
Norwegian University of Science and Technology

NTNU

Department of Chemical Engineering

Associate Prof. Johannes Jäschke

Stochastic Optimisation

Case Study: Chance constraint optimisation of an
hydrodesulfurization unit

TKP 4550 Specialization Project

by

Morten Aulin Moen

Co-supervisor: Adriaen Verheyleweghen

December 18, 2015

Abstract

This report give an explanation of different methods used for solving stochastic opti-
misation problems. The methods are simple recourse model, general recourse mode,
robust optimisation, multistage recourse model and chance constraint optimisation.
Each method are applied to a simple linear stochastic example, for showing how the
method work.

A case study of an hydrodesulphurization unit is used to show how stochastic optimisa-
tion can be used on a real a word problem. Where the optimal values will be used fora
model predictive controller (MPC). Both online optimisation and offline optimisation
will be used for the MPC. The MPC is controlling the flow of hydrogen from 3 differ-
ent inlet streams. Where the optimisation objective is to find optimal control settings
for the streams, from an economic perspective. There are 2 sources of uncertainty
in the model, given by a binormal probability distribtuion. Monte Carlo simulations
are carried out to find the probability distribution of the chance constraints. Then a
back-off is calculated such that the constraints holds with a given certainty level. Im-
plementing the back-off, the optimisation problem is solved. Monte Carlo simulations
are carried out for testing the accuracy of the back-off calculation. The test show
that the back-off are too small. The reason are the assumption that the probability
distribution of the chance constraint are normal, as the outcomes are asymmetric.
For the MPC with offline optimisation the results are conservative compared with the
online optimisation. The problem of online optimisation is the computational time.

i

Preface

This report was written as a part of the course TKP 4550 Specialization Project autumn
2015 during the fifth year of the chemical engineering degree at the Norwegian University
of Science and Technology.

I would like to express my deep gratitude to my supervisor associate professor Johannes
Jäschke for patient guidance, enthusiastic encouragement and useful critiques during this
project. I would like to express my very great appreciation to my co-supervisor phd
candidate Adriaen Verheyleweghen for helpful feedback and lively discussion.

ii

Contents

1 Introduction 1

2 Stochastic Linear Programming 2
2.1 Simple Recourse Model . 3
2.2 General Recourse Model . 6
2.3 Robust optimisation . 8
2.4 Multistage Recourse Model . 10
2.5 Chance Constraint . 13

3 Optimisation of an Hydrodesulphurisation Process 19
3.1 Description of the Hydrodesulphurisation Process 19
3.2 Model Description . 20
3.3 Optimisation . 21
3.4 Stochastic Optimisation Formulation . 22
3.5 Model Predictive Control . 25

4 Results and Discussion 26
4.1 Back-off . 26
4.2 Stochastic Optimisation . 29
4.3 Model Predictive Controller . 31

5 Conclussion 34

A Parameters, Initial Conditions and Constraints 37

B Numerical Methods for Solving Nonlinear Optimisation Problems 37
B.1 Direct Single shooting Method . 38
B.2 Direct Multiple Shooting Method . 38

C Statistics 38
C.1 Normal probability distribution . 38
C.2 Multivariate Normal Probability Distribution 39

D Back-off 39
D.1 Individual Chance Constraint . 40
D.2 Joint Chance Constraint . 41

E MATLAB 41
E.1 Simple Recourse Model Example . 41
E.2 General Recourse Model, Example . 42
E.3 Multistage Recourse Model, Example . 43
E.4 Robust Optimisation, Example . 43
E.5 Chance Constraint, Example . 44

F Python 45
F.1 Stochastic Optimisation, Python code . 45
F.2 Model Predictive Control, Python code . 54
F.3 Model Predictive Control Plotting, Python code 62

iii

1 Introduction

In an increasingly competitive market optimal operation of a chemical plant is crucial
for the plant to be competitive. As it is often difficult to get accurate measurements or
predict certain parameters accurately in some parts of the plant. In addition there are
often uncertainty in the parameters or measurements. Because of this some parameters
are defined by some probability distribution not a given value. Back-off is usually added
so the outcomes from the probability distribution do not cause constraint violations. If
there are constraint violations it could lead to economical loss or even instability of the
plant. So an accurate back-off is crucial for operating the plant as close as possible to
the optimum without having constraint violations. With stochastic optimisation these
uncertainties can be added into the optimisation procedure. As the uncertainties are
included in the optimisation a more accurate optimum is found, so the back-off can be
decreased or avoided completely. With this, the plant can operate closer to the optimal
and become more competitive [Van Hessem 2004],[Feedback 2013].

The optimisation is often used as set-point for model predictive control, (MPC). If one
attempts to use set-point that is unfeasible this can lead to instability in the system. So
it is especially important to find a optimum that are unaffected by the outcome from the
uncertainties. Robust optimisation has been used to find a optimum that the outcome from
the uncertainties have little affect on. Robust optimisation tries to minimise the difference
between mean value and each outcome. Because of this robust optimisation often finds
optimum that hold for many possible outcomes of the uncertainties. Because the optimum
holds for many possible outcome scenarios the optimum is not effected so much by the
outcomes. Because of this the optimum are usually a conservative optimum. But in
more resent years other stochastic optimisation method have been used, like multistage
and chance constraint [Bertsimas, Brown, and Caramanis 2011],[Li P.; Arellano-Garcia
2006],[Wendt, Li, and Wozny 2002].

Chance constraint optimisation has in recent years found a more focus in the control
community. One reason for this are that one look at the probability outcomes of holding
a constraint with some certainty level. In this way one can exclude the extreme outcomes.
It is good as one do not want to model after the extreme outcomes in most cases, as
the probability of these outcomes have a very low probability. Excluding the extreme
outcomes one can still get an accurate estimation of the back-off without increasing it
too high. This is the mean reason the increased focus on chance constraint in the control
community. Another advantage of chance-constrained optimisation is that it does not
lead to an increased number of variables, as some other stochastic optimisation methods
do. But one needs to have the probability distribution of the stochastic variables. One
also need to solve probability distribution function of the constraints. Often this can
be complex to do analytically, especially if one have a large set variables. Instead an
approximation method or simulation method are often used. In this project the simulation
method was used. Where Monte Carlo simulation were used to find an approximation of
the probability distributions [Sobol 1994], [Zhao et al. 2015],[Wendt, Li, and Wozny 2002].

Section 2 different stochastic optimisation method are explained. Section 3 goes through
methods used for solving the stochastic optimisation of an hydrodesulfurization unit with
chance constraint. In Section 4 the results are presented and discussed. Finally in Section
5, the conclusion of the project is presented with further work [Navia et al. 2014].

1

2 Stochastic Linear Programming

Linear programming (LP) are an optimisation problem where the objective function and
constraints are linear. Stochastic linear programming (SLP) are a special kind of LP,
where at least one of the parameters is stochastic. This is often true in engineering, as
it is common that some parameters is given with some uncertainty. The reason are that
parameters are often found through experiments of data collections, and not analytically.
One approach can be to use the mean value of the parameter, and solve the deterministic
problem. The problem with using the mean is; that it can lead to constraint violations or
poor optimal depending on the outfall of the stochastic variables. So for engineers this is
not recommended. But one want to to be able to use the powerful solving algorithm that
exist for LP problem, one example is the Simplex method. Because of this one want to
reformulate the SLP to a LP. Depending on the stochastic variable and the formulation of
the SLP there are different methods to do the reformulation. Some of the commonly used
methods will be explained here. The reformulation methods usually increase the number
of variables. Because of this the reformulated SLP are often large problems that demands
much computational power to solve.

A general formulation of the SLP is:

min c(ξ)Tx

s.t Ax = b

T (ξ)x = h(ξ)

lb ≤ x ≤ ub

(2.1)

Where c(ξ) is the objective function vector dependent on the random vector ξ, c(ξ) ∈ Rn,
x are the decision variables, x ∈ Rn, A is the constraint matrix with deterministic values
only, A ∈ Rm×n, b is the constraint value vector, b ∈ Rm, T (ξ) is the constraint matrix
dependent on the random vector ξ, T (ξ) ∈ Rq×n, h(ξ) is the constraint value vector
dependent on the random vector ξ, h(ξ) ∈ Rq, lb is lower bound vector, lb ∈ Rn, and ub
is the upper bound vector, ub ∈ Rn.

The formulation in (2.1) has only equality constraints. If one has inequality, these can
be rewritten with use of slack variables [Robinson 2006, page 8], [Kall and Mayer 2005,
page 356]. In (2.1) there are stochastic parameters in both the objective function and
the constraints. One usually wants to formulate the problem such that there are only
stochastic parameters in the constraints or objective function. As one usually want to see
how uncertainty in the objective function or in the constraints effect the optimum. In this
project the focus will be on stochastic parameters in the constraints only. The reason is
that in chemical processes the uncertainty is often in some of the parameters in of the
process. If one has stochastic parameters in the objective function only, one can solve
the dual problem. The dual problem will have the stochastic parameters in constraints
[Robinson 2006, page 359-362],[Kall and Mayer 2005, page 19-22]. Some of the most
common solving methods for SLP are presented below with an example for showing how
the methods works.

2

2.1 Simple Recourse Model

The simple recourse model is used when all decision variables need to be decided in the
first step of the problem. Typical problems can be decision problem with immediate
effects, like automatic control system for cars. Because of this, the simple recourse model
usually gives a conservative optimum. The reason is that one has to find an optimum
that satisfies all possible outcomes of the stochastic parameters. The advantageous of the
simple recourse model is that it is easy to understand and use. The increase of variables
are linear dependent on the number of outcomes of the stochastic parameter.

The simple recourse model is built on the Lagrangian relaxation of the problem. The
constraints are added to the objective function and multiplied with some weighting ma-
trix [Kall and Mayer 2005, page 79]. The weight matrix is a square matrix, where all
the elements are non-negative numbers. The diagonal elements are weight of breaking a
constraint. The off-diagonal elements are the weight of breaking a combination of two
constraints. Because one wants to have a linear objective function, the off-diagonal ele-
ments are usually zero. Implementing the weighting of constraints in (2.1), the SLP can
be written as:

On matrix form:

min cTx+Q (|T (ξ)x− h(ξ)|)
On summation form:

min
n∑
i=1

(
cTi xi

)
−

r∑
j=1

|qj (Tj(ξ)xj − hj(ξ)) |

(2.2)

For the matrix form of (2.2) Q is the weight matrix, Q ∈ Rq×n, with positive values in
the diagonal if constraint added, otherwise zero. For the summation form of (2.2), qj is
the weighting of row j and r is the number of constraints added to the objective function,
and qj is non-negative ∀j ∈ r.

The constraints that are added to the objective function needs to be reformulated as soft
constraints. This is done so the constraints can be violated. The reason that one wants to
have a possibility of constraint violations is to get a relaxation of the feasible region. With
a relaxation of the feasible region it becomes easier to find a solution. The constraints
are reformulated to soft constraint by adding slack variable, y. The stochastic constraint
from (2.1) can then be written as a soft constraint [Vlerk 1995],[Caroe and Schultz 1999].
Where the constraints can be written as:

T (ξ)x+W (ξ)y = h(ξ) (2.3)

Where W (ξ) is the constraint matrix for y dependent on the random vector ξ, W (ξ)
∈ Rq×n, and y are the slack variables, y ∈ Rn.

For the simple recourse model one assumes that W (ξ) is independent of ξ and W = (I,−I).
Then one introduce a new set of variables called recourse variables, y =(y+, y−) [Prékopa
1995, page 374], Where y+ and y− are defined as:

3

y+ = [T (ξ)x− h(ξ)]

y− = [h(ξ)− T (ξ)x]

y+, y− ≥ 0

(2.4)

Meaning that y+ and y− are measurements of the constraint violation. Instead of using the
constraints in the objective function like what was done in (2.2), with the implementing
the slack variables. Assume that ξ are given by some discrete probability distribution. If ξ
have continuous distribution function, one need discretize it, or one get infinite many out-
comes possibilities of ξ. With the use of recourse variables instead of weighted constraint
violations, the objective function from (2.2) can be written as:

min cTx+Q

S∑
s=1

(ps(y
+
s + y−s)) (2.5)

Where s is an outcome of the probability distribution, S is the total number of possible
outcomes and ps is the probability of outcome s.

Now equation (2.1) can be rewritten, using Equation (2.5) and Equation (2.3). Given that
W = (I,−I), the probability distribution is known and discrete. Then the formulation of
the SLP with simple recourse is:

min cTx+
∑
s∈S

Q(ps(y
+
s − y−s))

s.t Ax = b

Tsx+W+y+s −W−y−s = hs, ∀s ∈ S
lb ≤ x ≤ ub
y+s , y

−
s ≥ 0, ∀s ∈ S

(2.6)

Where s is a given outcome of the probability distribution, s ∈ S, Q is the weight matrix,
Q ∈ Rq×n, ps is the probability of outcome s, y+s and y−s are the recourse variables for
outcome s, Ts is the constraint matrix for outcome s, Ts ∈ Rr×n, W+ and W− are identity
matrix and the negative identity matrix respectively, W+ and W− ∈ Rr×r, and hs is the
constraint value vector for outcome s, hs ∈ Rr.

Looking at the formulation of the simple recourse model given in Equation (2.6) that the
problem has a linear objective function and linear constraint. The problem is consequently
an LP. This means that an algorithm for LP can be used for solving the problem, for
example with the simplex method [Robinson 2006].

Example

An example taken from article about stochastic optimisation are presented here and solved
using the simple recourse model Sen and Higle 1999. This is so that reader can get a better
understanding of how the simple recourse model works. The problem formulation is:

4

min−x2
s.t x1 + x2 + x3 = 2

ã21x1 + ã22x2 + x4 = 2

− 1 ≤ x1 ≤ 1

xj ≥ 0, j = 2, 3, 4

(2.7)

Where ã21, and ã22 have a known joint probability distribution, given as:

(ã21, ã22) =

{
(1, 34) with probability 1

2

(−3, 54) with probability 1
2

(2.8)

This problem has only two uncetain parameters, (ã21, ã22), and the distribution is known
and discrete. The first step is to implement the penalty of constraint violation into the
objective function. Also add the slack variable, y, in the constraint. The objective function
from (2.8) is now:

min −x2 +Q(|ã21x1 + ã22 + x4 − 2|) (2.9)

And the constraints are:

ã21x1 + ã22 + x4 + wsys = 2, ∀s ∈ S (2.10)

Then introduce the recourse variables and assume that ws = (1,−1), ∀ s ∈ S. Le the
diagonal elements of the weight matrix be 5, otherwise 0. The probability constraints are
then transformed into two new constraints given as:

x1 +
3

4
x2 + x4 + y+1 − y

−
1 = 2

− 3x1 +
5

4
x2 + x4 + y+2 − y

−
2 = 2

(2.11)

From the probability distribution given in (2.8) the probability is 50 % for both outcomes.
So that the objective function with the recourse variables can be written as:

min −x2 +
5

2
y+1 +

5

2
y−1 +

5

2
y+2 +

5

2
y−2 (2.12)

Now the constraint and objective function are rewritten to the simple recourse model
formulation. Then (2.11) and (2.12) are inserted into (2.7), yielding the following LP:

5

min−x2 +
5

2
y+1 +

5

2
y−1 +

5

2
y+2 +

5

2
y−2

s.t x1 + x2 + x3 = 2

x1 +
3

4
x2 + x4 + y+1 + y−1 = 2

− 3x1 +
5

4
x2 + x4 + y+2 + y−2 = 2

− 1 ≤ x1 ≤ 1

xj ≥ 0, j = 2, 3, 4

y∗i ≥ 0, i = 1, 2, ∗ = +,−

(2.13)

The problem was solved in MATLAB with the built in function linprog and the value
of the objective function was calculated to be -1.778. The decision variables are [0.2222
1.7778 0.0000 0.4444]T for x1, x2, x3 and x4 respectively and the recourse variables are
equal to zero. The MATLAB script is given in E.1.

2.2 General Recourse Model

The general recourse model is used when some of the decision variables do not need to
be decided at the start of the problem but rather after some time. Typical problems are
where one can wait with making a decision, for example substitution in football. The
decision variables are decided in two parts. When the decisions variables are divided
into two separate parts the problem is called a two-stage optimisation problem. In a
two-stage SLP the decision variables that are decided in the first stage are called first-
stage decision variables, while the ones decided in the second-stage are called second stage
variables. That some of the decisions variables can be decided later is advantageous since
information learnt in the time period between the stages can be used in the following stage.
This will lead to a less conservative solution than the simple recourse model. The increase
of variables is linearly dependent on the number of possible outcome of the probability
distribution [Prékopa 2003],[Sen and Higle 1999].

The formulation of a two-stage optimisation is often divided in two optimisation problems,
one for each stage. With the two optimisation dependent on eachother. The first stage is
given as:

min cTx+ Eξ [Q(x | T (ξ)x+W (ξ)y(ξ) = h(ξ) ∩ y(ξ) ≥ 0)]

s.t. Ax = b

lb ≤ x ≤ ub
(2.14)

The second stage problem, often called the recourse problem is given as :

Q(x | T (ξ)x+W (ξ)y(ξ) = h(ξ) ∩ y(ξ) ≥ 0) : min qT (ξ)y(ξ)

s.t T (ξ)x+W (ξ)y(ξ) = h(ξ)

y(ξ) ≥ 0

(2.15)

6

Where Eξ is the estimation of the recourse problem for a given ξ, y(ξ) is the slack variable
dependent on the random vector ξ, y(ξ) ∈ Rr, and Q(x | .) is the solution of the recourse
problem for that given constraints.

From the set of equations given by (2.14) and (2.15) one can see that the equations are
dependent of each other and the random vector ξ. This means that the optimal solution is
only valid for a given ξ and for every possible ξ the set of equation needs to be resolved. The
general recourse model merges the two sets of equations and solve the resulting LP for all
possible realisations of the random variable ξ For this to work the probability distributions
needs to be known and be discrete. If the probability distribution is continuous or partly
continuous it needs to be discretized.

First insert (2.15) into (2.14), by replacing Eξ with the objective function of the second
stage. The constraints of the second stage also need to be added to the set of constraints
in the first stage. For the decisions variables it is divided into two; the first stage variables,
x1, and the second stage variables, x2. This is done so that the constraints can be divided
into constraint dependent on only x1 or both. The separations of the variables are feasible
as the constraints are linear. Then the slack variables from the objective function and the
constraints, so that the problem is only a function of x1 and x2. The slack variables are
removed because they may cause unfeasible scenario outcomes. Then with the assumption
that the probability distribution is known and discrete, the formulation of the general
recourse model will be:

min cT1 x1 +
∑
s∈S

psc
T
2sx2s

s.t A1x1 = b1

Bsx1 +A2sx2s = b2s, ∀s ∈ S
lb1 ≤ x1 ≤ ub1
lb2s ≤ x2s ≤ ub2s, ∀s ∈ S

(2.16)

Where c1 is the objective function for the first stage variables, c1 ∈ Rn, x1 is the first
stage variables, x1 ∈ Rn, S is the feasible set of outcomes, ps is the possibility outcome s,
c2s is the objective function for the second stage variable for outcome s, c2s ∈ Rq, x2s is
the second stage variables for outcome s, x2s ∈ Rq, A1 is the constraint matrix for first
stage variable only, A1 ∈ Rm×n, b1 is the constraint value vector for the first stage variable
only, b1 ∈ Rm, Bs is the constraint matrix for the first stage given outcome s, Bs ∈ Rp×n,
A2s is the constraint matrix for the second stage variables given outcome s, A2s ∈ Rp×q,
b2s is constraint value vector for mixed constraint given outcome 2, b2s ∈ Rp, lb1 and ub1
is the lower and upper bound respectably for the first stage variables, lb1 and ub1 ∈ Rn,
lb2s and ub2s is the lower and upper bound respectably for second stage variable for given
outcome s, lb2s and ub2s ∈ Rq.

The formulation of the general recourse model given in (2.16) has a linear objective function
and only linear constraints, so it is LP problem and algorithms like Simplex Method can
be used for solving the problem.

7

Example

For the example showing how the general recourse model work, the example shown in
section 2.1 will be used. With the decision variables x2,x3 and x4 will be second stage
variables. Comparison of (2.7) and E(2.16) shows that there are no constraints which
depend only on the first-stage variables. It follows that A1 is an empty matrix. One can
see that there are none constraint only depended on first stage variables so A1 is an empty
matrix. From the probability distribution given (see 2.8) there are two possible outcome
so S = 2 with probability of 50% each. x1 is the first stage variable, with a lower bound
of -1 and an upper bound of 1. The second stage variables they are non-negatives real
numbers. The formulation of the problem is then:

min −0.5x21 − 0.5x22

s.t x1 + x21 + x31 = 2

x1 +
3

4
x21 + x41 = 2

x1 + x22 + x32 = 2

− 3x1 +
5

4
x22 + x42 = 2

− 1 ≤ x1 ≤ 1

xs ≥ 0, s = 2, 3, 4

(2.17)

The problem was solved in MATLAB with the built-in function linprog and the value
of the objective function was calculated to -1.8824. The optimal values of the decision
variables are [0.1176 1.8824 0.0000 0.4706] for outcome one and [0.1176 1.8824 0.0000
0.0000] for outcome two. One can see that the optimal solution is lower when using the
general recourse then the simple recourse, so this verifies that the general recourse model
gives a less conservative optimal point than simple recourse model. The MATLAB script
is given in E.2.

2.3 Robust optimisation

When there are uncertainties in the optimisation problem as it is with stochastic variables
one will in some instances minimise the risk. The risk is measure of how stable the optimal
solution is when there are disturbances. This is often done by implementing the variance
or deviation from expected value or mean value into the optimisation problem. In this
project, the standard deviation will be used as a measure of the risk in the context of
robust optimisation. The standard deviation is used as it does not change the convexity
of the problem [Bertsimas, Brown, and Caramanis 2011],[Prékopa 1995, page 255].

The definition of the standard deviation for this project is given as:

(zts − z̄t)2

Where zts and z̄t are defined as:

cTtsxts = zts∑
s∈S

ptszts = z̄t

(2.18)

8

Where s denotes a given scenario, s ∈ S, t is the stage of the problem, t ∈ T and z̄t is the
standard value of z in stage t.

For the formulation of the robust optimisation the a multistage recourse model will be
used. The multistage recourse model will be presented in the next subsection 2.4. One
could also use simple or general recourse formulation for the robust optimisation. The
reason for choosing multistage stage recourse model, are that robust optimisation is often
used in economics where one make decision in multiple time steps. The formulation of the
robust optimisation are build on (2.22). With addition of adding the standard deviation
into the objective function. The formulation of the robust optimisation problem will then
become:

min
∑
s∈S

[
cT1 x1 +

T∑
t=2

ptszts +

T∑
t=2

θtpts(zts − z̄t)2
]

s.t. A1x1 = b1

At1x1 +
t∑

τ=2

Atτxτ = bτ , for t = 2, ..., T

cTtsxts = zts, for t = 2, ..., T∑
s∈S

ptszts = z̄t, for t = 2, ..., T

lb1 ≤ x1 ≤ ub1
lbts ≤ xts ≤ ubts, ∀s ∈ S, for t = 2, ...T

(2.19)

Where θt is the diagonal weight matrix for the standard deviations of stage t. The weight-
ing matrix are added, so one can emphasis the deviation for each variable differently.
Often there are variables that one want to be unaffected by outcome of the stochastic
variables, for example control of self-optimising variables. There is a quadratic term in
the objective function ((zts − z̄t)2), this means that we no longer have a linear program.
But all of the constraints are linear meaning that the problem is a quadratic programming
(QP) problem.

Example

To illustrate how Equation (2.19) can be applied, the example from Sen and Higle 1999 see
equation (2.7). Where one first it to a two-stage problem, same as in section 2.2, and add
the standard deviation to the objective function. Lets us use the definition of standard
deviation from equation (2.18) and lets define it by the decision variable x instead of z.
From the problem we have only two stages and two outcomes, so the standard deviation
will be:

9

(zts − z̄t)2 = θ1p21(c21x21 − (p21c21x21 + p21c22x21))
2

+ θ2p22(c22x21 − (p21c21x21 + p21c22x21))
2

Insert the values into the parameters and

letθ1 = θ2 = 2 the standard deviation will be:

=
1

4
x221 +

1

4
x222

(2.20)

Now that the standard deviation are defined it can be inserted into the objective function.
All of the constraint is also defined as in (2.17). Then the formulation of the problem will
be:

min −0.5x21 − 0.5x22 +
1

4
x221 +

1

4
x222

s.t x1 + x21 + x31 = 2

x1 +
3

4
x21 + x41 = 2

x1 + x22 + x32 = 2

− 3x1 +
5

4
x22 + x42 = 2

− 1 ≤ x1 ≤ 1

xjs ≥ 0, j = 2, 3, 4, ∀s ∈ S

(2.21)

The problem was solved in MATLAB with the built-in function quadprog and the value
of the objective function was calculated to -0.5000. The decisions variables are [0.0644
1.0000 0.9356 1.1856]T for scenario one and [0.0644 1.0000 0.9356 0.9431]T for scenario
two. The MATLAB script is given in E.4.

2.4 Multistage Recourse Model

The multistage recourse model is used when one needs to decisions subsequently over a
time period. The problem are divided into multiple stages, where the number of stages
are depending one the number of decision stages. If this sounds familiar is because the
two-stage model presented in the section 2.2 is a special case of multistage with only two
stages. The advantages of the multistage formulation is that one can get a very good
optimal point. This is because uses the information gained in the previous stages in the
later stages, and thereby gain a more exact problem formulation. The disadvantages with
the multistage formulation is that increase of variables are exponential with the number
of stages. The exponential growth of variables can easily be illustrated with a scenario
tree, see Figure 2.1. Scenario trees are often used in multistage optimisation for showing
the number of scenarios for each step and how the different scenarios are connected to the
earlier stages [Mart́ı et al. 2015],[Sen and Higle 1999].

10

A

C

G

O

N

G

M

L

B

E

K

J

E

I

H

S1 S2 S3 S4

Figure 2.1: The figure shows the exponential growth in a multistage problem, where number of
stages, T, is four and each scenario has two outcomes. Each scenario is numbered
A-O and the stages are shown below the scenario tree, with Si being stage number i.

For the multistage recourse model one implements all of the stages in the first stage and
solves for all possible outcomes of s. This is the same that what is done for general recourse
model but only for T stages, where T ≥ 2. To see how this is done see section 2.2 and just
increase the number of stages to T, where T ≥ 2. For formulation of the multistage recourse
model, let there be T number of stages, with T ≥ 2, a scenario outcome is denoted with
s, where S is set of all possible outcomes. Assume that all of the probability distributions
are known and discrete. A restriction on xt is that xt must be Ft measurable, this means
that the knowledge of xt only is dependent on information given by the stages until stage
t. The probability distributions needs to be independent of the decision variables [Kall
and Mayer 2005],[Prékopa 2003]. Then the multistage recourse model is formulated as:

min
∑
s∈S

[
p1sc

T
1 x1s +

T∑
t=2

ptsc
T
tsxts

]
s.t. A1x1s = bs, ∀s ∈ S

At1x1s +

t∑
τ=2

Atτxτ = bτ , for t = 2, ..., T

x1 − x1s = 0, ∀s ∈ S
lb ≤ xis ≤ ub, for i = 1, ..., n ∀s ∈ S

(2.22)

Where x1s are not included with the other stages as it has to be the same for all stages
independently of what scenario s is.

is defined by itself because it is the first stage variable and need to be the same independent
of what scenario s we look at. That x1s is denoted with s even do it is independent of the

11

scenario outcome, has to do with nonanticipativity of the problem. Nonanticipativity also
called implementability is the requirement that x1 needs to decided before any outcome
of the possibility distributions are known. Constraint 3 forces all of the x1s to be equal to
each other. Often constraint 1 is exchanged with A1x1 = b1 and constraint 3 is removed,
giving a more compact notation. The formulation used in Equation (2.22) was used so
the reader could more easily see that x1 is the same for all scenarios [Prékopa 2003],[Kall
and Mayer 2005].

Example

To get a better understanding of the multistage recourse model, expanse the example
given in Sen and Higle 1999 to a multistage problem. This is done with have x2 be a third
stage variable, x3 and x4 be second stage variables and x1 be a first stage variable.

min −x2
s.t. x1 + x2 + x3 = 2

ã21x1 + ã22 + ã24x4 = 2

− 1 ≤ x1 ≤ 1

xj ≥ 0, j = 2, 3, 4

(2.23)

Where ã21, ã22 and ã24 have known distributions, given as:

(ã21, ã22, ã24)

{
(1, 34 , 1) with probability 1

2

(−3, 54 ,−1) with probability 1
2

(2.24)

The problem has three stages with known and discrete probability distribution given in
(2.24). The number of stages is 3, T = 3. There are two scenarios in stage number 2 and
4 in stage number 3. The multistage recourse model is then:

min −0.25x21 − 0.25x22 − 0.25x23 − 0.25x23

s.t x1 + x21 + x31 = 2

x1 +
3

4
x21 + x41 = 2

x1 + x22 + x32 = 2

− 3x1 +
5

4
x22 +−x42 = 2

x1 + x23 + x31 = 2

− 3x1 +
5

4
x23 +−x42 = 2

x1 + x24 + x32 = 2

x1 +
3

4
x24 + x41 = 2

− 1 ≤ x1 ≤ 1

xji ≥ 0, j = 2, 3, 4 i = 1, ..., 4

(2.25)

12

The problem was solved in MATLAB with the built-in function linprog and gave solution
of -3.000. With x1 = -1, x21, x22, x23 and x24 is equal to 3, x31 and x32 is equal to 0, x41
is equal to 0.75 and x42 is equal to 4.75. The MATLAB script is given in E.3.

2.5 Chance Constraint

Chance constraint optimisation, also knows as probabilistic constraint optimisation is a
form of optimisation where one or more of the constraints are given as possibility of
holding the constraint. With the probability is some given value, α, where α ∈ [0, 1]. The
constraint can be written as:

P(T (ξ)x− h(ξ)) ≥ α (2.26)

This approach is common in reliability design engineering, where the reliability of the
system is included as a chance constraint. Imagine we are designing a runway for an
airfield. if we require that all airplanes that land on airfield shall have a 100% probability
of safe landing on the runway it needs to cover the whole earth. It need to cover the
whole because one have to consider all possible outcomes. For example the wind are
one stochastic variables and an extreme outcome would be a tornado. But no airplane
would fly if there was a tornado, so there are not point in including this outcome in the
optimisation. So to get a more sensible solution one says that the probability of safe
landing should be above so α. This α are usually given, and are often 0.99, 0.95 or 0.9.
The formulation of a chance constraint optimisation is often given as:

min cTx

s.t. Ax ≥ b
P(T (ξ)x ≥ h(ξ)) ≥ α
lb ≤ x ≤ ub

(2.27)

Where P is the probability of the constraint to hold, α is the confidence level, α ∈ [0, 1].

The chance constraint is not a linear constraint but depends on the probability distribu-
tion. This means that the problem is nonlinear optimisation problem (NLP). Compared
with LP or QP, a NLP is much harder to solve and the algorithms that exist are often
complex and computationally demanding. Before solving a NLP it is important to check
if the problem is convex or not. If the problem is convex it makes the problem easier to
solve. In this project the focus will be on convex NLP as this is an important class of
optimisation problems and there exist some algorithms for solving these problems, like
the Sequential quadratic programming (SQP) [Robinson 2006] , [Wendt, Li, and Wozny
2002].

There are many different methods for solving chance-constrained optimization problems.
Where the main methods are approximation and simulation, one can also solve it analyti-
cally but this is often complex to do if the problem are large. [Arnold 2013], [Van Hessem
2004] In this project the focus will be on solving the problem using simulation, namely
Monte Carlo simulation. The example is solved analytically this is done so that reader
can get a better understanding of the underlying theory and that the problem are small.

13

Example

For giving a better insight into chance constraint optimisation an example from Kibzun
and S. 1996 about reserving air tickets will be presented. The problem is to maximise the
profit of an airline company that flies from one city to another city two times a day. The
airline sells some tickets in advance and the demand for tickets is so high that all of them
are sold. The policy of the company is also allows costumer to return their tickets until
the eve of the flight. Because of this some the seats can be empty on the first flight and
the total number of tickets sold in advance can exceed the total number of seats on the
first flight. The airline can reserve some seats for the second flight and some passengers
have to take the second flight, but they are compensated with a fee. If the airline does not
reserve enough seats on the second flight then some passengers will have to wait for the
next day to fly, and the airline needs to pay a penalty. The problem is how many tickets
should the airline sell in advance and how many seats should the airline reserve on the
second flight. Lets define some variables.

Let n1 be the total number of seats on the first flight and n2 be the total number of seats
on the second flight. u2 is the number of tickets available in advance, and u2 is the number
of seats reserved on the second flight. y1 is the number of passengers that airline makes
take the second plain, y2 is the number of passengers that whom the company have to pay
a penalty to. χ is the fraction of passengers who return their tickets, and is assumed to
be a known probability distribution, χ ∈ [0, 1]. c0 is the price of tickets for the first flight.
c1 is the cost of service for the passengers between flights, c2 is the penalty cost, c3 is the
price of a returned ticket and c4 is the ticket price for the second flight.

The optimal value of the y1 and y2 is determined by the optimisation problem given below.

min c1y1 + c2y2

s.t. y1 + y2 ≥ u1(1− χ)− n1
− y1 ≥ −u2
y1, y2 ≥ 0.

(2.28)

Let Φ1(u1, u2, χ) be the optimal solution to (2.28), this is the cost of service between flight
and penalty cost. Let the total cost be:

Φ(u1, u2, χ) = Φ1(u1, u2, χ) + c2u1χ (2.29)

Since Φ is a function of the random variable χ it is also random. Let the quantile function
also called the inverse cumulative distribution function be defined as:

Φα = min {ϕ | Pϕ(u1, u2) ≥ α}
Pϕ(u1, u2) = P {Φ(u1, u2, χ) ≤ ϕ}

(2.30)

Where ϕ defines the minimum level expenses for service and penalties, α is a given mini-
mum value for the probability of holding the constraints, α ∈ [0, 1], Pϕ is the probability
function, and is defined by the probability of holding constraint, P {Φ(u1, u2, χ) ≤ ϕ}.

14

v1

v2

c1 c20

Figure 2.2: Show the feasible set dual problem defined in equation (2.32)

In order to maximise the profits of the company, with a given value of α, the expenses
should be minimised. The minimisation of the expense can be expressed as:

min Φα(u1, u2)− c0u1 − c4(n2 − u2)
s.t u2 ≤ n2

ui ≥ 0, i = 1, 2

(2.31)

The problem formulation is divided in two parts. This means that it is a two-stage SLP,
with Equation (2.28) being the second stage problem and Equation (2.30) being the first
stage problem. From the definition of the quantile function given in Equation (2.30) that
the problem have a chance constraint formulation.

The solution of the problem, will be solved analytically and the solution method are
taken from [Kibzun and S. 1996, page 23-27]. Instead of solving the primary second stage
problem, let us solve the dual problem of the second stage problem. This will remove the
random vector χ from the constraint to the objective function, resulting in a maximum
problem. The dual problem is:

max v1(u1(1− χ)− n1)− v2u2
s.t. v1 − v2 ≤ c1

v1 ≤ c2
vi ≥ 0, i = 1, 2

(2.32)

Where v1 and v2 are the dual variables of the second stage problem.

From the constraint in Equation (2.31) that u2 ≥ 0 meaning that the maximum is on of
the vertex of the shaded area in figure (2.2). Using that the maximum is on one of the
vertex and instead of Φ1(u1, u2, χ) in equation (2.29), then the solution of the second stage
problem is:

Φ(u1, u2, χ) =c3u1χ+max[0, c1(u1(1− χ)− n1),
c2(u1(1− χ)− (c2 − c1)u2)] (2.33)

15

Now that the second stage problem is solved analytically. What remains is solving the
first stage problem defined in Equation (2.31).

For solving the first stage problem let us first define the upper bound of the quantile
function. The upper bound of the quantile function is defined as:

ψ(S, u1, u2) = sup
x∈U

Φ(u1, u2, x) (2.34)

Where S is the confidence set, P(S) ≥ α, S ∈ R1, Sup is the supremum of U, U is the
feasible set for equation (2.31) and x is given probability, x ∈ (0, 1) [R and D. 2008].

Let us use the upper bound of the quantile function given in Equation (2.34) to find
an upper bound of Equation (2.31). This is done by replacing the quantile function in
Equation (2.31) with upper bound of the quantile function [Kibzun and S. 1996, page 171].
The upper bound is given as:

min
(u1,u2)∈U

[− c0u1 − c4(n2 − u2) + Φα(u1, u2)]

≤ min
(u1,u2)∈U

[−c0u1 − c4(n2 − u2) + ψ(S, u1, u2)]
(2.35)

Now with varying the confidence set, S, the upper bound can be reduced. Lets reduce S
so that the upper bounds goes towards the objective function. The optimal confidence
set, Sα, that leads to the exact solution of equation (2.31) is:

Sα = {x | −c0u1 − c4(n2 − u2) + Φ(u1α, u2α) ≤ Φα(u1α, u2α)} (2.36)

Where u1α and u2α be the optimal variables for problem (2.31).

Then use the definition of the quantile function (2.30) and the optimal set, Sα, for ex-
pressing the optimal solution of the objective function as function of u1α, u2α and Sα. The
expression is:

− c0u1α c4(n2 − u2α + Φα(u1α, u2α)

= −c0u1α c4(n2 − u2α + ψ(Sα, u1α, u2α)
(2.37)

Given the optimal solution of the objective function given by Equation (2.37), the optimal
variables, u1α and u2α can be expressed as:

(u1α, u2α) = arg min
(u1,u2)∈U

[−c0u1 − c4(n2 − u2) + ψ(Sα, u1, u2)] (2.38)

Where arg min(u1,u2)∈U is the set of elements in U that gives the global minimum of U.

As the optimal set depends on the minimum of the objective function, see Equation (2.36),
the set is not explicit defined, as the quantile function is not known. But let us look at
the structure of the set. The objective function is piecewise linear and convex. Meaning
that the Sα is an interval. Since random variables χ has the interval [0,1], for the optimal
confidence set one can search the interval [a,b] ⊂ [0,1] which satisfying the condition:

16

P {a ≤ χ ≤ b} = α (2.39)

Equation (2.31) is equivalent to:

−c0u1 − c4(n2 − u2) + ψ([a, b], u1, u2)→ min
a,b

min
(u1,u2)∈U

(2.40)

Where a and b are defined by Equation (2.39) and 0 ≤ a ≤ b ≤ 1. One can see that the b
can not be an arbitrary number [0,1], and it should satisfy the constraint:

xα ≤ b ≤ 1 (2.41)

Where xα is the α−quantile function for the distribution of the random variable χ, defined
as:

xα = min {x | F (x) ≥ α} (2.42)

Then use the relation between a and b from equation (2.39) to find the limit points of a
and b. The relation between the two limit points are:

a = {x | F (b)− F (x) = α} (2.43)

Assume that the distribution function F(x) is strictly increasing with respect to x ∈ [0, 1].
This transforms the Equations (2.42) and (2.43) into equations (2.44). Then xα can be
expressed as a function of b, a(b), by using the following two expressions

F (xα) = α

F (b)− F (a) = α
(2.44)

Let S be defined as the interval [a,b], where a and b are the limits points defined by
equation (2.44) and b = xα. The function Φ(u1, u2, x) is convex in x. This means that the
maximum of Equation (2.34) is one of the limit points of S. The equation can be written
as:

ψ(S, u1, u2) = max
i=1,3

max {li(u1, u2, a(b)), li(u1, u2, b)}

With l1, l2 and l3 defined as:

l1(u1, u2, x) = c3u1x

l2(u1, u2, x) = c3u1x+ c1(u1(1− x)− n1)
l3(u1, u2, x) = c3u1x+ c1(u1(1− x)− n1)− (c2 − c1)u2

(2.45)

Lastly, let equation (2.40) be equivalent to:

Φ0
α = min

bα≤b≤1
fα(b) (2.46)

17

Where the function fα(b) is the upper bound for the optimal value of the quantile function.
fα(b) is defined as:

fα(b) = min
(u1,u2)∈U

[−c0u1 − c4(n2 − u2) + ψ(b, u1, u2)] (2.47)

Where ψ(b, u1, u2) is given by Equation (2.45). Let u3 represent ψ(b, u1, u2). Then the
first stage problem is given as:

fα(b) = min
(u1,u2,u3)

[−c0u1 − c4(n2 − u2) + u3]

s.t u2 ≤ n2
c3a(b)u1 − u3 ≤ 0

(c4a(b) + c1(1− a(b)))u1 − (c2 − c1)u2 − u3 ≤ c1n1
c3bu1 − u3 ≤ c2n1
(c3b+ c1(1− b))u1 − u3 ≤ 0

(c3b+ c2(1− b))u1 − (c2 − c1)u2 − u3 ≤ c2n1

(2.48)

Now the original two-stage stochastic optimisation problem has been transformed into a
linear minimisation problem. Meaning that the problem can be solved using the Simplex
Method or other LP algorithms. Now the only things that are missing are the parameters
and the probability distribution. The probability distribution used in the calculation is:

F (x) =
1− e−20x

1− e−20
, x ∈ [0, 1] (2.49)

The parameters used are given in table :

Variable c0 c1 c2 c3 c4 n1 n2 α

Value 300 30 1000 280 250 350 350 0.99

Table 2.1: Parameters used in the calculations, for solving the example defined in section 2.5

The problem was solved in MATLAB with the built-in function linprog and the value of
the objective function was calculated to -175620. The decision variables are [374 0 24120]T

for u1, u2 and u3 and respectively . The MATLAB script is given in E.5.

18

3 Optimisation of an Hydrodesulphurisation Process

In this section the theory discussed in section 2 and apply it for an hydrodesulphurisation
process (HDS). The process are described in detail in Navia et al. 2014. But a short
described are given here for convince. The process is part of a larger refinery, where the
HDS process removes sulphur from a hydrocarbon flow. The sulphur is removed such that
hydrocarbon product meets environmental constraints on sulphur content. The sulphur
is removed from the hydrocarbons in a fixed bed reactor, where the hydrocarbons are
mixed with hydrogen gas. The sulphur bonds with the hydrogen and reacts to hydrogen
sulfide gas in a catalyst reaction. The aim are to optimise the HDS from an economical
perspective. This is done by minimising the hydrogen cost. The problem is that there are
uncertainties in the reaction rate and hydrogen fraction in one of the hydrogen streams.
Because of this, the optimisation problem becomes stochastic and the method that will
be used in this report is chance constraint optimisation.

3.1 Description of the Hydrodesulphurisation Process

A flow and control diagram of the HDS process is given in the figure below

Figure 3.1: The diagram of the hydrodesuphurisation process [Navia et al. 2014].

There are three hydrogen flows marked F1, F2 and F3 in the flow diagram. F3 is a
recycle stream with low hydrogen concentration and F1 and F2 are hydrogen production
flows from another part of the refinery. The three streams are mixed and go through
a compressor (C-1), so the pressure is held constant in the inflow to the reactors. The
hydrocarbon flow into the reactor is marked FC. The reactors are marked R-1 and R-2.
The reactor are set in two stages, with R-1 being the first reactor and R-2 the second. The

19

outlet flow from R-2 is marked F7 and is fed into a flash tank where the hydrocarbons are
separated from the hydrogen and sulfide gas. The hydrocarbons are then leaving in the
product flow F-8. Some of the hydrogen are recycled back into the reactors, while the rest
goes out of a purge stream marked F10.

For control there are are four feed controllers and one pressure controller. The feed con-
troller of the hydrocarbons are set. The pressure controller adjust the pressure of F3 such
that the pressure is kept constant. The three controllers left are controlling the hydrogen
concentration in the reactors. It is important that the hydrogen ratio inside the reactors
does not go below 0.7 otherwise the catalyst starts to degenerate. From an economic per-
spective one want to minimise the cost associated with production cost of stream F1 and
F2. The goal of the controller is to keep the hydrogen ratio above 0.7 while minimising
the use of F1 and F2.

3.2 Model Description

Some assumptions are made to simplify the model of the process. The assumption are
listed below.

1. Perfect temperature control of the reactor.

2. Perfect control of pressure.

3. First order reaction.

4. Perfect separation of hydrocarbons and hydrogen in the flash tank.

5. The reactors are model as one reactor

The assumptions are made so that one only has to consider the mass and component
balances for the system. Also that one only has to consider the dynamics of one combined
reactor.

With a first order reaction the consumption of hydrogen can be described as:

τ
d FH2

x

dt
+ FH2

x = FHCρ (3.1)

Where τ is the time constant of the reaction, FH2
x is the consumption rate of hydrogen

inside the reactor, t is the time, FHC is the volumetric flow of hydrocarbons into the
reactor, and ρ is the reaction rate constant for the given hydrocarbons.

The hydrogen fraction inside the reactor is given as:

V P

ZRT

d XH2

dt
= F5X5 − F10XH2 − FH2

X (3.2)

Where V is the volume of the reactors, P is the pressure inside the reactor, Z is the
compressibility factor, R is the ideal gas constant and T is the temperature, XH2 is
hydrogen fraction inside the reactor, F5 is the inflow stream into the reactor, X5 is the
hydrogen fraction in stream F5 and F10 is the purge stream.

For the mass balance over the reactor is given as:

F5 = F10 + FH2
X (3.3)

20

The mixing point of the three inlet hydrogen streams, the mass balance is given as:

F5 = F1 + F2 + F3 (3.4)

The component balance is given as:

F5X5 = F1X1 + F2X2 + F3X3 (3.5)

Where Xi is the hydrogen fraction in stream i, where i = 1,2,3.

The constraints given by the catalyst and the compressor are:

X lb
H2 ≤ XH2 (3.6a)

X lb
5 ≤ X5 (3.6b)

For the hydrogen flow in the inlet streams there are upper and lower bounds given as:

F lb1 ≤ F1 ≤ F up1 (3.7a)

F lb2 ≤ F2 ≤ F up2 (3.7b)

F lb3 ≤ F3 ≤ F up3 (3.7c)

3.3 Optimisation

The optimisation problem is formulated as a dynamic optimisation problem. Where the
goal is to minimise the cost of hydrogen from the two produced hydrogen feed streams,
F1 and F2. The objective function is given as:

J =

∫ tf

t0

CH4X1F1 + CH3X2F2dt (3.8)

Where J is the cost, t0 is the time at t=0, tf is the final time, CH4 is the cost of producing
hydrogen for stream F1, X1 is the hydrogen fraction in F1, CH3 is the cost of producing
hydrogen for stream F2, and X2 is the hydrogen fraction in stream F2.

The optimisation problem can now be formulated with (3.8) as the objective function.
With the constraint defined by (3.1)-(3.5). Lower and upper bounds are given by (3.6)
and (3.7). Because of uncertainty in the model the problem must first be reformulated
using one of the models described in Section 2. Chance constraint was chosen in this
project, where the robustness of the model can be adjusted with so given probability,
alpha.

21

3.4 Stochastic Optimisation Formulation

The constraints given by (3.6), are the two constraints that we want to satisfy with a
probability of some α. The reason are that if they are broken there will be economical loss
due to catalyst or compressor damage. With these two constraints as chance constraints,
the optimisation problem is formulated as:

min
F1,F2,F10

∫ tf

t0

CH4X1F1 + CH3X2F2dt

s.t. τ
d FH2

x

dt
+ FH2

x = FHCρ(ξ1)

V P

ZRT

d XH2

dt
= F5X5 − F10XH2 − FH2

X

F5 = F10 + FH2
X

F5 = F1 + F2 + F3

F5X5 = F1X1 + F2X2 + F3X3(ξ2)

P(X lb
H2 ≤ XH2) ≥ αXH2

, P(X lb
5 ≤ X5) ≥ αX5

F lbi ≤ Fi ≤ F
up
i , i = 1, 2, 3

(3.9)

Where P(·) is the probability of satisfying the constraint, and ξ is the random vector given
by a probability density function and α are a given probability that gives the confidence
level of the chance constraint.

The uncertainties are given in ρ and X3. From measurements of ρ and X3 the joint
probability distribution of the parameters is given as a binormal probability distribution.
The probability distribution of the constraints are not known, so Monte Carlo simulations
needs to be carried out in order to find the probability distribution of XH2 and X5. Monte
Carlo simulation works with one solve the deterministic optimisation problem first. Then
use the optimal control variables as starting points in a simulation of the process with a
given outcome of the stochastic variables. The simulations are carried out multiple times
with different outcomes of the stochastic variables, this way one get an approximation
of the probability distribution from the different outcome scenarios. This method of
solving chance constraint optimisation problem are called the simulation method. With
the probability distribution approximated the stochastic optimisation problem are solved.
Then new Monte Carlo simulations are carried out to test the reliability of the model.
If the reliability of the model are below some value ε one do the process again until
one achieve convergences. The method of optimise then test with simulation are called
sequential method [Sobol 1994],[Hong, Yang, and Zhang 2011].

The optimisation problem is a dynamic optimisation problem because of the differential
equations given by (3.1) and (3.2). Direct multiple shooting was used to reformulate
the dynamic optimisation problem. Appendix B for more about direct multiple shooting
method. The formulation of the deterministic optimisation problem the direct multiple
shooting is given below:

22

min
F1j

,F2j
,F10j

M∑
j=1

CH4X1F1j + CH3X2F2j

s.t. F̂H2+

xj − F̂H2−
xj+1

= 0, for j = 1, ...,M

X̂+
H2j
− X̂−H2j+1

= 0, for j = 1, ...,M

F5j = F10j + FH2
Xj , for j = 1, ...,M

F5j = F1j + F2j + F3j , for j = 1, ...,M

F5jX5j = F1jX1 + F2jX2 + F3jX3, for j = 1, ...,M

X lb
ij ≤ Xij ≤ Xub

ij , for j = 1, ...,M, i = 1, 2, 3, 5, H2

F lbij ≤ Fij ≤ F
ub
ij , for j = 1, ...,M, i = 1, 2, 3, 5, 10

(3.10)

Where M is the number of time intervals, ˆFH2
x and X̂H2 are the solutions of the differential

equations, (3.1) and (3.2), from the integrator.

The solution of (3.10) is shown in Figre 3.2. The solution was implemented using the
language Python and the symbolic framework of CasADi [Andersson 2013].

0.0 0.5 1.0 1.5 2.0

time, [h]

200

300

400

500

600

700

F1
,
[k

m
o
l/
h
]

0.0 0.5 1.0 1.5 2.0

time, [h]

0

100

200

300

400

500

600

700

F2
,
[k

m
o
l/
h
]

0.0 0.5 1.0 1.5 2.0

time, [h]

0

100

200

300

400

500

600

700

F1
0
,
[k

m
o
l/
h
]

0.0 0.5 1.0 1.5 2.0

time, [h]

0.65

0.70

0.75

0.80

0.85

0.90

0.95

X
,
[-

]

XH2
X5

20 time intervals

Figure 3.2: The optimal deterministic solution for the three control variables, F1, F2 and F10.
And the response of XH2 and X5 from solving (3.10), with values given in table 3.1.

23

Parameter Value Unit Parameter Value Unit

M 20 - TF 2.0 h

R 0.08314 m3bar
Kkmol T 623.15 K

V 100 m3 P 68.901 bar

τ 0.3 h ρ 12.6 kmol
m3

FHC 102 m3

h Z 1 -

CH4 88.1 ¤
Mmol CH3 77 ¤

Mmol
X1 0.991 - X2 0.931 -
X3 0.85 - XH2(t0) 0.9 -

FH2
x (t0) 682.5 kmol

h F lb1 0 kmol
h

F ub1 1400 kmol
h F lb2 0 kmol

h

F ub2 790 kmol
h F lb3 0 kmol

h

F ub3 5000 kmol
h F10

lb 0 kmol
h

F10
ub 1500 kmol

h Xub
5 1 -

X lb
5 0.9 - Xub

H2 1 -
X lb
H2 0.7 -

Table 3.1: The parameters, upper/lower bounds and initial condition used solving (3.10).

The solution of the optimal control variables for each step the Monte Carlo simulations
can be carried out. 1000 simulations were carried out and the results of the Monte Carlo
simulations are given in Figure 3.3. The mean and variance of the outcomes were calculated
for each variable tofinding the normal probability distribution functions.

Figure 3.3: The outcome from the Monte Carlo simulations for XH2 and X5, with 1000 simula-
tions.

The probability distribution of the two variables is now known, but before solving the
problem defined by (3.9), the two chance constraints needs to be reformulated. This is

24

done by finding a back-off such that the constraint are hold with probability of α. The
back-off can be calculated with the equation below [Van Hessem 2004].

Back-off = Fg(α)−1
√
Z (3.11)

Where F−1g is the cumulative normal Gaussian distribution function, α is the probability
of satisfying the constraint and Z is the covariance. See appendix C for more about the
cumulative function and covariance matrix.

The new lower bounds for XH2 and X5 are the old lower bound plus the back-off. The
constraints are now given as:

X lb
H2 + Fg(αXH2

)−1
√
ZXH2

≤ XH2, X lb
5 + Fg(αX5)−1

√
ZX5 ≤ X5 (3.12)

Then insert the constraints (3.12) in (3.9) and using direct multiple shooting method for
reformulate the dynamic optimisation problem. The optimisation problem is then given
as:

min
F1j

,F2j
,F10j

M∑
j=1

CH4X1F1j + CH3X2F2j

s.t. F̂H2+

xj − F̂H2−
xj+1

= 0, for j = 1, ...,M

X̂+
H2j
− X̂−H2j+1

= 0, for j = 1, ...,M

F5j = F10j + FH2
Xj , for j = 1, ...,M

F5j = F1j + F2j + F3j , for j = 1, ...,M

F5jX5j = F1jX1 + F2jX2 + F3jX3, for j = 1, ...,M

X lb
ij + Fg(αj)

−1
√
Zij ≤ Xij ≤ Xub

ij , for i = 5, H2 j = 1, ...,M,

X lb
ij ≤ Xij ≤ Xub

ij , for i = 1, 2, 3 j = 1, ...,M,

F lbij ≤ Fij ≤ F
ub
ij , for i = 1, 2, 3, 5, 10 j = 1, ...,M,

(3.13)

3.5 Model Predictive Control

Model predictive control (MPC) is a control method, where measurements of the current
state are taken. The measurements are set as initial condition for a finite horizon optimi-
sation, for finding the optimal control sequence for the time horizon. Then after the first
control step is done, new measurement are taken and the process are repeated [Foss and
Heirung 2013].

For the hydrodesulfurization unit the initial states ware found through a dynamic sim-
ulation of the plant. Then the optimisation problem defined in (3.13) was solved. The
optimal control variables was then feed into a simulator, where the values for the second
step are taken as initial values for the next optimisation. The solution was found using
Python and the code can be found in appendix F.

25

4 Results and Discussion

In this section the results from the stochastic optimisation problem defined in (3.13) are
given. The optimal control sequence of the MPC is also given here. The stochastic
optimisation was solved using the same parameters as the deterministic problem. The
values are given in Table A.1 and the probability parameters for the stochastic variables
are given in Table A.2. The values for calculating the back-off and any other parameters
needed are defined in table A.2.

All of the calculations were done in Python with the use of CasADi for solving the stochas-
tic optimisation and for running the simulations. The optimisation solver used was Ipopt
version 3.12.3, with the linear solver mumps. 1000 Monte Carlo simulations were carried
out to find an approximation of the probability distribution of the constraints

4.1 Back-off

The outcome for each discretization point of the Monte Carlo simulation, as seen in Figure
3.3, was fitted to normal distributions. The normal fitting is shown in Figure 4.1 for XH2

and Figure 4.2 for X5. The fitted normal distribtuions are shown for the first, 5th, 10th
and 17th discretization points, showing the development of the normal distribution over
time. The histogram of the outcomes for the same points are also shown with the normal
distribution.

0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88

Histogram of XH2 in step 1

0

10

20

30

40

50

60

70

80

P
ro

p
a
b
ili

ty

Fit results: mu = 0.84, std = 0.01

0.55 0.60 0.65 0.70 0.75 0.80 0.85

Histogram of XH2 in step 5

0

2

4

6

8

10

12

14

16

18

P
ro

p
a
b
ili

ty

Fit results: mu = 0.70, std = 0.02

0.55 0.60 0.65 0.70 0.75 0.80 0.85

Histogram of XH2 in step 10

0

2

4

6

8

10

12

14

16

P
ro

p
a
b
ili

ty

Fit results: mu = 0.70, std = 0.03

0.55 0.60 0.65 0.70 0.75 0.80 0.85

Histogram of XH2 in step 17

0

2

4

6

8

10

12

14

P
ro

p
a
b
ili

ty

Fit results: mu = 0.70, std = 0.03

Figure 4.1: The fitted normal distributions for discretization points; 1, 5, 10 and 17 for XH2

shown by the black line. The histogram of the outcome for the same discretization
points are given by the green bars.

From Figure 4.1 it can be seen that the assumption of normally distributed constraints
seems to hold reasonably well. One can see that the variance is smaller in the first steps.
The reason is that the process starts above the optimum, XH2(t0) = 0.9, while the opti-
mum is at 0.7. Therefor the dynamic part is dominating in the first steps, and the outcome
of the stochastic parameters has less effect on XH2. When the optimum is reached the
process goes towards the steady state. Here it is the outcome of the stochastic variables
that dictates where the steady state is. Therefor the variances are smaller in the beginning

26

than in the end. This is also illustrated in Figure 3.3, where one can see that profile of
XH2 goes towards the optimum in the beginning before fannign out.

0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94

Histogram of X5 in step 1

0

10

20

30

40

50

P
ro

p
a
b
ili

ty

Fit results: mu = 0.89, std = 0.01

0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94

Histogram of X5 in step 5

0

10

20

30

40

50

P
ro

p
a
b
ili

ty

Fit results: mu = 0.90, std = 0.01

0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94

Histogram of X5 in step 5

0

10

20

30

40

50

P
ro

p
a
b
ili

ty

Fit results: mu = 0.90, std = 0.01

0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94

Histogram of X5 in step 17

0

10

20

30

40

50

P
ro

p
a
b
ili

ty

Fit results: mu = 0.90, std = 0.01

Figure 4.2: The fitted normal distributions for discretization points; 1, 5, 10 and 17 for X5 shown
by the black line. The histogram of the outcome for the same discretization points
are given by the green bars.

From Figure 4.2 one can see that the normal fitting of the outcome gives a good approx-
imation of the probability function of X5. If one look at histogram of step one, that the
mean are below 0.9. The reason for this is that the negative effect on X5 from decreasing
XH2, have not been taken into account in the first step. In the two next steps this is taken
into account but from the previous steps where the decrease are larger, so here the mean
are above 0.9. These trends can one see in Figure 3.3. But when XH2 are closing to the
steady state the mean of X5 are 0.9, since there are minimal effect from the change of
XH2.

Comparing the two probability distributions one can see that XH2 has a larger variance
than X5 average mean and variance are given in table A.2. The reason for this is that
XH2 are dependent on both stochastic parameters through FH2

x and X5. While X5 mostly
dependent on X3. This is also the effect that was expected from the model, (3.1)-(3.5).

The back-off were calculated with use of (3.11). The back-off were implemented in the
lower bound ofXH2 andX5 and the stochastic optimisation were carried out. The accuracy
were tested with running Monte Carlo simulation. The number of constraint violations
along with the back-off is shown in Figure 4.3, with the notation 1. As one can see from
the Figure that for X5 the number of constraint violations are over 30 % in the start. This
number is over 3 times more then the expected number. From the Figure one can see that
the number of constraint violations are for the most part above 10%. For correcting for
the high number of constraint violations one should implement a correction factor in the
back-off calculations. Then do an iterative process to find the correction factor that gives
10% constraint violation. As the computational time of the calculation already is high,
see Table 4.1. And with the focus of the project being about understanding of stochastic
optimisation methos, the iterative process was not implemented in the calculation of the
back-off. So for future work this process should be added for getting a more accurate
estimation of the process.

27

One can see from Figure 4.3 that the number of constraint violations are higher then
10% except in the beginning for XH2. At looking at mean values from the probability
distribution,the mean values are just below the lower bound. For X5 in the start it was 0.89
instead of 0.9, as was expected. So trying to find a improved estimation of the back-off, the
difference between the lower bound and mean value of the probability distribution were
used. This suggestion of improvement was made by look at the probability distribution in
Figures 4.1 and 4.2 and compare it with number constraint violation given in Figure 4.3.
From this point out this method will be referred to as method 2 while the original back-off
calculations methods will be referred to as method 1. Both method 1 and method 2 were
tested with Monte Carlo simulations and the back-off and number of constraint violations
are given in Figure 3.11.

0.0 0.5 1.0 1.5 2.0

time, [h]

0.10

0.05

0.00

B
a
ck

-o
ff

,
[-

]

X_H2_1

X_H2_2

0.0 0.5 1.0 1.5 2.0

time, [h]

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

B
a
ck

-o
ff

,
[-

]

X_5_1

X_5_2

0.0 0.5 1.0 1.5 2.0

time, [h]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

C
o
n
st

ra
in

t
v
io

la
ti

o
n
 X

_H
2
,
[%

]

CV_XH2_1

CV_XH2_2

0.0 0.5 1.0 1.5 2.0

time, [h]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
C

o
n
st

ra
in

t
v
io

la
ti

o
n
 X

_5
,
[%

]

CV_X_5_1

CV_X_5_2

Figure 4.3: The back-off for XH2 and X5 where notation 1 are for calculating the back-off given
by (3.11), while notation 2 the difference between the mean value of the probability
distributions and lower bounds have been taken into consideration. The constraint
violations for XH2 and X5 are also shown with the same notation.

From the Figure 4.3 the back-offs are negative for method 2 in the start of the time scale
for XH2. This is because XH2 starts at 0.9, which si high above the lower bound 0.7. So
one get a high negative value from the difference between the lower bound and mean value
of the probability distribution. As one move the lower bound down this can be problematic
as one soften the constraint. But it can easily be fixed with an if statement that only add
positive back-offs. For X5 one can see that the back-off is larger in the start for method
2. And form the constraint violations one can see that number constraint violations are
drastically decreased. So method 2 seems to improve the number of constraint violations
for X5. If one look in the middle part and the last part of the time scale, both methods
seems similar. But for XH2 it seems that method 1 are bit better the method 2.

For the back-off calculation used further in the process method 2 was implemented for X5

as it improved the number of constraint violations in the start. While method 1 was used
for XH2 as it gave a better results.

28

4.2 Stochastic Optimisation

The lower bounds of XH2 and X5 were updated with the back-off. The stochastic opti-
misation was calculated. The result of the stochastic optimisation is shown in Figure 4.4.
The code used for solving the stochastic optimisation is given in appendix F.

0.0 0.5 1.0 1.5 2.0

time, [h]

200

300

400

500

600

700

800

900

F1
,
[k

m
o
l/
h
]

F1_D

F1_CC

0.0 0.5 1.0 1.5 2.0

time, [h]

0

100

200

300

400

500

600

700

F2
,
[k

m
o
l/
h
]

F2_D

F2_CC

0.0 0.5 1.0 1.5 2.0

time, [h]

0

100

200

300

400

500

600

700

F1
0
,
[k

m
o
l/
h
]

F10_D

F10_CC

0.0 0.5 1.0 1.5 2.0

time, [h]

0.65

0.70

0.75

0.80

0.85

0.90

0.95

X
H

2

XH2_D

X5_D

XH2_CC

X5_CC

20 time intervals

Figure 4.4: The stochastic optimisation optimum points for the three control variables, F1, F2

and F10, given by the notation CC. While the deterministic optimum are given by
D. The optimum of XH2 and X5 for each discretization point are also shown, with
the same notation.

The Figure 4.4 one can see that for the stochastic optimal input of F1 is increased compared
to the deterministic optimum. The reason are that with the back-off the lower bound is
higher and so more of the purer stream, F1 is added. This also decreases the effect of X3

on X5, as F3 is decreased. The decrease of F3 is shown in Figure 4.5. Where one can see
that F5 is almost the same for both optimisations, while F3 a much lower for the stochastic
optimisation.

For XH2 and X5 the optimum values are higher for the stochastic optimisation then the
deterministic. This can been seen in Figure 4.4. The reason for this is that one has added
the back-off to the lower bounds of those two variables. One can also see the tendency
of the back-off from the same plot. Where for XH2 the smaller back-off in the beginning
then it increases with the time. This is expected since the variance for XH2 also increase
with time, as can be see in Figure 3.3. For X5 one can see that the back-off are largest in
the beginning. This is also expected since the difference between the original lower bound
and the mean value was added in the back-off.

29

0.0 0.5 1.0 1.5 2.0

time, [h]

200

400

600

800

1000

1200

1400

1600

1800

2000

Fl
o
w

,
[k

m
o
l/
h
]

F3_D

F5_D

F3_CC

F5_CC

Figure 4.5: F3 for the determinstic optimisation, noted with D, and for the stochastic optimisa-
tion, noted CC, compared with F5.

For testing the accuracy of the stochastic optimisation, Monte Carlo simulations were
done. The number of outcomes in each discretization point that broke the original lower
bounds was counted and divided on the number of simulations. The results are shown in
Figure 4.6. This is the same method for testing that was done for finding the number of
constraint violations for the method 1 and method 2.

0.0 0.5 1.0 1.5 2.0

time, [h]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
o
n
st

ra
in

t
v
io

la
ti

o
n
,
[-

]

CV_XH2

CV_X5

Figure 4.6: The number of constraint violations for XH2 and X5 divided on the number of Monte
Carlo simulations. The number of Monte Carlo simulations was 1000.

The Figure 4.6 it can be seen that the profile are similar with the ones given in Figure 4.3.
For XH2 it is the same as the back-off without the use of difference. For X5 it is similar
with the one that uses the difference in the back-off calculation. This is expected as this is
the method that was used for calculating the back-off for the two variables. One can see
that the number of violations is larger for XH2 than X3. These is because the variance is
much larger for XH2 than X5. A normal fitting of the outcome for XH2 is effected more

30

by the outlying areas. The distribution of XH2 has a smaller accuracy then for X5. This
can be fixed by running more simulations, as one get more outcomes to model the normal
distribution to. The problem with this approach is that it would increase computational
time. Another problem with this approach is that one can see from Figure 4.1 that the
histograms are not completely symmetric. This is best shown by point 10 and 17, as
one can see that the histogram has a larger tail on the lower value side. So even with
increasing the number of simulations the normal distribution would not give a perfect fit
of the outcomes. One possible solution is to use different weights when fitting the normal
distribution curve to different regions. One could emphasise the areas one is interested
in. Since one wants to have a maximum of 10% violations of the lower bound, one would
have larger weights here than the other regions. This method would give a better fit for
the region that are of interest. The problem are finding good weighting factors. One
could add a correction factor to adjust the accuracy of the back-off. The correction factor
would be adjusted and new back-offs would be calculated. Then the accuracy would be
tested and adjustments on the correction factor would be made depending if one has to
many of to few constraint violations. This method would be repeated until convergence
is achieved. But as this also would increased the computational time. From Figure 4.6
one can see that the violations for XH2 except for the start are all over 10%. One could
change α to a higher value for correcting it. This method is not so accurate but are easy
and would not increase the computational time. But setting a too high value of α would
lead to economical loss, so one would have to be careful when increasing α.

4.3 Model Predictive Controller

The stochastic optimisation is than used for finding optimal set-points for the MPC. The
optimisation are done offline and online. Where the online optimisation re-optimise for
each discretization point, while the offline optimisation only optimise ones in the start.
The control sequence using the two different methods are shown in Figure 4.7.

0.0 0.5 1.0 1.5 2.0
time, [h]

200

300

400

500

600

700

800

900

1000

F1
,
[k

m
o
l/
h
]

F1_1

F1_2

0.0 0.5 1.0 1.5 2.0
time, [h]

0

100

200

300

400

500

600

700

F2
,
[k

m
o
l/
h
]

F2_1

F2_2

0.0 0.5 1.0 1.5 2.0
time, [h]

0

100

200

300

400

500

600

700

F1
0
,
[k

m
o
l/
h
]

F10_1

F10_2

0.0 0.5 1.0 1.5 2.0
time, [h]

0.65

0.70

0.75

0.80

0.85

0.90

0.95

X
,
[-

]

XH2_1

X5_1

XH2_2

X5_2

Figure 4.7: The control sequence with 20 steps with use of MPC. With offline optimisation noted
with 1 and the online optimisation noted with 2. The state of XH2 and X5 for each
discretization point are also shown, with the same notation.

From the plot of X5 in Figure 4.7 that the value lies closer to the optimal with online

31

optimisation than with offline. This is expected, as one re-optimise with current state for
each discretization point with online optimisation. So one can reset the set-points, given
the knowledge of which state the system is in. For XH2 there is no significant difference on
how close the values lies to the optimum for the two methods. But for offline optimisation
the values varies more for each step, this is also true for X5. The reason is that with
offline optimisation one do not update for the current state of the system. So depending
on the difference between the outcome of the stochastic variables between two steps the
state will also vary the same. But as for online optimisation the variation will be only
from the outcome of one step to the next one. The reason are that one take measurement
of the current state and make adjust to the set-point for that outcome.

For the control variables the online optimisation have lower consumption of F1, then for
offline optimisation. As one have re-optimisation in each point the variance is only for
one step. While for offline optimisation one need to consider the variance for all of the
steps. So offline line optimisation have more uncertainties in F3 so it uses less. So the
probability becomes the same as online optimisation. F2 are zero for both. While F10

are higher for the online optimisation. So one have less recycling of hydrogen with online
optimisation. This is expected as one have updates on the state through measurements,
so one can recycle less with the same uncertainty. For the economical prospective as the
consumption of F1 are less, it is better to use online optimisation.

The problem with online optimisation; is the time it takes. As one have to re-optimise
for each step, then run Monte Carlo simulation to find the probability distributions and
calculate a new back-offs. This takes time, especially the Monte Carlo simulations. With
1000 simulation and 20 discretization points it is 20 000 calculations for each optimisation.
So for offline optimisation the average time was 4 minutes and 25 seconds while it was 35
min for online optimisation. Because of this the online optimisation would not be practical
for control.

In the calculations it is the Monte Carlo simulations that take the most amount of time.
So in an effort to reduce computational time for the online optimisation, the number of
simulations was reduced to 100. This would lead to a less accurate probability distribution
of XH2 and X5. But since one takes measurements in each discertization point one do not
need as accurate probability distribution. The online optimisation are carried out with
100 Monte Carlo simulations and compared with the offline optimisation in Figure4.8.

32

0.0 0.5 1.0 1.5 2.0
time, [h]

200

300

400

500

600

700

800

900

1000

F1
,
[k

m
o
l/
h
]

F1_1

F1_2

0.0 0.5 1.0 1.5 2.0
time, [h]

0

100

200

300

400

500

600

700

F2
,
[k

m
o
l/
h
]

F2_1

F2_2

0.0 0.5 1.0 1.5 2.0
time, [h]

0

100

200

300

400

500

600

700

F1
0
,
[k

m
o
l/
h
]

F10_1

F10_2

0.0 0.5 1.0 1.5 2.0
time, [h]

0.65

0.70

0.75

0.80

0.85

0.90

0.95

X
,
[-

]

XH2_1

X5_1

XH2_2

X5_2

Figure 4.8: The control sequence with 20 steps with use of MPC. With offline optimisation
noted with 1 and the online optimisation noted with 2. Where online optimisation
are carried out with 100 Monte Carlo simulations instead of 1000. The state of XH2

and X5 for each discretization point are also shown, with the same notation.

From the Figure 4.8 one can see similar tendency as for when had 1000 Monte Carlo
simulations. But the are larger variance for the online optimisation. This is expected as one
get less accurate model of the probability distribution. But one still get less consumption
of F1 compared with offline. So from an economical prospective it is favourable to offline.
But is still takes more time then offline, with 7 minutes and 50 seconds. This is still a
to large time, but with decomposing the problem and parallel solve it the time could be
reduced additionally. There are also other ways of reducing the computational time. One
can use Markov chain Monte carlo simulations to find the probability distributions [Wang
2005],[Mart́ı et al. 2015].

The results of the three different methods are presented in the Table below:

Optimisation type # Monte Carlo time [s] Cost [euro]

Offline 1000 245 1522
Online 1000 2100 1329
Online 100 470 1346

Table 4.1: The type of optimisation used, with number of Monte Carlo simulations and the
objective function value.

One can see that offline optimisation gives larges cost, while there are small difference
between running 1000 and 100 Monte Carlo simulations. So online optimisation are the
best economical alternative, but have problems with computational time. This is especially
true when one run 1000 simulations as it almost takes 10 times as long time as offline
optimisation.

33

5 Conclussion

Stochastic optimisation can be used to optimise system with uncertainties. Where one can
find an optimum that is feasible independently of the outcome of the stochastic variables.
This is shown in Section 2 where 4 different methods are applied to simple stochastic
optimisation examples. Also a case study of an hydrodesulfurization unit are solved sar-
castically for illustrating how a real world problem can be solved with use of stochastic
optimisation.

From the results presented in Section 4 it can been seen that Monte Carlo simulation
can be used for finding the probability distribution of the chance constraints. But the
assumption of normal distribution are not as good fit for XH2, as it have a long lower tail.
Since the probability distribution does not fit so well, the number of constraint violations
are higher then the specified confidence level. This could be fixed with a better estimation
of the probability distribution. One could use weighted fitting for better fit of the region
of interest. For X5 the normal distribution gives an accurate fit.

When the back-off was calculated, the number of constraint violations was initially very
high for X5. The reason was that the mean value of the probability distribution of X5 was
below the lower bound of X5. A modified back-off calculation method was tested, where
the difference between the mean value of the probability distribution and lower bound was
added to Equation (3.11). This gave a much lower number of constraint violations for X5.
But it gave more violations for XH2, so it was only implemented for X5. But for further
work one should add a correction factor to the back-off calculations. Then use an iterative
process to converge the back-off such that one gets the wanted probability.

Two methods of optimisation was used fro the MPC, online and offline optimisation.
Offline optimisation had a higher cost than online optimisation. The computational time
for online optimisation was too high, so the number of Monte Carlo simulations was
reduced to 100. This reduced the computational time significantly. It gave a higher cost
but was still below the cost of offline optimisation.

Implementation of weighted fitting of the outcome from the Monte Carlo, to get a better
approximation of the probability distribution. Are something that would be interesting
to look at in further work. Also how one could decrease the computational time of even
further, with use of other methods for approximate the probability distribution, rather
then Monte Carlo simulation. Also run a comparison of the different method explained
in Section 2 for the case study. With comparing of computational time and reliability for
the different methods. This is all aspects that would have been interesting to look into,
and do further work on.

34

References

Van Hessem, D. (2004). Stochastic inequality constrained closed-loop model predictive con-
trol. isbn: 904072489X.

Feedback, Lectures O N (2013). “Lectures on”. In: doi: 10.1007/978-1-4684-1806-4.
Bertsimas, Dimitris, David B. Brown, and Constantine Caramanis (2011). “Theory and

Applications of Robust Optimization”. In: SIAM Review 53.3, pp. 464–501. issn: 0036-
1445. doi: 10.1137/080734510. arXiv: 1010.5445. url: http://books.google.com/
books?hl=en{\&}lr={\&}id=DttjR7IpjUEC{\&}oi=fnd{\&}pg=PR9{\&}dq=Robust+

Optimization{\&}ots=W463fBWlR-{\&}sig=N1DRhYF4NIE1XxZRwGsmZXy-0gU.
Li P.; Arellano-Garcia, H.; Wozny G (2006). “Chance constrained programming approach

to process optimization under uncertainty”. In: Computer Aided Chemical Engineer-
ing 21, pp. 1245–1250. issn: 0098-1354. doi: http : / / dx . doi . org / 10 . 1016 / j .

compchemeng.2007.05.009.
Wendt, Moritz, Pu Li, and Günter Wozny (2002). “Nonlinear Chance-Constrained Pro-

cess Optimization under Uncertainty”. In: Industrial & Engineering Chemistry Research
41.15, pp. 3621–3629. issn: 0888-5885. doi: 10.1021/ie010649s. url: http://dx.doi.
org/10.1021/ie010649s.

Sobol, Ilya M. (1994). A Primer for the Monte Carlo Method. CRC Press, p. 128.
Zhao, Zinan et al. (2015). “A Novel Approach to Chance Constrained Optimal Control

Problems”. In: pp. 5611–5616.
Navia, D. et al. (2014). “A comparison between two methods of stochastic optimiza-

tion for a dynamic hydrogen consuming plant”. In: Computers & Chemical Engineering
63, pp. 219–233. issn: 00981354. url: http://www.sciencedirect.com/science/
article/pii/S0098135414000362.

Robinson, Stephen M (2006). Springer Series in Operations Research and Financial En-
gineering. isbn: 9780387303031.

Kall, Peter and Janos Mayer (2005). Stochastic LP. isbn: 0387233857.
Vlerk, M H van der (1995). “Stochastic programming with integer recourse”. In: pp. 1–24.
Caroe, C C and R Schultz (1999). “Dual decomposition in stochastic integer program-

ming”. In: Operations Research Letters 24, p. 37. issn: 01676377. doi: 10.1016/S0167-
6377(98)00050-9.

Prékopa, András (1995). Stochastic Programming, p. 599. isbn: 9789048145522.
Sen, S. and J. L. Higle (1999). “An Introductory Tutorial on Stochastic Linear Program-

ming Models”. In: Interfaces 29.2, pp. 33–61. issn: 0092-2102. doi: 10.1287/inte.29.
2.33.

Prékopa, András (2003). “Stochastic Programming”. In: Handbooks in Operations Re-
search and Management Science 10, pp. 267–351. issn: 09270507. doi: 10.1016/S0927-
0507(03)10005-9. url: http://www.sciencedirect.com/science/article/pii/
S0927050703100059.

Mart́ı, Rubén et al. (2015). “Improving scenario decomposition algorithms for robust non-
linear model predictive control”. In: Computers & Chemical Engineering 79, pp. 30–
45. issn: 00981354. url: http://www.sciencedirect.com/science/article/pii/
S0098135415001258.

Arnold, T (2013). “A mixed-integer stochastic nonlinear optimization problem with joint
probabilistic constraints ”. In: pp. 1–14.

Kibzun, Andrey I. and Kan Yuri S. (1996). Stochastic Programming Problems. John Wiley
& Sons Ltd., p. 301. isbn: 0471958158.

R, Courant and Hilbet D. (2008). Methods of Mathematical Physics. Hoboken New York:
Wiley. isbn: 471-50447-5.

35

Hong, L. J., Y. Yang, and L. Zhang (2011). “Sequential Convex Approximations to Joint
Chance Constrained Programs: A Monte Carlo Approach”. In: Operations Research
59.3, pp. 617–630. issn: 0030-364X. doi: 10.1287/opre.1100.0910.

Andersson, Joel (2013). Faculty of Engineering Science A General-Purpose Software Frame-
work for Dynamic Optimization. October. isbn: 9789460187506.

Foss, Bjarne and TAN Heirung (2013). “Merging Optimization and Control”. In: pp. 1–
57. url: http://www.itk.ntnu.no/fag/fordypning/TK16-filer/Samling1{_
}MPCnotat.pdf.

Wang, J.S.. Kendall W. S. Liang F. and (2005). Markov Chain Monte Carlo, Volume 7.
World Scientific Publishing Co., p. 239.

Rao, Anil V. (2009). “A survey of numerical methods for optimal control”. In: Advances
in the Astronautical Sciences 135.1, pp. 497–528. url: http://vdol.mae.ufl.edu/
ConferencePublications/trajectorySurveyAAS.pdf.

36

A Parameters, Initial Conditions and Constraints

Parameter Value Unit Parameter Value Unit

M 20 - TF 2.0 h

R 0.08314 m3bar
Kkmol T 623.15 K

V 100 m3 P 68.901 bar

τ 0.3 h ρ 12.6 kmol
m3

FHC 102 m3

h Z 1 -

CH4 88.1 ¤
Mmol CH3 77 ¤

Mmol
X1 0.991 - X2 0.931 -
X3 0.85 - XH2(t0) 0.9 -

FH2
x (t0) 682.5 kmol

h F lb1 0 kmol
h

F ub1 1400 kmol
h F lb2 0 kmol

h

F ub2 790 kmol
h F lb3 0 kmol

h

F ub3 5000 kmol
h F10

lb 0 kmol
h

F10
ub 1500 kmol

h Xub
5 1 -

X lb
5 0.9 - Xub

H2 1 -
X lb
H2 0.7 -

Table A.1: The parameters, upper/lower bounds and initial conditions used for solving (3.10).

Parameter Value Unit Parameter Value Unit

µFHC 12.6 kmol
m3 µX3 0.85 -

σFHC 0.4 kmol
m3 σX3 0.013 -

αXH2
0.9 - αX5 0.9 -

ˆµXH2
0.7 - ˆµX5 0.9 -

ˆσXH2
0.03 - ˆσX5 0.01 -

Table A.2: The parameters used for calculating the back-off found from the Monte Carlo simu-
lations. Parameters for the binormal probability distribtuion of FHC and X3.

B Numerical Methods for Solving Nonlinear Optimisation
Problems

Nonlinear optimisation problems are often large problems that can consist of multiple
ordinary differential equations (ODE) and differential algebraic equations (DAE). An an-
alytical solution is usually not possible or very complex. Numerical methods are often
used when solving nonlinear optimisation problems. Numerical methods approximate the
problem then use an iterative process to converge to a solution. In the solving process
one often has to use a large number of operations, this is time consuming to do by hand.
Since the operations usually only are elementary algebraic and logical operations it can
easily be done with the use of a computer.

There are many different ways of solving nonlinear optimisation problems but one can
divide them in two main methods, the indirect approach and the direct approach. In an
indirect approach one converts the nonlinear optimisation problem into a boundary value
problem, and solution is found by solving a system of differential equations. In the direct

37

approach one approximates the differential equations then implements the approximation
into the optimisation problem [Rao 2009].

When using the direct approach there are three major methods, single shooting, multi-
ple shooting and the orthogonal collocation method. The single shooting and multiple
shooting method are briefly explained below.

B.1 Direct Single shooting Method

In the direct single shooting method one divides the time interval [t0, tf] into equal distance
sub-intervals. The parameters are discretized such that they are stepwise constant for each
sub-interval. Then use an integrator to solve the ODE/DAE for the states. When solving
the ODE/DAE with an integrator the optimisation problem becomes only depended on the
parameters. The new optimisation problem is solved for the parameters. The integration
and optimisation processes are repeated until one converges to an optimal solution.

The advantages with single shooting method is that it is easy to implement and use, also
the optimisation problem has few degrees of freedom. The disadvantages are the can not
use knowledge of x for initialisation and it has problems with solving unstable systems.

B.2 Direct Multiple Shooting Method

In the direct multiple shooting methods one first divides the time interval [t0, tf] into equal
distance sub-intervals. Then one preforms single shooting over each sub-interval. To get
a continuous function, constraint are added such that each end point is equal to the start
point of the next sub-interval. These constraints are often called compatibility constraint,
and are usually given as:

x(t+k)− x(t−k+1) = 0, for k = 0, ...,M (B.1)

Where x is the approximated state, tk is the time interval k, − indicates the start the time
interval and + state the end of time interval.

The advantage of using multiple shooting compared with single shooting is that it is
capable to treat unstable systems and one can use knowledge of x for initialisation. The
disadvantage is the number of state variables and constraints increases with the number
of time intervals. Because of this multiple shooting makes the optimisation problem large.

C Statistics

Here are some general terms and equations from statistics that are used in this report
given.

C.1 Normal probability distribution

The normal probability distribution is given as:

38

f(x) =
1

σ
√

2π
exp(−(x− µ)2

2σ2
) (C.1)

Where x is the random variable, σ2 is the variance, µ is the mean value.

If the mean is zero and the variance is one, the normal probability distribution is called
the standard normal probability distribution.

The cumulative distribution of the normal probability distribution is given as:

f(x)−1 =
1

2

(
1 + erf

(
x− µ
σ
√

2

))
(C.2)

Where f()−1 is the cumulative distribution, x is the random variable and erf is the error
function.

C.2 Multivariate Normal Probability Distribution

The multivariate normal probability distribution is a normal probability distribution, but
instead of one random variable there are k variables, k ≥ 2. The multivariate normal
probability distribution is given as:

fx(x1, ..., xk) =
1√

(2π)k|Σ|
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
(C.3)

Where Σ is the covariance matrix and |Σ| is the determinate of the covariance matrix.

For a case where there is only two variables, k = 2, the covariance matrix is given as:

Σ =

[
σ2x1 ρσx1σx2

ρσx1σx2 σ2x2

]
(C.4)

Where ρ is the correlation coefficient.

D Back-off

Back-off is the difference between the optimal set-point and the set-point used in control.
In control one does not want set the set-point at the optimal set-point. The reason is that
there are uncertainties in control dynamics and measurements. If one does not have large
enough back-off this can lead to constraint violations.

For chance constraints the back-off is calculated such that the constraint holds with a
probability of some given value α or higher. There are two kinds of chance constraints,
individual chance constraints and joint chance constraint. Individual chance constraint are
chance constraints where each individual chance constraint needs to hold by some given
α. Joint chance constraint are chance constraint where the combined chance constraints
need to hold by some given α.

39

D.1 Individual Chance Constraint

When one has individual chance constraints the back-off can be calculated separately for
each chance constraint. The derivation of how to find the back-off is given here. The
derivation is taken from Van Hessem 2004.

The chance constraint are given as:

P(hTj x(ξ) ≤ gj) ≥ α (D.1)

Where x(ξ) is random variable, hTj is some parameter vector and gj is the constraint value.

Let us suppose that α ≥ 1
2 , this is done such that the constraint is a second-order cone

constraint. Then define the probability function as:

p(ξ) = hTj x(ξ) (D.2)

Where p(ξ) is a normal probability function with mean µx and variance σ2x the variance
can be written as:

σ2x = hTj Zhj (D.3)

Where Z is the covariance matrix for x.

Lets first transform the normal probability function to a standard normal probability
function, this is done to make the computation easier. The standard normal probability
function for p(ξ) is given as:

pn(ξ) =
p(ξ)− µx

σx
(D.4)

Where σx is the variance of x, and pn(ξ) is the standard normal probability function with
mean zero and variance one.

Where the constraint can now be written as:

FG

(
gj − µx
σx

)
≥ α (D.5)

The constraint can be written as:

p̂+ F−1G (α)
√
hTj Zhj ≤ gj (D.6)

Where F−1G is the cumulative distribution function.

40

D.2 Joint Chance Constraint

For joint chance constraint are when multiple chance constraints need to some given level
of certainty α. Joint chance constraint is often written as:

P(hTj x(ξ) ≤ gj , ∀j) ≥ α (D.7)

Because of the constraints need to simultaneous hold for some certainty value α, one need
to use multivariate normal probability distribution for the probability distribution of the
constraint. The multivariate normal probability distribution are highly nonlinear function,
and finding a solution of this probability distribution that gives confidence level of α is
highly complex problem. Because of this derivation of joint chance constraints are not
include in this report [Van Hessem 2004],[Wendt, Li, and Wozny 2002].

E MATLAB

In this section all of the MATLAB codes used in the Section 2 are given.

E.1 Simple Recourse Model Example

Here are the MATLAB code used for solving (2.13) given.

1 % Simple Recourse Model
2

3 % Looking at an example given in [Sen, Higle, 1999]
4 % Min = -x 2
5 % s.t. x 1 + x 2 + x 3 = 2
6 % -a*x 1 + a*x 2 + x 4 = 2
7 % -1 =< x 1 => 1
8 % x j => 0, j = 2,3,4.
9

10 % Where a 21 and a 22 are not know with certainty, and the joint
11 % distribution is given as: {(1,3/4) with probability 0.5
12 % {(-3,5/4) with probability 0.5
13

14 % Solution
15 g = 5; %Penalty cost parameter
16 f = [0 -1 0 0 g/2 g/2 g/2 g/2]; % cost function
17

18 Aeq = [1 1 1 0 0 0 0 0;
19 1 3/4 0 1 1 -1 0 0;
20 -3 5/4 0 1 0 0 1 -1]; % Constraint Matrix
21

22 beq = [2;
23 2;
24 2]; % Constraint value vector
25

26 A = zeros(1,8); % Inequality constraint matrix
27

28 b = zeros(1,1); % Inequality value vector
29

30 LB = [-1;0;0;0;0;0;0;0]; % Lower bound vector
31

41

32 UB = [1;Inf;Inf;Inf;Inf;Inf;Inf;Inf]; % upper bound vector
33

34 % Solve the problem stated above.
35 [x,fval,EF] = linprog(f,A,b,Aeq,beq,LB,UB);
36

37 % EF is the existflag and if it is 1, the function linprog found a feasible
38 % soultion to the problem.
39 % Check if the solution is feasible
40 if EF > 0
41 fprintf('Feasbile solution \n ');
42 else
43 fprintf('Unfeasible solution \n ');
44 end
45

46 % Prints results
47 string = ['The solution is [%1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f ...

%1.4f] \n ' ...
48 'the cost function is %2.4f \n '];
49

50 fprintf(string, x(:,1),fval);

E.2 General Recourse Model, Example

Here are the MATLAB code used for solving (2.17) given.

1 % General Recourse Model
2

3 % Same example as simple recourxe model.
4 % With decision of x 2,x 3 and x 4 do not have to be made before stage 2.
5

6 % Solution
7 f = [0 -0.5 0 0 -0.5 0 0]; % cost function
8 Aeq = [1 1 1 0 0 0 0 ;
9 1 3/4 0 1 0 0 0 ;

10 1 0 0 0 1 1 0;
11 -3 0 0 0 5/4 0 1]; % Equallity constraint matrix
12 beq = [2;
13 2;
14 2;
15 2]; % Constraint value vector
16 A = [0 0 0 0 0 0 0]; % Inequallity constraint matrix
17 b = [0]; % Constraint value vector
18 lb = [-1; 0; 0; 0; 0; 0; 0]; % Lower bound vector
19

20 ub = [1; Inf; Inf; Inf; Inf; Inf; Inf]; % upper bound vector
21

22 % Calculation
23

24 [x, fval, EF] = linprog(f,A,b,Aeq,beq,lb,ub);
25

26 % EF is the existflag and if it is 1, the function linprog found a feasible
27 % soultion to the problem.
28 % Check if the solution is feasible
29 if EF > 0
30 fprintf('Feasbile solution \n ');
31 else
32 fprintf('Unfeasible solution \n ');
33 end
34

42

35 % Prints results
36 string = ['The solution is [%1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f] \n ' ...
37 'the cost function is %2.4f \n '];
38

39 fprintf(string, x(:,1),fval);

E.3 Multistage Recourse Model, Example

Here are the MATLAB code used for solving (2.25) given

1 % Multistage recourse model
2

3 % Use same example but with x 2 as a third stage variable, and x 3 and x 4
4 % as second stage variables.
5

6 % Formulation of cost function and constraints
7

8 f = [0 0 0 0 0 -1/4 -1/4 -1/4 -1/4]; % cost function
9

10 A = zeros(1,length(f)); % inequality constraint matrix
11

12 b = zeros(1,1); %
13

14 Aeq = [1 1 0 0 0 1 0 0 0;
15 1 0 1 0 0 3/4 0 0 0;
16 1 0 0 1 0 0 1 0 0;
17 -3 0 0 0 1 0 5/4 0 0;
18 1 1 0 0 0 0 0 1 0;
19 1 0 1 0 0 0 0 3/4 0;
20 1 0 0 1 0 0 0 0 1;
21 -3 0 0 0 1 0 0 0 5/4;];
22

23 beq = [2 2 2 2 2 2 2 2]';
24

25 lb = [-1 0 0 0 0 0 0 0 0]';
26 ub = [1 inf inf inf inf inf inf inf inf]';
27

28 [x, fval, EF] = linprog(f,A,b,Aeq,beq,lb,ub);
29

30 % EF is the existflag and if it is 1, the function linprog found a feasible
31 % soultion to the problem.
32 % Check if the solution is feasible
33 if EF > 0
34 fprintf('Feasbile solution \n ');
35 else
36 fprintf('Unfeasible solution \n ');
37 end
38

39 % Prints results
40 string = ['The solution is [%1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f \n' ...
41 '%1.4f %1.4f] the cost function is %2.4f \n '];
42

43 fprintf(string, x(:,1),fval);

E.4 Robust Optimisation, Example

Here are the MATLAB code used for solving (2.21) given.

43

1 % Robust optimisation
2

3 f = [0 -0.5 0 0 -0.5 0 0]; % linear cost function
4

5 H = [0 0 0 0 0 0 0;
6 0 1/8 0 0 0 0 0;
7 0 0 0 0 0 0 0;
8 0 0 0 0 0 0 0;
9 0 0 0 0 1/8 0 0;

10 0 0 0 0 0 0 0;
11 0 0 0 0 0 0 0]; % Quadratic cost function
12 H = 2*H; % need to recalculate H since quadprog uses 1/2 times H in the
13 % formulation of the quadratic cost function
14

15 Aeq = [1 1 1 0 0 0 0 ;
16 1 3/4 0 1 0 0 0 ;
17 1 0 0 0 1 1 0;
18 -3 0 0 0 5/4 0 1]; % Equallity constraint matrix
19 beq = [2;
20 2;
21 2;
22 2]; % Constraint value vector
23 A = [0 0 0 0 0 0 0]; % Inequallity constraint matrix
24 b = [0]; % Constraint value vector
25 lb = [-1; 0; 0; 0; 0; 0; 0]; % Lower bound vector
26

27 ub = [1; Inf; Inf; Inf; Inf; Inf; Inf]; % upper bound vector
28

29 [x, fval, EF]=quadprog(H,f,A,b,Aeq,beq,lb,ub);
30

31 % EF is the existflag and if it is 1, the function linprog found a feasible
32 % soultion to the problem.
33 % Check if the solution is feasible
34 if EF > 0
35 fprintf('Feasbile solution \n ');
36 else
37 fprintf('Unfeasible solution \n ');
38 end
39

40 % Prints results
41 string = ['The solution is [%1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f] \n ' ...
42 'the cost function is %2.4f \n '];
43

44 fprintf(string, x(:,1),fval);

E.5 Chance Constraint, Example

Here are the MATLAB code used for solving (2.48) given.

1 % Probabilistic constraint
2

3 % Example taken from [Kizbun, Kan 1996] "Reserving Air Tickets"
4

5

6

7 % Parameters
8

9 c = [300 30 1000 280 250];
10 n =[350 350];

44

11

12 mu = 1/20;
13 alpha = 0.99;
14

15 % Calculations
16 F b = icdf('Exponential',alpha,mu);
17

18 f a = (1-exp(-20*F b))/(1-exp(-20)) - alpha;
19

20 a b = log(1-((1-exp(-20*icdf('Exponential',alpha,mu)))/(1-exp(-20)) ...
21 -alpha)*(1-exp(-20)))/-20;
22

23 f = [-c(1) c(5) 1];
24

25 A = [0 1 0;
26 c(4)*a b 0 -1;
27 (c(4)*a b+c(2)*(1-a b)) 0 -1;
28 (c(4)*a b+c(3)*(1-a b)) -(c(3)-c(2)) -1;
29 c(4)*F b 0 -1;
30 (c(4)*F b+c(2)*(1-F b)) 0 -1;
31 (c(4)*F b+c(3)*(1-F b)) -(c(3)-c(2)) -1];
32

33 b = [n(2) 0 c(2)*n(1) c(3)*n(1) 0 c(2)*n(1) c(3)*n(1)]';
34

35 lb = [0 0 0]';
36 ub = [inf inf inf]';
37

38 [x, fval, EF] = linprog(f,A,b,[],[],lb,ub);

F Python

In this Section the code used for solving the stochastic optimisation problem defined in
Section 3 is given. Also the code used for running the MPC simulation and plotting the
results of the MPC simulations is given here as well.

F.1 Stochastic Optimisation, Python code

Here are the code used to solve the stochastic optimisation problem defined in Section 3

1 from casadi import *
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.stats import norm
5 # from math import sqrt
6 from scipy.linalg import sqrtm
7 import time
8

9 start = time.time()
10 # Define Time periods and end time
11

12 N = 20 # Control discretization
13 TF = 2.0 # End time
14

15 # Parameters
16 R = 0.08314 # Gas constant [mˆ3 bar/K kmol]

45

17 T = 623.15 # Temperature in reactor [K]
18 V = 100 # Volume of reactor [mˆ3]
19 P = 68*1.01325 # Pressure in reactor [bar]
20 tau = 0.3 # Time constant [h]
21 rho = 12.6 # Hydrogen consumption rate in the reactor [kmol/mˆ3]
22 FHC = 102 # Flow of hydrocarbons into the reactor [mˆ3/h]
23 Z1 = 1.0 # Compressibility factor ideal gas [-]
24

25 # CH4 = 88.1 # Cost of stream F2 [euros/Mmol]
26 # CH3 = 77 # Cost of stream F1 [euros/Mmol]
27 CH4 = 0.0881 # Cost of stream F2 [euros/kmol]
28 CH3 = 0.077 # Cost of stream F1 [euros/kmol]
29

30 X1 = 0.991 # molefraction of hydrogen in stream 1 [-]
31 X2 = 0.931 # molefraction of hydrogen in stream 2 [-]
32 X3 = 0.85 # molefraction of hydrogen in stream 3 [-]
33

34 #Iinitial and end transition points
35 XH2 init = 0.9 # Initial hydrogen fraction inside the reactor [-]
36 FXH2 init = 682.5 # Initial feed of hydrocarbons [kmol/h]
37

38 F1 init = 340.0 # Initial flow in stream 1 [kmol/h]
39 F2 init = 0.0 # Initial flow in stream 2 [kmol/h]
40 F3 init = 0.0 # Initial flow in stream 3 [kmol/h]
41 F10 init = 0.0 # Initial flow in stream 10 [kmol/h]
42 F5 init = F1 init + F2 init + F3 init # Initial flow in stream 5 [kmol/h]
43 X5 init = (F1 init*X1+F2 init*X2+F3 init*X3)/(F1 init+F2 init+F3 init) # ...

Initial hydrogen fraction in stream 5 [-]
44

45 # Constraints
46 F1 ub = 1400.0
47 F1 lb = 0.0
48 F2 ub = 790.0
49 F2 lb = 0.0
50 F3 ub = 5000.0
51 F3 lb = 0.0
52 F10 ub = 1500.0
53 F10 lb = 0.0
54

55 F5 lb = 0.0
56 F5 ub = F1 ub+F2 ub+F3 ub
57 X5 ub = 1.0
58 X5 lb = 0.9
59 XH2 ub = 1.0
60 XH2 lb = 0.7
61

62 """ Solving the deterministic optimisation problem for a ...
hydrodesulphurisation part of plant.

63 Where the objective is to minimize the cost of hydrogen, while keeping the ...
hydrogen fraction in

64 the reactor, XH2, above 0.7. If the fraction goes below 0.7, the catalyst ...
in the reactor will

65 become damages. The hydrogen fraction are controlled by three inlet stream.
66 """
67 # Declare variables
68 x = SX.sym("x",2) # Differential states XH2, FxH2,
69 u = SX.sym("u",3) # Control variables F1, F2, F10
70 z = SX.sym("z",3) # Algebraic states F5, X5, F3
71 t = SX.sym("t") # time
72

73 # Number of state and control variables
74 nx = x.size1() # number of state variables

46

75 nu = u.size1() # number of control variables
76 nz = z.size1() # Number of algebraic state variables
77 nvar = nx+nu+nz # Number of variables
78

79 # Differential equations
80 f x = vertcat([((Z1*R*T)/(V*P))*(z[0]*z[1] - u[2]*x[0] - x[1]), (...

1/(tau))*(FHC*rho - x[1])])
81

82 # Algebraic equations
83 f z = vertcat([u[0] + u[1] + z[2] - z[0] , u[0]*X1 + u[1]*X2 + z[2]*X3 - ...

z[0]*z[1], z[0] - u[2] - x[1]])
84

85 # Objective function
86 f u = vertcat([CH4*X1*u[0] + CH3*X2*u[1]])
87

88 # Define the dae system to be called by the integrator
89 dae = SXFunction("dae", daeIn(x=x, z=z, p=u, t=t), daeOut(ode=f x, ...

alg=f z, quad=f u))
90

91 # Integrator for solving the Dae system
92 opts = {"tf":TF/N} # interval length
93 # opts["tf"] = TF/N
94 # opts["linear solver"] = "csparse"
95 # opts["linear solver type"] = "user defined"
96 opts["abstol"] = 1e-2 # tolerance
97 opts["reltol"] = 1e-2 # tolerance
98 I = Integrator("I","idas", dae,opts)
99

100 # Variable bounds and initial guess
101 nv = nu*N + nx*(1 + N) + nz*(N + 1)
102 v = MX.sym("v",nv)
103

104 # Get the differential states for each shooting interval
105 xk = [v[nvar*k:nvar*k+nx] for k in range(N+1)]
106

107 # Get the algebraic states for each shooting interval
108 zk = [v[nvar*k+nx:nvar*k+nx+nz] for k in range(N+1)]
109

110 # Get the control for each shooting interval
111 uk = [v[nvar*k+nx+nz:nvar*k+nx+nz+nu] for k in range(N)]
112

113 # Variable bounds
114 vmin = -inf*np.ones(nv)
115 vmax = inf*np.ones(nv)
116

117 # State bounds
118 vmin[0::nvar] = XH2 lb
119 vmax[0::nvar] = XH2 ub
120 vmin[1::nvar] = 0
121 vmin[2::nvar] = F5 lb
122 vmax[2::nvar] = F5 ub
123 vmin[3::nvar] = X5 lb
124 vmax[3::nvar] = X5 ub
125 vmin[4::nvar] = F3 lb
126 vmax[4::nvar] = F3 ub
127

128 # Control bounds
129 vmin[5::nvar] = F1 lb
130 vmax[5::nvar] = F1 ub
131 vmin[6::nvar] = F2 lb
132 vmax[6::nvar] = F2 ub
133 vmin[7::nvar] = F10 lb

47

134 vmax[7::nvar] = F10 ub
135

136 # Initial solution guess (Values found from steady state solution)
137 v0 = np.zeros(nv)
138 v0[0::nvar] = 0.7
139 v0[1::nvar] = 1285.2
140 v0[2::nvar] = 1927.8
141 v0[3::nvar] = 0.9
142 v0[4::nvar] = 1244.18
143 v0[5::nvar] = 683.617
144 v0[6::nvar] = 0.0
145 v0[7::nvar] = 642.6
146

147 # Initial condition
148 vmin[0] = vmax[0] = v0[0] = XH2 init
149 vmin[1] = vmax[1] = v0[1] = FXH2 init
150 # vmin[2] = vmax[2] = v0[2] = F5 init
151 # vmin[3] = vmax[3] = v0[3] = X5 init
152 # vmin[4] = vmax[4] = v0[4] = F3 init
153

154 # Constraint function with bounds
155 g = []; gmin = []; gmax = []
156 # Objective function
157 J = 0
158

159 # Build up a graph of integrator calls
160 for k in range(N):
161 # Call the integrator
162 xf = I({ 'x0':xk[k], 'z0':zk[k], 'p':uk[k] })["xf"]
163 uf = I({ 'x0':xk[k], 'z0':zk[k], 'p':uk[k] })["qf"]
164 # Add contribution to objective
165 J += uf
166 # Append continuity constraints and algebraic constraints
167 g.append(xf[0] - xk[k+1][0])
168 g.append(xf[1] - xk[k+1][1])
169 g.append(zk[k][0] - uk[k][0] - uk[k][1] - zk[k][2])
170 g.append(uk[k][0]*X1 + uk[k][1]*X2 + zk[k][2]*X3 - zk[k][0]*zk[k][1])
171 g.append(zk[k][0] - uk[k][2] - xk[k][1])
172

173 g = vertcat(g)
174

175 def MPC(v,J,g,steps,case):
176 # Optimisation
177 nlp = MXFunction("nlp",nlpIn(x=v), nlpOut(f=J, g=g))
178 solver = NlpSolver("solver","ipopt", nlp)
179 sol = solver({"lbx" : vmin, # State lower bounds
180 "ubx" : vmax, # State upper bounds
181 "x0" : v0, # Initial guess
182 "lbg" : np.zeros(g.shape), # Constraint lower bound
183 "ubg" : np.zeros(g.shape)}) # Constraint upper bound
184 # Extract all of the decision variables from the solved nlp
185 v opt = sol["x"]
186

187 ns = 1000
188 X sim,Z sim = MonteCarlo(v opt,ns)
189

190 back off XH2,back off X5 = backoff(X sim,Z sim)
191 for k in range(0,N+1):
192 vmin[k*nvar] = 0.7 + back off XH2[k-1]
193 vmin[3+nvar*k] = 0.9 + back off X5[k-1]
194

195 # Creater vectors to show the step changes in the control variables

48

196 F1 u = []
197 F2 u = []
198 F10 u = []
199

200 XH2 y = [] #
201 X5 y = [] #
202 # XH2 y.append(XH2 init)
203 # X5 y.append(X5 init)
204

205 for i in range(steps):
206

207 # Optimisation
208 nlp = MXFunction("nlp",nlpIn(x=v), nlpOut(f=J, g=g))
209 solver = NlpSolver("solver","ipopt", nlp)
210 sol = solver({"lbx" : vmin, # State lower bounds
211 "ubx" : vmax, # State upper bounds
212 "x0" : v0, # Initial guess
213 "lbg" : np.zeros(g.shape), # Constraint lower bound
214 "ubg" : np.zeros(g.shape)}) # Constraint upper bound
215 # Extract all of the decision variables from the solved nlp
216 v opt = sol["x"]
217

218 # Define the solved variables
219 XH2 = v opt[0::nvar]
220 FXH2 = v opt[1::nvar]
221 F5 = v opt[2::nvar]
222 X5 = v opt[3::nvar]
223 F3 = v opt[4::nvar]
224 F1 = v opt[5::nvar]
225 F2 = v opt[6::nvar]
226 F10 = v opt[7::nvar]
227

228 if case == 2:
229 # Run online optimisation
230 ns = 100 # Number of Monte Carlo simulations
231 X sim,Z sim = MonteCarlo(v opt, ns);
232 back off XH2,back off X5 = backoff(X sim,Z sim);
233

234 for k in range(0,N+1):
235 vmin[k*nvar] = 0.7 + back off XH2[k-1]
236 vmin[3+nvar*k] = 0.9 + back off X5[k-1]
237 X temp1 = []
238 Z temp1 = []
239

240 sigma x3 = 0.013 # Variance for X3
241 sigma rho = 0.4 # Variance for FXH2
242 mu x3 = 0.85 # Mean value for X3
243 mu rho = 12.6 # Mean value for FXH2
244 mean = [mu x3, mu rho] # Mean values vector
245 r = -0.5 # correlation coefficient
246 cov = [[sigma x3**2, r*sigma rho*sigma x3], [r*sigma rho*sigma x3, ...

sigma rho**2]] # diagonal covariance
247 # Define States and Control variables
248 X = SX.sym("X",2) # Differential states XH2, FxH2,
249 U = SX.sym("U",3) # Control variables F1, F2, F10
250 Z = SX.sym("Z",3) # Algebraic states F5, X5, F3
251

252 # Differential equations
253 F x = vertcat([((Z1*R*T)/(V*P))*(Z[0]*Z[1] - U[2]*X[0] - ...

X[1]), (1/tau)*(FHC*np.random.multivariate normal(mean, ...
cov)[1] - X[1])])

254

49

255 # Algebraic equations
256 F z = vertcat([U[0] + U[1] + Z[2] - Z[0] , U[0]*X1 + U[1]*X2 + ...

Z[2]*np.random.multivariate normal(mean, cov)[0] - Z[0]*Z[1], ...
Z[0] - U[2] - X[1]])

257

258 # Objective function
259 F u = vertcat([CH4*X1*U[0] + CH3*X2*U[1]])
260

261 # Define the dae system to be called by the integrator
262 DAE = SXFunction("DAE", daeIn(x=X, z=Z, p=U, t=t), daeOut(...

ode=F x, alg=F z, quad=F u))
263

264 # Integrator for solving the Dae system
265 opts = {"tf":TF/N} # interval length
266 I sim = Integrator("I sim","idas", DAE)
267 ts = linspace(0,TF,N+1) # Time steps
268 if i == 0:
269 F1 u.append(F1[0])
270 F2 u.append(F2[0])
271 F10 u.append(F10[0])
272

273 # Run the simulation
274 for j in range(N-1):
275 sim = Simulator("sim",I sim,[ts[j],ts[j+1]])
276

277 # Input for the simulator
278 if j == 0:
279 sim.setInput([XH2[0],FXH2[0]],"x0")
280 sim.setInput([F5[0],X5[0],F3[0]],"z0")
281 sim.setInput([F1[0],F2[0],F10[0]],"p")
282 else:
283 sim.setInput(X temp1[-1],"x0")
284 sim.setInput(Z temp1[-1],"z0")
285 sim.setInput([F1[j],F2[j],F10[j]],"p")
286

287 sim.evaluate()
288 if j == 1:
289 # Set initial condition for next optimization cycle
290 vmin[0] = vmax[0] = v0[0] = sim.getOutput("xf")[0,0]
291 vmin[1] = vmax[1] = v0[1] = sim.getOutput("xf")[1,0]
292

293

294 F1 u[i+1:i+2] = F1[j]
295 F2 u[i+1:i+2] = F2[j]
296 F10 u[i+1:i+2] = F10[j]
297

298 XH2 y.append(sim.getOutput("xf")[0,0])
299 X5 y.append(sim.getOutput("zf")[1,0])
300

301 X temp1.append(sim.getOutput("xf")[:,-1])
302 Z temp1.append(sim.getOutput("zf")[:,-1])
303

304 return XH2 y,X5 y,F1 u,F2 u,F10 u
305

306 def MonteCarlo(v opt,ns):
307 """This is a function that runs Monte Carlo simulations for the ...

hydrodesulphurisation
308 plant. The function takes the optimal solution from the nlp solver, and ...

then simulates
309 ns simulation, with random outcome of X3 and rho. The output of the ...

function are

50

310 the endpoints from the simulation, X end, and the endpoints from each ...
step in

311 the simulations, X sim.
312 """
313 # Generates random outcomes for X3 and rho
314 # ns = 100 # Number of outcomes
315 sigma x3 = 0.013 # Variance for X3
316 sigma rho = 0.4 # Variance for FXH2
317 mu x3 = 0.85 # Mean value for X3
318 mu rho = 12.6 # Mean value for FXH2
319 mean = [mu x3, mu rho] # Mean values vector
320 r = -0.5 # correlation coefficient
321 cov = [[sigma x3**2, r*sigma rho*sigma x3], [r*sigma rho*sigma x3, ...

sigma rho**2]] # diagonal covariance
322 # For each outcome of X3 and rho run a simulation to get the outcome of ...

X3 and X5
323 X sim = [] # Make a a matrix to store all differential states for each ...

simulation outcome
324 Z sim = [] # Make algebraic states matrix for each simulation outcome
325 X end = []; # Make a matrix to store differential states end values ...

from each simulation
326 Z end = []; # Make a matrix to store algebraic states end values from ...

each simulation
327 ts = linspace(0,TF,N+1) # Time steps
328 # Extract the optimal solution to each variable
329 XH2 = v opt[0::nvar]
330 FXH2 = v opt[1::nvar]
331 F5 = v opt[2::nvar]
332 X5 = v opt[3::nvar]
333 F3 = v opt[4::nvar]
334 F1 = v opt[5::nvar]
335 F2 = v opt[6::nvar]
336 F10 = v opt[7::nvar]
337

338 for j in range(ns):
339 # Define States and Control variables
340 X = SX.sym("X",2) # Differential states XH2, FxH2,
341 U = SX.sym("U",3) # Control variables F1, F2, F10
342 Z = SX.sym("Z",3) # Algebraic states F5, X5, F3
343

344 # Differential equations
345 F x = vertcat([((Z1*R*T)/(V*P))*(Z[0]*Z[1] - U[2]*X[0] - ...

X[1]), (1/tau)*(FHC*np.random.multivariate normal(mean, ...
cov)[1] - X[1])])

346

347 # Algebraic equations
348 F z = vertcat([U[0] + U[1] + Z[2] - Z[0] , U[0]*X1 + U[1]*X2 + ...

Z[2]*np.random.multivariate normal(mean, cov)[0] - Z[0]*Z[1], ...
Z[0] - U[2] - X[1]])

349

350 # Objective function
351 F u = vertcat([CH4*X1*U[0] + CH3*X2*U[1]])
352

353 # Define the dae system to be called by the integrator
354 DAE = SXFunction("DAE", daeIn(x=X, z=Z, p=U, t=t), daeOut(...

ode=F x, alg=F z, quad=F u))
355

356 # Integrator for solving the Dae system
357 opts = {"tf":TF/N} # interval length
358 I sim = Integrator("I sim","idas", DAE)
359

360 # Run simulation for each outcome of the random variable

51

361 X temp = []
362 Z temp = []
363 for i in range(N):
364 # Run the simulator function that simulates the state variables ...

for each
365 # step with a given value of input variables
366 sim = Simulator("sim",I sim,[ts[i],ts[i+1]])
367

368 if i == 0:
369 sim.setInput([XH2[0],FXH2[0]],"x0")
370 sim.setInput([F5[0],X5[0],F3[0]],"z0")
371 sim.setInput([F1[0],F2[0],F10[0]],"p")
372

373 else:
374 sim.setInput(X temp[-1],"x0")
375 sim.setInput(Z temp[-1],"z0")
376 sim.setInput([F1[i],F2[i],F10[i]],"p")
377

378 sim.evaluate()
379 # Extract the end point for the state variables
380 X temp.append(sim.getOutput("xf")[:,-1])
381 Z temp.append(sim.getOutput("zf")[:,-1])
382 if i == N-2:
383 X end.append(sim.getOutput("xf")[0,-1])
384 Z end.append(sim.getOutput("zf")[1,-1])
385 Xsim = vertcat(X temp)
386 Zsim = vertcat(Z temp)
387

388 # Take the XH2 and
389 X sim.append(Xsim[0::nx])
390 Z sim.append(Zsim[1::nz])
391 # Convert from Dmatrix to np.array
392 Xend = np.hstack(X end)
393 Zend = np.hstack(Z end)
394 X Sim = np.hstack(X sim)
395 Z Sim = np.hstack(Z sim)
396

397 return X Sim,Z Sim
398 def backoff(X sim,Z sim):
399

400 """ This function calculates the back-off for each step, this is done
401 with fitting the outcome from the Monte Carlo simulations to a normal
402 probability distribution, then finding a back-off such that constraint
403 holds with given value, alpha, or higher. This back-off also take into
404 account the difference between the mean value and the lower bound
405 """
406 alpha x = 0.9
407 alpha z = 0.9
408 mu x = np.zeros(N)
409 mu z = np.zeros(N)
410 sigma x = np.zeros(N)
411 sigma z = np.zeros(N)
412 Z = []
413 sqrt Z = 0
414 back off XH2 = []
415 back off X5 = []
416

417 for i in range(N):
418 (mu x[i], sigma x[i]) = norm.fit(X sim[i][:]) # Find the mean and ...

variance for XH2, if XH2 have normal distribution
419 (mu z[i], sigma z[i]) = norm.fit(Z sim[i][:]) # Find the mean and ...

variance for X5, if X5 have normal distribution

52

420 # Find the covariance matrix Z
421 Z.append(np.cov(X sim[i],Z sim[i]))
422

423 # Calculates the back-off
424 # back off XH2.append(norm.cdf(alpha x)*(...

sqrt(np.cov(X sim[i][:])*2)))
425 # back off X5.append(norm.cdf(alpha z)*(...

sqrt(np.cov(Z sim[i][:])*2)))
426

427 sqrt Z = sqrtm(Z[i]) # Square root of the covariance matrix
428 # if (XH2 lb - mu x[i]) > 0:
429 # back off XH2.append(XH2 lb - mu x[i] + ...

np.dot([norm.cdf(alpha x),norm.cdf(alpha z)],sqrt Z)[0])
430 # else:
431 back off XH2.append(...

np.dot([norm.cdf(alpha x),norm.cdf(alpha z)],sqrt Z)[0])
432 if (X5 lb - mu z[i]) > 0:
433 back off X5.append(X5 lb - mu z[i] + ...

np.dot([norm.cdf(alpha x),norm.cdf(alpha z)],sqrt Z)[1])
434 else:
435 back off X5.append(...

np.dot([norm.cdf(alpha x),norm.cdf(alpha z)],sqrt Z)[1])
436

437 return back off XH2,back off X5
438

439

440 steps = 5
441 case = 2
442 steps = 20
443 XH2 y,X5 y,F1 u,F2 u,F10 u = MPC(v,J,g,steps,case)
444 end = time.time()
445 print end - start
446 plt.show()
447 t = np.linspace(0,TF,steps+1)
448 XH2 Y = vertcat(XH2 y)
449 X5 Y = vertcat(X5 y)
450 F1 U = vertcat(F1 u)
451 F2 U = vertcat(F2 u)
452 F10 U = vertcat(F10 u)
453 print F1 U,"F1 u"
454 print XH2 Y, "XH2 Y"
455 print F1 U.shape, "F1 U.shape", F2 U.shape, "F2 U.shape", F10 U.shape, ...

"F10 U.shape"
456 if case == 1:
457

458 # DataOut = np.hstack((XH2 Y,X5 Y))
459 file = open("MPC plot case1.txt", "w")
460 file.write("\n".join(map(lambda x: str(x), XH2 Y)))
461 file.write("\n")
462 file.write("\n".join(map(lambda x: str(x), X5 Y)))
463 file.write("\n")
464 file.write("\n".join(map(lambda x: str(x), F1 U)))
465 file.write("\n")
466 file.write("\n".join(map(lambda x: str(x), F2 U)))
467 file.write("\n")
468 file.write("\n".join(map(lambda x: str(x), F10 U)))
469 file.close()
470 elif case == 2:
471 # DataOut = np.hstack((XH2 Y,X5 Y))
472 file = open("MPC plot case2.txt", "w")
473 file.write("\n".join(map(lambda x: str(x), XH2 Y)))
474 file.write("\n")

53

475 file.write("\n".join(map(lambda x: str(x), X5 Y)))
476 file.write("\n")
477 file.write("\n".join(map(lambda x: str(x), F1 U)))
478 file.write("\n")
479 file.write("\n".join(map(lambda x: str(x), F2 U)))
480 file.write("\n")
481 file.write("\n".join(map(lambda x: str(x), F10 U)))
482

483 file.close()
484 else:
485 print "case not defined"

F.2 Model Predictive Control, Python code

Here are the code used to simulate the MPC for both optimisation method.

1 from casadi import *
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.stats import norm
5 # from math import sqrt
6 from scipy.linalg import sqrtm
7 import time
8

9 start = time.time()
10 # Define Time periods and end time
11

12 N = 20 # Control discretization
13 TF = 2.0 # End time
14

15 # Parameters
16 R = 0.08314 # Gas constant [mˆ3 bar/K kmol]
17 T = 623.15 # Temperature in reactor [K]
18 V = 100 # Volume of reactor [mˆ3]
19 P = 68*1.01325 # Pressure in reactor [bar]
20 tau = 0.3 # Time constant [h]
21 rho = 12.6 # Hydrogen consumption rate in the reactor [kmol/mˆ3]
22 FHC = 102 # Flow of hydrocarbons into the reactor [mˆ3/h]
23 Z1 = 1.0 # Compressibility factor ideal gas [-]
24

25 # CH4 = 88.1 # Cost of stream F2 [euros/Mmol]
26 # CH3 = 77 # Cost of stream F1 [euros/Mmol]
27 CH4 = 0.0881 # Cost of stream F2 [euros/kmol]
28 CH3 = 0.077 # Cost of stream F1 [euros/kmol]
29

30 X1 = 0.991 # molefraction of hydrogen in stream 1 [-]
31 X2 = 0.931 # molefraction of hydrogen in stream 2 [-]
32 X3 = 0.85 # molefraction of hydrogen in stream 3 [-]
33

34 #Iinitial and end transition points
35 XH2 init = 0.9 # Initial hydrogen fraction inside the reactor [-]
36 FXH2 init = 682.5 # Initial feed of hydrocarbons [kmol/h]
37

38 F1 init = 340.0 # Initial flow in stream 1 [kmol/h]
39 F2 init = 0.0 # Initial flow in stream 2 [kmol/h]
40 F3 init = 0.0 # Initial flow in stream 3 [kmol/h]
41 F10 init = 0.0 # Initial flow in stream 10 [kmol/h]
42 F5 init = F1 init + F2 init + F3 init # Initial flow in stream 5 [kmol/h]

54

43 X5 init = (F1 init*X1+F2 init*X2+F3 init*X3)/(F1 init+F2 init+F3 init) # ...
Initial hydrogen fraction in stream 5 [-]

44

45 # Constraints
46 F1 ub = 1400.0
47 F1 lb = 0.0
48 F2 ub = 790.0
49 F2 lb = 0.0
50 F3 ub = 5000.0
51 F3 lb = 0.0
52 F10 ub = 1500.0
53 F10 lb = 0.0
54

55 F5 lb = 0.0
56 F5 ub = F1 ub+F2 ub+F3 ub
57 X5 ub = 1.0
58 X5 lb = 0.9
59 XH2 ub = 1.0
60 XH2 lb = 0.7
61

62 """ Solving the deterministic optimisation problem for a ...
hydrodesulphurisation part of plant.

63 Where the objective is to minimize the cost of hydrogen, while keeping the ...
hydrogen fraction in

64 the reactor, XH2, above 0.7. If the fraction goes below 0.7, the catalyst ...
in the reactor will

65 become damages. The hydrogen fraction are controlled by three inlet stream.
66 """
67 # Declare variables
68 x = SX.sym("x",2) # Differential states XH2, FxH2,
69 u = SX.sym("u",3) # Control variables F1, F2, F10
70 z = SX.sym("z",3) # Algebraic states F5, X5, F3
71 t = SX.sym("t") # time
72

73 # Number of state and control variables
74 nx = x.size1() # number of state variables
75 nu = u.size1() # number of control variables
76 nz = z.size1() # Number of algebraic state variables
77 nvar = nx+nu+nz # Number of variables
78

79 # Differential equations
80 f x = vertcat([((Z1*R*T)/(V*P))*(z[0]*z[1] - u[2]*x[0] - x[1]), (...

1/(tau))*(FHC*rho - x[1])])
81

82 # Algebraic equations
83 f z = vertcat([u[0] + u[1] + z[2] - z[0] , u[0]*X1 + u[1]*X2 + z[2]*X3 - ...

z[0]*z[1], z[0] - u[2] - x[1]])
84

85 # Objective function
86 f u = vertcat([CH4*X1*u[0] + CH3*X2*u[1]])
87

88 # Define the dae system to be called by the integrator
89 dae = SXFunction("dae", daeIn(x=x, z=z, p=u, t=t), daeOut(ode=f x, ...

alg=f z, quad=f u))
90

91 # Integrator for solving the Dae system
92 opts = {"tf":TF/N} # interval length
93 # opts["tf"] = TF/N
94 # opts["linear solver"] = "csparse"
95 # opts["linear solver type"] = "user defined"
96 opts["abstol"] = 1e-2 # tolerance
97 opts["reltol"] = 1e-2 # tolerance

55

98 I = Integrator("I","idas", dae,opts)
99

100 # Variable bounds and initial guess
101 nv = nu*N + nx*(1 + N) + nz*(N + 1)
102 v = MX.sym("v",nv)
103

104 # Get the differential states for each shooting interval
105 xk = [v[nvar*k:nvar*k+nx] for k in range(N+1)]
106

107 # Get the algebraic states for each shooting interval
108 zk = [v[nvar*k+nx:nvar*k+nx+nz] for k in range(N+1)]
109

110 # Get the control for each shooting interval
111 uk = [v[nvar*k+nx+nz:nvar*k+nx+nz+nu] for k in range(N)]
112

113 # Variable bounds
114 vmin = -inf*np.ones(nv)
115 vmax = inf*np.ones(nv)
116

117 # State bounds
118 vmin[0::nvar] = XH2 lb
119 vmax[0::nvar] = XH2 ub
120 vmin[1::nvar] = 0
121 vmin[2::nvar] = F5 lb
122 vmax[2::nvar] = F5 ub
123 vmin[3::nvar] = X5 lb
124 vmax[3::nvar] = X5 ub
125 vmin[4::nvar] = F3 lb
126 vmax[4::nvar] = F3 ub
127

128 # Control bounds
129 vmin[5::nvar] = F1 lb
130 vmax[5::nvar] = F1 ub
131 vmin[6::nvar] = F2 lb
132 vmax[6::nvar] = F2 ub
133 vmin[7::nvar] = F10 lb
134 vmax[7::nvar] = F10 ub
135

136 # Initial solution guess (Values found from steady state solution)
137 v0 = np.zeros(nv)
138 v0[0::nvar] = 0.7
139 v0[1::nvar] = 1285.2
140 v0[2::nvar] = 1927.8
141 v0[3::nvar] = 0.9
142 v0[4::nvar] = 1244.18
143 v0[5::nvar] = 683.617
144 v0[6::nvar] = 0.0
145 v0[7::nvar] = 642.6
146

147 # Initial condition
148 vmin[0] = vmax[0] = v0[0] = XH2 init
149 vmin[1] = vmax[1] = v0[1] = FXH2 init
150 # vmin[2] = vmax[2] = v0[2] = F5 init
151 # vmin[3] = vmax[3] = v0[3] = X5 init
152 # vmin[4] = vmax[4] = v0[4] = F3 init
153

154 # Constraint function with bounds
155 g = []; gmin = []; gmax = []
156 # Objective function
157 J = 0
158

159 # Build up a graph of integrator calls

56

160 for k in range(N):
161 # Call the integrator
162 xf = I({ 'x0':xk[k], 'z0':zk[k], 'p':uk[k] })["xf"]
163 uf = I({ 'x0':xk[k], 'z0':zk[k], 'p':uk[k] })["qf"]
164 # Add contribution to objective
165 J += uf
166 # Append continuity constraints and algebraic constraints
167 g.append(xf[0] - xk[k+1][0])
168 g.append(xf[1] - xk[k+1][1])
169 g.append(zk[k][0] - uk[k][0] - uk[k][1] - zk[k][2])
170 g.append(uk[k][0]*X1 + uk[k][1]*X2 + zk[k][2]*X3 - zk[k][0]*zk[k][1])
171 g.append(zk[k][0] - uk[k][2] - xk[k][1])
172

173 g = vertcat(g)
174

175 def MPC(v,J,g,steps,case):
176 # Optimisation
177 nlp = MXFunction("nlp",nlpIn(x=v), nlpOut(f=J, g=g))
178 solver = NlpSolver("solver","ipopt", nlp)
179 sol = solver({"lbx" : vmin, # State lower bounds
180 "ubx" : vmax, # State upper bounds
181 "x0" : v0, # Initial guess
182 "lbg" : np.zeros(g.shape), # Constraint lower bound
183 "ubg" : np.zeros(g.shape)}) # Constraint upper bound
184 # Extract all of the decision variables from the solved nlp
185 v opt = sol["x"]
186

187 ns = 1000
188 X sim,Z sim = MonteCarlo(v opt,ns)
189

190 back off XH2,back off X5 = backoff(X sim,Z sim)
191 for k in range(0,N+1):
192 vmin[k*nvar] = 0.7 + back off XH2[k-1]
193 vmin[3+nvar*k] = 0.9 + back off X5[k-1]
194

195 # Creater vectors to show the step changes in the control variables
196 F1 u = []
197 F2 u = []
198 F10 u = []
199

200 XH2 y = [] #
201 X5 y = [] #
202 # XH2 y.append(XH2 init)
203 # X5 y.append(X5 init)
204

205 for i in range(steps):
206

207 # Optimisation
208 nlp = MXFunction("nlp",nlpIn(x=v), nlpOut(f=J, g=g))
209 solver = NlpSolver("solver","ipopt", nlp)
210 sol = solver({"lbx" : vmin, # State lower bounds
211 "ubx" : vmax, # State upper bounds
212 "x0" : v0, # Initial guess
213 "lbg" : np.zeros(g.shape), # Constraint lower bound
214 "ubg" : np.zeros(g.shape)}) # Constraint upper bound
215 # Extract all of the decision variables from the solved nlp
216 v opt = sol["x"]
217

218 # Define the solved variables
219 XH2 = v opt[0::nvar]
220 FXH2 = v opt[1::nvar]
221 F5 = v opt[2::nvar]

57

222 X5 = v opt[3::nvar]
223 F3 = v opt[4::nvar]
224 F1 = v opt[5::nvar]
225 F2 = v opt[6::nvar]
226 F10 = v opt[7::nvar]
227

228 if case == 2:
229 # Run online optimisation
230 ns = 100 # Number of Monte Carlo simulations
231 X sim,Z sim = MonteCarlo(v opt, ns);
232 back off XH2,back off X5 = backoff(X sim,Z sim);
233

234 for k in range(0,N+1):
235 vmin[k*nvar] = 0.7 + back off XH2[k-1]
236 vmin[3+nvar*k] = 0.9 + back off X5[k-1]
237 X temp1 = []
238 Z temp1 = []
239

240 sigma x3 = 0.013 # Variance for X3
241 sigma rho = 0.4 # Variance for FXH2
242 mu x3 = 0.85 # Mean value for X3
243 mu rho = 12.6 # Mean value for FXH2
244 mean = [mu x3, mu rho] # Mean values vector
245 r = -0.5 # correlation coefficient
246 cov = [[sigma x3**2, r*sigma rho*sigma x3], [r*sigma rho*sigma x3, ...

sigma rho**2]] # diagonal covariance
247 # Define States and Control variables
248 X = SX.sym("X",2) # Differential states XH2, FxH2,
249 U = SX.sym("U",3) # Control variables F1, F2, F10
250 Z = SX.sym("Z",3) # Algebraic states F5, X5, F3
251

252 # Differential equations
253 F x = vertcat([((Z1*R*T)/(V*P))*(Z[0]*Z[1] - U[2]*X[0] - ...

X[1]), (1/tau)*(FHC*np.random.multivariate normal(mean, ...
cov)[1] - X[1])])

254

255 # Algebraic equations
256 F z = vertcat([U[0] + U[1] + Z[2] - Z[0] , U[0]*X1 + U[1]*X2 + ...

Z[2]*np.random.multivariate normal(mean, cov)[0] - Z[0]*Z[1], ...
Z[0] - U[2] - X[1]])

257

258 # Objective function
259 F u = vertcat([CH4*X1*U[0] + CH3*X2*U[1]])
260

261 # Define the dae system to be called by the integrator
262 DAE = SXFunction("DAE", daeIn(x=X, z=Z, p=U, t=t), daeOut(...

ode=F x, alg=F z, quad=F u))
263

264 # Integrator for solving the Dae system
265 opts = {"tf":TF/N} # interval length
266 I sim = Integrator("I sim","idas", DAE)
267 ts = linspace(0,TF,N+1) # Time steps
268 if i == 0:
269 F1 u.append(F1[0])
270 F2 u.append(F2[0])
271 F10 u.append(F10[0])
272

273 # Run the simulation
274 for j in range(N-1):
275 sim = Simulator("sim",I sim,[ts[j],ts[j+1]])
276

277 # Input for the simulator

58

278 if j == 0:
279 sim.setInput([XH2[0],FXH2[0]],"x0")
280 sim.setInput([F5[0],X5[0],F3[0]],"z0")
281 sim.setInput([F1[0],F2[0],F10[0]],"p")
282 else:
283 sim.setInput(X temp1[-1],"x0")
284 sim.setInput(Z temp1[-1],"z0")
285 sim.setInput([F1[j],F2[j],F10[j]],"p")
286

287 sim.evaluate()
288 if j == 1:
289 # Set initial condition for next optimization cycle
290 vmin[0] = vmax[0] = v0[0] = sim.getOutput("xf")[0,0]
291 vmin[1] = vmax[1] = v0[1] = sim.getOutput("xf")[1,0]
292

293

294 F1 u[i+1:i+2] = F1[j]
295 F2 u[i+1:i+2] = F2[j]
296 F10 u[i+1:i+2] = F10[j]
297

298 XH2 y.append(sim.getOutput("xf")[0,0])
299 X5 y.append(sim.getOutput("zf")[1,0])
300

301 X temp1.append(sim.getOutput("xf")[:,-1])
302 Z temp1.append(sim.getOutput("zf")[:,-1])
303

304 return XH2 y,X5 y,F1 u,F2 u,F10 u
305

306 def MonteCarlo(v opt,ns):
307 """This is a function that runs Monte Carlo simulations for the ...

hydrodesulphurisation
308 plant. The function takes the optimal solution from the nlp solver, and ...

then simulates
309 ns simulation, with random outcome of X3 and rho. The output of the ...

function are
310 the endpoints from the simulation, X end, and the endpoints from each ...

step in
311 the simulations, X sim.
312 """
313 # Generates random outcomes for X3 and rho
314 # ns = 100 # Number of outcomes
315 sigma x3 = 0.013 # Variance for X3
316 sigma rho = 0.4 # Variance for FXH2
317 mu x3 = 0.85 # Mean value for X3
318 mu rho = 12.6 # Mean value for FXH2
319 mean = [mu x3, mu rho] # Mean values vector
320 r = -0.5 # correlation coefficient
321 cov = [[sigma x3**2, r*sigma rho*sigma x3], [r*sigma rho*sigma x3, ...

sigma rho**2]] # diagonal covariance
322 # For each outcome of X3 and rho run a simulation to get the outcome of ...

X3 and X5
323 X sim = [] # Make a a matrix to store all differential states for each ...

simulation outcome
324 Z sim = [] # Make algebraic states matrix for each simulation outcome
325 X end = []; # Make a matrix to store differential states end values ...

from each simulation
326 Z end = []; # Make a matrix to store algebraic states end values from ...

each simulation
327 ts = linspace(0,TF,N+1) # Time steps
328 # Extract the optimal solution to each variable
329 XH2 = v opt[0::nvar]
330 FXH2 = v opt[1::nvar]

59

331 F5 = v opt[2::nvar]
332 X5 = v opt[3::nvar]
333 F3 = v opt[4::nvar]
334 F1 = v opt[5::nvar]
335 F2 = v opt[6::nvar]
336 F10 = v opt[7::nvar]
337

338 for j in range(ns):
339 # Define States and Control variables
340 X = SX.sym("X",2) # Differential states XH2, FxH2,
341 U = SX.sym("U",3) # Control variables F1, F2, F10
342 Z = SX.sym("Z",3) # Algebraic states F5, X5, F3
343

344 # Differential equations
345 F x = vertcat([((Z1*R*T)/(V*P))*(Z[0]*Z[1] - U[2]*X[0] - ...

X[1]), (1/tau)*(FHC*np.random.multivariate normal(mean, ...
cov)[1] - X[1])])

346

347 # Algebraic equations
348 F z = vertcat([U[0] + U[1] + Z[2] - Z[0] , U[0]*X1 + U[1]*X2 + ...

Z[2]*np.random.multivariate normal(mean, cov)[0] - Z[0]*Z[1], ...
Z[0] - U[2] - X[1]])

349

350 # Objective function
351 F u = vertcat([CH4*X1*U[0] + CH3*X2*U[1]])
352

353 # Define the dae system to be called by the integrator
354 DAE = SXFunction("DAE", daeIn(x=X, z=Z, p=U, t=t), daeOut(...

ode=F x, alg=F z, quad=F u))
355

356 # Integrator for solving the Dae system
357 opts = {"tf":TF/N} # interval length
358 I sim = Integrator("I sim","idas", DAE)
359

360 # Run simulation for each outcome of the random variable
361 X temp = []
362 Z temp = []
363 for i in range(N):
364 # Run the simulator function that simulates the state variables ...

for each
365 # step with a given value of input variables
366 sim = Simulator("sim",I sim,[ts[i],ts[i+1]])
367

368 if i == 0:
369 sim.setInput([XH2[0],FXH2[0]],"x0")
370 sim.setInput([F5[0],X5[0],F3[0]],"z0")
371 sim.setInput([F1[0],F2[0],F10[0]],"p")
372

373 else:
374 sim.setInput(X temp[-1],"x0")
375 sim.setInput(Z temp[-1],"z0")
376 sim.setInput([F1[i],F2[i],F10[i]],"p")
377

378 sim.evaluate()
379 # Extract the end point for the state variables
380 X temp.append(sim.getOutput("xf")[:,-1])
381 Z temp.append(sim.getOutput("zf")[:,-1])
382 if i == N-2:
383 X end.append(sim.getOutput("xf")[0,-1])
384 Z end.append(sim.getOutput("zf")[1,-1])
385 Xsim = vertcat(X temp)
386 Zsim = vertcat(Z temp)

60

387

388 # Take the XH2 and
389 X sim.append(Xsim[0::nx])
390 Z sim.append(Zsim[1::nz])
391 # Convert from Dmatrix to np.array
392 Xend = np.hstack(X end)
393 Zend = np.hstack(Z end)
394 X Sim = np.hstack(X sim)
395 Z Sim = np.hstack(Z sim)
396

397 return X Sim,Z Sim
398 def backoff(X sim,Z sim):
399

400 """ This function calculates the back-off for each step, this is done
401 with fitting the outcome from the Monte Carlo simulations to a normal
402 probability distribution, then finding a back-off such that constraint
403 holds with given value, alpha, or higher. This back-off also take into
404 account the difference between the mean value and the lower bound
405 """
406 alpha x = 0.9
407 alpha z = 0.9
408 mu x = np.zeros(N)
409 mu z = np.zeros(N)
410 sigma x = np.zeros(N)
411 sigma z = np.zeros(N)
412 Z = []
413 sqrt Z = 0
414 back off XH2 = []
415 back off X5 = []
416

417 for i in range(N):
418 (mu x[i], sigma x[i]) = norm.fit(X sim[i][:]) # Find the mean and ...

variance for XH2, if XH2 have normal distribution
419 (mu z[i], sigma z[i]) = norm.fit(Z sim[i][:]) # Find the mean and ...

variance for X5, if X5 have normal distribution
420 # Find the covariance matrix Z
421 Z.append(np.cov(X sim[i],Z sim[i]))
422

423 # Calculates the back-off
424 # back off XH2.append(norm.cdf(alpha x)*(...

sqrt(np.cov(X sim[i][:])*2)))
425 # back off X5.append(norm.cdf(alpha z)*(...

sqrt(np.cov(Z sim[i][:])*2)))
426

427 sqrt Z = sqrtm(Z[i]) # Square root of the covariance matrix
428 # if (XH2 lb - mu x[i]) > 0:
429 # back off XH2.append(XH2 lb - mu x[i] + ...

np.dot([norm.cdf(alpha x),norm.cdf(alpha z)],sqrt Z)[0])
430 # else:
431 back off XH2.append(...

np.dot([norm.cdf(alpha x),norm.cdf(alpha z)],sqrt Z)[0])
432 if (X5 lb - mu z[i]) > 0:
433 back off X5.append(X5 lb - mu z[i] + ...

np.dot([norm.cdf(alpha x),norm.cdf(alpha z)],sqrt Z)[1])
434 else:
435 back off X5.append(...

np.dot([norm.cdf(alpha x),norm.cdf(alpha z)],sqrt Z)[1])
436

437 return back off XH2,back off X5
438

439

440 steps = 5

61

441 case = 2
442 steps = 20
443 XH2 y,X5 y,F1 u,F2 u,F10 u = MPC(v,J,g,steps,case)
444 end = time.time()
445 print end - start
446 plt.show()
447 t = np.linspace(0,TF,steps+1)
448 XH2 Y = vertcat(XH2 y)
449 X5 Y = vertcat(X5 y)
450 F1 U = vertcat(F1 u)
451 F2 U = vertcat(F2 u)
452 F10 U = vertcat(F10 u)
453 print F1 U,"F1 u"
454 print XH2 Y, "XH2 Y"
455 print F1 U.shape, "F1 U.shape", F2 U.shape, "F2 U.shape", F10 U.shape, ...

"F10 U.shape"
456 if case == 1:
457

458 # DataOut = np.hstack((XH2 Y,X5 Y))
459 file = open("MPC plot case1.txt", "w")
460 file.write("\n".join(map(lambda x: str(x), XH2 Y)))
461 file.write("\n")
462 file.write("\n".join(map(lambda x: str(x), X5 Y)))
463 file.write("\n")
464 file.write("\n".join(map(lambda x: str(x), F1 U)))
465 file.write("\n")
466 file.write("\n".join(map(lambda x: str(x), F2 U)))
467 file.write("\n")
468 file.write("\n".join(map(lambda x: str(x), F10 U)))
469 file.close()
470 elif case == 2:
471 # DataOut = np.hstack((XH2 Y,X5 Y))
472 file = open("MPC plot case2.txt", "w")
473 file.write("\n".join(map(lambda x: str(x), XH2 Y)))
474 file.write("\n")
475 file.write("\n".join(map(lambda x: str(x), X5 Y)))
476 file.write("\n")
477 file.write("\n".join(map(lambda x: str(x), F1 U)))
478 file.write("\n")
479 file.write("\n".join(map(lambda x: str(x), F2 U)))
480 file.write("\n")
481 file.write("\n".join(map(lambda x: str(x), F10 U)))
482

483 file.close()
484 else:
485 print "case not defined"

F.3 Model Predictive Control Plotting, Python code

Here are the code used for plotting the results from the MPC simulations.

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 steps = 20
5 # Get values for offline optimisation
6 lines1 = [line.rstrip('\n') for line in open('MPC plot case1.txt')]
7 MPC1 = np.vstack(lines1)
8

62

9 XH2 1 = MPC1[0:steps]
10 X5 1 = MPC1[steps:2*steps]
11 F1 1 = MPC1[2*steps:3*steps+1]
12 F2 1 = MPC1[3*steps+1:4*steps+2]
13 F10 1 = MPC1[4*steps+2:len(MPC1)]
14

15 # Get values for online optimisation
16 lines2 = [line.rstrip('\n') for line in open('MPC plot case2.txt')]
17 MPC2 = np.vstack(lines2)
18 XH2 2 = MPC2[0:steps]
19 X5 2 = MPC2[steps:2*steps]
20 F1 2 = MPC2[2*steps:3*steps+1]
21 F2 2 = MPC2[3*steps+1:4*steps+2]
22 F10 2 = MPC2[4*steps+2:len(MPC1)]
23 TF = 2.0
24

25 ty = np.linspace(0,TF,len(XH2 1))
26 t = np.linspace(0,TF,len(F1 1))
27

28 plt.figure(1)
29

30 plt.subplot(221)
31 plt.step(t,F1 1,'.',lw=2,label='F1 1')
32 plt.step(t,F1 2,'.',lw=2,label='F1 2')
33 plt.legend(bbox to anchor=(0.8, 0.4), loc=2, borderaxespad=0.)
34 plt.xlabel('time, [h]')
35 plt.ylabel('F1, [kmol/h]')
36

37 plt.subplot(222)
38 plt.step(t,F2 1,'.',lw=2,label='F2 1')
39 plt.step(t,F2 2,'.',lw=2,label='F2 2')
40 plt.legend(bbox to anchor=(0.8, 0.4), loc=2, borderaxespad=0.)
41 plt.xlabel('time, [h]')
42 plt.ylabel('F2, [kmol/h]')
43 plt.ylim([0.0, 700])
44

45 plt.subplot(223)
46 plt.step(t,F10 1,lw=2,label='F10 1')
47 plt.step(t,F10 2,lw=2,label='F10 2')
48 plt.legend(bbox to anchor=(0.76, 0.4), loc=2, borderaxespad=0.)
49 plt.xlabel('time, [h]')
50 plt.ylabel('F10, [kmol/h]')
51 XH2 lb = np.ones(len(XH2 1))*0.7
52 X5 lb = np.ones(len(X5 1))*0.9
53 plt.subplot(224)
54 plt.step(ty,XH2 1,'.',lw=2,label='XH2 1')
55 plt.step(ty,X5 1,'.',lw=2,label='X5 1')
56

57 plt.step(ty,XH2 2,'.',lw=2,label='XH2 2')
58 plt.step(ty,X5 2,'.',lw=2,label='X5 2')
59 plt.plot(ty,XH2 lb,'k--')
60 plt.plot(ty,X5 lb,'k--')
61 plt.legend(bbox to anchor=(0.7, 0.74), loc=2, borderaxespad=0.)
62 plt.xlabel('time, [h]')
63 plt.ylabel('X, [-]')
64 plt.ylim([0.65, 0.95])
65

66 plt.show()

63

