 @todo 1.0:
19 @change: started (2011.10.04)
20 @note: This module defines the reaction chemistry (kinetics) and heat
21 transport for a minimal setup of an ammonia reactor. Nothing very
22 fancy, but there are 7 things to learn (see item numbering in
23 source code). From the command line run this script as::
24

25 >>> python ammonia_reactor.py ’euler|rk2|rk4’ \
26 ’implicit|explicit’ \
27 <nz> <maxiter>
28

29 nz = number of integration steps.
30 maxiter = maximum number of iterations spent on the thermodynamic
31 state calculations. If maxiter < 0 then exactly abs(maxiter)
32 iterations will be used independent of the residuals norm.
33 """
34

35 import srk_ammonia
36 import flowsheet
37 import tkp4106
38

39 # 1) There are 3 thermodynamic objects in action: ’feed’, ’rx’ and ’outlet’.
40 # Each object represents one - and only one - thermodynamic state. This means
41 # that ’rx’, describing a state that varies in space, has to be integrated over
42 # the length over the reactor. The reactor profiles of temperature, pressure,
43 # etc. are lost in the process of integration, however, because ’rx’ can keep
44 # only one (1) state at a time. It is of course possible to keep the profiles
45 # in memory as intermediate thermodynamic state objects, but this could easily
46 # be an overkill because explicit Euler integration requires somewhere in the
47 # range of 10,000 - 100,000 steps in order to reach 6 digits precision - which
48 # would eventually bind a substantital block of memory.
49 syngas = [’ammonia’, ’nitrogen’, ’hydrogen’]
50

51 feed = flowsheet.Stream(’Feed’, srk_ammonia, syngas)
52 outlet = flowsheet.Stream(’Outlet’, srk_ammonia, syngas)
53 rx = flowsheet.Reactor(’Rx’, srk_ammonia, syngas)
54

55 # Initialize feed stream.
56 feed[’var_t’] = 0.7 # temperature [kK]
57 feed[’var_v’] = 1.0 # volume [dm3]
58 feed[’var_n’] = [0.04, 0.24, 0.72] # mole fractions
59 feed() # run thermodynamics code
60 feed[’var_n’] = [ni/feed[’state_mtot’]/1e7 for ni in feed[’state_n’]] # [mol/kg]
61

62 # Re-initialize (change T and V to show extra flexibility).
63 feed(var_t=0.8, var_v=feed[’var_v’]/feed[’state_mtot’]/1e7)
64

65 print "Initial %s" % (feed,)
66

67 # 2) The feed stream has a specified pressure p0 whereas most thermodynamic equ-
68 # ations of state are explicit in volume (and temperature and composition). The
69 # relation p(V) = p0 must therefore be solved iteratively (using Newton’s

335

70 # method in this case).
71 eps = 1.0e-8 # convergence criterion
72 p0 = 0.25 # synthesis pressure [kbar]
73

74 print "\nNewton-Raphson solution of p(v) = p0:"
75

76 converged = False # convergence flag
77 norm = 1.0 # convergence control variable
78

79 # Solve p(v) = p0 using Newton’s method. The thermodynamics model respond to the
80 # free variable ’var_v’ and calculates pressure ’state_p’ and pressure
81 # derivative ’state_p_n’.
82 while not converged:
83 dpdv = pass # Jacobian (1 x 1)
84 dp = pass # pressure residual (1 x 1)
85 dv = tkp4106.solve(dpdv, dp)[0][-1] # volume change (scalar)
86 feed[’var_v’] += pass # update the model
87 converged = abs(dv) < eps and abs(dv) >= norm # continue till norm is steady
88 norm = abs(dv) # new norm
89

90 # The model fails if ’var_v’ becomes unphysical (negative volume typically).
91 # If this happens we must shorten the iteration step until the model says it
92 # is OK. An exception is raised if the step becomes too small.
93 while not feed():
94 if abs(dv) < eps:
95 raise ArithmeticError("cannot converge p(v) = p0 relation")
96 pass # step back to last successful state
97 pass # reduce the step length
98 pass # try once more
99 print "norm=%8.3g; %s;" % (norm, feed)

100

101 print "\nConverged %s" % (feed,)
102

103 # 3) Calculate the (atoms x component) matrix and the (components x reactions)
104 # stoichiometry from molecular formulas of the components in the mixture.
105 tmp = [formula for (name, formula, mw) in feed.get_cfw()]
106 amat = tkp4106.atom_matrix(tmp)
107 nmat = tkp4106.null(amat)
108

109 # 4) There is the use of functors in the simulation code. Their meaning is a bit
110 # magic to newbies, but to old-timers they offer a great way of code separation
111 # The key issue is that we can start writing algorithms (an Euler integrator in
112 # this case) requiring a certain functionality (pressure drop, heat exchange
113 # and reaction kinetics), without knowing the exact nature of the underlying
114 # functions. The properties are instead registered in the ’rx’ object using so-
115 # called lambda expressions calling the correct function run-time by dereferenc-
116 # ing the function pointer. In effect, the heat exchange, pressure drop and
117 # reaction kinetics can be changed in one place of the code without affecting
118 # the solution algorithm. It yields, in fact, a way of defining the transport
119 # properties externally without changing neither the unit operation class nor
120 # the integration method. The same idiom is also used for defining thermodynamic
121 # state derivatives (the Jacobian). In this case we want to control the exact
122 # meaning of ’y1’, ’y2’, ’x1’, ’x2’, etc. in d(y1,y2,...)/d(x1,x2,...).
123 rx.connect(feed)
124

125 # Select a ’key’ component for the reaction kinetics. Normalize the correspond-
126 # ing stoichiometric coefficient to -1. Make a shallow copy of matrix row before
127 # doing operations on ’nmat’. The algorithm works for single reactions only.
128 keyc = [name for (name, formula, mw) in rx.get_cfw()].index(’nitrogen’)
129 piv = list(nmat[keyc])
130 for i in xrange(0, len(nmat)):
131 for j in xrange(0, len(nmat[i])):
132 nmat[i][j] /= -piv[j]
133

134 # Declare transport properties and kinetics for the reactor. Non-linear example.
135 # rx.functor(’pressureprofile’, flowsheet.constantpdrop, [-.005]) # dp/dz
136 # rx.functor(’heatexchange’, flowsheet.tubeandshell, [30.0, 0.28]) # ua*(t-t0)
137 # rx.functor(’kinetics’, flowsheet.arrhenius, [nmat, [keyc], [4/3.0], 0.1, 0.8])
138

139 # Declare transport properties and kinetics for the reactor. Linear example.
140 rx.functor(’pressureprofile’, flowsheet.constantpdrop, [0.0]) # dp/dz
141 rx.functor(’heatexchange’, flowsheet.constantcooling, [-20.0]) # heat [1.0e5 J]

336

142 rx.functor(’kinetics’, flowsheet.firstorder, [nmat, [keyc], [4/3.0]]) # rx rates
143

144 # 5) Interact with the command line reader to get hold of the integrator scheme
145 # and the number of steps required for the integration.
146 import sys
147

148 method, iterator, nz, maxiter = sys.argv[1:]
149 nz, maxiter = int(nz), int(maxiter)
150

151 # Declare a thermodynamic iterator (for use inside the integrator).
152 if iterator == ’implicit’:
153 maxiter = abs(maxiter)
154

155 if iterator == ’explicit’:
156 maxiter =-abs(maxiter)
157

158 # Declare a thermodynamic function solver and state derivatives for the reactor.
159 rx.functor(’update’, flowsheet.hpn_vs_tvn_solver, [eps, maxiter]) # state update
160 rx.functor(’jac’, flowsheet.hpn_vs_tvn_jacobian, []) # Jacobian matrix
161 rx.functor(’hpn’, flowsheet.hpn, []) # constraint variables
162

163 # 6) Integrate over the reactor using the given integration ’method’ and the
164 # given ’iterator’ mechanism.
165 print "\n%s %s integration using %s steps:" % \
166 (iterator.capitalize(), method.capitalize(), nz)
167

168 flowsheet.hpn_vs_tvn_integrator(method, rx, 0, 1, nz)# integrate from z=0 to z=1
169

170 print "\nIntegrated %s" % (rx,)
171

172 # 7) Calculate the reactor outlet using an analytic solution based on the matrix
173 # exponential of the (constant) ODE coefficient. Let y = (h,p,c) and dot(y)=C*y
174 # Then y(z=1) = expm(C)*y(z=0) where ’expm’ is the matrix exponential of C:
175 #
176 # | 1 Q/p 0 0 0 |
177 # | 0 1 0 0 0 |
178 # expm = | 0 0 1 nu_0/nu_1(fac - 1) 0 |
179 # | 0 0 0 fac 0 |
180 # | 0 0 0 nu_2/nu_1(fac - 1) 1 |
181 #
182 # Here, ’Q’ is the heat load, ’p’ is the (constant) reactor pressure, ’nu_i’ are
183 # stoichiometric coefficients and ’fac’ is the resilience factor of the ’key’
184 # component.
185 import math
186

187 outlet.connect(rx) # inherit lambda functions from ’rx’
188 outlet(var_t=feed[’var_t’], var_v=feed[’var_v’], var_n=feed[’var_n’]) # re-init
189

190 # Calculate the resilience factor of the ’key’ component.
191 fac = math.exp(outlet.kinetics(0)[keyc]/outlet[’state_n’][keyc])
192

193 # Calculate the matrix exponential.
194 nc = len(outlet[’state_n’])
195 expm = [[float(i==j) for i in xrange(0,nc+2)] for j in xrange(0,nc+2)]# identity
196 expm[0][1] = outlet.heatexchange(0)/outlet[’state_p’] # heat transfer
197 expm[2+keyc][2+keyc] = fac # ’key’ component resilience
198 for i in [j for j in xrange(0,nc) if j != keyc]:
199 expm[2+i][2+keyc] = nmat[i][-1]/nmat[keyc][-1]*(fac-1.0) # other reactions
200

201 # Calculate the outlet state from y(z=1) = expm(C)*y(z=0).
202 y1 = tkp4106.mprod(expm, outlet.hpn())
203

204 print "\nNewton-Raphson solution of f(h,p,c) = 0:"
205

206 flowsheet.hpn_vs_tvn_solver(outlet, y1, eps, 20)
207

208 print "\nConverged %s" % (outlet,)

337

5.19.3 flowsheet.py, see also Sec. 5.19.1

First reference occurs in flowsheet.py, see Section 5.19.1 on page 329.

338

5.19.4 ammonia reactor.py, see also Sec. 5.19.2

First reference occurs in ammonia reactor.py, see Section 5.19.2 on page 335.

339

Plug Flow Reactor. Part III

Tore Haug-Warberg
Department of Chemical Engineering

NTNU (Norway)

13 November 2011
(completed after 240 hours of writing, programming and testing)

1 Modelling issues

ḃın , pın ḃout , pout

(U̇ + pV̇)ın (U̇ + pV̇)out

Q̇

C

A

z z +∆z

b(t, z,∆z) , ξ̇

U(t, z,∆z)

From an academic perspective
the title of this text is a little pre-
tentious. It says “Modelling Is-
sues” which means quite a lot to
people devoting their professional
lives to the several aspects of chem-
ical reactor calculations, while it
means next to nothing for a novice

in the field. Let our perspective be something in between—that of an expert novice
maybe. On our behalf then, the idealized plug flow reactor is like the one depicted in
the figure. The mass and energy balances for steady state (s-s) operation of the reactor
were devloped in Parts I and II of this paper. In short we found that:

(
∂h [energymass-1]

∂z [length]

)s-s

= C [length] q [heatmass-1 area-1]

and

(
∂c [molemass-1]

∂z [length]

)s-s

= A [area]Nr [molemass-1 volume-1]

What is missing here is a momentum balance of the reactor. It is needed to resolve the
pressure distribution inside the reactor, which of course is of great interest for reactor
design and operation, but at the same time it is pulling our wagon too far. The cal-
culations are so involved and require so much input about reactor geometry, transport
properties and kinetics that we must do without. Our replacement of the momentum
balance is simply: (

∂p [pressure]

∂z [length]

)s-s

= ∇p [pressure]

1

That is to say we rely on an explicit pressure profile p(z) given at the outset of the
simulation (we shall most of the time use ∇p = 0).

Counting the number of equations there is 1 energy balance, 1 pressure profile and C
mass balances. That makes C +2 equations which are going to be solved simultanously
in C+2 variables. The big question is: What variables? In practise we cannot choose the
solution variables freely but must tackle whatever needs our models impose on us—i.e.
the models we use to evaluate h, q and r—and there is much fuzz about which variables
are the most versatile.

Chemical engineers traditionally use T , p, x1, x2, · · · that is temperature, pressure
and mole fractions. There is no theoretical reason for this choice except that these
variables are always reported in process flow diagrams. They are also quite natural in
the sense that they play a part of our sensation of the physical world.

Thermodynamicists think differently and usually prefer T , v, c1, c2, · · · that is
temperature, specific volume and specific concentrations. This choice is natural from a
theoretical point of view because most equations of state are given as p(T, v, c) models.
By iterating directly on the variables as they appear in the equation of state we can
formulate very consise and elegant solvers.

Being trained thermodynamicists and having a keen eye on aesthetics we shall stick
to the last alternative even though we then have to solve for pressure as a function
of volume rather than just specifying it. The equations we need to be solve can be
condensed into (see Parts I and II for an explanation of the syntax):

Energy: ∂Th · ∇T + ∂vh · ∇v + ∂c1h·∇c1+∂c2h·∇c2+ · · · = Cq

Momentum: ∂T p · ∇T + ∂vp · ∇v + ∂c1p·∇c1+∂c2p·∇c2+ · · · = ∇p

Mass (1): ∇c1 = A
∑

i

N1,iri

Mass (2): ∇c2 = A
∑

i

N2,iri

...
...

This set of equations is more easily handled using matrix algebra. To minimize the use
of extra symbols ∂ch and ∂cp are taken to be row vectors while r is (still) a column
vector: 


∂Th ∂vh ∂ch
∂T p ∂vp ∂cp
0 0 I







∇T
∇v
∇c


 =




Cq
∇p
ANr




The equations above illustrate the ambivalence we are facing with regard to p or v being
our primary iteration variable. In this case we shall iterate on v to satisfy ∇p given as
the gradient of a predefined function p(z). But, since pressure is a non-linear function
of v it implies that ∇p shows up on the right side while ∇T , ∇v and ∇c appear as
solution variables on the left side. If p had been a primary iteration variable we could
have dropped the second row in the equation set, but at the same time we had to handle
the p(v) inversion inside the equation of state. This is a questionable approach because

2

it involves a nested hierarchy of solvers which can cause all kinds of numerical problems.
Usually, it is safer to handle all the equations in one solver, at least so when the equations
are few in number like in this case. On a very condensed form we can write

J(x)∇x = f(z,x) (1)

which is the equation system we have to integrate in order to calculate the temperature
and concentration profiles of the reactor. Note carefully that J(x) is a purely ther-
modynamic state function while f(z,x) is a function of both the thermodynamic state
variables and the space co-ordinate. The mathematical definitions of J and f are not
known to us at this point—they are what we might call anonymous lambda-functions
in functional programming—but their semantic meaning is all clear. E.g. their scientific
units most conform1.

The separation of the problem into J and f tells us that the transport and kinetic
properties q and r, used in defining f on the right side, may require thermodynamic
information, while the Jacobian J is independent of the spatial co-ordinate and of the
transport properties. Anyhow, the anti-derivative of the reactor model is

x(z) = x◦ +

z∫

0

J(x)-1f(ζ,x) dζ ,

and the next question is how we can make an integrator for this problem. Basically,
there are three options: Analytic, explicit and implicit solutions. We shall have a look
at all three cases. Briefly stated there are few analytical solutions of practical interest,
but the few that exist are important for: i) our theoretical insight, and ii) serving as
test cases for numerical calculations. For the numerical solutions we must be aware that
words like “explicit” and “implicit” have two different meanings. The terms do either
refer to how the ODE is formulated, or they refer to how the integration is performed.
The distinction is quite subtle and the implementation details are bewildering—these
are the combinations we shall look at:

• Explicit ODE with explicit Euler integration (forward Euler).

• Implicit ODE with (semi)implicit Euler integration (backward Euler).

• Explicit ODE with explicit Runge–Kutta integration.

• Implicit ODE with explicit Runge–Kutta integration.

From a practical point of view it is easier to implement the explicit solvers compared to
the implicit ones, but at the same time they are numerically unstable. This is a classic
result from numerical mathematics which we should know about, but which is not so
important for the PFR we are studying. What we shall see is that the explicit model
formulation fails to conserve (even explicit) constraints in energy and pressure, while the
implicit formulation does this to our satisfaction.

1It also means that f (z,x) and f (z,x(y)), and f(z,y), shall refer to the same kind of function in
this document. The free variables change, and the function definitions need not be the same, but the
function values are always interpereted as the gradient in specific enthalpy, pressure and composition.

3

1.1 Analytic solutions

Equation 1 is written with the variables x =̂ [T, v, c] in mind but it applies equally
well to any other set of thermodynamic state variables yielding an invertible Jacobian
J. In particular we could try to replace x by y =̂ [h, p, c] which yields a much simpler
formulation. Note carefully that Jacobian reduces to J(y) ≡ I:

∇y = f(z,y) (2)

Now, if f(z,y) is written as a linear function in y we have the classic problem of an ordi-
nary differential equation (ODE) with constant coefficients. The standard formulation
of the problem is shown below (matrix C has nothing to do with the circumference C
used in the energy balance):

∇y = Cy

For PFRs that experience a constant circumference C, constant cross-sectional area
A, constant pressure drop ∇p, constant heat flux q, and constant reaction rates r or
first order kinetics ri ∝ cj(i), we can spell out four different cases of linear differential
equations with constant coefficients. To keep the algebra as simple as possible—but
not simpler—we shall assume one chemical reaction (i.e. dimN = dim c × 1) and a
dimensionless reactor length in the range z ∈ [0, 1]:

1)





∇h = 0
∇p = ∇p
∇c = ξN

2)





∇h = 0
∇p = ∇p
∇c = kc1N

3)





∇h = q
∇p = 0
∇c = ξN

4)





∇h = q
∇p = 0
∇c = kc1N

Here, ξ means the overall extent of reaction, q means the overall heat transfer and kc1
denotes the first order reaction with respect to component 1 (an arbitrary choice from
our side). A textual interpretation of the four cases follows:

Case Description

1 Adiabatic, fixed pressure drop, fixed extent of reaction
2 Adiabatic, fixed pressure drop, first order reaction
3 Fixed heat load, isobaric, fixed extent of reaction
4 Fixed heat load, isobaric, first order reaction

Behind the terminology of constant coefficients there is an implication that the equations
can be recast into matrix expressions. This is advantageous from a theoretical perspec-
tive because it renders a generic solution of the problem ∇y = Cy where C takes one

4

of the four shapes shown below:

C1 =




0 0 0 0
∇p
h 0 0 0
ξν1
h 0 0 0
ξν2
h 0 0 0




C2 =




0 0 0 0
∇p
h 0 0 0

0 0 kν1 0

0 0 kν2 0




C3 =




0 q
p 0 0

0 0 0 0

0 ξν1
p 0 0

0 ξν2
p 0 0




C4 =




0 q
p 0 0

0 0 0 0

0 0 kν1 0

0 0 kν2 0




Here, we have been assuming a two-component mixture with chemical reaction ν1A =
ν2B. More components can easily be added without violating the structure of the ma-
trices. The solution(s) can be written

y(z) = ezCy(0)

where ezC means the matrix exponential of zC. Covering the matrix theory in detail
would take us astray from the PFR subject, but it is important to know that what is
said next can be formalized—if not always as closed analytical formulas—at least in
the form of numerical calculations. But, for the C-matrices mentioned above we can
follow the simple approach and find the matrix exponentials by inspection because the
matrices have such simple structures. Writing out solutions of mathematical problems
without any further details is somewhat arrogant but I think that in this case it implies
less confusion—not more confusion—to do it quick and simple. You should verify the
results by backsubstituting into the matrix formula using y(0) = [h, p, c]z=0 though:

ezC1 =




1 0 0 0
z∇p
h 1 0 0

zξν1
h 0 1 0

zξν2
h 0 0 1




ezC2 =




1 0 0 0
z∇p
h 1 0 0

0 0 ezkν1 0

0 0 ν2
ν1

(
ezkν1 − 1

)
1




ezC3 =




1 zq
p 0 0

0 1 0 0

0 zξν1
p 1 0

0 zξν2
p 0 1




ezC4 =




1 zq
p 0 0

0 1 0 0

0 0 ezkν1 0

0 0 ν2
ν1

(
ezkν1 − 1

)
1




Case 4 is maybe the most interesting for the chemical engineering student since it gives
the opportunity to study PFRs with a maximum in temperature along the reactor. The
argument is simple: Consider an exothermic first order reaction with constant cooling.
A first order reaction means that the reaction rate will decrease monotonically along the
reactor. Then, by balancing the heat production in the middle the reactor with the heat

5

taken away at the same spot it should be clear that excess heat is produced at the inlet
and excess cooling is applied at the outlet. The result is a curved temperature profile
which of course looks more interesting than a flat one.

1.2 Explicit Euler-integration

Talking about numerical integration the word explicit means the differential equations
are stated without iterative calculations. So, how can that be arranged for a non-linear
problem? The short answer is it cannot, the long answer is we can make piecewise linear
approximations to the functions we want to integrate and solve each little sub-problem
explicitly. The outcome will not be the answer, but merely a numerical approximation
to it. There are many things to worry about in such calculations. Numerical accuracy
and stability are maybe the most important issues.

We shall not look very deep into the matter but try to understand what happens in a
numerical integrator and see how we can formulate the equations in a piecewise manner.
Our starting point is Eq. 1:

J(x)∇x = f(z,x)

Inverting J (yes, we must assume that the Jacobian is invertible—else the problem is
thermodynamically inconsistent) yields the explicit formula

∇x = J(x)-1f(z,x)

Then comes the piecewise approximation ∇x ≈ (∆z)-1∆x which is assumed to be valid
on the range [z, z +∆z]:

∆x = J(xz)
-1f(z,xz)∆z +O(∆z)2

The truncation error is of second order, that is O(∆z)2, but the integrated answer will
not be that accurate because the number of steps taken in the interval is proportional
to (∆z)-1 which means the integration error will be O(∆z)2(∆z)-1 = O(∆z)1, that is
of first order only. We shall later learn how to implement schemes of higher order,
namely the Runge–Kutta integration methods of 2nd and 4th order. From the definition
∆x =̂ xz+∆z − xz we can write the final update formula as:

xe-e
z+∆z =̂ xz + J(xz)

-1f(z,xz)∆z (3)

By applying this formula successively on the integration domain z ∈ [0, 1] we can cal-
culate the sequence x0, x∆z, x2∆z, · · · very easily. Furthermore, it is (almost) evident
that xNz will converge to the true solution x(Nz) when ∆z → 0 and N → ∞. But,
this requires an infinite number of steps which eventually would take infinite time on a
computer. Another problem of the numerical solution is that computers have fixed word
lengths. Irrational numbers are approximated inside the computer as decimal numbers
represented by 16, 32, 64, or 128 bits length. This gives a round-off error in (nearly)
every multiplication or division that is carried out. There is therefore a trade-off between
a smaller ∆z to achieve higher accuracy in the updating formula, and a not-so-small ∆z
to avoid excessive round-off errors (and to reduce the computation time).

6

1.3 Implicit Euler-integration

Physical theories build on a limited number of conservation laws. For example mass and
energy conservation is essentially what lies behind our PFR model. This is the strong
point of physics. The weaker part of the theory arises from the lack of appropriate
models expressed directly in the conserved properties. This branch of physics belongs
to thermodynamics. In our case the conservation laws are made linear in the thermody-
namic variables h, p, c, while in most cases the equation of state serving the calculation
of p (and h) is on the form p(T, v, c). Hence, to update the equation of state we need to
solve the relationships between T, v and h, p iteratively (the problem is strongly coupled
and non-linear). If these relationships are solved at each step taken from z to z + ∆z
the method is said to be implicit. Recall that for the explicit method in Eq. 3 there is
no need for an iterative solution because matrix inversion in itself is an explicit method.

Why should we worry about implicit integration then? It sounds complicated and if
explicit integration works why bother? The answer is simple, definite and instructive:
Explicit integration violates the conservation principle(s) because of the linearization
term that is behind Eq. 3. If this feature is considered to be unfortunate we should con-
sider implicit integration. This is because it solves the conservation equations accurately
at each step of the integration. It is not to say that the integration is more accurate, it
is only consistent. Consistently wrong you might say, but it is not inconsistent.

To write an implicit integrator we need to understand that the conservation laws put
constraints on y =̂ [h, p, c] while the thermodynamics, heat exchange, pressure drop and
kinetics models rely on x =̂ [T, v, c]. We must therefore be able to solve the relationship
x(y) by e.g. Newton–Raphson iteration (to obtain second order convergence) in parallell
with the integration task. This topic is also known as: Integration on manifolds, ge-
ometric integration, or Differential–Algebraic–Equations (DAEs) solving. The starting
point is the same as in Eq. 2 except for the implicit relation x(y) that sits on the right
side:

∇y = f(z,x(y))

Linearization (this time in y) yields:

∆y = f(z,x(yz+∆z))∆z +O(∆z)2

This is the fully implicit formulation of the problem, where “fully” indicates that the
right side is evaluated at the next location z + ∆z, i.e. not the current z. Solving this
problem with Newton–Raphson iteration is not so easy because it requires derivative
information about f(z,x(y)). We know very little about the structure of this function
and can hardly make anything ready on general terms, but for the relation x(y) we
know a lot. It is a thermodynamic mapping with a fixed structure awaiting only a
thermodynamic model to calculate the numbers run-time. We shall therefore restrict
ourselves to the following semi-implicit formulation of the problem

∆y = f(z,x(yz))∆z +O(∆z)2

where the right side is assumed constant at each position z. This yields the simpler
update formula:

7

yz+∆z =̂ yz + f(z,x(yz))∆z

Even though the formulation above is semi-implicit it is consistent with any conserva-
tion principle that yields a constant contribution on the right side (linear profile). The
method is therefore referred to as just “implicit” when there is no danger of misunder-
standing. Later on we shall see in practise how the method works for a problem with
linear enthalpy and pressure profiles. Notwithstanding these merits the semi-implicit
method is just an approximation with respect to changes that are not subject to con-
servation. Temperature is one example. So, even when the energy is conserved the
temperature profile is not necessarily correct. Incorrect is not the same as inconsistent
though.

To solve for yz+∆z we shall alter the values of x. We must then make some additional
calculations denoted as iterations 0, 1, · · · , k, k+1. Because the problem formulation is
semi-implicit we need derivatives for y versus x but not for f(z,x(y)). Linearization of
yz+∆z on the left side yields the following approximation:

yk
z + J(xk

z)∆xk ≈ y0
z + f(z,x(y0

z))∆z

By definition y0
z ≡ yz and we sincerely hope that y∞

z → yz+∆z. We cannot prove the
last property, but if it is correct the iteration process is said to converge locally. The
Newton–Raphson procedure may converge or it may diverge. Impossible to say in fact
without problem specific information. If it does converge, however, it shows second order
convergence. In practise this means that the number of significant digits will double in
each iteration when k is sufficiently large. What sufficiently large means is also hard to
say, but in normal cases it is typically in the range kcrit ∈ [3, 5]. Solving for ∆xk we get:

∆xk ≈ J(xk
z)

-1[y0
z + f(z,x(y0

z))∆z︸ ︷︷ ︸
yz+∆z

− yk
z] (4)

Note the underbrace above: yz+∆z comes in as a constant estimate on the right side such
that if (i.e. hopefully then) the iteration converges we get yk

z → y∞
z → yz+∆z which

makes ∆xk → 0. Finally, when the update norm satisfies
∣∣|∆xk

∣∣ | ≤ ǫ the iteration is
stopped. A suitable stop criterion must be set by us—or in practise the programmer.
The definition of ∆xk =̂ xk+1

z − xk
z leads to

xı-e,k+1
z =̂ xk

z + J(xk
z)

-1[yz+∆z − yk
z] (5)

which is the final update formula for the implicit Euler integration method. But, for
the special case k = 0 we can identify yz+∆z − yk

z on the right side being equal to
yz+∆z − y0

z = f(z,x(y0
z))∆z, see Eq. 4. This leaves the much simpler formula:

xı-e,1
z = x0

z + J(x0
z)

-1f(z,x(y0
z))∆z

Comparing the right side of this formula with the explicit Euler formula in Eq. 3 reveals
the following relationship (after noticing that x0

z ≡ xz and y0
z ≡ yz):

xı-e,1
z ≡ xe-e

z+∆z

8

The conclusion is that the first iteration of the implicit Euler scheme is identical to the
explicit Euler update (if, and only if, the update is calculated using Newton–Raphson
iteration). We can therefore say that the two integration methods are examples of
N ’th level explicit Euler schemes. For N = 1 we retain the classic Euler integration
and for N → ∞ we get implicit Euler integration, but in many cases it is enough to
make only 2 or 3 Newton–Raphson updates in order to reach a sufficiently converged
x-state. Thus, it makes sense to integrate several times trying out 1st, 2nd and 3rd level
updates to verify that the solution converges smoothly to a value that is independent
of the linearization. What cannot be controlled in this manner is the accuracy of the
integration. Usually, higher accuracy means higher order approximation methods like
for instance the Runge–Kutta familiy of non-stiff integrators. To control stiffness as well
(that is integrating ODEs showing a wide spread in the eigenvalues) we have to deal
with an entirely different approach using variable step length and precondition of the
equations. This is way outside the current scope.

1.4 Runge–Kutta integration

The Runge–Kutta methods belong to a family of explicit integrators often considered to
be the work horses of numerical integration. The members of this family are character-
ized by an order parameter n saying that the global integration error is proportional to
(∆z)n, where n is typically 2, 3, 4 and 5. A Runge–Kutta method of order 1 will then be
equivalent to explicit (forward) Euler integration. It can be argued that schemes of even
order are better “balanced” than schemes of odd order. The odd-ordered schemes are
therefore used for trunction error control, mostly, while the integration itself is carried
out with one of the even-ordered schemes.

We shall have a further look at second and fourth order schemes called RK2 and
RK4 throughout this text. These are explicit integration schemes, but the methods will
be defined such that we can choose to stay on the h, p, c manifold if we wish. It is
then important to know what “on” means. Just like for the explicit and (semi)implicit
Euler methods this question does not need be answered once and for all, but can await
us specifying (later) the number of iterations we would like to spend on the update of
T, v, c at each step of the integration.

1.5 Calculation example

A good calculation example must serve many needs. Firstly, it should be verifiable.
Only this way is it possible to prove (or disprove) that the equations are solved correctly.
Secondly, it should be familiar to the reader. An example that comes as a total surprise
can hardly serve as an example because the perspective is missing. Thirdly, it should
be realistic. An unrealistic example can perhaps be more intriguing but it adds nothing
to our physical experience. Forthly, it should contribute new insight. However, to come
up with an example that is both verifiable, familiar, realistic and new is not so easy.

The production of ammonia from nitrogen and hydrogen is a classical textbook ex-
ample. It is the most important of all the industrial reactions and without it we would

9

have been in the 19th century still. But, it has a very complicated reactor design and we
shall not try too hard to be realistic. Uniform cooling, zero pressure drop and first order
reaction is the best we can do if we also want to verify the calculation by comparing it
with an analytical solution, see also Section 1.1.

The ammonia reaction is exothermic and shows a substantial temperature increase
under normal operation. So, by matching the cooling duty with the reaction rate it is
possible to obtain a curved temperature profile along the reactor axis. The chemical
compositions vary exponentially along the same axis and for the reactor as a whole we
can expect a pronounced non-linear behaviour. This puts our solution method on trial.
We shall therefore investigate several integration schemes: explicit and implicit Euler,
and explicit RK2 and RK4 (Runge–Kutta 2nd and 4th order) with both explicit and
implicit function updates.

For the reactor calculation we need of course a set of differential equations, but we
also need to fill in with thermodynamic state information. Ideal gas is the simplest
non-trivial concept we can use in this case. The gas mixture of ammonia, nitrogen and
hydrogen is non-ideal at synthesis conditions, but the physical insight of the problem is
not changed very much by this fact. The only artifact we should know about is that
the ideal gas enthalpy is independent of pressure whereas the real enthalpy is not (this
feature can betray us badly at adiabatic conditions). The thermodynamic relations we
are using are listed below:

pıg =

∑
i ciRT

v

hıg =
∑

i

ci
(
∆fh

◦
i +

T∫

0.29815

c◦p,i(τ) dτ
)

where R =̂ 0.083145 . . . 105Jmol-1 kK-1, and where

∆fh
◦
NH3

[105Jmol-1]
= −0.45898; ∆fh

◦
N2

= ∆fh
◦
H2

= 0

and finally:

c◦p,NH3
(τ)

[105Jmol-1 kK-1]
= 0.27310 + 0.23830τ + 0.17070τ2 − 0.11850τ3

c◦p,N2
(τ)

[105Jmol-1 kK-1]
= 0.31150 − 0.13570τ + 0.26800τ2 − 0.11680τ3

c◦p,H2
(τ)

[105Jmol-1 kK-1]
= 0.27140 + 0.09274τ − 0.13810τ2 + 0.07645τ3

As explained at the beginning of this chapter the mixture is normalized to one kilogram
of material which implies that all enthalpies, volumes and mole numbers are reported as
specific quantities in the upcoming tables. This fixes the size of the problem. Everything

10

is on mass basis. The last statement can be a little bewildering because the reaction
stoichiometry is

N2+3H2 = 2NH3

which is independent of the system size. This equation reflects only the chemical stoi-
chiometry, however, and not the total conversion in the system. It is the kinetics model
that scales the chemical reaction equation to the size of the system. Now, to integrate
through the reactor we need to know the complete intensive state of the gas mixture at
the inlet. The initial temperature, pressure and composition (mole fractions) chosen in
this case are:

T◦ = 0.800 kK

p◦ = 0.250 kbar

z◦ = [0.04, 0.24, 0.72] [-]

The units of thermodynamics (kK, kbar, 105J, dm3 and mol) are maybe curious but they
are in fact judiciously selected to increase the numerical stability of the solvers. This issue
is hard to explain without the prior knowledge of numerical mathematics and fixed word-
length computers and we shall leave it open for the interested reader. Note also that the
initial pressure is a dependent variable in this case and that it must be iterated on since
the thermodynamic model is explicit in volume—not in pressure. Carrying on we shall
assume a uniform cooling profile along the reactor equal to ∇h = −20 105J, zero pressure
drop ∇p = 0kbar, and first order reaction of nitrogen equal to ∇cN2 = −(4/3)cN2 mol.
All gradients are defined per kilogram of material and per reactor length. The outcome
is a set of differential equations equivalent to Case 4 in Section 1.1:

∇y =̂ ∇




h
p

cNH3

cN2

cH2




→




−20
0

(8/3)cN2

−(4/3)cN2

−(4/1)cN2




The analytical solution is

y(z) =̂




h
p

cNH3

cN2

cH2




→




h◦ − 20z
p◦

c◦NH3
− 2(α− 1)c◦N2

αc◦N2

c◦H2
+ 3(α − 1)c◦N2




where α =̂ e−(4/3)z . The enthalpy, pressure and composition profiles are easily calculated
from the last formula and by iterating on temperature and volume at each step along
the reactor axis (we need in fact only one step to integrate the entire reactor) we can
calculate the profiles to our discretion. E.g. dividing the reactor into 5 segments yields
the following exact answer to our differential equation problem (reported in more familiar
units for the ease of reading):

11

z T
[K]

V
[dm3]

h
[MJ]

p
[bar]

cNH3

[mol]

cN2

[mol]

cH2

[mol]

0 800.000 30.0438 1.495255 250.000 4.5168 27.1006 81.3019
0.2 882.267 29.4106 1.095255 250.000 17.2037 20.7571 62.2714
0.4 919.963 27.6941 0.695255 250.000 26.9211 15.8985 47.6954
0.6 921.796 25.4676 0.295255 250.000 34.3638 12.1771 36.5313
0.8 894.927 23.0285 −.104745 250.000 40.0645 9.3268 27.9804
1 844.596 20.5069 −.504745 250.000 44.4307 7.1436 21.4309

The numbers printed in blue ink are the variables we want to investigate further using
a small assortment of homemade integrators. So, integrating from z = 0 to z = 1 in 3
steps (numbers being exact to 6 digits are printed in blue) yields:

Method N T
[K]

V
[dm3]

h
[MJ]

p
[bar]

Euler 1 923.156 21.7968 −0.522353 239.498
Euler 3 928.546 21.0031 −0.504745 250.001
RK2 1 828.557 20.4743 −0.507512 248.660
RK2 3 829.427 20.3859 −0.504745 250.000
RK4 1 844.365 20.5106 −0.504997 249.918
RK4 3 844.444 20.5057 −0.504745 250.000

Exact - 844.596 20.5069 −0.504745 250.000

We see that all the explicit methods fail: Euler-1 fails badly, RK2-1 fails less, while RK4-
1 is pretty close—but they all fail. The implicit methods behave differently. Except for
Euler-3 they are all correct in their predictions of enthalpy and pressure. This means
the energy and momentum balances are consistent with the underlying conservation
principles. The temperature and the volume are still off which means the calculations
are not correct—only consistent.

By increasing the number of integration steps we may hope to rectify the situation
and get truely correct answers. In fact, by integrating from z = 0 to z = 1 in 12 steps
(numbers being exact to 6 digits are still printed in blue) we get:

Method N T
[K]

V
[dm3]

h
[MJ]

p
[bar]

Euler 1 862.454 20.7456 −0.507013 248.550
Euler 3 863.160 20.6421 −0.504745 250.000
RK2 1 843.829 20.5017 −0.504892 249.982
RK2 3 843.875 20.5014 −0.504745 250.000
RK4 1 844.595 20.5069 −0.504746 250.000
RK4 3 844.596 20.5069 −0.504745 250.000

Exact - 844.596 20.5069 −0.504745 250.000

This time RK4-3 yields correct answers all over the line. The same resolution with
RK2-3 and Euler-3 would require 380 and 500,000 steps respectively. Note: The total
calculation effort is bigger because one step of RK4-3 requires 4 intermediate steps each

12

using 3 iterations in Eq. 5. The total number of steps is then 12*4*3 = 144. For RK2-
3 the total number of steps is 360*2*3 = 2160, and for Euler-3 it is 500,000*1*3 =
1,500,000. Notwithstanding the extra calculations required to fulfill the RK4 and RK2
steps, the conclusion is that higher order schemes are superior to lower order schemes
(of course I should say).

In interesting spin-off from this disussion is that there is no difference between implicit
and explicit problem formulations when we talk about numerical accuracy. I.e. explicit
Euler and implicit Euler yield the same accuracy as do RK2 with explicit and implicit
model formulations and the same for RK4. Buth then it comes to conservation laws we
see the difference. The implicit model formulation always yield correct enthalpies and
pressures whereas the explicit formulations do not. For RK4 the difference is in the last
digit only, but it is nevertheless present and it is visible.

13

Exercise 10

Preisig, H A Chemical Engineering, NTNU

1 Question: Topology 07

The simplified flowsheet of the industrial sulfuric acid production process consists of a
sulfur burner, multi-pass converter, heat exchangers and absorbers as shown in Figure 1.
The main steps in the process consist of burning sulfur (S) in air to form sulfur dioxide
(SO2), converting SO2 to sulfur trioxide (SO3) using oxygen (O2) from air, and absorbing
SO3 in water (H2O) or a diluted solution of sulfuric acid (H2SO4) to form a concentrated
solution of acid (> 96%).

S (s) +O2 (g) ⇋ SO2(g) ∆HR = 296810 kJ/kmol

SO2 (g) +
1

2
O2 (g) ⇋ SO3(g) ∆HR = 96232 kJ/kmol

SO3 (g) +H2O(lq) ⇋ H2SO4(lq) ∆HR = 132000 kJ/kmol

Filtered ambient air is drawn through a high efficiency drying tower by the main compres-
sor to remove moisture. The compressed dry air enters a refractory-lined furnace where
molten sulfur is burned to produce SO2. The hot SO2 combustion gas is then cooled in a
steam boiler to the proper temperature to promote conversion to SO3 in the conversion
step. A multi-bed catalytic adiabatic reactor is used as the SO2 oxidation reaction is
limited by the chemical equilibrium. Note that O2 oxidizes SO2 to SO3 with a catalyst.
The catalyst used here is vanadium oxide (V2O5) mixed with an alkali metal sulfate. This
mixture is supported on small silica beads.

The overall process is designed to give a conversion of sulfur dioxide to sulfuric acid
of over 99.7%. Several conversion steps, addition of fresh air and inter-stage cooling are
necessary as the reaction is reversible and exothermal. SO2 conversion is further improved
and tail gas emissions are reduced through an intermediate SO3 absorption step (Abs1).
This absorption step takes place after the fourth bed of catalyst and changes the gas
composition, thus shifting the equilibrium curve to higher conversions. The absorption
of SO3 is finalized in the second absorber (Abs2). For heat-integration reasons, two
feed-effluent heat exchangers (FEHE) are used.

• Sketch the topology of the sulfuric acid plant.

2012-10-27 page 1

Figure 1: A flowsheet of Acid Sulfuric production plant

2 Question: Modelling a mass transfer

It is often of interest to have a visual indicator for the level of fluid in a tank. For this
purpose one attaches a vertical see-through tube to the tank which is connected to a
terminal at the bottom of the tank. Often, the connecting pipe is of small diameter.
Sometimes it has a valve built in.

It is of interest to explore what the level measurement shows as the tank is operating in a
dynamic mode, as the level may change relatively rapidly in the tank due to adding and
removing fluid through the feed or the outflow terminal of the tank. The tank has one
controlled feed and one output to a variable user. The feed is controlled using an on/off
controller as it is common in the toilet flush box using the level glass as a measure for the
level.

2.1 Additional information

The volumetric flow rate from the tank through the tube into the level glass is driven by
the difference in static pressures at the bottom of the two vessels. The following relation
is a good candidate for expressing this rate:

V̂T |L := cT |L sign (pT − pL)

√
|pT − pL|

ρ
(1)

2012-10-30 page 2

where c represents the valve constant including the resistance effects of the pipe, the
system T is for the tank and L for the level glass.

2.2 What to do

2.2.1 Construct Model

It is the level in the tank, which the level glass is indicating. Thus it is the dynamics of
the two levels, the one in the tank and the one in the level glass, that are of interest.

Establish a mathematical model strictly in steps and simulate thereafter:

• Sketch the process.

• Draw the physical topology of the tank that is able to describe the process that
occurs with the valve being in a position that is different from closed.

• Overlay the control structure.

• Choose the fundamental extensive quantities describing this process.

• Write the balance equations.

• Introduce a state variable transformation form the conserved extensive quantity,
mass, to level, thus use the level in the tank and the level in the level glass as the
secondary state variables.

• Define the input variables.

• Transform the differential equations to show the dynamics of the level changes.

2.2.2 Cast Model into Systems Notation

The model is to be cast into the systems notation by defining

• state vector x

• input vector u

• output vector y

• parameters θ

2.2.3 Linearise Model

Use the model in the systems notation to obtain a linearised version.

2012-10-30 page 3

3 Question: Dynamics 04 - ODE integration

We want to write a integrator for solving initial value problems for models that consist of
sets differential-algebraic equations (DAE) of a specific class. We want a generic tool for
the integration, whereby it shall be possible to implement different methods.

The class of DAEs are of the form:

ẋ = f(z, θx, t)

z := g(x, t)

Obviously we could substitute the second algebraic equation into the first one yielding a
simple ordinary differential equation. So why using this form? In our applications, namely
the modelling of physical-chemical-biological processes, first equation are the conservation
equations, which in fact are linear, whilst the second equation is the collection of transport,
kinetic, material models and geometry relations that complete the model.

For the start we want to implement two very commonly used methods, namely

1. Euler method

2. Rung-Kutta method (RK4)

To test the scheme, we use a simple linear set of differential equations:

ẋ =




e1 a1 0 0
−a1 e1 0 0
c1 0 e2 a2
0 0 −a2 e2


 x

x(0) := [10; 10; 10; 10]

e1 := −0.01

e2 := −0.01

a1 := 1

a2 := 2

c1 := 1

These are two coupled oscillators, so should produce Lissajou figures. Plot for example
x2 vs x4, but first plot all states vs time.

1. Generate a class matrix, which extends the class list with the operators +, - and *,
whereby the * the normal matrix products. Since vectors are matrix with only on
column, this class can be used to do all necessary matrix operations.

2. Realise the Euler and the Runge-Kutta algorithm using the matrix class

3. Produce the solutions for the above system using a sampling time of 0.1 and 1000
points.

2012-10-21 page 4

4. Plot xi, i := 1, . . . , 4 vs time

5. Phase plot x2 vs x4 to visualise the Lissajou figure.

6. Change parameter a2 to for example 3 or 4 and plot the Lissajou figure.

7. Compare with the analytical solution.

3.1 Hints to the design

Think what objects and operations you need :

• Matrix, a two dimensional objects (A,B)

• Vector, a one dimensional object, which though can be seen as a matrix with one
dimension being 1. (v)

• Scalar (a)

Given the sample objects above in brackets and the two algorithms, the following opera-
tions may be required:

1. A+B

2. A− B

3. A ∗B

4. v ∗ A same as A ∗B

5. A ∗ v same as A ∗B

6. vT ∗ v same as A ∗B

7. A ∗ a

8. A/a

9. a ∗ A

Thus a matrix class would have to do:

• Matrix transposition

• Matrix addition and subtraction,

• Matrix product (scalar product being a special case)

• Matrix product with scalar

• Scalar times matrix

2012-10-21 page 5

1 Suggested solution: Sulfuric acid production plant

Air

S (lq) L1

G1

G2

K1

G3S1

G4S1

G5S1

G6S1

G7S1

G8 K2

G9 G10 G11 G12

G13K3

G17K4

G18K5

L2G14

L3G15

L4G16

Water

H2SO4

L5G19

L6G20

L7G21

Stack

FURNACE BOILER

REACTOR

HX1

FEHE1 FEHE2

ABS1

ABS2

HX2

HX3

HX4

Figure 1: Topology of the Sulfuric acid production plant

2012-10-27 page 1

2 Solution: Modelling a tank with a level glass indi-

cator

3 Model

3.1 Step 1 : Sketch Process and Establish Physical Topology

The process of the level glass attached to a tank is shown in Figure 3.1 together with a
suggested physical topology.

LC

setpoint

m̂S|T

m̂T |P

m̂T |L

down stream controlled

S

T

P

L

LC

UC

Figure 2: Process structure and its abstraction

3.2 Step 2 : Primary Model

Since it is the objective to evaluate how well the level in the level glass reflects the level
in the tank, only the total mass balance of the tank and the level glass are required,
assuming no significant thermal and concentration effects are predicted.

dmT

dt
= m̂S|T − m̂T |P − m̂T |L, (1)

dmL

dt
= m̂T |L. (2)

The final goal is to write a model that accounts for the evolution of the levels of liquid in
the two vessels. For this we try to express the variables appearing in the balance equations
in terms of the levels lT and lL.

2012-10-11 page 2

3.3 Step 3 : Define Flows and Add Assumptions

First we express the mass flows in the balance equations. We choose to express the mass
flow rates in terms of volumetric flow rates. For an arbitrary mass stream m, the mass
flow rate is

m̂m := ρmV̂m, (3)

where ρm is the density of the mass stream, and V̂m is the respective volumetric stream.

Assuming that the mass stream flows between the elementary systems A and B, that is
m := A|B, the density of the mass stream will be the density of the substance in the
system from which the stream originates:

ρA|B :=

{
ρA if V̂A|B > 0,

ρB if V̂A|B < 0.
(4)

This can also be written using the sign (·) function as

ρA|B :=
1

2

((
1 + sign

(
V̂A|B

))
ρA +

(
1− sign

(
V̂A|B

))
ρB

)
. (5)

However in the case of our problem we shall assume that the density of the water is
constant in all the parts of the process, that is, for each mass transfer we have

ρA ≡ ρB =: ρ, (6)

and consequently

m̂A|B := ρ V̂A|B. (7)

The volumetric flow rate from the tube to the level glass is driven by the difference in static
pressures at the bottom of the two vessels. The following relation is a good candidate for
expressing this rate:

V̂T |L := cT |L

√
|pT − pL|

ρ
sign (pT − pL) , (8)

where cT |L represents the valve constant including the resistance effects of the pipe. As
we are interested in a model that accounts for the levels, it is useful to use the expression

pΣ := ρ g lΣ; Σ := T, L (9)

to obtain

V̂T |L := a
√

g |lT − lL| sign (lT − lL) . (10)

a := cT |L
√
g (11)

With these the balance equations (1) and (2) become

dmT

dt
:= ρ V̂S|T − ρ V̂T |P − ρ a

√
|lT − lL| sign (lT − lL) , (12)

dmL

dt
:= ρ a

√
|lT − lL| sign (lT − lL) . (13)

2012-10-11 page 3

3.4 Step 4: State Variable Transformation

Now we express the extensive variables in terms of the variables of interest (the user
variables) that are in our case the two levels. If we make no specific assumptions about
the shapes of the two vessels we can write

mT := ρ VT (lT), (14)

mL := ρ VL(lL). (15)

In the case that the vessels are cylindrical:

VT (lT) := AT lT (16)

VL(lL) := AL lL. (17)

In general, taking the time derivatives in these relations we have




dmT

dt

dmL

dt


 :=




∂mT

∂lT

∂mT

∂lL

∂mL

∂lT

∂mL

∂lL







dlT
dt

dlL
dt


 (18)

:=




ρ ∂VT

∂lT
0

0 ρ ∂VL

∂lL







dlT
dt

dlL
dt


 . (19)

Using these in (12) and (13) we obtain:




dlT
dt

dlL
dt


 =




(
∂VT

∂lT

)−1 (
V̂S|T − V̂T |P − a

√
|lT − lL| sign (lT − lL)

)

(
∂VL

∂lL

)−1

a
√
|lT − lL| sign (lT − lL)


 . (20)

This is a model in input-state form if we choose the state vector to be

x :=




lT

lL


 (21)

and the input to be

u :=




V̂S|T

V̂T |P


 (22)

Assuming that the vessels are cylindrical, the system (20) can be written as

dx

dt
=




1
AT

(
u1 − u2 − a

√
|x1 − x2| sign (x1 − x2)

)

1
AL

a
√

|x1 − x2| sign (x1 − x2)


 (23)

2012-10-11 page 4

The quantities AT , AL, c, ρ, g play the role of parameters of our model.

The equations is linear in the inputs:

dx

dt
:= S




−1

1


 a x̃(x) + SFu . (24)

Which isolates the nonlinearity into the function:

x̃(x) :=
√

|x1 − x2| sign (x1 − x2) . (25)

and defines the two matrices:

S :=




1/AT 0

0 1/AL


 , (26)

F :=




1 −1

0 0


 . (27)

3.5 Step 5: Linearisation

Given the general nonlinear system:

ẋ = f(x,u) (28)

y := g(x,u) (29)

linearisation is done about an operating point defined by the state x0. For this operating
point one computes the steady state relation between the state x0 and the input u0 by
solving the equation:

0 = f(x0,u0) (30)

for u0. Note that this procedure implies that the first set of equations can be solved
explicitly for the input variables.

The linearisation is then done about the point defined by x0, u0, y0 by expanding the two
nonlinear equations in a Taylor series, thus:

f(x,u) = f(x0,u0) +
∂f (x,u)

∂xT

∣∣∣
x0,u0

(x− x0) +
∂f (x,u)

∂uT

∣∣∣
x0,u0

(u− u0) + ||O2|| (31)

g(x,u) = g(x0,u0) +
∂g(x,u)

∂xT

∣∣∣
x0,u0

(x− x0) +
∂g(x,u)

∂uT

∣∣∣
x0,u0

(u− u0) + ||O2|| (32)

The output at steady-state is simply calculated from the non-linear measurement equation

y
0
:= g(x0,u0) (33)

2012-10-11 page 5

Finally by defining the deviation variables and Jacobian matrices:

∆x := x− x0 (34)

∆u := u− u0 (35)

∆y := y − y
0

(36)

A :=
∂f(x,u)

∂xT

∣∣∣
x0,u0

(37)

B :=
∂f(x,u)

∂uT

∣∣∣
x0,u0

(38)

C :=
∂g(x,u)

∂xT

∣∣∣
x0,u0

(39)

D :=
∂g(x,u)

∂uT

∣∣∣
x0,u0

(40)

and truncating after the linear term, the equations reduce to the familiar linear form :

∆ẋ(t) = A∆x(t) +B∆u(t) (41)

∆y(t) = C∆x(t) +D∆u(t) (42)

This model describes the approximate behaviour about a chosen stationary point in the
state domain. The state is here the deviation variables. The system matrices {A,B,C,D}
are Jacobians of the original representation.

Thus for our system we have only the Jacobian with respect to the vector x to compute:

J
x
:= A , (43)

:= S




−1

1



∂x̂(x)

∂xT
. (44)

Which in turn reduces to computing the partial derivative:

∂x̂(x)

∂xT
:=

∂

∂x
|y(x)|1/2 sign (y(x)) , (45)

:=
∂x̂(x)

∂y

∂y(x)

∂xT
. (46)

With y(x) := x1 − x2. The differential with respect to y:

∂x̂(x)

∂y
:=

∂sign (y)

∂y
|y|1/2 + sign (y)

∂|y|1/2
∂y

, (47)

:= sign (y)
∂|y|1/2
∂|y|

∂|y|
∂y

, (48)

:= sign (y)
1

2
|y|−1/2 ∂

∂y
(sign (y) y) , (49)

:= sign (y)
1

2
|y|−1/2 sign (y) , (50)

:=
1

2
|y|−1/2 . (51)

2012-10-11 page 6

The last bit is to differentiate y:

∂y(x)

∂x
:=

∂

∂x
(x1 − x2) , (52)

:=

[
1 −1

]
. (53)

So now we can assemble the Jacobian:

A := S




−1

1




a

2
|y|−1/2

[
1 −1

]
, (54)

:= S




−1 1

1 −1




a

2
|xo

1 − xo
2|−1/2 . (55)

And

B := SF . (56)

2012-10-11 page 7

4 Simulation

inflow

outflow

level tank

level level glass

tank_with_level_glass

setpoint

measurement

control signal

control errror

on−off
controller

0.5

offset

levels

5

level
setpoint

flows

1

flow rate feed

error

Sine Wave

tank & level glass process

control_error

level_glass

outflow

level_tankinflow

Figure 3: Simulink block diagram of the on/off controlled tank with level glass

2

level
level glass

1

level
tank

level tank

level level glass
flow

mass_flow_T−>L

1
s

integrate for level
in level glass

1
s

integrate for
level in tank

1

cross section tank

0.1

cross section level glass

Product1

Product

tank & level glass dynamics

2

outflow

1

inflow

Figure 4: Simulink block diagram of the tank with level glass model

2012-10-11 page 8

2

control
errror

1

control
signalRelay

switching points [off , on] := [−1,1]
output := [0,1]

on−off controller

2

measurement

1

setpoint

Figure 5: Simulink block diagram of the on-off controller

1

flow
0.001

valve constant

sqrt

sqrt1

sqrt

sqrt

sign

9.81

gravitational
acceleration

|u|

abs

Product

flow between tank and level glass

2

level
 level glass

1

level
tank

Figure 6: Simulink block diagram of the flow model between tank and level glass

2012-10-11 page 9

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10
level f the tank compared to the level of teh level glass

time

flo
w

 ,
le

ve
l

inflow
outflow
level tank
level glass

Figure 7: Level in the tank and the level glass and the normed flows

2012-10-11 page 10

5 Solution: Dynamics 04 ODE Systems with Euler

and Runge-Kutta

Euler method

The Euler method is

xn+1 = xn + h f(tn,xn)

The main issue is to recognise the different objects and the operations required by the
algorithm.

The state x is a vector, thus can be represented as a corresponding matrix. The h is a
scalar and the function f() is a vector of the same dimension as the state. The operation
required are thus matrix addition and scaler times matrix.

Rung kutta method

The RK4 method for this problem is given by the following equations:

xn+1 = xn +
1

6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

where xn+1 is the RK4 approximation of x(tn+1), and

k1 = h f (tn, xn)

k2 = h f

(
tn +

1

2
h, xn +

1

2
k1

)

k3 = h f

(
tn +

1

2
h, xn +

1

2
k2

)

k4 = h f

(
tn +

1

2
h, xn + k3

)

The state and the time step is as about. So the same objects are required and also the
same operations.

5.1 Python code

The Python code has two pieces: The first implements a class of integrators, which
are plugged into the second module, which contains the whole problem, integrator and
differential equations.

Note that the model can be subclassed defining another model as demonstrated in the
main program section of the module.

2012-10-11 page 11

5.1.1 Integrators

1 ’’’
2 2012-10-11 created
3 2012-10-13 step returns dt, dxdt and x_new
4 2012-10-21 extend to matrix operations
5

6

7 @author: Preisig, Heinz A
8 @organization: NTNU, Chemical Engineering
9 ’’’

10 from matrix import Scalar
11

12 class Stepper (object) :
13 ’’’
14 Implements different "steppers" for computing ODE integrals.
15 ’’’
16

17 def i n i t (s e l f , model , dt) :
18 ’’’
19 Keeps the model and the (initial) time step.
20 ’’’
21 s e l f .model = model
22 s e l f . dt = dt
23

24 class Euler(Stepper) :
25 ’’’
26 Implements the Euler method.
27 ’’’
28

29 def step (s e l f , t , x) :
30 dxdt = s e l f .model . rhs (t , x)
31 x new = x + dxdt ∗ s e l f . dt ;
32 return s e l f . dt , dxdt , x new
33

34 class RungeKutta(Stepper) :
35 ’’’
36 Implements the Runge-Kutta 3:4 method.
37 Pending...
38 ’’’
39

40 def step (s e l f , t , x) :
41 h = s e l f . dt
42 k1 = h ∗ s e l f .model . rhs (t , x)
43 k2 = h ∗ s e l f .model . rhs (t + Scalar (0 .5) ∗ h , x + Scalar (0 .5) ∗ k1)
44 k3 = h ∗ s e l f .model . rhs (t + Scalar (0 .5) ∗ h , x + Scalar (0 .5) ∗ k2)
45 k4 = h ∗ s e l f .model . rhs (t + h , x + k3)
46 x new = x + Scalar (1 .0 / 6 .0) ∗ (k1 + Scalar (2 .0) ∗ k2 +
47 Scalar (2 .0) ∗ k3 + k4)
48 dxdt = (x new − x) / h
49 return s e l f . dt , dxdt , x new

5.1.2 The model module

1 ’’’
2 In this module, the term "model" is used for the complete "thing" including the
3 differential equation *and* the integrator.
4

5 2012-10-11 created (HAP).
6 2012-10-13 extended to multiple integrators and demo for re-use (HAP).
7 2012-10-16 replaced an ugly if-elif-else testing of the ode solver method with a
8 first class function object (THW).
9

2012-10-11 page 12

10 2012-10-11 created
11 2012-10-13 extended to multiple integrators and demo for re-use
12

13 @author: Preisig, Heinz A
14 @organization: NTNU, Chemical Engineering
15 ’’’
16

17 import Integrator vector 01 as ODE
18 from matrix import Matrix , Scalar
19 import math
20 from gnuplot import gnuplot
21 from str ing import replace
22

23 class Model :
24 ’’’
25 The model is the differential equations and the integrator
26 ’’’
27

28 def i n i t (s e l f , x0=Matrix ([[0]]) , dt=1.0 , par=[] , odesolver=ODE. Euler) :
29 ’’’
30 The initialization gets the initial conditions, the parameters, and the
31 step size for the time stepper - being an integrator.
32 Note that the resulting state is stored as a list of vectors, whereby vectors are
33 matrices of the dimension n,1.
34

35 @param x0: initial conditions
36 @type x0: Matrix
37 @param dt: time step
38 @type dt: float or integer
39 @param par: list of parameters
40 @type par: list of Scalar
41 ’’’
42 s e l f . t = [0] # keeps the time
43 s e l f . dxdt = Matrix ([[]]) # the time derivative of the state
44 s e l f . x = [] # keeps the state over time
45 s e l f . x . append(x0)
46 s e l f . par = par
47

48 # plug in desired integrator
49 s e l f . integrator = odesolver(s e l f , dt) # plug in the integrator
50

51 def rhs (s e l f , t , x) :
52 ’’’
53 <USER SPECIFIC>
54 Can be redefined through subclassing
55

56 Returns the value of the time derivative of the current state and stores
57 the newly calculated derivative.
58 ’’’
59 dxdt = s e l f . par [0] ∗ x
60 return dxdt
61

62 def integrateTimeInterval (s e l f) :
63 ’’’
64 Integrate over the given time interval; thus updating time and state.
65 The state is kept as list of one-column matrices.
66 ’’’
67 x = s e l f . x[−1]
68 t = s e l f . t [−1]
69 dt , dxdt , x new = s e l f . integrator . step (t , x)
70 s e l f . dxdt . extend(dxdt)
71 s e l f . x . append(x new)
72 s e l f . t . append(t + dt)
73

74 def getCSV(s e l f) :

2012-10-11 page 13

75 s = ’ ’
76 for i in range (len (s e l f . t)) :
77 s t = s e l f . t [i] . s t r ()
78 x = str (s e l f . x [i])
79 x = replace (x , ’ [’ , ’ ’)
80 x = replace (x , ’] ’ , ’ ’)
81 s += ’%s , %s\n ’ % (s t , x)
82 return s
83

84 class MyModel(Model) :
85 ’’’
86 Demonstrates defining a new complete model replacing the right-hand-side of the ODEs
87 ’’’
88 def rhs (s e l f , t , x) :
89 dxdt = s e l f . par [0] ∗ x
90 return dxdt
91

92 class TwoDModel(Model) :
93 ’’’
94 Demonstrates defining a new complete model replacing the right-hand-side of the ODEs
95 but now a two-dimensional system of equations
96 ’’’
97 def rhs (s e l f , t , x) :
98 dxdt = s e l f . par [0] ∗ x
99 return dxdt

100

101

102 # ===
103 i f name == ’ main ’ :
104

105

106 # instantiate models
107 t x t f i l e = open(’ 01.dat ’ , ’w’) # open data file for plotting
108 x0 = Matrix ([[1 0 . 0]])
109 dt = Scalar (0 .1)
110 par1 = [Scalar (−2)]
111 par2 = [Scalar (−1)]
112 n samples = 5
113

114 # default model with Euler
115 m = Model(x0=x0 , dt=dt , par=par1 , odesolver=ODE. Euler) # initialise
116 for i in range (0 , n samples) : # step through the time interval
117 m. integrateTimeInterval ()
118 t x t f i l e . write (m.getCSV())
119 t x t f i l e . c lo se ()
120 print ’\nDefault model r e su l t s (Euler) : \n ’ , m.getCSV()
121

122 # default model with Runge Kutta
123 t x t f i l e = open(’ 02.dat ’ , ’w’) # open data file for plotting
124 m = Model(x0=x0 , dt=dt , par=par1 , odesolver=ODE.RungeKutta) # initialise
125 for i in range (0 , n samples) : # step through the time interval
126 m. integrateTimeInterval ()
127 t x t f i l e . write (m.getCSV())
128 t x t f i l e . c lo se ()
129 print ’\nDefault model r e su l t s (Runge Kutta) : \n ’ , m.getCSV()
130

131

132 # my model Euler
133 t x t f i l e = open(’ 03.dat ’ , ’w’) # open data file for plotting
134 m = MyModel(x0=x0 , dt=dt , par=par2 , odesolver=ODE. Euler) # initialise
135 for i in range (0 , n samples) : # step through the time interval
136 m. integrateTimeInterval ()
137 t x t f i l e . write (m.getCSV())
138 t x t f i l e . c lo se ()
139 print ’My model r e su l t s (Euler) : \n ’ , m.getCSV()

2012-10-11 page 14

140

141 # my model Runge Kutta
142 t x t f i l e = open(’ 04.dat ’ , ’w’) # open data file for plotting
143 m = MyModel(x0=x0 , dt=dt , par=par2 , odesolver=ODE.RungeKutta) # initialise
144 for i in range (0 , n samples) : # step through the time interval
145 m. integrateTimeInterval ()
146 t x t f i l e . write (m.getCSV())
147 t x t f i l e . c lo se ()
148 print ’My model r e su l t s (Runge Kutta) : \n ’ , m.getCSV()
149

150

151 # comparison with exact solution
152 t x t f i l e = open(’ 05.dat ’ , ’w’) # open data file for plotting
153 t = 0
154 x exact = []
155 for i in range (0 , n samples) :
156 t = i ∗ dt
157 x exact . append(math. e ∗∗ (par1 [0] ∗ t) ∗ 10)
158 t x t f i l e . write (’%s %s\n ’ % (t , x exact [−1]))
159 t x t f i l e . c lo se ()
160 print ’Exact value f i r s t model : \n ’ , m.getCSV()
161

162 t x t f i l e = open(’ 06.dat ’ , ’w’) # open data file for plotting
163 t = 0
164 x exact = []
165 for i in range (0 , n samples) :
166 t = i ∗ dt
167 x exact . append(math. e ∗∗ (par2 [0] ∗ t) ∗ 10)
168 t x t f i l e . write (’%s , %s\n ’ % (t , x exact [−1]))
169 t x t f i l e . c lo se ()
170 print ’Exact value f i r s t model : \n ’ , m.getCSV()
171

172 # 2-D problem
173 t x t f i l e = open(’ 07.dat ’ , ’w’)
174 t = 0.0
175 x0 = Matrix ([[1 0 . 0] , [1 0 . 0]])
176 # print x0.dim()
177 par3 = [Matrix([[−5.0 , 0 . 0] , [0 . 0 , −0.10]])]
178 m = TwoDModel(x0=x0 , dt=dt , par=par3 , odesolver=ODE. Euler)
179 for i in range (0 , n samples) : # step through the time interval
180 m. integrateTimeInterval ()
181 t x t f i l e . write (m.getCSV())
182 t x t f i l e . c lo se ()
183 print ’My model r e su l t s (Runge Kutta) : \n ’ , m.getCSV()
184

185

186 t x t f i l e = open(’ 08.dat ’ , ’w’)
187 t = 0.0
188 x0 = Matrix ([[1 0 . 0] , [1 0 . 0]])
189 m = TwoDModel(x0=x0 , dt=dt , par=par3 , odesolver=ODE.RungeKutta)
190 for i in range (0 , n samples) : # step through the time interval
191 m. integrateTimeInterval ()
192 t x t f i l e . write (m.getCSV())
193 t x t f i l e . c lo se ()
194 print ’My model r e su l t s (Runge Kutta) : \n ’ , m.getCSV()
195

196

197 # ===
198 #plotting
199 plot = gnuplot (output=’ integratorplot ’ ,
200 xlabel=’ t ’ , y label=’x ’ ,
201 xmin=0, xmax=1, ymin=0, ymax=10, \
202 t i t l e=’ integrat ion two exponentials using Euler and R−K’)
203

204

2012-10-11 page 15

205 plot . add(’ 01.dat ’ , x=1, y=2, width=2, co lor=’ red ’ , type=1,
206 t i t l e=’model 1 : Euler ’)
207 plot . add(’ 02.dat ’ , x=1, y=2, width=2, co lor=’ blue ’ , type=1,
208 t i t l e=’model 1 : R−K’)
209 plot . add(’ 03.dat ’ , x=1, y=2, width=2, co lor=’ red ’ , type=2,
210 t i t l e=’model 2 : Euler ’)
211 plot . add(’ 04.dat ’ , x=1, y=2, width=2, co lor=’ blue ’ , type=2,
212 t i t l e=’model 2 : R−K’)
213 plot . add(’ 05.dat ’ , x=1, y=2, width=2, co lor=’ green ’ , type=1,
214 t i t l e=’model 1 : exact ’ , s ty le=’ points ’)
215 plot . add(’ 06.dat ’ , x=1, y=2, width=2, co lor=’ green ’ , type=2,
216 t i t l e=’model 2 : exact ’ , s ty le=’ points ’)
217 plot . add(’ 07.dat ’ , x=1, y=2, width=2, co lor=’ red ’ , type=3,
218 t i t l e=’model 3 . 1 : Euler ’)
219 plot . add(’ 07.dat ’ , x=1, y=2, width=2, co lor=’ blue ’ , type=3,
220 t i t l e=’model 3 . 2 : Euler ’)#, style=’linespoints’)
221 plot . add(’ 08.dat ’ , x=1, y=2, width=2, co lor=’ red ’ , type=4,
222 t i t l e=’model 3 . 1 : R−K’)#, style=’linespoints’)
223 plot . add(’ 08.dat ’ , x=1, y=3, width=2, co lor=’ blue ’ , type=4,
224 t i t l e=’model 3 . 2 : R−K’)
225 # plot.save(’test.dat’)
226 plot . plot (’ integratorplot ’)

5.1.3 The matrix class

1 ’’’
2 @summary: A simple class for matrixes being implemented as list of lists latter being ro
3

4 @author: Preisig, Heinz A
5 @organization: NTNU, Chemical Engineering
6

7 @since: 2012-10-21
8 @license: GPLv3
9 @requires: Python 2.7.1 or higher

10 @version: 1.0
11 ’’’
12

13 class Matrix(l i s t) :
14 ’’’
15 Implements an object matrix as a list of lists
16 This implies that the matrix is a list of row vectors
17 ’’’
18

19 def i n i t (s e l f , m) :
20 ’’’
21 generates a matrix from a list of lists
22 @param m: list of lists
23 @type m: list
24 ’’’
25

26 l i s t . i n i t (s e l f , m)
27 n , m = s e l f . dim()
28

29 def dim(s e l f) :
30 ’’’
31 dimension of the 2-D object
32 If the matrix is not regular, an exception is raised.
33 @return: the two dimensions as tuple
34 ’’’
35 m = len (s e l f)
36 n = len (s e l f [0])
37

38 for i in s e l f :
39 nn = len (i)

2012-10-11 page 16

40 i f nn != n :
41 print ’ incompatible dimensions %s , %s , %s ’ % (m, n , nn)
42 raise Exception(’ incompatible dimensions ’)
43

44 return m, n
45

46 def getRow(s e l f , i) :
47 return Matrix(s e l f [i])
48

49 def getColumn(s e l f , j) :
50 r = [s e l f [i] [j] for i in range(len (s e l f))]
51 return Matrix ([r]) . transpose ()
52

53 def add (s e l f , other) :
54 i f other . c l a s s != Matrix :
55 raise Exception(’ other i s wrong c la s s ’)
56

57 i f s e l f . dim() != other . dim() :
58 raise Exception(’ incompatible dimensions ’)
59

60 else :
61 C = []
62 for i in range(len (s e l f)) :
63 row = []
64 for j in range(len (s e l f [0])) :
65 row. append(s e l f [i] [j] + other [i] [j])
66 C. append(row)
67

68 return Matrix(C)
69

70 def sub (s e l f , other) :
71 i f other . c l a s s != Matrix :
72 raise Exception(’ other i s wrong c la s s ’)
73

74 i f s e l f . dim() != other . dim() :
75 raise Exception(’ incompatible dimensions ’)
76

77 else :
78 C = []
79 for i in range(len (s e l f)) :
80 row = []
81 for j in range(len (s e l f [0])) :
82 row. append(s e l f [i] [j] − other [i] [j])
83 C. append(row)
84

85 return Matrix(C)
86

87 def mul (s e l f , other) :
88 ’’’
89 Two cases must be considered, namely
90 1. matrix * matrix
91 2. matrix * scalar (float, int)
92 @param other: second operand
93 @type other: Matrix | Scalar |float|int
94 ’’’
95 i f i s ins tance (other , f l o a t) or i s ins tance (other , int) :
96 m A, n A = s e l f . dim()
97 C = []
98 for i in range(m A) :
99 C. append ([])

100 for j in range(n A) :
101 C[i] . append(other ∗ s e l f [i] [j])
102 return Matrix(C)
103 else :
104 m A, n A = s e l f . dim()

2012-10-11 page 17

105 m B, n B = other .dim()
106 i f n A != m B:
107 print ’ incompatible dimensions %s != %s ’ % (n A, m B)
108 raise Exception(’ incompatible dimensions ’)
109 C = []
110 for i in range(m A) :
111 C. append ([])
112 for k in range(n B) :
113 acc = 0
114 for j in range (n A) :
115 acc += s e l f [i] [j] ∗ other [j] [k]
116 C[i] . append(acc)
117 return Matrix(C)
118

119 def d iv (s e l f , other) :
120 ’’’
121 Two cases must be considered, namely
122 1. matrix * matrix
123 2. matrix * scalar (float, int)
124 @param other: second operand
125 @type other: Matrix | Scalar |float|int
126 ’’’
127 i f i s ins tance (other , f l o a t) or i s ins tance (other , int) :
128 m A, n A = s e l f . dim()
129 C = []
130 for i in range(m A) :
131 C. append ([])
132 for j in range(n A) :
133 C[i] . append(s e l f [i] [j] / other)
134 return Matrix(C)
135 else :
136 return f l o a t . dv i (s e l f , other)
137

138 def transpose (s e l f) :
139 ’’’
140 transposed of the matrix
141 @return: new matrix object
142 ’’’
143 C = []
144 m, n = s e l f . dim()
145 for i in range (n) :
146 C. append ([])
147 for j in range(m) :
148 C[i] . append(s e l f [j] [i])
149 return Matrix(C)
150

151

152 class Scalar (f l o a t) :
153 ’’’
154 Defines a scalar for the purpose of defining the scalar [op] Matrix operation
155 ’’’
156

157

158 def mul (s e l f , other) :
159 ’’’
160 Multiply scalar with matrix
161 @param other: a matrix
162 @type other:Matrix | float
163 ’’’
164 i f i s ins tance (other , Matrix) :
165 m A, n A = other .dim()
166 C = []
167 for i in range(m A) :
168 C. append ([])
169 for j in range(n A) :

2012-10-11 page 18

170 C[i] . append(s e l f ∗ other [i] [j])
171 return Matrix(C)
172 else :
173 return Scalar (f l o a t . mul (s e l f , other))
174

175

176

177 i f name == ’ main ’ :
178 print ’module matrix tes t :\n\n ’
179 A = Matrix ([[1 , 2] , [3 , 4]])
180 B = Matrix ([[1 , 4] , [3 , 4]])
181 v = Matrix ([[1 0] , [2 0]])
182 a = Scalar (2)
183

184

185 print ’dim A: ’ , A.dim()
186 print ’A + B’ , A + B
187 print ’A + A’ , A + A
188 print ’A − A’ , A + A
189 print ’A ∗ A’ , A ∗ A
190 print ’A ∗ v ’ , A ∗ v
191 print ’A. transpose () ’ , A. transpose ()
192 print ’v . transpose () ’ , v . transpose ()
193 print ’v . transpose () ∗ A’ , v . transpose () ∗ A
194 print ’a ∗ A’ , a ∗ A
195 print ’A ∗ a ’ , A ∗ a
196 print ’A / a ’ , A / a
197 print ’A. getColumn (1) ’ , A. getColumn (1)
198 print ’A. getColumn(−1) ’ , A. getColumn(−1)

5.1.4 The oscillator

1 ’’’
2 Created on Oct 29, 2012
3

4 @author: Preisig, Heinz A
5 @organization: NTNU, Chemical Engineering
6 ’’’
7

8 from model 05 import Model
9 from matrix import Matrix , Scalar

10 from Integrator vector 01 import Euler , RungeKutta
11 from gnuplot import gnuplot
12

13 class Osc i l la to r (Model) :
14 ’’’
15 Two coupled oscillators
16 ’’’
17 def rhs (s e l f , t , x) :
18 dxdt = s e l f . par ∗ x
19 return dxdt
20

21

22

23 i f name == ’ main ’ :
24 x0 = Matrix ([[1 0] , [1 0] , [1 0] , [1 0]])
25 dt = Scalar (0 .01)
26 n samples = 10000
27 r = −0.01
28 a1 = 1
29 a2 = 3
30 par = Matrix ([[r , a1 , 0 , 0] ,
31 [−a1 , r , 0 , 0] ,
32 [1 , 0 , r , a2] ,

2012-10-11 page 19

33 [0 , 0 , −a2 , r] ,
34])
35

36 m = Osc i l la to r (x0=x0 , dt=dt , par=par , odesolver=Euler)
37 for i in range (0 , n samples) : # step through the time interval
38 m. integrateTimeInterval ()
39

40

41 t x t f i l e = open(’ o sc i l l a to r Euler . dat ’ , ’w’)
42 t x t f i l e . write (m.getCSV())
43 t x t f i l e . c lo se ()
44

45 m = Osc i l la to r (x0=x0 , dt=dt , par=par , odesolver=RungeKutta)
46 for i in range (0 , n samples) : # step through the time interval
47 m. integrateTimeInterval ()
48

49

50 t x t f i l e = open(’ oscillator RungeKutta . dat ’ , ’w’)
51 t x t f i l e . write (m.getCSV())
52 t x t f i l e . c lo se ()
53

54

55 x r = 15
56 y r = 25
57

58 plot = gnuplot (output=’ o s c i l l a t o r ’ ,
59 xlabel=’ t ’ , y label=’x ’ ,
60 xmin= −x r , xmax=x r , ymin= −y r , ymax=y r , \
61 t i t l e=’ integrat ion of two coupled o s c i l l a t o r s ’)
62

63

64 plot . add(’ o sc i l l a to r Euler . dat ’ , x=2, y=4, width=2, co lor=’ blue ’ ,
65 type=1, t i t l e=’model 1 : Euler ’)
66 plot . add(’ oscillator RungeKutta . dat ’ , x=2, y=4, width=2, co lor=’ red ’ ,
67 type=1, t i t l e=’model 1 : RungeKutta ’)
68

69 plot . plot (’ o s c i l l a t o r ’)

5.1.5 Results

-20

-10

 0

 10

 20

-15 -10 -5 0 5 10 15

x

t

integration of two coupled oscillators

model 1: Euler
model 1: RungeKutta

2012-10-11 page 20

5.1.6 Matlab code

The following Matlab code gives the solution of the discrete oscillator, in contrast to the
Python code.

1 % A 2-d example of a dynamic system
2 %
3 % 2012-10-21 Preisig, H A
4 %%
5

6 r = −0.01;
7 a = 1;
8 A11 = [r , a ; −a , r] ;
9 a = 3;

10 A22 = [r , a ; −a , r] ;
11 A12 = zeros (2 ,2) ;
12 A21 = zeros (2 ,2) ;
13 A21(1 ,1) = 1;
14

15

16 A = [A11, A12; A21, A22]
17

18 k = length(A(1 , :)) ;
19 dt = 0 .1 ;
20 Phi = expm(A∗dt) ;
21

22 n = 1000;
23 x = zeros(k , n) ;
24 x (: , 1) = 10 ∗ ones (k , 1) ;
25

26 for i=2:n
27 x (: , i) = Phi∗x (: , i−1);
28 end
29

30 figure (1) ;plot ([1 :n] , x)
31

32 figure (2) ; plot(x (2 , :) , x (4 , :))

2012-10-11 page 21

Unittesting (TKP4106)

Zooball/Cow

Comparative Religion

Taoism: Shit happens.
Confucianism: Confucius say, "Shit happens."
Hinduism: This shit has happened before.
Protestantism: Let shit happen to someone else.
Seventh Day Adventism: No shit shall happen on Saturdays.
Jehovah's Witnesses: May we have a moment to show you some of our shit?
Creationism: God made all shit.
Hare Krishna: Shit happens, rama rama.
Rastafarianism: Let's smoke this shit!
Satanism: SNEPPAH TIHS.
Stoicism: This shit is good for me.
Nihilism: No shit.
Vikingism: Shit stinks.
•••

The Origin of Faeces

Assignments

1. Blabla

HTML text number 1.

%Predefined number 1.

HTML text number 2.

%Predefined number 2.

HTML text number 3.

Exercise 11

Maryam Ghadrdan and Preisig, H A Chemical Engineering, NTNU

1 Question: Topology 08 Compartmental model of

human

1.1 Blood flow in human

The blood flow of humans are sometimes modelled as a network of units connected by the
main network of blood vessels. In turn, the units are modelled as networks of compart-
ments. Units include heart, lungs, brain, arms, legs, intestines, liver, kidneys.

Generate a pictorial representation of the body in the form of a (hierarchical) graph rep-
resenting the body’s blood circulation system. Think about the function of the individual
”units” and provide information on the main functionalities to the extent you can find it.

1.2 Interaction substrate / blood

Suggest a topology that describes the food intake, digestion and the transfer of compo-
nents like sugar and water into the blood.

2012-11-05 page 1

2 Question: Pipe with friction

We want to model the flow of the fluid with dynamic viscosity µ in an inclined tube
(Figure 1).

i

o

L

Figure 1: A schematic of an inclined tube

The objective is to write the volumetric flow rate as a function of height, pressure drop.
The diameter changes linearly with the length. Density is constant so the fluid is incom-
pressible.

V̂ = V̂ (pi, po, hi, ho, ro, ri, L)

2.1 Tasks

• Establish the global mass balance and the mechanical energy balance for the inclined
tube. Note the diameter changes from inlet to outlet.

• Establish the expansion of each term (kinetic energy, potential energy etc.). Note
that the main issue is with the friction term - the diameter changes along the length
of the pipe. The ”expansion” must be done iteratively until you express everything
as a function of the state and parameters. So you satisfy the degree of freedom

• For this time, do substitute the equations for two cases:

– Laminar flow

– Very high velocities, where you can assume that the friction factor is constant.

2012-11-05 page 2

3 Question: Dynamics 05

In the literature we find the following description of the process:

Vapour phase cracking of acetone is described by the following endothermic reaction:

CH3COCH3 → CH2CO + CH4

The reaction takes place in a jacketed tubular reactor. Pure acetone enters the reactor at
a temperature of T0 = 1035K and pressure of P0 = 162 kPa, and the temperature of the
external gas in the heat exchanger is constant at Ta = 1150K. Other data are as follows:

Volumetric flow rate:

ν0 = 0.002
m3

s

Volume of the reactor:

VR = 1m3

Overall heat transfer coefficient:

U = 110
W

m3.K

Heat transfer area:

a = 150
m2

m3

Reaction constant:

k = 3.58 exp

[
34222

(
1

1035
− 1

T

)]
s−1

Heat of reaction:

∆HR = 80770 + 6.8 (T − 298)− 5.75× 10−3
(
T 2 − 2982

)
− 1.27× 10−6

(
T 3 − 2983

) J

mol

Heat capacity of acetone:

CPA
= 26.63 + 0.1830 T − 45.86× 10−6 T 2 J

mol.K

Heat capacity of ketene:

CPB
= 20.04 + 0.0945 T − 30.95× 10−6 T 2 J

mol.K

Heat capacity of methane:

CPC
= 13.39 + 0.0770 T − 18.71× 10−6 T 2 J

mol.K

Determine the temperature profile of the gas along the length of the reactor. Assume
constant pressure throughout the reactor.

2012-10-21 page 3

In order to calculate the temperature profile in the reactor, we have to solve the material
balance and energy balance equations simultaneously.

Mole balance:

dX

dV
=

−rA
FA0

Enegy balance:

dT

dV
=

U a (Ta − T) + rA∆HR

FA0 (CPA
+X∆CP)

where X is the conversion of acetone, V is the volume of the reactor, FA0 = CA0 ν0 is
the molar flow rate of acetone at the inlet, T is the temperature of the reactor, ∆CP =
CPB

+ CPC
− CPA

, and CA0 is the concentration of acetone vapour at the inlet. The
reaction rate is given as

−rA = k CA0

1−X

1 +X

T0

T

3.1 Task

We have made a point that we want to have component mass and energy as our state.
The model above describes the process in the intensive variables mole fraction and tem-
perature. We want to have it in our variables in order to control the error in the conserved
quantities and also for other reasons, like not having to substitute, increase readability
and documentation value of the model in algebraic and coded form.

In order to do so, we have to think in terms of a moving co-ordinate system, that is: think
of sitting in a boat on the plug flow. The plug flow implies no axial mixing thus ideal
radial mixing in the tubular reactor. So taking this view, we can further assume that we
deal with a volume element around the boat that has the same intensive properties. Thus
we think of the tubular reactor like a moving batch reactor: a lump of material comes
in and travels down the pipe. This takes some time during which it exchanges heat with
the jacket and during which it undergoes a reaction under the conditions as they change
during the trip.

Thus we formulate the problem as a ”travelling” batch reactor.

• Establish a model for the volume section you have in mind travelling down the pipe,
say it has volume Vs := VR/100

• As usual, write the model in generic form, thus with generic flow and reaction terms,
which you expand thereafter recursively until each of them is a function of the state
variables, parameters and given conditions, like the state at the entrance and the
temperature in the jacket, to mention two. Make it a point to change the notation.

• Put together a code that for the right-hand-side of your balance equations by in-
verting the sequence of computations as established above.

• Solve the equations with your Euler and Runge-Kutta procedure.

• Plot results.

2012-10-21 page 4

1 Suggested solution: Blood circulation

stomach

brain

lungs

heart

liver

small intestine

large intestine

left kidney

pelvis

legs

mouth

air

Arms

left-ureter

right-ureter

Bladder

waste

food source

right kidney

b

b

b

b

b

b

b

Figure 1: Topology of the blood circulation in a human

2012-10-27 page 1

2 Solution: Pipe with friction

Model

The state space appropriate for the description of PCB systems is defined by the compo-
nent mass, total energy, and linear momentum in the three co-ordinates. This state may
be reduced if we make assumptions about the momentum balance. In the context of fluid
systems, the momentum balances describe the fluid flow. Making the assumptions of

• incompressible fluid

• constant density

• iso-entropic, iso-thermal process, thus no energy conversion (friction into internal
energy, for example)

• steady flow

So for a pipe that has a diameter changing with the length r(x) := r(0) + a ∗ x and has
a certain roughness ǫ:

internal energy 0 = Ûi − Ûo

kinetic energy +
m̂ v2i
2

− m̂ v2o
2

potential energy + m̂ g hi − m̂ g ho

volume work + pi V̂ − po V̂

friction work − ŵf

The iso-thermal condition makes the internal energy of the entering and the leaving fluid
equal. The interesting term is the friction. It is to be integrated over the length and
friction is empirically related to velocity through for example Darcy-Weisbach relation,
which gives the pressure drop due to friction being:

∆pf := f
L

D

ρ v2

2

which gives for the friction term:

ŵf :=

∫ L

0

f(Re(v(x)))
1

2 r(x)

ρ v(x)2

2
V̂ dx

with the velocity and volumetric flow rate being:

v := A−1 V̂

V̂ := ρ−1 m̂

v := A−1 ρ−1 m̂

and considering that the volumetric flow rate is constant we get:

ŵf :=
ρ V̂

4

∫ L

0

f(Re(v(x)))
v(x)2

r(x)
dx

2012-11-05 page 2

The difficult part is in the friction factor, as it is only given as a function in the the
extreme domains, namely for laminar flows and for high Reynold numbers, one can find
at least an approximation through interpolation.

For laminar flow we have:

f =
64µ

ρ v(x) 2 r(x)
=

32µ

ρ v(x) r(x)

substituting f in the last term will give:

ŵf :=
ρ V̂

4

∫ L

0

32µ

ρ v(x) r(x)

v(x)2

r(x)
dx

:= 8µ V̂

∫ L

0

v(x)

r2(x)
dx

:= 8µ V̂

∫ L

0

V̂

A r2(x)
dx

:=
8

π
µ V̂ 2

∫ L

0

1

r4(x)
dx

:=
8

π
µ V̂ 2 θ(ri, ro, L)

where θ(ri, ro, L) is the respective integral. Substituting the change of the diameter being:

r(x) = ri −
ri − ro

L
x

The integral to be solved is:
∫ L

0

(ri −
ri − ro

L
x)−4 dx

In the integral tables one finds:

∫ L

0

(z + a)n dz :=
(z + a)n+1

n+ 1

∣∣∣∣
L

0

yielding:
(r2i + ri ro + r2o)L

3 r3i r
3
o

Substitution leads to:

kinetic energy 0 = +
m̂ v2i
2

− m̂ v2o
2

potential energy + m̂ g hi − m̂ g ho

volume work + pi V̂ − po V̂

friction work − ŵf

So,

0 =
1

2 π2 ρ2
(r−4

i − r−4
o) m̂

2012-11-05 page 3

+ g (hi − ho) m̂

+ (pi − po) ρ
−1 m̂

− 8µ

3 π ρ2
(r2i + ri ro + r2o)L

r3i r
3
o

m̂2

Now the equation is solved in terms of m̂ and can be converted to volumetric flow via
V̂ = ρ−1 m̂.

2012-11-05 page 4

3 Solution: Dynamics 05 Aceton cracking

3.1 Model equations

equations res vars given

nG :=
∫ t

0
ṅG dt+ no

G nG ṅG no
G

HG :=
∫ t

0
ḢG dt+Ho

G HG ḢG Ho
G

ṅG = ñG ṅG ñG

ḢG = q̂G|C ḢG q̂G|C

q̂G|C := −kG|C (TC − TG) q̂G|C TG TC , kG|C

ñG := NT VG k cG,A ñG cG,A, k, VG N

k := a exp
{
b
(
c−1 − T−1

G

)}
k TG a, b, c

cG,A := [1, 0] cG cG,A cG

cG := V −1
G nG cG nG, VG

VG := [1, . . . , 1]nGRTG/pG VG nG, TG R, pG

HG :=
∫ TG

T0
nT
G γ(τ) dτ TG HG, γ, VG T0

γ := a0 + a1 TG + a2 T
2
G γ TG a0, a1, a2

The last equations need some massaging:

HG :=

∫ TG

T0

nT
G γ(τ) dτ

:=

∫ TG

T0

nT
G

(
a0 + a1 τ + a2 τ

2
)
dτ

:= nT
G

(
a0 + a1/2 τ + a2/3 τ

2
)
τ
∣∣TG

To

:= nT
G

(
a0 + a1/2 TG + a2/3 T

2
G

)
TG − nT

G

(
a0 + a1/2 To + a2/3 T

2
o

)
To

We define

Ho := nT
G

(
a0 + a1/2 To + a2/3 T

2
o

)
To

P (TG) := nT
G

(
a0 + a1/2 TG + a2/3 T

2
G

)
TG

then the feasible root TG is to be evaluated from:

0 := P (TG)− (HG +Ho) := r(TG)

The task is then to find the roots for the equation r(TG) = 0

2012-10-21 page 5

3.2 Newton-Raphson iteration

Since the Jacobian is known:

J(TG) = nT
G

(
a0 + a1 To + a2 T

2
o

)

the Newton-Raphson step is:

TG(k + 1) := TG(k)− J−1 r(TG(k))

The

3.2.1 Symbols

nG vector of component masses in moles

HG enthalpy

ṅG time derivatives vector of component masses in moles

ḢG time derivative of enthalpy

q̂G|C heat flow reacting volume to cooler

ñG production rate of component mass in moles

k reaction ”constant”

g(cG, TG) kinetic relation

cG,A concentration of species A in G

cG,B concentration of species B in G

cG vector of concentration of species in G

TG temperature in G

γ vector of specific heat capacity of pure species in G at constant
pressure

VG volume of the reacting phase

To initial temperature (temperature at the entrance)

TC temperature in the cooler (uniform)

N stoichiometric matrix (reactions vs species)

ai vectors with the respective coefficients of the polynomial approxi-
mations for the specific heat capacity

a, b, c kinetic constants

2012-10-21 page 6

3.3 Runge Kutta procedure

We have the set of ordinary differential equations as below:

dy1
dt

= f1(t, y1, y2, · · · , yn)
dy2
dt

= f2(t, y1, y2, · · · , yn)
...

dyn
dt

= fn(t, y1, y2, · · · , yn)

Rung kutta method for simultaneous equations

The RK4 method for this problem is given by the following equations:

yi+1,j = yi,j +
1

6
(k1,j + 2 k2,j + 2 k3,j + k4,j)

ti+1 = ti + h

where j = 1, 2, · · · , n and

k1,j = h fj (ti, yi,1 yi,2 · · · yi,n)

k2,j = h fj

(
ti +

1

2
h, yi,1 +

1

2
k1,1, yi,2 +

1

2
k1,2, , · · · , yi,n +

1

2
k1,n,

)

k3,j = h fj

(
ti +

1

2
h, yi,1 +

1

2
k2,1, yi,2 +

1

2
k2,2, , · · · , yi,n +

1

2
k2,n,

)

k4,j = h fj

(
ti + h, yi,1 + k3,1, yi,2 +

1

2
k3,2, , · · · , yi,n + k3,n,

)

2012-10-21 page 7

Plot of the component masses

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.0002 0.0004 0.0006 0.0008 0.001

n
[m

ol
]

t [s]

Aceton Cracking

model 1: Euler
model 1: Euler
model 1: Euler

model 1: Runge Kutta
model 1: Runge Kutta
model 1: Runge Kutta

3.3.1 The model module

1 ’’’
2 In this module, the term "model" is used for the complete "thing" including the
3 differential equation *and* the integrator.
4

5 2012-10-11 created (HAP).
6 2012-10-13 extended to multiple integrators and demo for re-use (HAP).
7 2012-10-16 replaced an ugly if-elif-else testing of the ode solver method with a
8 first class function object (THW).
9

10 2012-10-11 created
11 2012-10-13 extended to multiple integrators and demo for re-use
12 2012-11-14 extended to output also the secondary states put into self.y by the
13 the user-defined model, that is, if it is there.
14

15 @author: Preisig, Heinz A
16 @organization: NTNU, Chemical Engineering
17 ’’’
18

19 import Integrator vector 01 as ODE
20 from matrix import Matrix , Scalar
21 import math
22 from gnuplot import gnuplot
23 from str ing import replace
24

25 class Model :
26 ’’’
27 The model is the differential equations and the integrator
28 ’’’
29

30 def i n i t (s e l f , x0=Matrix ([[0]]) , dt=1.0 , par=[] , odesolver=ODE. Euler) :
31 ’’’

2012-10-21 page 8

32 The initialization gets the initial conditions, the parameters, and the
33 step size for the time stepper - being an integrator.
34 Note that the resulting state is stored as a list of vectors, whereby vectors are
35 matrices of the dimension n,1.
36

37 @param x0: initial conditions
38 @type x0: Matrix
39 @param dt: time step
40 @type dt: float or integer
41 @param par: list of parameters
42 @type par: list of Scalar
43 ’’’
44 s e l f . t = [0] # keeps the time
45 s e l f . dxdt = Matrix ([[]]) # the time derivative of the state
46 s e l f . par = par
47 s e l f . in i t ia lCondi t ions(x0)
48 s e l f . i n i t i a l i s a t i o n ()
49

50 # plug in desired integrator
51 s e l f . integrator = odesolver(s e l f , dt) # plug in the integrator
52

53 def in i t ia lCondi t ions (s e l f , x0) :
54 s e l f . x = [] # keeps the state over time
55 s e l f . x . append(x0)
56

57 def i n i t i a l i s a t i o n (s e l f) :
58 ’’’
59 user initialisation section
60 set up:
61 - secondary states
62 - initial conditions / states
63 - flows
64 - production
65

66 ’’’
67 s e l f . y = {}
68 return []
69

70 def rhs (s e l f , t , x) :
71 ’’’
72 <USER SPECIFIC>
73 Can be redefined through subclassing
74

75 Returns the value of the time derivative of the current state and stores
76 the newly calculated derivative.
77 ’’’
78 dxdt = s e l f . par [0] ∗ x
79 return dxdt
80

81 def integrateTimeInterval (s e l f) :
82 ’’’
83 Integrate over the given time interval; thus updating time and state.
84 The state is kept as list of one-column matrices.
85 ’’’
86 x = s e l f . x[−1]
87 t = s e l f . t [−1]
88 dt , dxdt , x new = s e l f . integrator . step (t , x)
89 s e l f . dxdt . extend(dxdt)
90 s e l f . x . append(x new)
91 s e l f . t . append(t + dt)
92

93 def getCSV(s e l f) :
94 s = ’ ’
95 for i in range (len (s e l f . t)) :
96 s t = s e l f . t [i] . s t r ()

2012-10-21 page 9

97 x = str (s e l f . x [i])
98 x = replace (x , ’ [’ , ’ ’)
99 x = replace (x , ’] ’ , ’ ’)

100 try :
101 s y = ’ ’
102 for i in s e l f . y :
103 y = str (s e l f . y [i])
104 y = replace (y , ’ [’ , ’ ’)
105 y = replace (y , ’] ’ , ’ ’)
106 s y += ’,%s ’ % y
107 # print s_y
108 except : pass
109 s += ’%s , %s %s\n ’ % (s t , x , s y)
110 return s

3.3.2 The expanded cracking reactor module

1 ’’’
2 Acetone cracking reactor simulation
3 The model assumes a travelling batch reactor.
4

5

6 Created on Oct 29, 2012
7

8 @author: Preisig, Heinz A
9 @organization: NTNU, Chemical Engineering

10 ’’’
11

12 from model 06 import Model
13 from matrix import Matrix , Scalar
14 from Integrator vector 01 import Euler , RungeKutta
15 from gnuplotHAP import gnuplot
16 from copy import copy
17 from math import exp
18

19

20 class AcetonReactor(Model) :
21 ’’’
22 Acetone cracking reactor
23 ’’’
24 def i n i t i a l i s a t i o n (s e l f) :
25 ’’’
26 secondary states to be called at the beginning to populate
27 the initial dictionary for the secondary state
28 ’’’
29 s e l f . y = {}
30 T = s e l f . par [’T o ’]
31 n aceton = s e l f . par [’ p feed ’] ∗ s e l f . par [’V Go ’] / (s e l f . par [’R’] ∗ T)
32

33

34 n = Matrix ([[n aceton] , [0] , [0]])
35 Ho = n. transpose () ∗ (s e l f . par [’ a0 ’] + s e l f . par [’ a1 ’] ∗ T / 2 +
36 s e l f . par [’ a2 ’] ∗ T / 3 ∗ T) ∗ T
37 s e l f . y [’Ho ’] = copy(Ho)
38 s e l f . y [’T G’] = T
39

40 # set up initial conditions
41 x0 = Matrix ([[n aceton] , [0] , [0] , [0]])
42 s e l f . in i t ia lCondi t ions(x0)
43

44 # setup dictionaries for the flows as a convinience
45 s e l f . prod n = {}
46 s e l f . flow q = {}
47

2012-10-21 page 10

48 def rhs (s e l f , t , x) :
49 ’’’
50 The balances for the reactor are the obective
51 @param t: time
52 @type t: float
53 @param x: state
54 @type x: Matrix
55 ’’’
56 s e l f . stateTrans (x) ;
57 s e l f . reaction () ;
58 s e l f . heatFlow () ;
59

60 dxdt = s e l f . prod n [’G’] ;
61 dHdt = Matrix ([[s e l f . flow q [’G|C’]]])
62 dxdt . extend(dHdt)
63 # print ’LHS:’, dxdt
64 return dxdt
65

66 def stateTrans (s e l f , x) :
67 ’’’
68 State variable transformation box providing the mapping between
69 the state and the secondary state
70 @param x: matrix (vector) of the primary state
71 @type x: Matrix (n x 1)
72 ’’’
73 n = s e l f .getCompMass ()
74 # H = self.getEnthalpy()
75 s e l f . root ()
76 e = Matrix ([[1 , 1 , 1]])
77 # print e.dim(), n.dim()
78 T G = e ∗ n ∗ s e l f . par [’R’] ∗ s e l f . y [’T G’] / s e l f . par [’p ’]
79 s e l f . y [’V G’] = Scalar (T G)
80 s e l f . y [’c G ’] = n / T G
81 pass
82

83 def reaction (s e l f) :
84 ’’’
85 Provides the conversion using the information from the primary
86 and secondary state
87 ’’’
88 k = s e l f . par [’a ’] ∗ exp(s e l f . par [’b ’] ∗
89 (1 / s e l f . par [’ c ’] − 1 / s e l f . y [’T G’]))
90 c A = s e l f . y [’c G ’] [0] [0]
91 a = s e l f . par [’ s to ich ’] . transpose () ∗ s e l f . y [’V G’]
92 b = a ∗ k ∗ c A
93 s e l f . prod n [’G’] = b
94 pass
95

96 def heatFlow (s e l f) :
97 ’’’
98 heat flow, here only one
99 ’’’

100 q GC = −s e l f . par [’k G |C’] ∗ (s e l f . par [’T C ’] − s e l f . y [’T G’])
101 s e l f . flow q [’G|C’] = q GC
102

103 def getCompMass(s e l f) :
104 ’’’
105 Convinience function to get the component mass
106 ’’’
107 return Matrix(s e l f . x [−1] [0 :3])
108

109 def getEnthalpy(s e l f) :
110 ’’’
111

112 ’’’

2012-10-21 page 11

113 # print ’getH’, self.x[-1][3]
114 return Scalar (s e l f . x [−1] [3] [0])
115

116 def root (s e l f) :
117 n = s e l f .getCompMass ()
118 try :
119 H = s e l f . getEnthalpy()
120 except :
121 print len (s e l f . x)
122 Ho = s e l f . y [’Ho ’]
123 T = s e l f . y [’T G’]
124 T = T + 1
125 while abs (T − T) > 0 .1 :
126 T = T
127 P = n. transpose () ∗ (s e l f . par [’ a0 ’] + s e l f . par [’ a1 ’] ∗ T / 2
128 + s e l f . par [’ a2 ’] ∗ T / 3 ∗ T) ∗ T
129 r = −H − Ho + P
130 J = n. transpose () ∗ (s e l f . par [’ a0 ’] + s e l f . par [’ a1 ’] ∗ T
131 + s e l f . par [’ a2 ’] ∗ T ∗ T)
132 T = T − r / J
133 s e l f . y [’T G’] = T
134

135

136 i f name == ’ main ’ :
137

138 # parameters :: dict
139 # conditions :: dict
140 # geometry :: dict
141 # initial conditions :: dict
142

143

144 n s l i c e s = 100
145

146 par = {}
147 par [’R’] = Scalar (8.314)
148 par [’ sto ich ’] = Matrix([[−2 , 1 , 1]])
149 par [’T C ’] = Scalar (280) # K
150 par [’T o ’] = Scalar (1150) # K
151 par [’V Go ’] = Scalar (1 .0 / n s l i c e s) # m3
152 par [’a ’] = Scalar (3 .58)
153 par [’b ’] = Scalar (34222)
154 par [’ c ’] = Scalar (1035)
155 par [’k G |C’] = Scalar (150 ∗ 110.0 / n s l i c e s)
156 par [’ a0 ’] = Matrix ([[2 6 . 6 3] , [2 0 . 04] , [1 3 . 3 9]])
157 par [’ a1 ’] = Matrix ([[0 . 1 830] , [0 .0945] , [0 . 0 770]])
158 par [’ a2 ’] = Matrix([[0 .00004586] , [0 .00003095] , [0 .00001871]])
159 par [’ p feed ’] = 162000 # Pa
160 par [’p ’] = par [’ p feed ’]
161

162

163 dt = Scalar (0.000001)
164 n samples = 1000
165

166

167

168 m = AcetonReactor(dt=dt , par=par , odesolver=Euler)
169 for i in range (0 , n samples) : # step through the time interval
170 m. integrateTimeInterval ()
171

172

173 t x t f i l e = open(’AcetonCracking Euler . dat ’ , ’w’)
174 t x t f i l e . write (m.getCSV())
175 t x t f i l e . c lo se ()
176

177 m = AcetonReactor(dt=dt , par=par , odesolver=RungeKutta)

2012-10-21 page 12

178 for i in range (0 , n samples) : # step through the time interval
179 m. integrateTimeInterval ()
180

181

182 t x t f i l e = open(’AcetonCracking RungeKutta . dat ’ , ’w’)
183 t x t f i l e . write (m.getCSV())
184 t x t f i l e . c lo se ()
185

186

187 x r = n samples ∗ dt
188 y r = n aceton = par [’ p feed ’] ∗ par [’V Go ’] / (par [’R’] ∗ par [’T o ’])
189

190 plot = gnuplot (output=’AcetonCracking ’ ,
191 xlabel=’ t [s] ’ , y label=’n [mol] ’ ,
192 xmin=0, xmax=x r , ymin=0, ymax=y r , \
193 t i t l e=’Aceton Cracking ’)
194

195

196 plot . add(’AcetonCracking Euler . dat ’ , x=1, y=2, width=2, co lor=’ blue ’ ,
197 type=1, t i t l e=’model 1 : Euler ’)
198 plot . add(’AcetonCracking Euler . dat ’ , x=1, y=3, width=2, co lor=’ red ’ ,
199 type=1, t i t l e=’model 1 : Euler ’)
200 plot . add(’AcetonCracking Euler . dat ’ , x=1, y=4, width=2, co lor=’ green ’ ,
201 type=1, t i t l e=’model 1 : Euler ’)
202 plot . add(’AcetonCracking RungeKutta . dat ’ , x=1, y=2, width=2, co lor=’ blue ’ ,
203 type=2, t i t l e=’model 1 : Runge Kutta ’)
204 plot . add(’AcetonCracking RungeKutta . dat ’ , x=1, y=3, width=2, co lor=’ red ’ ,
205 type=2, t i t l e=’model 1 : Runge Kutta ’)
206 plot . add(’AcetonCracking RungeKutta . dat ’ , x=1, y=4, width=2, co lor=’ green ’ ,
207 type=2, t i t l e=’model 1 : Runge Kutta ’)
208

209 plot . plot (’AcetonCracking ’)

2012-10-21 page 13

The Final Touch (TKP4106)

Zooball/Monkey

From a Real Programmer's diary:

There is always a second bug.
If it's possible to make a mistake, I've already made it.
If it's possible to forget something, I've already forgotten it.
If it's possible to postpone a task, I've already postponed it.
If there is a simple solution to a problem it's most likely wrong.
Anything that walks and quacks like a duck is probably something else.
Make a clever design and you'll end up shooting yourself in the foot.
Never trust someone else's code and especially not your own.
Things take time — at least three times more than you expect.
Every rule is a rule, but no rule is absolute.

Bjørn Tore Løvfall and Tore Haug-Warberg (2004 - 2008)

Assignments

1. Install GNUplot and GhostScript on your computer.
2. Download the plot files graph.gp and graph.dat.
3. Plot the file content(s) from the command line. In a UNIX-style environment

the commands are:
gnuplot graph.gp
ps2pdf graph.ps
open graph.pdf

The output shall be like this: graph.pdf
4. Modify your version of ammonia_reactor.py to make it produce some

decent GNUplot output. Make a template similar to graph.gp for plotting
the calculated results.

5. Have Great Fun with the tools you've got!

Now, that you have finalized the (quite advanced) Plug Flow Reactor model, it is
due time to sit back and think a little: What is a model? What is important for the
model and what is not? This little paper on Modelling perspectives (Norwegian)
talks about such things. In our model we have e.g. neglected the momentum

balance which means we have ignored sound waves in the system. Now, how
important is that? In fact, would you be able to remove that restriction?

%Predefined.

HTML text.

5.23.1 Verbatim: “graph.gp”

1 #!/sw/bin/gnuplot -persist
2 #
3 # Test script plotting a y(t) graph with error bars and
4 # separate boxes showing the error level. Data are loaded
5 # loaded from file "graph.dat" and dumped to "graph.ps".
6 #
7 set terminal postscript \
8 landscape noenhanced monochrome \
9 dashed defaultplex "Helvetica" 18

10

11 set output ’graph.ps’
12

13 set title ’Testing out GNUplot’
14 set xlabel ’Time [s]’
15 set ylabel ’Measurement’
16

17 set xrange [0:9]
18 set yrange [0:3]
19 set mxtics 2
20 set mytics 2
21

22 set style line 1 \
23 linetype 2 linewidth 4 pointsize 2 pointtype 6
24 set style line 2 \
25 linetype 1 linewidth 1 pointsize 0
26

27 set multiplot
28 set style data boxes
29 set key left
30

31 plot "graph.dat" using 1:3 \
32 title "error" linestyle 2
33

34 set style data lines
35 set key right
36

37 plot "graph.dat" using 1:2 \
38 title "y(t)" with linespoints linestyle 1
39

40 plot "graph.dat" using 1:2:3 \
41 notitle with yerrorbars linestyle 2

399

5.23.2 Verbatim: “graph.dat”

1 # graph.dat
2 #
3 # gnuplot ignores lines that start with #
4 #
5 # t y error-in-y
6 #
7 0 0 0.01
8 1 0.25 0.1
9 2 0.5 0.05

10 3 0.75 0.4
11 4 1.25 0.2
12 5 1.30 0.3
13 6 1.55 0.33
14 7 1.80 0.1
15 8 2.05 0.5
16 9 2.0 0.2

400

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8 9

M
ea

su
re

m
en

t

Time [s]

Testing out GNUplot

error

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8 9

M
ea

su
re

m
en

t

Time [s]

Testing out GNUplot

y(t)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8 9

M
ea

su
re

m
en

t

Time [s]

Testing out GNUplot

5.23.4 ammonia reactor.py, see also Sec. 5.19.2

First reference occurs in ammonia reactor.py, see Section 5.19.2 on page 335.

402

5.23.5 graph.gp, see also Sec. 5.23.1

First reference occurs in graph.gp, see Section 5.23.1 on page 399.

403

Exercise 11

Preisig, H A and Maryam Ghadrdan Chemical Engineering, NTNU

1 Question: Topology 09- Solar reactor

1.1 Excerpt from the paper: reactor description

Begin citation1:

The Solar Reactor. The reactor works in a beam down configuration [22] namely the
concentrated sun light is entering the reactor at the top. It is a two-cavity reactor allowing
for indirect heating of the reactants through a separation wall between the upper cavity
accepting the concentrated irradiation and the lower cavity with the reactants. General
design guidelines for two cavity reactors are provided in [23]. Based on the experiences
with the earlier designs [14,21] we built a batch reactor with a flat separation wall as
shown in Fig. 1. The upper cavity and thus the upper side of the separation wall is
subjected to concentrated solar irradiation entering the reactor through a quartz window.
The window is protected against condensable gases and particles by the separation wall
and an additional inert gas flow. To increase the input solar flux density a secondary
concentrator entrance diameter = 80 mm, exit diameter= 65 mm is mounted above the
aperture. Furthermore a ”45 deg mirror” is used for redirecting the horizontal beam of
PSIs solar furnace into a vertical beam entering the secondary concentrator compare Figs.
1 and 2. In the lower cavity a fixed bed of a ZnO-carbon mixture is heated indirectly from
the top by radiation emitted by the lower side of the hot separation wall. Both cavities
are thermally well insulated to reduce heat losses due to thermal conduction. The walls
of the lower cavity are lined by SiC plates for reducing diffusion of zinc vapor into the
insulation material. Due to the chemical reaction the fixed bed is shrinking and the
gaseous products are leaving the reactor via an outlet pipe made of SiC.

End citation.

Begin citation2:

The solar reactor for the carbothermal reduction of ZnO is shown schematically in Fig. 3
Figure 1. It consists of two cavities in series, of which the upper one is functioning as the
solar absorber and the lower one as the reaction chamber containing a ZnO/C packed
bed [27,49]. The net reaction, represented by ZnO + C = Zn(g) + CO(g), proceeds
endothermically at reasonable rates at above 1300K. Thus, this reactor belongs to the
indirect-irradiation, batch-operation, s + sg category. A 5 kW reactor prototype was
experimentally investigated at PSIs high-flux solar furnace [56] in the 400−1600K range.
The kinetic rate law expression and the activation energy Ea of 201.5 kJ/mol are taken
from Refs. [27,49]. The identified parameters and their final values are summarized
in Table 2. Heat transfer to the reactor wall is dominated by thermal radiation. At

1S. Kräupl, U. Frommherz, C. Wieckert; Solar Carbothermic Reduction of ZnO in a Two-Cavity
Reactor: Laboratory Experiments for a Reactor Scale-Up; Transactions of the ASME; Vol. 128, February
2006

2Jörg Petrasch, Philippe Osch, Aldo Steinfeld; Dynamics and control of solar thermochemical reactors;
Chemical Engineering Journal 145 (2009) 362370

2012-11-12 page 1

Figure 1: Solar reactor for the reduction of ZnO

TR > 1500K, the rate of radiative heat transfer is much faster than that of conductive
heat transfer through the insulation, as indicated by linearization of radiative heat transfer
rate: σT 3

R0 >> 2 kiso/diso. Note that reactor wall and insulation are modeled as a single
reservoir. Thus, heat transfer to the insulation is rate-controlled by conduction. The mean
insulation thickness is d = 0.08m, the surface area of the upper and lower cavities are
Au = 0.05m2 and Al = 0.08m2 , and the thermal conductivity of the porous insulation
is k = 0.3W/mK. Assuming steady-state conduction heat transfer in a 1-D plane layer,
the U A obtained is in the range 0.40.6W/K. As expected, the identified values 0.77
and 0.9W/K for U Al and U Au , respectively, are higher than the steady state-based
estimates since the temperature profile at the wall/insulation is steeper immediately
after an external temperature change than in the steady state. Hence, heat
transfer rates are higher during transients than in steady state.

End citation.

The authors provide a single-lump model, thus a first-order behaviour. We shall not
look at the numerical details. Rather we shall concentrate to generate a topology, which
potentially fits the observed behaviour better than the published model does. Indications
of the misfit are in the text itself. One of the stated observations are lifted out by showing
it in bold face.

1.2 Tasks:

• Sketch your view of the topology of the system in terms of lumped systems

• Provide a complete description of the plant. Set up a table with the first column
being the equations, the second the variable that you solve the equation for, the third
what variable need to be known, the last what is given (parameter or conditions
== state-dependent information of the environment, assumptions about a state of
the system etc.).

2012-11-12 page 2

2 Question: Dynamics 06 - simple absorption process

We have a look at a simple process in which a reaction takes place on a solid.

n̂F |G

n̂G|P

n̂G|S

F

P

S

Figure 2: A simple absorption process

2.1 Model

Assume that

• Mass transfer in and out of the reactor is a convective flow that is driven (linearly)
by pressure difference

• Mass transfer between gas phase and solid is a diffusion flow also driven (linearly)
partial pressure difference.

• The pressure in the solid is the one in the open space in the solid, which is assumed
ideally mixed, as can be seen from the topology.

• The diffusion/reaction in the solid can be modelled as a homogeneous reaction
system.

2.2 Tasks

1. Provide a complete description of the plant. Set up a table with the first column
being the equations, the second the variable that you solve the equation for, the third
what variable need to be known, the last what is given (parameter or conditions
== state-dependent information of the environment, assumptions about a state of
the system, like constant temperature, constant pressure etc.). You may assume
constant temperature.

2. Code the equations into your program retaining as much of the structure as possible,
thus have a module with the balances, modules for each type of transfer, the reaction,
and the necessary state variable tranformations.

2012-11-07 page 3

3. Implement different reactions:

• 2A → B A,B :: gases

• A + S ⇋ AS A :: gas, S solid active positions.

4. Make the above to one stage in a column, thus pile up stages and simulate again. Use
the stage as a module, define what affects the stage from the immediate environment
and use this to build the tower of stages.

5. On the parameter: choose your own !

Start with the balances and the integral of the differential quantities. Then expand each
term until things are represented by parameters, states from the integration and things
you know, like universal constants, temperature (assuming isothermal), state (conditions)
of the environment.

2012-11-07 page 4

1 Suggested solution: Thermochemical solar reactor

top glass

cavity glass

gas supply G

M
construction insulation

room

gas sink

gas phase

melt

sun / mirror
heat flow
mass flow

Figure 1: Topology of solar termo-chemical reactor

2012-10-27 page 1

2 Solution: Dynamics 06 - simple absorption process

The model equations are:

equations res vars given

nG :=
∫ t

0
ṅG dt+ no

G nG ṅG no
G

nS :=
∫ t

0
ṅS dt+ no

S nS ṅS no
S

ṅG = n̂F |G − n̂GP
− n̂G|S ṅG n̂F |G, n̂GP

, n̂G|S

ṅS = n̂G|S + ñS ṅS n̂G|S, ñS

n̂F |G := cF V̂F |G n̂F |G cF , V̂F |G

n̂G|P := cGV̂G|P n̂G|P cG, V̂G|P

n̂G|S := −kG|S (pS
− p

G
) n̂G|S p

S
,p

G
kG|S

V̂F |G := −kF |G (pG − pF) V̂F |G pG, pF kF |G

V̂G|P := −K
G|P (pP − pG) V̂G|P pG K

G|P , pP

ñS := NT VS kG g(p
S
) ñS g(p

S
) NT , VS, kG

g(p
S
) := [1, 0]p

S
g(p

S
) p

S

pG := [1, . . . , 1]p
G

pG p
G

pS := [1, . . . , 1]p
S

pS p
S

pF := [1, . . . , 1]p
F

pF p
F

p
G
:= V −1

G nG RT p
G

nG VG, R, T

p
S
:= V −1

S nS RT p
S

nS VS, R, T

cF := p
F
/(RT) cF p

F
R, T

cG := p
G
/(RT) cG p

G
R, T

2012-11-07 page 2

2.1 Plot

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0 2 4 6 8 10

n
[m

ol
]

t [s]

Absorption Reaction

model 1: conc A in G
model 1: conc B in G
model 1: conc A in S
model 1: conc B in S

2012-11-07 page 3

2.2 Python code

2.2.1 The model module

1 ’’’
2 In this module, the term "model" is used for the complete "thing" including the
3 differential equation *and* the integrator.
4

5 2012-10-11 created (HAP).
6 2012-10-13 extended to multiple integrators and demo for re-use (HAP).
7 2012-10-16 replaced an ugly if-elif-else testing of the ode solver method with a
8 first class function object (THW).
9

10 2012-10-11 created
11 2012-10-13 extended to multiple integrators and demo for re-use
12 2012-11-14 extended to output also the secondary states put into self.y by the
13 the user-defined model, that is, if it is there.
14

15 @author: Preisig, Heinz A
16 @organization: NTNU, Chemical Engineering
17 ’’’
18

19 import Integrator vector 01 as ODE
20 from matrix import Matrix , Scalar
21 import math
22 from gnuplot import gnuplot
23 from str ing import replace
24

25 class Model :
26 ’’’
27 The model is the differential equations and the integrator
28 ’’’
29

30 def i n i t (s e l f , x0=Matrix ([[0]]) , dt=1.0 , par=[] , odesolver=ODE. Euler) :
31 ’’’
32 The initialization gets the initial conditions, the parameters, and the
33 step size for the time stepper - being an integrator.
34 Note that the resulting state is stored as a list of vectors, whereby vectors are
35 matrices of the dimension n,1.
36

37 @param x0: initial conditions
38 @type x0: Matrix
39 @param dt: time step
40 @type dt: float or integer
41 @param par: list of parameters
42 @type par: list of Scalar
43 ’’’
44 s e l f . t = [0] # keeps the time
45 s e l f . dxdt = Matrix ([[]]) # the time derivative of the state
46 s e l f . par = par
47 s e l f . in i t ia lCondi t ions(x0)
48 s e l f . i n i t i a l i s a t i o n ()
49

50 # plug in desired integrator
51 s e l f . integrator = odesolver(s e l f , dt) # plug in the integrator
52

53 def in i t ia lCondi t ions (s e l f , x0) :
54 s e l f . x = [] # keeps the state over time
55 s e l f . x . append(x0)
56

57 def i n i t i a l i s a t i o n (s e l f) :
58 ’’’
59 user initialisation section
60 set up:

2012-11-07 page 4

61 - secondary states
62 - initial conditions / states
63 - flows
64 - production
65

66 ’’’
67 s e l f . y = {}
68 return []
69

70 def rhs (s e l f , t , x) :
71 ’’’
72 <USER SPECIFIC>
73 Can be redefined through subclassing
74

75 Returns the value of the time derivative of the current state and stores
76 the newly calculated derivative.
77 ’’’
78 dxdt = s e l f . par [0] ∗ x
79 return dxdt
80

81 def integrateTimeInterval (s e l f) :
82 ’’’
83 Integrate over the given time interval; thus updating time and state.
84 The state is kept as list of one-column matrices.
85 ’’’
86 x = s e l f . x[−1]
87 t = s e l f . t [−1]
88 dt , dxdt , x new = s e l f . integrator . step (t , x)
89 s e l f . dxdt . extend(dxdt)
90 s e l f . x . append(x new)
91 s e l f . t . append(t + dt)
92

93 def getCSV(s e l f) :
94 s = ’ ’
95 for i in range (len (s e l f . t)) :
96 s t = s e l f . t [i] . s t r ()
97 x = str (s e l f . x [i])
98 x = replace (x , ’ [’ , ’ ’)
99 x = replace (x , ’] ’ , ’ ’)

100 try :
101 s y = ’ ’
102 for i in s e l f . y :
103 y = str (s e l f . y [i])
104 y = replace (y , ’ [’ , ’ ’)
105 y = replace (y , ’] ’ , ’ ’)
106 s y += ’,%s ’ % y
107 # print s_y
108 except : pass
109 s += ’%s , %s %s\n ’ % (s t , x , s y)
110 return s

2.2.2 The expanded cracking reactor module

1 ’’’
2 Acetone cracking reactor simulation
3 The model assumes a travelling batch reactor.
4

5

6 Created on Oct 29, 2012
7

8 @author: Preisig, Heinz A
9 @organization: NTNU, Chemical Engineering

10 ’’’
11

2012-11-07 page 5

12 from model 06 import Model
13 from matrix import Matrix , Scalar
14 from Integrator vector 01 import Euler , RungeKutta
15 from gnuplotHAP import gnuplot
16

17

18 class AbsorptionReactor(Model) :
19 ’’’
20 Acetone cracking reactor
21 ’’’
22 def i n i t i a l i s a t i o n (s e l f) :
23 ’’’
24 secondary states to be called at the beginning to populate
25 the initial dictionary for the secondary state
26 ’’’
27 # parameters
28 # # conductivities
29 # ## volume flow
30 s e l f . par = {}
31 s e l f . par [’k FG ’] = Scalar (1)
32 s e l f . par [’k GP ’] = Scalar (0 .1)
33 # ## diffusional flow
34 s e l f . par [’K GS’] = Matrix ([[0 . 0 01 , 0] , [0 , 0 . 0 1]])
35 # # kinetic
36 # ## stoichiometry
37 s e l f . par [’N’] = Matrix([[−2 , 1]])
38 s e l f . par [’k ’] = Scalar (0 .5)
39 s e l f . par [’V G’] = Scalar (1)
40 s e l f . par [’V S ’] = Scalar (1)
41 s e l f . par [’R’] = Scalar (8.314) # J/(K mol)
42

43 # secondary states
44 s e l f . y = {}
45 # # P_x :: total pressure in x
46 s e l f . y [’P P ’] = Scalar (0) ;
47 # # p_x :: partial pressure in x
48 s e l f . y [’p F ’] = Matrix ([[1] , [1]])
49 # # temperature in the plant
50 s e l f . y [’T’] = Scalar (300); # K
51

52 # flows
53 s e l f . f lows = {}
54

55 # production
56 s e l f . prod = {}
57

58 # set up initial conditions
59 s e l f . par [’R∗T’] = s e l f . par [’R’] ∗ s e l f . y [’T’]
60 x0 = Matrix ([[0 . 0 1] , [0] , [0] , [0 . 0 0001]])
61 x0 = x0 / s e l f . par [’R∗T’]
62 s e l f . in i t ia lCondi t ions(x0)
63

64

65 def rhs (s e l f , t , x) :
66 ’’’
67 The balances for the reactor are the obective
68 @param t: time
69 @type t: float
70 @param x: state
71 @type x: Matrix
72 ’’’
73 s e l f . stateTrans (x) ;
74 s e l f . reaction () ;
75 s e l f . flow () ;
76

2012-11-07 page 6

77

78 dnGdt = s e l f . f lows [’n FG ’] − s e l f . f lows [’n GP ’] − s e l f . f lows [’n GS ’]
79 dnSdt = s e l f . f lows [’n GS ’] + s e l f . prod [’S ’]
80 dxdt = dnGdt
81 dxdt . extend(dnSdt)
82 return dxdt
83

84 def stateTrans (s e l f , x) :
85 ’’’
86 State variable transformation box providing the mapping between
87 the state and the secondary state
88 @param x: matrix (vector) of the primary state
89 @type x: Matrix (n x 1)
90 ’’’
91 n G = s e l f . getCompMass(’G’)
92 # print ’G’, n_G
93 n S = s e l f . getCompMass(’S ’)
94 # print ’S’, n_G
95 # R = self.par[’R’]
96 V G = s e l f . par [’V G’]
97 V S = s e l f . par [’V S ’]
98 # T = self.y[’T’]
99 p F = s e l f . y [’p F ’]

100

101 a = s e l f . par [’R∗T’]
102 b = a / V G
103 s e l f . y [’p G ’] = b ∗ n G;
104 s e l f . y [’ p S ’] = b ∗ n S ;
105

106 s e l f . y [’ c F ’] = p F / a ;
107 s e l f . y [’c G ’] = n G / V G;
108 s e l f . y [’ c S ’] = n S / V S ;
109

110 one = Matrix ([[1 , 1]])
111 s e l f . y [’x G ’] = n G / (one ∗ n G) ;
112 s e l f . y [’ x S ’] = n S / (one ∗ n S) ;
113

114 s e l f . y [’P G ’] = one ∗ s e l f . y [’p G ’] ;
115 s e l f . y [’P S ’] = one ∗ s e l f . y [’ p S ’] ;
116 s e l f . y [’P F ’] = one ∗ p F ;
117

118

119 def reaction (s e l f) :
120 ’’’
121 Provides the conversion using the information from the primary
122 and secondary state
123 ’’’
124 n A = s e l f . getCompMass(’S ’) [0] [0]
125 s e l f . prod [’S ’] = s e l f . par [’N’] . transpose () ∗ s e l f . par [’V S ’] ∗ \
126 s e l f . par [’k ’] ∗ n A
127

128 def flow (s e l f) :
129 ’’’
130 all flows
131 ’’’
132 # convective mass flow
133 s e l f . f lows [’V FG’] = −s e l f . par [’k FG ’] ∗ (s e l f . y [’P G ’] − s e l f . y [’P F ’])
134 s e l f . f lows [’V GP’] = −s e l f . par [’k GP ’] ∗ (s e l f . y [’P P ’] − s e l f . y [’P G’])
135 s e l f . f lows [’n FG ’] = s e l f . y [’ c F ’] ∗ s e l f . f lows [’V FG’]
136 s e l f . f lows [’n GP ’] = s e l f . y [’c G ’] ∗ s e l f . f lows [’V GP’]
137

138 # diff mass flow
139 neg = Scalar (−1) # that is necessary because of the operation definitions
140 # int * matrix is not defined
141 s e l f . f lows [’n GS ’] = neg ∗ s e l f . par [’K GS ’] ∗ (s e l f . y [’ p S ’] − s e l f . y [’p G ’])

2012-11-07 page 7

142

143 def getCompMass(s e l f , system) :
144 ’’’
145 Convenience function to get the component mass
146 ’’’
147 i f system == ’G’ :
148 return Matrix(s e l f . x [−1] [: 2])
149 i f system == ’S ’ :
150 return Matrix(s e l f . x [−1] [2 :])
151

152

153 i f name == ’ main ’ :
154

155

156 dt = Scalar (0 .01)
157 n1 = 20
158 n samples = 1000
159

160

161 m = AbsorptionReactor (dt=dt , odesolver=RungeKutta)
162 for i in range (0 , n1) : # step through the time interval
163 m. integrateTimeInterval ()
164

165 # dt = Scalar(0.005)
166 m. setTimeStep (dt)
167 for i in range(n1 , n samples) :
168 m. integrateTimeInterval ()
169

170 t x t f i l e = open(’AbsorptionReactor . dat ’ , ’w’)
171 t x t f i l e . write (m.getCSV())
172 t x t f i l e . c lo se ()
173

174

175 x r = dt ∗ n samples
176 y r = 0.001
177

178 plot = gnuplot (output=’AbsroptionReactor ’ ,
179 xlabel=’ t [s] ’ , y label=’n [mol] ’ ,
180 xmin=0, xmax=x r , ymin=0, ymax=y r , \
181 t i t l e=’Absorption Reaction ’)
182

183 plot . add(’AbsorptionReactor . dat ’ , x=1, y=2, width=2, co lor=’ blue ’ ,
184 type=1, t i t l e=’model 1 : conc A in G’)
185 plot . add(’AbsorptionReactor . dat ’ , x=1, y=3, width=2, co lor=’ red ’ ,
186 type=1, t i t l e=’model 1 : conc B in G’)
187 plot . add(’AbsorptionReactor . dat ’ , x=1, y=4, width=2, co lor=’ blue ’ ,
188 type=2, t i t l e=’model 1 : conc A in S ’)
189 plot . add(’AbsorptionReactor . dat ’ , x=1, y=5, width=2, co lor=’ red ’ ,
190 type=2, t i t l e=’model 1 : conc B in S ’)
191

192 plot . plot (’AbsorptionReactor ’)
193 print ’ end ’

2.2.3 Integrator module

1 ’’’
2 2012-10-11 created
3 2012-10-13 step returns dt, dxdt and x_new
4 2012-10-21 extend to matrix operations
5

6

7 @author: Preisig, Heinz A
8 @organization: NTNU, Chemical Engineering
9 ’’’

2012-11-07 page 8

10 from matrix import Scalar
11

12 class Stepper (object) :
13 ’’’
14 Implements different "steppers" for computing ODE integrals.
15 ’’’
16

17 def i n i t (s e l f , model , dt) :
18 ’’’
19 Keeps the model and the (initial) time step.
20 ’’’
21 s e l f .model = model
22 s e l f . dt = dt
23

24 class Euler(Stepper) :
25 ’’’
26 Implements the Euler method.
27 ’’’
28

29 def step (s e l f , t , x) :
30 dxdt = s e l f .model . rhs (t , x)
31 x new = x + dxdt ∗ s e l f . dt ;
32 return s e l f . dt , dxdt , x new
33

34 class RungeKutta(Stepper) :
35 ’’’
36 Implements the Runge-Kutta 3:4 method.
37 Pending...
38 ’’’
39

40 def step (s e l f , t , x) :
41 h = s e l f . dt
42 k1 = h ∗ s e l f .model . rhs (t , x)
43 k2 = h ∗ s e l f .model . rhs (t + Scalar (0 .5) ∗ h , x + Scalar (0 .5) ∗ k1)
44 k3 = h ∗ s e l f .model . rhs (t + Scalar (0 .5) ∗ h , x + Scalar (0 .5) ∗ k2)
45 k4 = h ∗ s e l f .model . rhs (t + h , x + k3)
46 x new = x + Scalar (1 .0 / 6 .0) ∗ (k1 + Scalar (2 .0) ∗ k2 +
47 Scalar (2 .0) ∗ k3 + k4)
48 dxdt = (x new − x) / h
49 return s e l f . dt , dxdt , x new

2012-11-07 page 9

	Homepage
	Tore Haug-Warberg (Programming)
	Real Programmers use FORTRAN

	Heinz A. Preisig (Modelling)
	Frequently Asked Questions (FAQ)
	Syllabus
	Introduction to Python
	Seven Topics in Python
	Verbatim: ``script''
	Emacs quick reference
	Vim quick reference
	TextPad quick reference
	LaTeX (Cambridge University)
	High-quality portable PDF (Schatz)
	Regex (Stephen Ramsay)
	Regex quick reference
	BNF and EBNF (L. M. Garshol)
	Windows shortcuts (OIT)
	Linux programming (digilife)
	Mac shortcuts (macmost)
	Commenting Python code (MIT)
	Programming paradigms (Kurt Normark)
	Real Programmers (Ed Post), see also Sec. 2.1
	Seven Topics in Python, see also Sec. 5.1.1
	Seven Topics in Python (Haug-Warberg), see also Sec. 5.1.1
	Epydoc (sourceforge)
	Epytext markup (sourceforge)
	Python Docstrings (Sourceforge)
	Scientific Python (numpy.org)

	Exercise 1
	Regular expressions
	A Smalltalk about Modelling
	Regular Expressions, see also Sec. 5.1.8

	Exercise 2
	Documenting your code
	The real programmer, see also Sec. 2.1
	epydoc, see also Sec. 5.1.19
	Verbatim: ``atoms.py''
	epytext, see also Sec. 5.1.20
	docstring, see also Sec. 5.1.21
	Epydoc output file

	Exercise 3
	Molecular formula parser
	Verbatim: ``atoms.py''
	Backus-Naur Formalism, see also Sec. 5.1.10

	Exercise 4
	The atom matrix
	Verbatim: ``atom_matrix.py''
	Verbatim: ``molecular_weight.py''

	Exercise 5
	Independent reactions
	Verbatim: ``rref.py''
	Verbatim: ``null.py''
	The mass balance

	Exercise 6
	Root solvers
	Verbatim: ``sqrt.py''
	Verbatim: ``pv.py''
	The energy balance

	Exercise 7
	A thermodynamic equation solver
	Verbatim: ``solve.py''
	Verbatim: ``hpn.py''
	Verbatim: ``mprod.py''
	The energy balance

	Exercise 8
	The reactor model
	Verbatim: ``srk_ammonia.py''
	Verbatim: ``flowsheet.py''
	Verbatim: ``ammonia_reactor.py''
	Verbatim: ``tkp4106.py''
	ammonia_reactor.py, see also Sec. 5.19.2
	srk_ammonia.py, see also Sec. 5.17.1
	Modelling issues

	Exercise 9
	Integration
	Verbatim: ``flowsheet.py''
	Verbatim: ``ammonia_reactor.py''
	flowsheet.py, see also Sec. 5.19.1
	ammonia_reactor.py, see also Sec. 5.19.2
	Modelling issues

	Exercise 10
	Unit testing
	Exercise 11
	Putting the model to work
	Verbatim: ``graph.gp''
	Verbatim: ``graph.dat''
	graph.pdf
	ammonia_reactor.py, see also Sec. 5.19.2
	graph.gp, see also Sec. 5.23.1
	Modelling perspectives (Norwegian)

	Exercise 12

