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Abstract

This report has been prepared as a part of the Specialization Project (TKP4580), which is a
compulsory element of the final year of the M.Sc. degree in Chemical Engineering at the Norwe-
gian University of Science and Technology (NTNU). The project work was done in collaboration
with Cybernetica AS as an extension of a summer internship.

The aim of the project was to model a semi-batch reactor for production of expandable polystyrene
(EPS), in addition to developing an offline optimization routine. Further, the primary goals of
the optimization were to attain an optimal temperature trajectory and initial reactor recipe in
order to minimize the batch time and exploit the available cooling capacity.

The developed model was simulated for different temperatures and amounts of chemical initiator
and blowing agent (pentane), and it overall demonstrated the correct qualitative behavior in
accordance with expectations from polymerization theory. Parameter estimation was performed
using logged time-series data from experiments. The overall dynamic behavior of the new model
was improved in terms of predicting the measurement dynamics, but the model did not show
improvement towards predicting the end product quality.

To indicate the optimal region of isothermal operation, pre-optimization simulations were per-
formed. The optimal point identified from a surface plot of the batch time gave a base case
batch time of 198 minutes. The next step in the investigations was to optimize the monomer
to initiator ratio, keeping the temperature constant at the optimal temperature from the pre-
optimization simulations. The polymerization time obtained from these calculations was 194.1
minutes. Adding constant temperature to the decision variables of the optimization problem
resulted in conditions that shortened the batch time with additional 4.6 minutes. Finally, op-
timizing the monomer to initiator ratio and the temperature trajectory over the batch time
horizon gave a significantly reduced batch time of 103.9 minutes.

In conclusion, using optimal temperature trajectories shows great promise in terms of time sav-
ings associated with producing one batch of polymer product, compared to optimal isothermal
operation.

I would like to express my sincerest gratitude to Cybernetica AS for giving me the opportunity to
work with this project. I am especially thankful to Peter Singstad, for high quality supervision,
and to Fredrik Gjertsen, for welcoming me in his office with the attitude that no problem is too
small. I would also like to thank my NTNU supervisor Associate Professor Johannes Jäschke
for his support during the project work.
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1 Introduction

Synthetic polymers in the form of plastics have become a natural part of our everyday existence.
One of the biggest commodity polymer products in the world is expandable polystyrene (EPS),
which is the polymer of focus in this work. In 2014, the European demand for EPS was about
1.5 million tonnes. It is a thermoplastic product in the form of a solid foam with low density,
high moisture resistance, high durability and excellent insulating properties. Because of these
qualities, EPS is an ideal material for packaging of food and other goods, and for construction
purposes [2].

Producers of EPS are today facing an ever-increasing competition and highly demanding mar-
kets where reliable and consistent earnings are issues. Because of the extent of the EPS produc-
tion and the low product price, increasing plant capacity utilization is key for EPS manufacturers
to increase profitability [3]. An efficient way to address the goal of maximum production is to
lower the time associated with producing each batch of polymer product at the desired prod-
uct quality, as well as ensuring that available resources are distributed according to optimal
operation.

A possible approach to achieve better utilization of the plant is to use optimal control to steer
the semi-batch reactor through the optimal conditions that give the desired product quality
in the shortest possible polymerization time. There are two main reasons why such strategies
are not extensively used in the polymer industry today. First of all, optimal control of batch
reactors and semi-batch reactors requires accurate dynamic models. Such models are time con-
suming and costly to develop, as they must be tailored for the specific process. In contrast,
process industries using continuous processes, where stationary process models are sufficient
for optimal control, have applied such control strategies for a long time [4]. Secondly, effi-
cient numerical solvers capable of solving complex nonlinear optimization problems with large
numbers of variables involved have not been developed before recent times. As a consequence,
the available solution methods have limited the research and applications of optimal control
strategies in the way that the process models used have been rigorously simplified, resulting
in inaccurate optimal conditions [5]. These days, the computational power required to solve
complex chemical engineering problems are facilitated by personal computers found at every
office work-place, meaning that time is ripe to continue the work into optimal control of batch
and semi-batch processes [6].

The scope of this work is to develop a simple process model for a semi-batch reactor for produc-
tion of EPS, including parameter estimation to fit the model to real plant data. Further, this
model is used to perform offline optimization of the batch duration according to constraints on
the cooling capacity of the reactor. The degrees of freedom used in the optimization routine is
the temperature of the batch reactor and the initial reactor recipe. This work could be used
as a pre-stage of an implementation of dynamic real-time optimization and model predictive
control.
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2 Theory

2.1 Polymers and Polymerization

Polymers are defined as materials of very high molecular weight. Such materials have numerous
applications in our modern society, although they have been around for a long time. Natural
materials like rubber, silk, wool and cotton are polymers. Today, polymers are found in cloth-
ing, food packaging, home furnishing, paint products, toys, building insulation, information
technology products and more [7].

Polymers are made up of smaller building blocks of chemical compounds called monomers, and
they are usually consisting of repetitive structural units. They can hold hundreds, thousands or
even tens of thousands of monomers [8]. For example, the polymer polyethylene is made of the
repetitive units [−CH2−CH2−]n, and the monomers chained together are ethylene molecules,
as the name indicates. n is the number of monomer units in the polymer, or what is also
referred to as the chain length [7]. Homopolymers are polymers made up of one single kind of
monomer, while copolymers have two or more monomer unit types. Polymers can consist of
straight chains, branched chains or chain networks [8].

Polymerization is the process where monomers combine to become polymers. There are several
different kinds of kinetic mechanisms resulting in polymerization. They can be distinguished
into step-growth polymerizations (polycondensations) and chain polymerizations. Step-growth
polymerization is usually a result of a chemical reaction between two functional groups. In chain
polymerization, monomers are added to the chain one by one. This type of polymerization can
proceed via free-radical, anionic, cationic, group-transfer and coordination mechanisms [8].

Also the process characteristics for which the polymerization process is carried out can vary.
In bulk polymerization, the monomer makes up the bulk of the reactor, containing only small
amounts of catalyst and additives. The reaction mixture of a bulk polymerization has a ten-
dency of reaching high viscosity levels during the reaction. To avoid problems related to high
viscosity, a solvent is sometimes added, giving a solution polymerization process. Both of these
polymerization processes contain one single phase, while precipitation polymerization has both
a liquid phase and a solid phase, as the polymer is insoluble in its monomer. Other two-phase
polymerization processes are the suspension polymerization, where the polymerization proceeds
in small beads in a continuous phase, and emulsion polymerization, where the reaction takes
place in micelles in a water phase [8].

Classification of polymers is not uniform, and can be done according to many different criteria
[8]:

• Chemical nature of polymer

• Molecular structure of polymer

• Polymer chain growth mechanism

• Type of polymerization process

2.1.1 Free-Radical Polymerization

Free-radical polymerization is driven by the addition of a monomer molecule to a radical active
center. A free radical is an unpaired electron, which gives rise to highly reactive chemical
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compounds.

All free-radical polymerization processes consists of the three basic reaction types: initiation,
propagation and termination. Initiation reactions form radicals continuously during the process,
and are responsible for activating new polymer chains. Growth of the polymer chains is a
result of the propagation reaction, while the generation of inactive polymer chains is caused by
termination of active chains. In addition, numerous different chain transfer reactions can occur,
where a free radical is transferred from one molecule to another [8].

Initiation is caused by a chemical compound with the ability to form radical molecules. Chemical
initiators are normally organic peroxides, with a covalent oxygen bond separating two organic
groups. Decomposition of this bond results in two radical molecules, according to the chemical
reaction 2.1. Here, f is the initiator efficiency, which is a number between 0 and 1, and kd is
the rate constant of the decomposition reaction.

I
kd−−→ 2 fI· (2.1)

The simplest form of peroxide initiators is the mono-functional initiator with one peroxide
group. Initiators that have two peroxide groups are called bi-functional initiators [9]. These
are more complicated to handle in modeling as growing chains can contain an undecomposed
peroxide group that can decompose at a later stage to form new radicals.

The primary radicals I· generated in the decomposition reaction combine with a monomer
molecule M to give a radical polymer chain of length 1 (R1), according to:

I· + M
ki−−→ R1 (2.2)

The rate of monomer addition to the initiator radical is determined by the rate constant ki.

Most of the active chain seeds produced in the initiation step will undergo propagation, at a
rate given by kp. This reaction occurs simultaneously to radical chains of all sizes.

Rn + M
kp−−→ Rn+1 (2.3)

There are several ways that a radical chain R can be deactivated to produce an inactive polymer
chain P . In termination by combination, shown in 2.4, two radical chains meet and form a
covalent carbon-carbon bond from their free radicals. This produces a dead chain with chain
length equal to the sum of the lengths of the two chains.

Rn + Rm
ktc−−→ Pn+m (2.4)

Another termination type is the termination by disproportionation. Here, two radical chains
meet, and one of the chains transfers its radical to the other chain, giving two dead polymer
chains.

Rn + Rm
ktd−−→ Pn + Pm (2.5)

Similarly to the termination reactions, chain transfer is also a way of ending a growing polymer
chain. Chain transfer reactions occur between active radical chains and a chain transfer agent T,
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which could be many of the different components in the reaction mixture, for instance monomer
molecules. If impurities are present in the reaction mixture, these can act as unintended transfer
agents. In some cases, this effect is exploited to control chain length of the produced polymer,
and so-called chain transfer agents (CTA) are added.

Rn + T
ktrT−−−→ Pn + T· (2.6)

Diffusion-Controlled Reactions:

As the polymer chains grow, the viscosity of the polymer phase increases and the volume of
the reactive mass is reduced. Consequently, some of the reactions 2.1-2.6 could at some point
during the process become diffusion-controlled.

The most important diffusion limiting effect influences the rate of termination, and is known
as the gel effect or Trommsdorff-Norrish effect. When polymer chains grow and the polymer
phase becomes viscous, the polymer chains will be hindered in diffusing freely in the polymer
phase. This results in a drop in the chain termination rate, giving a broader molecular weight
distribution [8]. Hence, the final product properties are altered. Severe gel effect could even
pose a safety risk, as it could lead to a dominant propagation reaction, which make up most
of the heat generation in the reaction system. Such conditions could cause the heat generation
from the reaction to exceed the heat removal provided by the cooling system. Consequently,
the temperature inside the reactor will increase, resulting in a boost of the reaction rates and
eventually, loss of control of the polymerization process. This phenomenon is named thermal
runaway [10].

Diffusional limitations affecting the efficiency of the chemical initiator is commonly known as the
cage effect. At high monomer conversions, the number of active initiator radicals contributing
to the polymerization process will decrease. This effect is mainly caused by polymer chains
surrounding the active radicals, constituting a “cage” and hindering the radicals from moving
freely. Inside such a cage, an active initiator radical is likely to self-terminate or react with
other neighboring molecules instead of initiating a new chain [11].

The equivalent effect for the propagation reaction is called the glass effect. As the name suggests,
this effect is highly influenced by the glass transition temperature of the polymer, which is the
lower temperature limit inducing a structural change in the polymer; from being soft and flexible
(rubbery) to becoming hard and brittle [12]. Therefore, the glass effect increases with reduced
temperature. If the polymerization temperature is sufficiently close to the glass transition
temperature, the probability of collisions between active polymer chains and free monomer
molecules could fall drastically due to reduced mobility of the monomer. As a result, the
propagation rate will diminish [8].

2.2 Semi-Batch Reactor Modeling

The semi-batch reactor possesses characteristics of both batch types and continuous types of
processes. In a batch reactor, the reactants are loaded before the reactions are initiated. After
the reactions have taken place, the products are removed. This is in contrast to the continuous-
type process, where reactants are fed continuously and product is drained off while the reaction
is ongoing. In a semi-batch process, some parts of the process are batch-type and some parts are
continuous. Often, some reactants are loaded before initiation, and others are added through a
feed stream during parts of the batch time [13].
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2.2.1 Mass and Energy Balances

The most important part of modeling a semi-batch reactor is to keep balances of component
mass and energy:

Component balance:
dni
dt

= RiV + n̂i (2.7a)

Energy balance:
dH

dt
= Ĥ +Q+Ws −∆HRRiV (2.7b)

In this formulation, ni is the present amount of component i, Ri is reaction rate and n̂i the
molar feed flow. Moreover, H is the total enthalpy, Ĥ is the enthalpy of the feed stream, Q is
added heat, Ws is added shaft work, ∆HR is reaction enthalpy and V is the reaction mixture
volume. The subscript i denotes an arbitrary component in the system. Since components
are removed and generated by reactions within the reaction mixture, it is convenient to choose
component balances on molar form.

The reaction rate term gives the frequency of formation and removal of a component in the

reaction volume. For an example reaction A
ke−−→ B, the reaction rates of the two components

A and B are given by:

RA = −ke[A] (2.8a)

RB = ke[A] (2.8b)

, where ke is the rate constant of the reaction, and [A] is the concentration of component A.

The energy balance in Equation 2.7b is often transformed from an enthalpy balance to a temper-
ature equation, mainly because temperature is an easily measured and highly relatable property.
Transforming the energy balance to temperature form yields:

d

dt

mvcp,vTR︸ ︷︷ ︸
Vessel

+mRcp,RTR︸ ︷︷ ︸
Content

 = Ĥ +QJ +Qamb +Ws −∆HRRiV (2.9)

=⇒ dTR
dt

=
Ĥ +QJ +Qamb +Ws −∆HRRiV

mvcp,v +mRcp,R
(2.10)

Here, mv and cp,v are the mass and heat capacity of the reactor vessel, respectively. The
corresponding variables for the reactor content has the symbols mR and cp,R, while TR is
the temperature of the reactor content. The added heat Q has here been divided into the
contributions from the surroundings Qamb and the cooling or heating system QJ .

If the reactor temperature is controlled to a desired value or trajectory, it is sometimes useful
to know the magnitude of the heat transfer required by the cooling or heating system. This
magnitude can be referred to as cooling or heating demand, and is calculated by reformulating
the temperature equation. The result is the following:

QJ,d = cp,tot
dTR,ref
dt

+ ∆HRRiV − Ĥ −Qamb −Ws (2.11)

Here,
dTR,ref

dt is the desired rate of temperature change in the reactor and cp,tot is the total heat
capacity. If isothermal operation is desired, this derivative is set to zero.
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2.2.2 Conversion

Conversion is the ratio between the amount of a basis component that has reacted and the
fed amount of the same reactant, and simply represents the proportion of available reactant
that has been converted to product [14]. For semi-batch reactors, two types of conversion
can be calculated; the overall conversion and the instantaneous conversion. These conversion
formulations are shown in Equation 2.12, and they apply to a semi-batch reactor operated
between time t = 0 and t = tf [15]. n(t) represents the amount of reactant present in the
system at time t, and n̂in is the flow of reactant into the system.

Overall conversion: X =
n(t = 0) +

∫ t
0 n̂in(τ)dτ − n(t)

n(t = 0) +
∫ tf

0 n̂in(τ)dτ
(2.12a)

Instantaneous conversion: Xinst =
n(t = 0) +

∫ t
0 n̂in(τ)dτ − n(t)∫ t

0 n̂in(τ)dτ
(2.12b)

2.3 Polymerization Modeling

Because of the many involved reactions and the stochastic features of growing polymer chains,
models of free-radical polymerization are potentially complex. Therefore, simplification methods
involving moment balances and average molecular weights are frequently applied. In addition,
diffusional limiting effects like the ones discussed in Section 2.1.1 play an important role, and
must be included in the model accordingly.

2.3.1 The Method of Moments

A polymer product will consist of polymer chains of diverse lengths. The most accurate method
to describe the product quality is therefore to use a molecular weight distribution (MWD) or
chain length distribution (CLD). Controlling such distributions for the end product is useful,
since the end-use properties of the product is highly dependent of its MWD. However, keeping
population balances of polymer chains of different length results in a complicated model with a
large number of states.

Alternatively, one could restore the most important characteristics of the MWD or CLD by
using the method of moments, which is a statistical approach. For simplicity, an MWD is used
further in this section to illustrate the value of moment balances.

The kth order moment is given by:

µk =

∞∑
n=1

nk ·nP,n (2.13)

, where nP,n is the number of moles of polymer chains with length n.

The zeroth order moment gives the total area under the distribution curve, which for the MWD
is the total amount of polymer chains. Furthermore, the first order moment gives for the MWD
the amount of monomer molecules tied into polymer chains. The width of the distribution is
reflected in the second order moment, meaning that a high value of the second order moment
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is related to a heterogeneous mixture of chain lengths. Higher order moments are calculated
in the same manner, although they are usually not required to reproduce the distribution
characteristics [16].

In a free-radical polymerization, the different moment balances are applied on both living radical
chains and terminated dead chains. The moments are tracked dynamically through the batch
process by moment balances.

2.3.2 Average Molecular Weights

The moments explained in Section 2.3.1 are used to calculate two important average molecular
weights, namely the number average molecular weight and the weight average molecular weight.
The number average molecular weight is the ordinary arithmetic mean with the total polymer
mass divided on the number of chains. Using moments, it is calculated as follows:

M̄n =
λ1 + µ1

λ0 + µ0
Mw,M (2.14)

, where M̄n is the number average molecular weight. λk represents the kth order moment of living
chains and µk are the corresponding dead chain moments. Mw,M is here the molecular weight
of the monomer. If the polymer is a copolymer, the monomer molecular weight is replaced by
the weighted average of the molecular weights of the involved monomers. The fraction part of
this equation gives the number average chain length, which is sometimes used instead of number
average molecular weight.

The weight average molecular weight calculation takes into account that long chains contain a
larger portion of the total polymer mass. If one chooses a random chained monomer molecule,
the chain it belongs to will on average have a weight equal to the weight average molecular
weight. It is often referred to as M̄w, and is calculated as the fraction between the sum of
second order moments and the sum of first order moments multiplied by the molar mass of the
monomer.

M̄w =
λ2 + µ2

λ1 + µ1
Mw,M (2.15)

The sketch shown in Figure 2.1 illustrates the principle of the relation of the number and weight
average molecular weights to the MWD.

Molecular weight [kg/mol]M̄n M̄w
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u
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m
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Figure 2.1: Molecular weight distribution.
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2.3.3 The Polydispersity Index

The polydispersity index, also known as the heterogenity ratio or nonuniformity coefficient, gives
a measure on the width of the MWD. A large polydispersity index implies that the polymer
product consists of chains of unequal length, whereas a polydispersity index equal to 1 means
that all polymer chains are equally long. It is defined as the ratio between the weight average
molecular weight and the number average molecular weight [17].

PI =
M̄w

M̄n
(2.16)

2.3.4 Free-Volume Theory and Diffusion-Controlled Reactions

There exists many methods for modeling the diffusional limitations on the initiation, propa-
gation and termination reactions mentioned in Section 2.1. Several varieties of comprehensive
modeling methods that cover all three effects are based on free-volume theory.

Free-volume theory relates the diffusional limitations of polymer chains, initiator radicals and
monomer molecules to the free volume surrounding these components. The free volume could
be explained as the empty space between the molecules in the liquid phase. The free volume
between molecules are divided in two parts: the hole free volume, which is the portion of the
free volume which is continuously redistributed by thermal fluctuations, and the remaining
interstitial free volume [18]. Diffusion processes in the liquid is, according to this theory,
related to the hole free volume. When the polymer chains grow, chains start to overlap, and
the polymer phase volume decreases, meaning that the elbowroom of the molecules is reduced,
and the reactions in the polymer phase become diffusion-controlled. Additions of low viscosity
additives will increase the free volume available for diffusion.

A detailed model of the cage, glass and gel effects based on free-volume theory is shown in
Section 4.2.

2.4 Parameter Estimation

Parameter estimation is an important stage in the process of modeling a new plant. For first
principle models, like the one developed in this work, the parameters obtained from literature,
experiments or calculations may be uncertain. Parameter estimation is also a crucial part of
developing data-driven models, where the parameters are completely unknown. In both cases,
the objective is to estimate the parameters that best describe the real plant behavior, which is
defined by measurements from the plant [19].

There are two main parameter estimation approaches; offline and online parameter estimation.
Offline parameter estimation is used to adjust parameters that are time-invariant but uncertain.
There are several offline parameter estimation methods in use. A simple and fairly common
approach is solving a least squares optimization problem, where the quadratic difference between
plant measurements and model predicted measurements is minimized [20]. The formulation of
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such an optimization problem is shown in Equation 2.17.

min
η

N∑
k=1

(yp,k(xk, uk, θ)− ym,k)2 (2.17a)

s.t xk+1 = f(xk, uk, θ) (2.17b)

yp,k = g(xk, uk, θ) (2.17c)

η ⊆ θ (2.17d)

The solution to this problem is the chosen estimated parameters η which minimizes the squared
difference between the predicted measurements yp,k and the measurements from the plant ym,k.
Moreover, the formulation is in discrete time, meaning that the subscript k represents a point in
time. The decision variables η must be chosen as a subset of the entire collection of parameters
θ. This minimization problem is subject to a range of discrete time constraints, which here
implies that the model must be satisfied for the solution of η.

The optimization problem 2.17 is a nonlinear program because of the nonlinearities in the model
constraints given by Equations 2.17b and 2.17c. A common method of solving such problems
is the Sequential Quadratic Programming algorithm. These optimization related terms will be
further explained in Section 2.5.

Online parameter estimation is used in cases where the parameters are uncertain and weakly
varying. The model parameters are adjusted according to the real-time measurements from the
plant. This allows for an improved match between the plant and the model, which facilitates for
higher performance of model based control and optimization [4]. Online parameter estimation
is often combined with estimation of the states. State estimates are useful in cases where the
states are not measurable, or the measurements are unavailable, erroneous or noisy [21]. For
instance, issues related to availability of credible measurements of the most important variables
are predominant in polymer production processes. State estimates are in this case central to
provide sufficient insight in order to apply optimal control. The block diagram 2.2 shows how
the process model is updated online with state and parameter estimations, calculated from the
model deviation from the plant measurements.
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Figure 2.2: Block diagram of online parameter estimation.

Online parameter estimation methods are often based on recursive algorithms, which are efficient
in the sense of memory usage, since new parameter estimates are based on the measurement
history and previous parameter estimates [22]. A general formulation of a recursive estimation
method can be formulated as follows:

θ̂k = θ̂k−1 +Kk(ym,k − ŷm,k) (2.18)

θ̂k is the vector of estimated parameters at time step k, and the gain matrix Kk determines
how much the deviation from the plant measurements will affect the updated parameters. The
predicted measurements ŷm,k are functions of the observations up until time k − 1.

The most common recursive algorithm for state and parameter estimation is based on the
Kalman Filter. The main idea of the Kalman Filter, proposed by Rudolf E. Kálmán in the
late 1950s, was estimation of states [23]. The basic formulation of the Kalman Filter is derived
for linear models, and the Extended Kalman Filter (EKF) algorithm contains an extension to
nonlinear systems [4]. To include parameter estimation in these algorithms, the state vector
is replaced by an augmented state vector which contains both states and parameters, and the
result is the Augmented Kalman Filter.

2.5 Optimization Basics

In the general optimization problem, as formulated in 2.19, the aim is to minimize a scalar
function referred to as the objective function (f). The objective function is a function of one
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or more decision variables (r). The solution of the optimization problem is a set of values for
these decision variables that fulfill the minimization aim. The choice of such decision variables
is often limited by constraints ci, meaning that only some solutions to the optimization problem
are valid. Constraints are normally divided into two types, equality constraints and inequality
constraints. The indexes belonging to the two types of constraints are held in the two index
sets E and I for equality constraints and inequality constraints, respectively.

min
r∈Rnr

f(r) (2.19a)

subject to ci(r) = 0, i ∈ E (2.19b)

ci(r) ≥ 0, i ∈ I (2.19c)

The defined general optimization problem is a nonlinear program (NLP), because both the
objective function and the constraints could be nonlinear. A quadratic programming (QP)
problem is a special case of the general optimization problem where the objective function is
quadratic and the constraints are linear. If an optimization problem has both linear objective
function and linear constraints, it is called a linear programming (LP) problem.

Global and local solutions to optimization problems are normally distinguished between. An
objective function could have several local minima, where the requirements of optimality are
fulfilled. For unconstrained problems the main requirement of optimality is stated in the theorem
below by Nocedal and Wright [24]. It says that the gradient of the objective function with
respect to the decision variables is zero in a local minimum point.

Theorem 1 (First-Order Necessary Conditions). If x∗ is a local minimizer and f is continuously
differentiable in an open neighborhood of x∗, then ∇f(x∗) = 0.

Hence, for the unconstrained case, the zero gradient requirement could hold at several points,
where one of them would be the global minimum. This difference is illustrated in Figure 2.3.
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Figure 2.3: The difference between global and local minima.

The problem of finding the global minimum, or knowing that the found solution is the global
minimum, is a major challenge for many optimization algorithms. For an important underclass
of optimization problems called convex problems, this challenge is avoided. This is because the
fact that an arbitrary local solution of a convex optimization problem is guaranteed to be a
global solution, as stated in Theorem 2 from Nocedal and Wright [24].

Theorem 2. When f is convex, any local minimizer x∗ is a global minimizer of f . If in addition
f is differentiable, then any stationary point x∗ is a global minimizer of f .

2.5.1 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is known as one of the most successful methods for
solving NLP problems. It uses an iterative procedure where a QP subproblem of the main NLP
is solved at each iteration. Each subproblem is solved with the use of an appropriate method,
such as the active set method or the interior-point method. The subproblems are constructed
in a way that ensures convergence to a local minimum of the NLP as the number of iterations
approach infinity [24].

A disadvantage of many optimization algorithms is that a feasible starting point has to be
provided to initiate the algorithm. The SQP method avoids this problem by penalizing violation
of constraints as a part of the objective function, instead of forcing every iteration point to be
feasible. If the constraint violation is sufficiently weighted, convergence to a feasible solution is
ensured.

More information on the SQP method, including a full derivation, can be found in Nocedal and
Wright [24].
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2.6 Model Predictive Control

Model predictive control (MPC) is a control concept that merges dynamic optimization and
feedback control. Dynamic optimization is optimization on dynamic models, hence it seeks to
minimize costs or maximize benefits over a period of time. As a result of this, the solution
of dynamic optimization problems are functions of time. Sometimes, dynamic optimization is
referred to as optimal control, as this area of optimization is often used to predict future optimal
control actions to reach a specific goal [25]. Dynamic models can be given in both discrete and
continuous time, and each of these two cases require a different approach to solving the problem
[26].

In MPC, a discrete dynamic optimization problem over a prediction horizon N is solved at every
time instant. The prediction horizon is the number of time steps into the future for which the
optimal input usage u and the resulting predicted states x are calculated. The general form of
the optimization problem is shown in Equation 2.20.

min
r∈Rnr

f(r) =

N−1∑
k=0

1

2
(xk+1 − xrefk+1)TQk+1(xk+1 − xrefk+1) + dxk+1

(xk+1 − xrefk+1) +
1

2
uTkRkuk

+ dukuk +
1

2
∆uTk Sk∆uk + d∆uk∆uk + rT1 ε+

1

2
εTdiag(r2)ε (2.20a)

subject to xk+1 = f(xk, uk) t = 0, . . . , N − 1 (2.20b)

zk = h(xk, uk) t = 0, . . . , N − 1 (2.20c)

x0, u−1 = given (2.20d)

xlow − ε ≤ xk ≤ xhigh + ε t = 1, . . . , N (2.20e)

ulow ≤ uk ≤ uhigh t = 0, . . . , N − 1 (2.20f)

∆ulow ≤ ∆uk ≤ ∆uhigh t = 0, . . . , N − 1 (2.20g)

Qk � 0 t = 1, . . . , N (2.20h)

Rk � 0 t = 0, . . . , N − 1 (2.20i)

Sk � 0 t = 0, . . . , N − 1 (2.20j)

The objective function 2.20a penalizes state deviation from a desired reference xrefk+1, as well
as usage of the inputs, the input change rate ∆uk and the slack variables ε that represents
deviation from hard state constraints. It contains both quadratic and linear weights for each of
the penalized variables. For linear weighting, the value of the weighted term increases instantly
when the variable moves away from the reference value. Quadratic weights give a low value
gradient in the interval around the reference value, and will therefore provide a smaller penalty
for a small deviation from the reference. On the other hand, a large deviation from optimality
is penalized more, compared to linear weighting.

The quadratic state weighting matrix Qk+1 and the linear state weighting vector dxk+1
gives

an opportunity of giving the individual states different importance in the solution. It could for
instance be crucial that some states quickly converge to the reference, while others might have
less priority. The state weighting also provides an opportunity of weighting the importance of
state convergence against the importance of the other variables in the objective function, such
as input variables. For cheap and accessible inputs, the input weights could be chosen small
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compared to the state weights. As for the states, the quadratic weights Rk and linear weights
duk for inputs could also be used for internal tuning of input priority.

The input change rate is penalized to minimize wear and tear on equipment, for instance valves.
Increasing the weighs on these variables also contribute to less aggressive control moves, which
is a highly desired property of control behavior in large and complex industrial plants.

The slack variables ε are added to the state constraints and penalized in the objective function
to ensure that the solution of the optimization problem is feasible at all times [1]. Infeasibility
of the optimization problem could namely occur if a disturbance pushes the states outside their
bounds between two sampling instants. Larger weights r1 and diag(r2) on the slack variables
will result in a large cost, increasing the incentive to bring the states within the state bounds.

The only feasible solutions of x and u are those that follow the model constraints given by
Equation 2.20b. In many cases, it is desired to control the output variables z rather than the
states. In that case, the state variables in the objective function are simply replaced by output
variables zk+1, which are defined by the constraints 2.20c.

The constraints 2.20e and 2.20f act as upper and lower limits of the states and input variables.
For the states, these could for instance be temperature or pressure limits. Similarly, for the
inputs, these limits are often physical constraints such as the maximum and the minimum
opening of a valve. The following constraints, given in Equation 2.20g, are upper and lower
limits on the change of input usage from one time step to another. These constraints are also
often related to physical limits such as the maximum opening or closing rate of a valve. The
last equations in the formulation (Equations 2.20h-2.20i) imply that the weighting matrices Qk,
Rk and Sk should be positive semidefinite.

Nonlinear model predictive control (NMPC) is a special case of MPC where the model function
f is a nonlinear function. Solving the dynamic optimization problem for an NMPC case requires
use of a nonlinear solver such as SQP.

By applying only the first input of the optimal input trajectory to the process, and using the
current (measured or estimated) state as the initial condition, feedback is included. This way,
any deviation from desired behavior of the states is noticed and the solution input trajectory
of the next iteration will adjust to counteract this deviation. The relation between the MPC
prediction calculation and the real plant is shown in Figure 2.4.
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Figure 2.4: Illustration of communication between the MPC application and the plant [1].

The required computational effort associated with solving the dynamic optimization problem
2.20 is highly dependent on the number of decision variables, which is given by:

nr = N(nx + nu) (2.21)

, where nx and nu is the number of state and input variables, respectively.

An efficient way of reducing the number of decision variables, and thus the computation time,
is to use control input blocking. In input blocking, the manipulated variables are forced to take
constant values over intervals spanning one or more time steps. Usually, the input variables
are allowed to move frequently in the beginning of the prediction horizon, with increasing block
lengths towards the end, as the states tend to settle to a steady value here. The concept of
input blocking is illustrated in Figure 2.5. Practice has shown that input blocking works well
in terms of reducing computational effort with little consequences in control quality [1].
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Figure 2.5: Illustration of the concept of input blocking.

2.7 The Control Hierarchy

A convenient way of structuring a control system is using layering in a control hierarchy based
on differences in the frequency of the performed tasks [1]. Such a control hierarchy is illustrated
in Figure 2.6.

Figure 2.6: The control hierarchy.

On the top of the hierarchy, tasks that belong to the time scale of weeks and months are placed.
This layer handles scheduling, evaluations of the product market demand and procurement of
raw material. It could also contain evaluations and optimization calculations on distribution of
available resources and production plans on different products. Based on these calculations and
evaluations, constraints and information on desired plant throughput are passed down to the
next layers in the hierarchy. The dynamic real-time optimization (DRTO) layer calculates op-
timal reference trajectories for the process, given constraints from the scheduling and plantwide
optimization layer, as well as real-time data from the process. This layer typically operates on
the time scale of hours. The calculated optimal reference trajectories are sent downwards to
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the advanced process control layer, which contains the MPC application. This layer controls
the process to follow the reference trajectories by, in the time scale of minutes, calculating new
setpoints for the conventional PID-controllers in the regulatory layer. These PID-controllers are
typically used to control properties like pressure, temperature, flow rate and composition, and
they respond in the matter of seconds [27].

17



3 Process Description

Expandable polystyrene (EPS) is produced as a suspension in a semi-batch reactor, where
reactants and additives can be fed during the reaction to obtain various effects on the product
quality. A scheme of the process is shown in Figure 3.1. Because of the highly exothermic
reaction nature, a cooling jacket is installed. The reactor content consists of styrene droplets
dispersed in a continuous water phase. The reactor is stirred, and the agitation speed controls
the size of the monomer droplets, and eventually, the size of the polymer beads of the product.
An oil soluble chemical initiator, or commonly, a mix of several initiators, are added to the
reactor.

Cooling water inCooling water out

Styrene, initiator, additives

Water, additivesFeed (additives, styrene, initiator)

Figure 3.1: A semi-batch reactor for suspension polymerization of styrene.

Desired temperatures for polymerization of polystyrene are in the range of 100-140◦C, and the
polymerization temperature highly influences the final product [28].

Various additives are usually needed in the process. Bead stabilizers are added to avoid aggre-
gation of the dispersed phase. Aggregates could in the worst case scenario sink to the bottom
of the reactor and give poor heat transfer conditions, resulting in thermal runaway. A blowing
agent is also added while the reactions proceed. This is an oil soluble chemical that swells
into the beads, and n-pentane is used for this purpose. When the EPS beads have reached
the desired product quality and the polymerization process is terminated, the beads are heated
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with steam. The blowing agent is then boiled off, giving air bubbles inside the polymer beads
and expanding them to about eight times their initial size. The average bead diameter after
expansion is approximately 1 mm [28].

3.1 Reaction Kinetics

Polystyrene is made by a free-radical polymerization process, where the development of long
polymer chains from styrene building blocks is a result of radical reactions, as described in
Section 2.1.

In the case of polystyrene, both chemical and thermal initiation occur. Chemical initiation
proceeds as described in Section 2.1. Thermal initiation means that given sufficiently high
temperature, styrene molecules will form radical components independently of additives to the
process. The related reactions are shown in 3.1-3.4. In thermal initiation, two styrene molecules
will undergo a Diels-Alder reaction and form the Diels-Alder adduct 1-phenyltetralin (AH) [29].
When the Diels-Alder adduct reacts with a styrene molecule, two radical molecules are formed,
and these can further initiate a polymer chain.

2 M
k1←−→
k−1

AH (3.1)

M + AH
kdm−−→ M· + A· (3.2)

M + M· kp−−→ R1 (3.3)

M + A· kp−−→ R1 (3.4)

Both the activation of a chain by a radical component from either thermal formation or chemical
initiator decomposition, and the propagation reaction of a growing chain, are shown in Figure
3.2. In both cases, the free electron of the radical molecule forms a single bond with one of the
electrons from the double bond of styrene. The result is the addition of a styrene molecule to the
initiator radical or growing chain. Depending on the direction the styrene molecule approaches
the radical, the phenyl group can point out of either side of the macromolecular backbone.
Normal polystyrene is atactic, meaning that the order of the directions of the phenyl groups is
random [30].

Figure 3.2: Activation of a new growing polystyrene chain and the propagation process.
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Radical polystyrene chains mainly terminate through the termination by combination mecha-
nism, and termination by disproportionation is negligible for production of EPS [29]. The most
important chain transfer agent is monomer molecules [28]. In some cases, chemicals that acts
as a CTA are added on purpose to control the chain length of the produced polymer [9].

Each of the organic phase droplets in the production of EPS can be considered a tiny lump
of bulk polymerization, where diffusional limitations on the polymerization reactions is crucial.
As the particles are swelled with pentane to obtain the expandability property of the beads, the
viscosity of the liquid within each droplet is decreased. Hence, the amount of pentane added and
the point in time when pentane is fed highly influences the physical properties of the finished
bead product.
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4 Modeling

This section will provide the assumptions made in the modeling work, the full mathematical
description of the model and details on the implementation and solving of the model. The
model is developed using the semi-batch reactor and polymerization modeling theory provided
in Section 2.

4.1 Assumptions

To obtain a model with appropriate simplicity for optimization calculations and MPC, a series
of assumptions are made for the process. It is important to notice that all of these assumptions
are likely to contribute to an enlarged process-model mismatch, compared to a rigorous model
that takes all involved phenomena into account.

First of all, the used chemical initiator will be different for different applications throughout
this work, but it is always assumed that the chemical initiator is of the mono-functional kind.

Secondly, it is assumed that the reactor is charged with monomer and water, that the monomer
is dispersed to tiny organic phase droplets in the continuous water phase, and furthermore that
the reaction is initiated by adding all the chemical initiator at once at time t = 0. However,
the model should give the possibility of also evaluating at the effects of feeding monomer and
initiator during the batch. Feeding reactive components during operation gives extra degrees
of freedom to control the reaction rate and temperature, as well as controlling the final product
quality. Addition of pentane is assumed to start at some desired point during the reaction, and
it is fed at a given rate over a short period of time.

There will most certainly be a delay between the addition of initiator and the onset of the
initiation reaction. The same applies for the swelling of pentane into the particles. However,
these effects are hard to quantify through measurements, and are therefore neglected. This
means that no mass transfer limitations between the water phase and the polymer phase are
considered in the model.

Further, the solubilities of styrene, initiator, polystyrene and pentane in water, and vice versa,
are assumed to be negligible. Accordingly, there will be no water in the droplets of the polymer
phase, and no styrene or pentane is lost to the water phase. In reality, styrene and pentane
are slightly soluble in water, as shown in Table 4.1. This could result in a small amount of the
added monomer not being available for reaction. Furthermore, some of the pentane is likely to
be lost in the water phase, meaning that less pentane will contribute to reducing the diffusional
limitation and the expansion properties of the polymer beads. In the same way, small amounts
of water could dissolve in the polymer phase, increasing both its total and free volumes.

Table 4.1: Solubility of styrene, polystyrene and pentane in water, and vice versa, at 20 ◦C.

Compound Solubility [kg/m3] Water solubility [kg/m3]

Styrene [31] 0.29 0.54
Polystyrene [32] 0.00 0.00
Pentane [33] 0.40 0.09
Initiator (organic peroxides) [34] 0.00-0.01 0.00

Regarding the chemical reactions, all reactions are treated as elementary and irreversible. Rad-
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ical chains are very reactive intermediate species, meaning that they are short-lived. Therefore,
the pseudo-steady state assumption (PSSA) can be applied to the moment balances of living
chains. This assumption is effective in eliminating the stiff condition of the differential equations
originating from the radical dynamics [35].

When it comes to the energy balance, one important assumption is made. Since the polymer
phase droplets are small and the reactor is vigorously mixed, mass transfer limitations between
the polymer phase and the water phase are neglected. This means that the process is modeled
completely without temperature gradients in the reactor content.

4.2 Dynamic Model Equations

Based on the assumptions discussed in Section 4.1, a dynamic model consisting of component
balances for the reactor content and energy balances for the reactor vessel and the cooling jacket
is formulated. All parameters used in the model equations are provided in Appendix A.

4.2.1 Component and Moment Balances

Component Balances:

Monomer (styrene) and initiator are both consumed in the reaction. These two reactants are
added at the beginning of the batch (t = 0), and in addition, they can be fed during the batch
(t > 0). As a base for the model with the purpose of primary testing and optimization, dicumyl
peroxide (DCP) is chosen as the chemical initiator. For parameter estimation, this initiator
is replaced with the initiator chemicals used to obtain the experimental data. The dynamic
component balances for monomer and initiator are shown below.

dnM
dt

= RMV + n̂M (4.1)

dnI
dt

= RIV + n̂I (4.2)

ni is the amount of reactant i present in the system, and n̂i is the corresponding molar flow of
the reactants. RM and RI are the reaction rates of monomer and initiator, respectively, and
the expressions for these are shown in Equations 4.3 and 4.4 [36].

RM = (−kp − ktrM )[M ][λ0]− 2fkd[I]− 2kdm[M ]3 (4.3)

RI = −2fkd[I] (4.4)

Here, kp, ktrM , kd and kdm are the rate constants for propagation, chain transfer to monomer,
initiation by chemical initiator and thermal initiation. f is the efficiency of the chemical initiator,
which is a number between 0 and 1. Moreover, [I] and [M ] are the concentrations of initiator
and monomer, respectively, and [λ0] is the zeroth order moment of active polymer chains on
concentration basis.

The blowing agent, which in this case is pentane, is fed to the reactor at some point during
the reaction, and does not contribute in any of the reactions. Hence, the balance equation for
pentane is given by Equation 4.5. The amount of pentane (nC5) added to the system does,
however, influence the volume and viscosity of the reactive phase.
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dnC5

dt
= n̂C5 (4.5)

Moment Balances of Living and Dead Chains:

The moment balances are based on the work of Wu et al. [36], which handles a similar case
of styrene polymerization. However, only thermal initiation is considered, and the moment
balances are therefore extended with chemical initiation terms. In addition, PSSA is used for
the radical chains, as mentioned in Section 4.1.

The zeroth order moment balance of living chains is defined in Equation 4.6. It represents the
rate of change of the present amount of living chains. Active chains are produced by the two
initiation processes, and they are consumed by termination. These reactions are represented
by the three terms of Equation 4.6. The first order moment of living chains is related to the
total chain length of all living chains. From the expression in Equation 4.7, it is clear that
initiation and propagation increases chain length, while termination stops the growth. Transfer
to monomer ends the growth of one chain, but initiates the growth of another. The balance
equation for second order moments is shown in Equation 4.8, and is close to equivalent to the
one for the first order moments, except that it balances the second order moments.

dλ0

dt
=
(
2fkd[I] + 2kdm[M ]3 − ktc[λ0]2

)
V = 0 (4.6)

dλ1

dt
= (2fkd[I] + 2kdm[M ]3 + ktrM [M ][λ0] + kp[M ][λ0]

−ktrM [M ][λ1]− ktc[λ0][λ1])V = 0
(4.7)

dλ2

dt
= (2fkd[I] + 2kdm[M ]3 + ktrM [M ][λ0] + kp[M ]([λ0] + 2[λ2])

−ktrM [M ][λ2]− ktc[λ0][λ2])V = 0
(4.8)

Since the PSSA is applied on the balances for living chains, the three equations above can be
solved directly for λ0, λ1, and λ2. Consequently, these variables are calculated directly in the
model.

The corresponding moment balances for dead chains are given in Equations 4.9, 4.10 and 4.11.
The zeroth order moment increases when active chains are terminated, which can occur in the
form of radical transfer to monomer and termination by combination. In the same way, the
number of monomers tied in dead chains (µ1) increase by the same termination processes. As
for the living moments, the second order moment balance is similar to the first order moment
balance, with an extra termination term.

dµ0

dt
=

(
ktrM [M ][λ0] + ktc

[λ0]2

2

)
V (4.9)

dµ1

dt
= (ktrM [M ][λ1] + ktc[λ1][λ0])V (4.10)
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dµ2

dt
=
(
ktrM [M ][λ2] + ktc([λ2][λ0] + [λ1]2

)
V (4.11)

Rate constants:

The basic rate constants are calculated using a standard Arrhenius expression:

ki = ki,0exp

(
− Ei
RTR

)
, i = {d, dm, p, tc, trM} (4.12)

Here, ki,0 is the frequency factor, Ei is the activation energy and R is the gas constant.

As explained in Section 2.1, the initiation, propagation and termination reactions will eventually
slow down due to diffusional limitations, and many strong models of these effects are based on
free-volume theory. The model used in this work is based on the description given by Keer et
al. [28].

In this model, the rate reduction of the three reactions are incorporated in the rate constants
for the glass and gel effects, and in the initiator efficiency coefficient for the cage effect. All
three effects are modeled using the free volumes of styrene, polystyrene and pentane, shown in
Equation 4.13. In these equations, αi is fractional free volume, Tg,i is glass transition tempera-
ture and Vm,i is molar volume. The component index i represents either monomer, polymer or
pentane.

Vf,M = (0.025 + αM (TR − Tg,M ))
nMVm,M

V
(4.13a)

Vf,P = (0.025 + αP (TR − Tg,P ))
µ0Vm,P
V

(4.13b)

Vf,C5 = (0.025 + αC5(TR − Tg,C5))
nC5Vm,C5

V
(4.13c)

The total free volume of the reaction mixture is given by the sum of the contributions for each
of the components, as shown in Equation 4.14.

Vf = Vf,M + Vf,P + Vf,C5 (4.14)

The gel effect is seen as the most important effect for the end product properties, and is included
in most free-radical polymerization models proposed by research literature. In the free-volume
theory model framework, the gel effect model is far more extensive than the ones for the cage
and glass effects. The apparent termination rate due to the gel effect is in this model explained
by three different diffusion regimes that contribute to diffusion control; segmental, translational
and reaction diffusion.

At low monomer conversion and low viscosity of the reaction medium, segmental diffusion con-
trols the diffusional limitations, and gives an increased termination rate at increasing conversion.
The segmental diffusion-controlled termination rate constant is shown in Equation 4.15. For
homopolymerization of styrene, this effect is very small, reflected in that the segmental diffusion
parameter for styrene (δc) is close to zero [37].
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ktc,seg =

[
1 +

δcµ0Mw,M

V

]
ktc (4.15)

At higher conversions, the translational diffusion regime starts to control the termination rate,
and the termination rate constant for this regime is shown in Equation 4.16. Here, M̄w,cr and
Vf,cr denotes the weight average molecular weight and free volume of the mixture at the onset
of the translational diffusion effect. A and a are both tuning parameters.

ktc,trans =

(
M̄w

M̄w,cr

)a
exp

[
−A

(
1

Vf
− 1

Vf,cr

)]
ktc (4.16)

The onset of this regime is indicated by a critical point, where a test variable K becomes equal
to a critical variable Kcr, both shown below. The test variable can be tuned by changing the
two parameters l and Al, and the critical variable can be tuned by changing Acr.

K = M̄ l
wexp

(
Al
Vf

)
(4.17)

Kcr = Acrexp

(
Ecr
RTR

)
(4.18)

In addition, the reaction or residual diffusion contribution acts on the system at all conversions.
As shown in Equation 4.19, the size of this effect is determined by a linear conversion function
between an upper and a lower bound.

ktc,rd = ktrd,minX + ktrd,max(1−X) (4.19)

The diffusional effects or regions can be gathered into one expression for the apparent termina-
tion rate:

ktc,app =

(
1

ktc,sec
+

1

ktc,trans

)−1

+ ktc,rd (4.20)

For the cage and glass effects, much simpler models (shown in Equations 4.21 and 4.22) are
used.

fapp = exp

[
−B

(
1

Vf
− 1

Vf,cr,d

)]
f (4.21)

kp,app = exp

[
−C

(
1

Vf
− 1

Vfcr,p

)]
kp (4.22)

The critical free volumes are for these models predetermined known parameters Vf,cr,d and Vfcr,p.
Similarly as for the gel effect, the magnitude of the effects can be changed by manipulating the
tuning parameters B and C.
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4.2.2 Energy Balances

The energy balance of the reactor vessel is developed on the form of a temperature equation as
discussed in Section 2.2.1, and the more specified equation for the considered system becomes:

dTR
dt

=

∑
i cp,in̂i(Tfeed − TR)−∆HRRpV − (UA)J(TR − TJ)− (UA)amb(TR − Tamb) +Wag∑

i nicp,i +mvcp,v
(4.23)

Here, the first term is equivalent to the enthalpy stream term from Section 2.2.1, and Tfeed is the
temperature of the feed. For free-radical polymerization, the bulk of the reaction heat generated
originates from the propagation reaction, and therefore, the propagation rate Rp is used in the
heat of reaction term. The propagation rate depends on the concentrations of monomer and
living polymer chains, and the expression is shown in Equation 4.24.

Rp = kp[M ][λ0] (4.24)

The heat term Q is replaced by the heat loss to the cooling jacket and the surroundings of the
reactor. In these terms (UA)J and (UA)amb are the overall heat transfer coefficients for heat
transfer to the cooling water and surroundings, respectively. TJ and Tamb denotes the cooling
fluid and ambient temperatures. The shaft work is in this case the work done on the system by
agitation, Wag.

As the cooling provided by the cooling system is dependent of the temperature of the cooling
water, an energy balance or temperature equation for the cooling jacket must also be a part of
the model. For this case, it is given by the following:

dTJ
dt

=
(UA)J(TR − TJ) + m̂ccpc(TJ,i − TJ,o)

mccpc
(4.25)

, where m̂c is the flow rate of cooling fluid, cpc is the heat capacity of the cooling fluid, TJ,i
and TJ,o are the inlet and outlet temperatures of the jacket, respectively, and mc is the mass of
cooling fluid contained in the jacket.

4.3 Model Structure and Choice of Model Variables

The model as a whole is structured on the following form:

ẋ(t) = f(t, x(t), u(t), θ) (4.26a)

x(0) = given (4.26b)

yp(t) = g(t, x(t), u(t), θ) (4.26c)

z(t) = h(t, x(t), u(t), θ) (4.26d)

Here, x is the state vector, u is the input vector, θ is the vector of parameters, yp is the vector
of (predicted) measurement variables and z is the output vector.

Since the modeling objective in this case is to perform an offline batch optimization related to
product quality and batch time, the required set of variables is small compared to the modeling
objective of full reactor operation and control. This would for instance include pressure control
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of the reactor. In operation, pressure control is necessary, but early research have shown that
the conversion rate and product quality of polystyrene is not significantly influenced at pressures
lower than 1000 atm [38].

The differential equations in vector form (Equation 4.26a) are the same as the model equations
shown in Sections 4.2.1 and 4.2.2. The states are the balanced variables in these equations,
meaning the present amounts of monomer and initiator, the moments for dead chains and the
reactor and jacket temperatures. The moments of living chains are included into the output
vector, since the calculation of these does not require solving of differential equations.

As input variables, it is natural to choose the flow rates of monomer, initiator and pentane
into the reactor, as well as the flow rate of cooling fluid. However, to ensure the possibility of
perfect temperature control, an extra input variable related to temperature is included (dTR).
Perfect temperature control is useful both for comparing the model results to measurement data
in parameter estimation and model validation, and for performing optimization calculations.
As the manipulated variable for perfect temperature control and optimization, the reactor
temperature derivative is chosen. This provides a smooth temperature trajectory, compared to
directly manipulating the temperature, as a new temperature can only be determined at each
sampling instant.

For a real reactor system, the available measurements of the system would be given, and these
would be a reasonable starting point for choosing measurement variables for the model. Since
this project work is not related to a specific semi-batch reactor for styrene polymerization, only
the essential measurements are included in the model framework. These include measurements
of the reactor and jacket temperature, as well as measurements of the weight and number
average molecular weights.

As already mentioned, the moments of living chains are directly calculated from the states,
and therefore belong in the output vector. The average molecular weights are also included in
the output vector for possibility of comparison between measurements and model predictions.
In addition, other variables that are calculated from the states and inputs and tell something
about the progress or product of the semi-batch process are included. These are number average
chain length, conversion, polydispersity index and cooling demand to keep the desired reactor
temperature. The calculation procedure of these variables are explained in Section 2.3.

To summarize the choice of state, input, measurement and output variables, the elements of
the various vectors are shown below.

x =



nM
nI
nC5

µ0

µ1

µ2

TR
TJ


u =


n̂M
n̂I
n̂C5

m̂c

dTR

 yp =


TR,p
TJ,p
M̄n,p

M̄w,p

 z =



λ0

λ1

λ2

M̄n

M̄w

n̄
X
PI
QJ,d


(4.27)
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4.4 Implementation and Numerical Solving of the Model

The model is formulated in the programming language C using a model template. This template
gives a framework for the model which is recognized by Cybernetica’s various software applica-
tions. In this framework, variables of the different types (states, inputs, measurements, outputs,
parameters and constants) are declared, and the model equations are formulated in functions.
The framework also contains functionality for solving the model, as well as interfaces between
the model and other applications such as Cybernetica ModelFit and Cybernetica CENIT.

Four different numerical solution methods are built in. The simplest is Euler integration, which
is the one used to solve the model given in Section 4.2. The differential equations in concern
are on the form of Equation 4.28a, and the initial conditions for the states are given. Then,
Euler’s Method for solving this system is given by Equation 4.28c.

ẋ(t) = f(t, x(t), u(t), θ) (4.28a)

x(t0) = x0 (4.28b)

xk+1 = xk + ∆tintf(k, xk, uk, θ) (4.28c)

Euler’s Method is chosen as the numerical solver in this case because it is fast and sufficiently
accurate for the model in concern with a relatively large step length. This is possible due
to the numerical robustness of the model. The sampling time ∆t of the model is chosen to
be 15 seconds, and the integration time step ∆tint is chosen to be equal to the sampling time.
Shorter step lengths and more sophisticated solvers, using a variable step length that adjusts for
dynamic variations in the solved differential equations, have also been tested for the model. The
conclusion from this investigation is that using more advanced methods and shorter step lengths
increases computation time, and gives little contribution to simulation accuracy. However, for
a case where PSSA is not applied on the living chain reactions, such measures are unavoidable
due to the stiff conditions of the differential equations.

4.5 Results and Discussion

This section presents simulation results of the model. First, the effects of constant temperature
and initiator addition on the product quality, polymerization time and diffusional limitations
on the reactions, are investigated in Section 4.5.1. Further, the effect of pentane addition on
diffusional limitations and the resulting product quality is handled in Section 4.5.2.

4.5.1 Effect of Temperature and Monomer to Initiator Ratio

The dynamic development of number and weight average molecular weights, monomer conver-
sion, initiator consumption and efficiency, and propagation and termination rate constants for
different constant temperatures and initiator amounts are shown in Figures 4.1-4.7. The initial
monomer amount is for simplicity set to 1 mol, and the total simulation time is 225 minutes.
The model is simulated at the temperatures 100, 120 and 140 ◦C, and monomer to initiator
ratios 50, 100 and 200.
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It is seen from Figure 4.1 that M̄n is strongly dependent on both the temperature and the
initiator concentration. In the given temperature range, the final product number average
molecular weight varies from slightly above 150 kg/mol for the lowest temperature, down to
20 kg/mol for the high temperature case. This implies that, according to the model, even a small
temperature change alters the product quality. Also the varying initiator content gives a large
range of product qualities.
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Figure 4.1: Number average molecular weight simulation results.

It is expected that average molecular weight in general is reduced with increasing temperatures
and initiator amounts. At high temperatures, the initiation and termination reactions are more
dominant than the propagation reaction, resulting in shorter chains. The high initiator content
has the effect of activating more chains, and as a result the available monomer molecules are
spread on more and shorter chains. In addition to the varying values of the final M̄n between
different reactor conditions, the value of M̄n settles at a constant value at different points
in time for the various conditions. Polymerizations at high temperatures and large initiator
amounts have the tendency of settling at a constant level early. This behavior is connected to
the conversion rate, which will be discussed in further detail in the following.

The weight average molecular weight development in Figure 4.2 follows the exact same trends
as the ones seen in Figure 4.1. However, M̄w takes much larger values than M̄n for the same
reactor conditions. It should also be noted that the ratio between the two average molecular
weights are not constant, meaning that polymers with different polydispersity are produced
within the range of temperatures and recipes.
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Figure 4.2: Weight average molecular weight simulation results.
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In the reactor condition ranges at hand, the styrene conversion development is especially sen-
sitive to temperature changes. For high temperatures (TR = 140 ◦C), the conversion curve is
very steep at the beginning of the batch, leveling out on 100% conversion towards the end of
the batch. For the 100 ◦C case, the conversion shows a more linear development with respect
to time, ending up at only 60%. This is expected, as all reactions involved in free-radical poly-
merization are slower at lower temperature, as indicated by the temperature sensitivity in the
Arrhenius expression given in Equation 4.12. The variations in the initiator amount between
0.005 and 0.02 mol also result in different conversion rates. Larger amounts of initiator initially
charged to the reactor give a slightly larger conversion rate in the first few minutes, resulting
in a higher end conversion. This behavior is also according to expectations, as more initiator
present will result in a higher number of active chains which can bind free monomer molecules
in the reaction mixture.
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Figure 4.3: Styrene conversion simulation results.

The initiator consumption is, similarly to the monomer conversion, highly dependent on the
reaction temperature. The development of the initiator content in the reactor for the different
simulated cases are shown in Figure 4.4. For the high temperature case, close to all of the
added initiator is consumed, while for lower temperatures, residual initiator is present in the
end product. For the lowest temperature, barely any initiator is consumed, meaning that the
few chains present have grown long. This theory is confirmed by considering the number and
weight average molecular weights for this case, which take significantly larger values compared
to the other cases.
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Figure 4.4: Initiator content simulation results.
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Most of the initiator consumption curves have a more or less sharp breakpoint. To understand
why these appear, Figure 4.5 must be considered. Because of the increasing viscosity of the
polymer phase, the cage effect will cause the apparent initiator efficiency to decline at a point
where the free volume of the reaction mixture has reached a critically low value. This behavior
is clearly seen in the figure below. For high temperatures and large initiator amounts, the
polymerization rate is faster, meaning that the free volume reaches a critical value earlier,
resulting in the onset of the cage effect. For the lowest temperature case, the polymerization
rate is so slow that the reaction mixture never reaches the critical point within the simulation
time frame of 225 minutes. When comparing Figure 4.4 to Figure 4.5, it is seen that the onset
of the cage effect is causing the breakpoints in the initiator content dynamics.

t [min]

0 50 100 150 200

f a
p

p
 [
-]

0.2

0.4

0.6

0.8

1

1.2 T = 100
°
C, M/I = 100

T = 120
°
C, M/I = 100

T = 140
°
C, M/I = 100

t [min]

0 50 100 150 200

f a
p

p
 [
-]

0.2

0.4

0.6

0.8

1

1.2 T = 120
°
C, M/I = 200

T = 120
°
C, M/I = 100

T = 120
°
C, M/I = 50

Figure 4.5: Apparent initiator efficiency simulation results.

The apparent propagation rate for the different simulated reactor conditions are shown in Fig-
ure 4.6. Some of the conditions show an onset of the glass effect during the simulated time
period. The lowest temperature and initiator amount is according to the model not affected
by diffusional limitations on the propagation reaction. Increasing temperatures and initiator
addition results in earlier onset of the glass effect. This is due to the same reason as for the
onset of the cage effect. Conditions causing fast polymerization also gives higher viscosity at
an earlier stage.
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Figure 4.6: Apparent propagation rate constant simulation results.

Similarly, the apparent termination by combination rate constant, given in Figure 4.7, is showing
the same kind of behavior due to the gel effect. The magnitude of the drop in the termination
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rate constant is large compared to the changes in the apparent initiator decomposition rate and
propagation rate caused by the cage and glass effects. This explains why the gel effect is seen
as a far more extensive effect when it comes to impact on the product quality.
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Figure 4.7: Apparent termination by combination rate constant simulation results.

From these results, it can be concluded that the qualitative behavior of the model, given differ-
ences in reactor temperature and initially loaded initiator, is in accordance with expectations.
Increasing temperature and initiator concentration both result in faster polymerization and
shorter chains, which is in line with statements from literature. In conditions that generate
heavy polymerization in an early stage of the process, diffusional limitations on the reactions
in the form of the glass, cage and gel effects are present. It should be noted that the modeling
approach of these effects assumes that the three effects act in the same manner. It also assumes
that these effects arise at a critical point, and that the reaction rate falls exponentially after
this point. These assumptions could be said to give a very simple representation of the real
mechanisms and behavior of the diffusion limited reactions.

4.5.2 Effect of Pentane

As stated in Section 2.3.4, additions of low viscosity liquids such as pentane will reduce the
impact of the cage, glass and gel effects by introducing new free volume between the reacting
molecules. Figures 4.8-4.10 show relevant simulations of apparent rate constants and initiator
efficiency, number and weight average molecular weight and monomer conversion and initiator
content, given different amounts of pentane. The other reaction conditions are the same as the
base case considered in Section 4.5.1, with a reactor temperature of 120 ◦C and monomer to
initiator ratio equal to 100. The different pentane amounts used in the simulations are 0.014,
0.07 and 0.14 mol of pentane present from the beginning of the batch process. These pentane
amounts correspond to 3.6, 18 and 36 wt%, respectively.

The apparent termination rate, propagation rate and initiator efficiency are shown in Figure
4.8. The development in these show that the model has the ability to produce the expected
delay in the gel, glass and cage effects from addition of low viscosity pentane. The more pentane
added, the stronger is the reduced viscosity effect. For the largest pentane addition of 36 wt%,
all diffusional limitations on the polymerization reactions are completely removed. With 18
wt% pentane added from the beginning, the gel and cage effects are clearly delayed compared
to the case with only a very small portion of pentane, and the glass effect is removed.
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Figure 4.8: Apparent termination and propagation rate constants and initiator efficiency simulation
results for different amounts of pentane added.

The number and weight average molecular weight developments, shown in Figure 4.9, are rel-
atively similar between the different pentane additions during the first part of the batch. In
this region, the gel, glass and cage effects have not been activated, and the molecular weight
difference is due to changes in the reaction volume itself. However, when the low pentane case
enters the critical region, one can clearly observe that the end product quality in terms of the
molecular weight is changed. The final number and weight average molecular weights are re-
duced with increasing pentane addition, because of the inhibition of the gel effect which reduces
the termination rate and gives longer chains.
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Figure 4.9: Number and weight average molecular weight simulation results for different amounts of
pentane added.

The styrene conversion and initiator contents of the reactor in terms of changes throughout
the batch process are shown in Figure 4.10. The conversion shows very little sensitivity to the
pentane addition. As the glass effect is clearly influenced by the pentane addition, this means
that the magnitude of the propagation rate change is so small that the glass effect is barely seen
on the conversion rate. It is rather hard to say whether or not this result is in agreement with real
free-radical polymerization processes. Results from similar experiments of bulk polymerization
of styrene in presence of pentane published by Villalobos et al. in 1993 indicates that the
pentane sensitivity of the conversion variable is too low in the model [37]. In the work by
Villalobos et al., pentane additions of 0, 7.5 and 15 wt% give a clearly observable difference
both in the conversion rate and the end conversion after 480 minutes of polymerization. On
the other hand, the cage effect has an apparent effect on the initiator decomposition rate from
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the moment of entering the critical region. This is seen as breakpoints, similar to the ones seen
in Section 4.5.1, in the initiator consumption curves at the time when the apparent initiator
efficiency starts to fall.
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Figure 4.10: Monomer conversion and initiator consumption simulation results for different amounts
of pentane added.

From these results, it is clear that the model is at least qualitatively able to reproduce the
theoretical basis on diffusional limited reactions and presence of a low viscosity medium in the
reaction mixture. As expected, all of the three effects are delayed, faded or completely removed
in the considered time frame, when pentane is present from the point of initiation. However,
comparison with experimental results from similar polymerization processes indicates that the
sensitivity to pentane addition might be underestimated by the model.
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5 Offline Parameter Estimation

The parameter estimation of the model described in Section 4 is performed using Cybernetica
Modelfit, a software program developed by Cybernetica AS. ModelFit is built for recognizing
the components of a model written in the C template used to implement and solve the EPS
semi-batch reactor model. It contains features for simulation and offline parameter estimation.
There are also embedded algorithms for running recursive parameter and state estimation in the
form of an EKF. As the input plant measurements, Cybernetica Modelfit uses logged time-series
data from the plant, and solves a similar optimization problem as shown in 2.17 [15].

The set of parameters to estimate is determined by the user, and as a useful tool in deciding
which parameters to choose for estimation, ModelFit provides an identifiability ranking. Identi-
fiability is defined as the theoretical ability to learn the true underlying parameter values of the
model [39]. How identifiable a set of parameters are, is affected by the cost function’s sensitivity
to the parameters and the linear dependence between the parameters.

In this work, the parameters chosen for estimation are:

η =



k0,p

k0,trM

k0,tc

Ep
EtrM
Etc
Acr


(5.1)

The frequency factors for propagation, transfer to monomer and termination are chosen to
adjust the magnitude of the reaction rates. The activation energies for the same reactions are
chosen to adjust for the temperature dependency implied by the plant measurements. Note
that both chemical and thermal initiation is excluded from this set. This is due to the linear
dependency between these two variables, and the termination by combination rate, indicated
by the identifiability ranking provided by ModelFit. Hence, it is not possible to choose these
variables for estimation simultaneously. Finally, the frequency factor of the critical variable Kcr

is estimated to adjust the onset of the gel effect.

5.1 Results and Discussion

The parameter estimation has been performed for a given recipe and reactor conditions, using
measurement data provided by a major European polymer producing corporation. The reactor
conditions in the form of a temperature profile and the timing for pentane addition is shown
in Figure 5.1. The axes have been scaled due to confidentiality of the given reactor conditions.
The time axis is scaled by the total batch time, the temperature profile is scaled by the initial
temperature and the pentane addition is scaled by the total added pentane amount in the end
of the batch.
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Figure 5.1: Temperature profile and pentane addition for parameter estimation.

The offline parameter estimation calculation gave increased values for k0,p, k0,ktrM , Ep and Acr
and reduced values for k0,tc and Etc. The value for EtrM was held constant. According to
this optimization calculation, it is more optimal to choose a lower value for the termination by
combination frequency factor and in addition decrease the temperature sensitivity, and increase
the total value of the termination rate constant, by reducing Etc. This change has the effect of
increasing the overall termination rate, which especially reduces the initial molecular weights.
The enlarged transfer to monomer frequency factor also has the effect of reducing the molecular
weight in the form of terminating longer chains in order to start new ones. To balance the
increased termination, the propagation rate is significantly increased by raising the value of k0,p

and slightly increasing its sensitivity to temperature by changing Ep. The critical gel effect
factor Acr is increased, meaning that the onset of the gel effect should occur later in time,
according to the offline parameter estimation. This change has the effect of reducing M̄n in the
end of the batch.

The obtained results are shown in Figures 5.2 and 5.3. Here, plant measurements and model
predictions before and after parameter estimation are shown for weight and number average
molecular weight, respectively. The quality axes are here scaled by the quality measurements
at the end of the batch (M̄w,m,f and M̄n,m,f ).
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Figure 5.2: M̄w measurements and model predictions before and after parameter estimation.
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Figure 5.3: M̄n measurements and model predictions before and after parameter estimation.
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As seen from both plots, the model with parameters from literature fails to restore the trend
of the first measurements, taken from when the process has reached 40% of the batch time.
The model with estimated parameters shows improvement for both M̄w and M̄n in producing
the dynamics of the first measurements. However, the accuracy of predicting the final product
quality does not seem to increase. In Figure 5.3, this is especially visible, as the predicted
number average molecular weight is significantly higher than the measurement values.

The available basic data for parameter estimation is in this case very limited. Only a few data
points are logged, and they are all placed in the last half of the batch time horizon. This means
that it is impossible to say which of the initial behaviors shown by the pre- and post parameter
estimation models is the closest to reality. Also, the logged measurement data set lack data
from different reactor conditions, such as temperatures and initiator amounts.

It is also important to note that a measure on the uncertainty of the measurements is not given.
This means that it is assumed that all measurement points are able to completely and truly
describe the state of the system at the given point in time, which is a rather rough assumption.
Uncertain measurements could result in poor quality of the estimated parameters. In this case,
an online parameter estimation combined with state estimation would produce a better fit.

The conclusion from this work is that in order to obtain better qualitative fit between the model
and the plant, parameter estimation using a more complete set of data is necessary.
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6 Optimization

The increasing competition in the chemical industry has established the need of economically
optimal operation and flexible production plants. The polymer industry and production of ex-
pandable polystyrene are no exceptions [40]. A case study from 2013 on the necessary measures
for EPS manufacturers to remain competitive states that plant capacity utilization is key to
reduce production cost and maximize profitability [3].

For an EPS production plant, plant capacity utilization is mainly connected to i) run as many
batch processes as possible at the same time, and ii) limit the amount of time spent on each batch
run. The amount of EPS produced per time unit in an EPS production plant is predominantly
limited by the available cooling water capacity. As previously mentioned, sufficient cooling of
the reactor is crucial to avoid thermal runaway and to remain at safe operation of the reactor,
as well as attaining the desired product quality. The cooling capacity is time-varying, as the
availability of water and the water temperature can vary throughout the year.

6.1 Plantwide Optimization of EPS Production

A diagram showing a possible hierarchical structure for the EPS plant, similar to the one
discussed in Section 2.7, is given in Figure 6.1. On the top level, plantwide optimization,
decisions depending on the current market demands of EPS and the availability of resources
such as reactants and cooling water are made. This layer has the responsibility of distributing
resources to the batch reactors in the plant in an optimal manner. This information is passed
to the DRTO layer as constraints. The DRTO layer then solves an optimization problem based
on the given constraints and measurements from the process. The solution to this optimization
problem is optimal trajectories for the controlled variables, given the objectives of optimal
operation, meaning to obtain the desired product quality in the least amount of time. The
optimal output and input trajectories are then passed to the NMPC layer, which seeks to
control the process close to the optimal paths.
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Figure 6.1: Diagram of plantwide optimization of an EPS polymerization plant.

The aim of this work is to formulate an optimization problem and solution method for offline
optimization of the semi-batch process. Because optimizing the entire plant in order to improve
plant utilization is interesting in an economical perspective, this offline optimization procedure
could act as a pre-stage of a DRTO application. This DRTO layer would re-optimize trajectories
based on information from the process and modified constraints from the plantwide optimization
layer.

6.2 Formulation of the Optimization Problem

The aim of the optimization is to reduce the batch time required to reach the desired product
quality and conversion. At the same time, the cooling demand must stay below or on the
available cooling capacity. For the purpose of this study, product quality is assumed to be
determined only by the number average molecular weight, meaning that the weight average
molecular weight varies according to the model. The used decision variables are the initial ratio
between loaded monomer and loaded initiator, as well as the dynamic temperature trajectory
during the batch. Addition of pentane is not taken into consideration for this part of the work.

There are many possible optimization problem formulations that seek to fulfill these goals, and
the chosen formulation is shown in Equation 2.19. The choice of such a problem formulation is
built upon many engineering decisions; prioritizing between the different goals and determining
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for which variables deviations from the desired values can be accepted.

min
TR,0, dTR, nI,0, ε

q(M̄n,f − M̄n,d)
2 + r1ε+ sdTR∆dT 2

R (6.1a)

s.t ẋ(t) = f(t, x(t), u(t), θ) (6.1b)

y(t) = g(t, x(t), u(t), θ) (6.1c)

z(t) = h(t, x(t), u(t), θ) (6.1d)

tf,min − ε ≤ tf ≤ tf,max + ε (6.1e)

X ≥ Xd (6.1f)

QJ,d ≥ QJ,min (6.1g)

TR,min ≤ TR ≤ TR,max (6.1h)

dTR,min ≤ dTR ≤ dTR,max (6.1i)

nI,0,min ≤ nI,0 ≤ nI,0,max (6.1j)

Here, TR,0 is the initial reactor temperature, dTR is the reactor temperature derivative and nI,0
is the initially loaded amount of initiator. These variables are the decision variables used to
obtain the minimum value of the objective function.

The objective function consists of the quadratic deviation between the final product number
average molecular weight M̄n,f and the desired quality M̄n,d, the linearly weighted slack variable
of the batch time constraint and a quadratic term providing change rate penalization of the
temperature derivative. Quadratic weighting is chosen for the average molecular weight devia-
tion, as a small deviation from the desired quality can be accepted, but a large deviation must
be given a high penalty. For the batch time term, a special solution is used. The more common
way to minimize time in optimization problems is to introduce a variable transformation for
the time τ = t/tf , enabling to directly optimize the time as a decision variable [41]. In this
case, an NMPC base formulation and an application used to run NMPC is applied to solve the
problem. This application uses a specific framework where normalization of the time is impossi-
ble without making extensive changes in the framework. Instead, the batch time is constrained
in a small region close to 0, and a slack variable ε is added to avoid infeasibility arising from
the increasing batch time. This slack variable is then weighted with a linear weight r1, which
gives a strong penalization of large time usage. The solving of the optimization problem with
respect to batch time optimization is further discussed in Section 6.3. The last term, meaning
the penalty of the change of dTR between two samples is added to ensure a relatively smooth
temperature trajectory, as this is preferred in operation of the reactor. The notation ∆dTR is
chosen because it fits well into the framework of the NMPC tool, although it is not necessarily
meaningful in terms of mathematical formulation.

The constraints 6.1b-6.1d represent the process model. As already mentioned, the batch time
is penalized by using a “soft constraint” and a slack variable, and this constraint is given by
Equation 6.1e. The batch time is defined as the time when the desired conversion Xd is reached,
and constraint 6.1f ensures that this requirement is met. Constraint 6.1g states that the cooling
demand must comply with the limitations on cooling capacity. To keep within the safe region
of operation, the temperature is bounded by maximum and minimum bounds, and the change
rate of the temperature is also bounded to ensure that physical limits on temperature change
are taken into account. In addition, the total loaded amount of initiator must stay within some
given bounds in order to decrease the feasible region to a reasonable one.
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For the cooling capacity constraint, a temperature dependent constraint is chosen as an ap-
proximation to the real case where either the amount of cooling water or the cooling water
temperature will be limiting for heat transfer. This constraint is shown in Equation 6.2. Here,
the cooling jacket temperature is assumed to be constant and equal to TJ,const. KQ is a heat
transfer coefficient holding information about the heat transfer conditions and the limitations
on these. Since heat transfer characteristics of the modeled reactor is not known in detail, this
coefficient is chosen in a way such that the constraint 6.1g clearly limits the possible choices for
optimal reactor temperatures. Hence, KQ is set to a value that gives active cooling capacity
constraint in parts of the batch process.

QJ,min = KQ(TJ,const − TR) (6.2)

The values of the bounds and other parameters used in the formulation are given in Table 6.1.
In order to obtain an easily scaled system, the loaded amount of monomer is set to 1 mole. This
influences the choice of the upper bound on the initiator amount.

Table 6.1: Values of the parameters in the optimization problem.

Description Symbol Value

Desired number average molecular weight M̄n,d 100.0 kg/mol

Lower bound on batch time tf,min 0 min
Upper bound on batch time tf,max 0.1 min
Desired conversion Xd 0.8
Empirically determined heat transfer coefficient KQ 0.1 W/K

Constant cooling water temperature TJ,const 10 ◦C
Lower bound on temperature TR,min 100 ◦C
Upper bound on temperature TR,max 140 ◦C
Lower bound on temperature derivative dTR,min -0.5 K/s

Upper bound on temperature derivative dTR,max 0.5 K/s

Lower bound on total initiator loaded nI,0,min 0.00 mol
Upper bound on total initiator loaded nI,0,max 0.01 mol

6.3 Solving the Optimization Problem

The optimization problem is solved using Cybernetica CENIT, which is an application for
NMPC and integrated process estimation (states and parameters). It is for online use, and
communicates with the plant through an OPC (open platform communication) server. The
same framework can be used to run the application offline, and in this case, the OPC server
communicates with Cybernetica RealSim, which simulates an instance of the model as if it was
the real plant.

In CENIT, the dynamic optimization problem shown in Section 2.6 is solved using an SQP
algorithm. The structure of this general dynamic optimization problem can be adapted to
almost any specialized dynamic optimization problem, such as the one given in Equation 6.1.
In the NMPC application, this optimization problem is solved at every time instant, but for an
offline optimization routine it is only necessary to run the optimization algorithm initially to
obtain the predicted states and inputs for the entire batch. Therefore, it is important to choose
the prediction horizon sufficiently long to ensure that the batch finalizes within the given time
frame. The prediction horizon used in solving the optimization problem 6.1 is set to 4 hours.

42



As mentioned in Section 2.5, the SQP algorithm is formulated in a way that ensures convergence
at infinitely many iterations. However, for the optimization to be efficient in terms of the
computational effort associated with solving it, a limited number of SQP iterations must be set.
In the case of applying NMPC to a system, complete convergence to the optimal solution is not
necessarily needed, as it is only required that the system moves towards the desired state from
sample to sample. However, in offline optimization, where the goal is to achieve an optimal
solution in one run of the SQP algorithm, complete convergence is required. In this case, the
limitation of the number of SQP iterations is set to 20.

The time associated with finalizing the batch and the desired product quality poses a trade-
off problem. High temperatures and large amounts of initiator will hike the conversion rate
and therefore shorten the batch time, but at the expense of a low M̄n,f . This means that an
acceptable deviation from the product quality at the end of the batch will have to be defined,
and for the purpose of this study it is attempted is to keep M̄n,f within ±1.0 of the desired
number average molecular weight of 100.0 kg/mol.

For the purpose of the optimization, the batch time is added to the state vector of the model,
and this state variable is copied into an output variable. This variable is simply a counter that
adds each sample to the total time and converts it from seconds to minutes.

In order to be able to optimize the initial temperature, either for isothermal optimization or
for optimization of a temperature profile, an input variable TR,0 is added to the input vector.
The optimal initialization of the temperature is implemented using this variable as a decision
variable in the first sample of the prediction horizon. An internal logical variable in the model
then ensures that this decision variable is replaced by dTR for the remaining samples in the
prediction horizon. Optimal initialization of the initiator amount is also required, and here,
another approach is used. An extra input variable nI,0 representing the optimal total initiator
amount is made. In addition, a state variable nI,fed, keeping track of the amount of initiator
that has been fed to the reactor, is created. Then, the change rate of the initiator is calculated
as:

dnI
dt

= RIV +
(nI,0 − nI,fed)

τI
(6.3)

If the time constant τI is chosen sufficiently small, the system will act as if the initiator was
initially loaded into the reactor. In this case, the time constant is set to 60 seconds.

To replicate real operation where the product is removed or further processed once the batch
is ready, all time derivatives are set to zero in the point where 80% conversion is reached. It is
desired to weight the average molecular weight deviation and the batch time in the exact point
when the batch is finalized, which is an unknown point prior to optimization. Including this
logic opens for weighting these variables in the last point of the prediction horizon, because all
variables will hold the same value at 80% conversion and in the end of the prediction horizon.
However, the same logic could be problematic for the numerical properties of the problem,
especially with the long sampling time of 15 seconds. The batch can reach 80% conversion
at any point, also between two samples. However, the derivatives will be set to zero from
the next sample, regardless of where the exact 80% mark occurs. This is illustrated with the
solid line in Figure 6.2. The solver in CENIT makes perturbations in the input variables to
determine the sensitivity in the output variables, as an alternative to calculating derivatives.
If the perturbations are too small to move the 80% mark before the current sample or after
the next sample, the sensitivity of the batch time variable will be set to zero for some or all of
the input variables. To avoid this, linear interpolation can be implemented to circumvent the
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problem by setting the derivatives to zero in the exact point where 80% conversion is reached.
The dashed line in Figure 6.2 illustrates the resulting conversion with linear interpolation.

Conversion

80%

t| {z }

∆t

Figure 6.2: Conversion as a function of time with (dashed line) and without (solid line) interpolation.

The linear interpolation is implemented by using relational and logical operators to determine
if the conversion will reach 80% between the current sample and the next. If that is the case,
all derivatives are scaled by a factor ∆τ

∆tint
. ∆τ is the time from the current sample mark to the

time where 80% conversion is reached, calculated using the expression shown in Equation 6.4.

∆τ =
(0.8−Xk)∆tint
Xk+1 −Xk

(6.4)

Here, Xk and Xk+1 are the conversions at the current and the next sample, respectively.

To reduce the number of decision variables arising from the optimization of the temperature
profile, the input blocking part of the NMPC formulation is utilized. The prediction horizon
of 240 minutes with sample intervals of 15 seconds is divided into 185 blocks for the tempera-
ture derivative input variable dTR. This gives only 186 decision variables to calculate for the
temperature profile (including initial temperature), compared to 961 variables without input
blocking. The blocking structure is finer at the beginning of the prediction horizon giving the
temperature freedom to vary in this region, and the resolution is decreasing throughout the
prediction horizon. A new temperature derivative is calculated every sample for the 50 first
samples. Then, the manipulated variable is allowed to change every fifth sample until sample
725 (181.25 minutes), where a single block is used for the rest of the prediction horizon. At this
point, the batch is expected to be close to finished, and the choice of temperature in this region
does not affect the polymer product.

6.4 Results and Discussion

In this section, results from relevant simulations and optimization of the model are given. The
optimization procedure is developed through three steps. First, only the optimal monomer to
initiator ratio is calculated for a given constant temperature (u = nI,0). Further, an optimal
constant temperature is added to the formulation (u = nI,0, TR,0), and finally, both the monomer
to initiator ratio and the dynamic temperature trajectory are optimized in order to produce the
shortest possible batch time (u = nI,0, TR,0, dTR).
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The various weights applied in the optimization problem in the different steps of optimization
are obtained by tuning the problem using a trial and error methodology. The starting point for
this tuning is an educated guess on what would be a good combination of weights, given the
objective at hand. The importance of attaining the correct quality and a short batch duration is
apparent, compared other variables in the problem. However, tuning the optimization routine
has shown to be a time consuming task.

The model is used with parameters from literature, given in Appendix A, not the estimated
parameters from Section 5.1, for all optimization calculations. This is mainly because the
fitted model does not show improvement in predicting the final product quality, which is of
interest in the case of optimization. In addition, the lack of basic data to support the calculated
parameter changes makes it hard to conclude that the fitted model better represents the real
process, compared to the model parameters supported by experimental results.

6.4.1 Pre-Optimization Simulation

Pre-optimization simulations were performed to get an overview of how the model reacts to
changes in the input variables, to generate a base case for comparison, as well as indicating an
optimal region of process conditions. The model is simulated for constant temperatures in the
range of 100 to 140 ◦C and for monomer to initiator ratios between 20 and 200. The simulation
is terminated when the conversion has reached 80%, which is defined as the end of the batch,
and the number average molecular weight is stored in this point.

The resulting number average molecular weights as a function of the input variables are shown
in the surface plot in Figure 6.3. The black line in the plot shows the intersection between the
surface and the plane M̄n = 100.0 kg/mol.
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Figure 6.3: Surface plot of M̄n as a function of isothermal temperature and monomer to initiator ratio.
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Equivalent simulation results for the batch time are shown in Figure 6.4. Similarly as for the
number average molecular weight landscape plot, the black contour curve represents the process
conditions that give the desired product quality.
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Figure 6.4: Surface plot of batch time as a function of isothermal temperature and monomer to initiator
ratio.

As expected, the number average molecular weight is decreasing with increasing temperatures
and initiator amounts (at low monomer to initiator ratios). Higher temperatures activate the
initiation reaction. As a result, monomer molecule consumption is spread over many chains,
giving a high number of shorter chains compared to lower temperature conditions. The same
principle applies to large amounts of initiator in the system, as many radical chains will exist at
the same time in such conditions. The intersection of the desired M̄n plane shows that according
to the model, it is only possible to produce the desired product quality at constant temperatures
below 120 ◦C, as higher temperatures will always give a lower molecular weight. The range of
possible initiator contents is slightly wider than the temperature range, and amounts between
0.0143 and 0.005 mol of initiator per mol styrene can be added to the reactor to produce the
desired quality.

The batch time follows the same trend as the molecular weight. Producing higher number aver-
age molecular weights requires more time - up to 10 hours. In comparison, the time associated
with polymerization of the shortest chain lengths is only a few minutes. The time it takes to
produce M̄n = 100.0 kg/mol is between 337 and 198 minutes for the different reactor conditions.
This means that the optimal point in this case is the point where the batch time equals 198
minutes. In this point, the constant reactor temperature is 113.5 ◦C and the mole based ratio
between monomer and initiator is 200.
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6.4.2 Optimization of Monomer to Initiator Ratio

In this part, only the monomer to initiator ratio is optimized. The reactor temperature is set to
a constant value of 113.5 ◦C, from the optimal point in the pre-optimization simulations. In the
optimization formulation, all relevant variables are scaled with their expected maximum value.
The deviation from the desired product quality is weighted with q = 450, and the batch time
constraint violation is weighted with r1 = 0.01. The product quality weight is significantly larger
than the slack variable weight for the batch time for two reasons. First, the product quality is
weighted in only one point, compared to the batch time which is weighted at every point in the
prediction horizon. The total penalization is the sum of the penalizations in every time step.
Secondly, the batch time constraint is linearly weighted, which means that the penalization is
high for every deviation from the constraints. For the batch time, this deviation will grow larger
for each time step.

Figure 6.5 shows the development of the number and weight average molecular weights. In the
beginning, the average molecular weights take high values, and they stabilize at a much lower
level throughout the batch. This development is due to that only a few initiator molecules
have decomposed to activate new chains in the first few minutes, and propagation is rapid on
these chains due to the high monomer concentration. The number average molecular weight
is 99.6 kg/mol at the time when 80% conversion is reached, which is well within 1% deviation
from the desired value. The corresponding value for M̄w is 172.9 kg/mol, meaning that the
polydispersity index is equal to 1.74. This PDI is within the expected range which is between
1.5 and 2.0 for polymers produced by a free-radical production mechanism [42].
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Figure 6.5: Number and weight average molecular weights for monomer to initiator ratio optimization
at 113.5 ◦C.
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Figure 6.6 gives the dynamic styrene conversion and the initiator consumption for the calcu-
lated monomer to initiator ratio. The monomer conversion follows a smooth path to the 80%
conversion mark where the batch is finalized. The optimized monomer to initiator ratio is
196.4, corresponding to an initiator amount of 0.0051 mol of initiator per mol of styrene. The
optimal amount of initiator calculated is added to the reactor during the first minutes, as can
be seen from the steep increase in the initiator content. It should be noted that this delay can
cause some inaccuracy in the calculated batch time, making it longer than the true value. The
initiator content in the reactor settles at 0.0035 mol, which is a reduction of only 31% from
the total added amount. This suggests that having a high accessibility of initiator molecules in
the beginning of the batch reduces the batch time, as expected. However, there will be small
amounts of residual initiator in the final product.
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Figure 6.6: Monomer conversion and initiator consumption for monomer to initiator ratio optimization
at 113.5 ◦C.

The cooling demand needed to keep the temperature constant at 113.5 ◦C is shown in Figure 6.7,
along with the linear cooling constraint corresponding to Equation 6.2. The cooling constraint
is never active, but the cooling demand comes relatively close to the constraint at one point
a few minutes from the onset of the reaction. This means that it is in this case not required
to use the entire cooling capacity to maintain the calculated optimal temperature, even in the
point of maximum heat generated by the reaction.
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Figure 6.7: Cooling demand and cooling capacity constraint for monomer to initiator ratio optimization
at 113.5 ◦C.

In this case, the SQP algorithm converges in 6 iterations. As can be seen from the figures above
at the point where all derivatives are set to zero, the resulting batch time is 194.1 minutes.

The polymerization time is 3.9 minutes shorter compared to the optimal pre-optimization sim-
ulation results. This improvement in batch time is assumed to arise from the increased amount
of initiator present in the system. By allowing a tiny negative deviation from the exact desired
quality value, a small increment in the initiator amount can be added, resulting in a slightly
shorter batch time. However, looking at the results from a wider perspective, it can be said
that the calculated monomer to initiator ratio is a replicate of the optimal point seen in the
pre-optimization calculations. This discovery supports the optimization formulation’s ability to
find the true minimum in the feasible region.

6.4.3 Optimization of Monomer to Initiator Ratio and Constant Temperature

As a natural development from only optimizing the initiator content, both the monomer to
initiator ratio and the constant temperature TR,0 are optimized. The weights used in the
optimization problem formulation are the same as the ones given in the previous section, and
the variables are scaled in the same way.

The resulting number and average molecular weights throughout the batch are shown in Figure
6.8. The development of these are similar to the result seen in Figure 6.5. The final number
average molecular weight M̄n,f of 100.0 kg/mol is exactly on the target value of M̄n,d. This result
shows that enabling fine tuning of the constant temperature, in addition to optimizing the
monomer to initiator ratio, improves the quality towards the desired value. The final weight
average molecular is 173.3 kg/mol, which gives a polydispersity index of 1.73.
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Figure 6.8: Number and weight average molecular weights for monomer to initiator ratio and constant
temperature optimization.

Figure 6.9 gives the dynamic conversion and initiator reactor contents. The optimal monomer
to initiator ratio calculated in this case is 208.2, meaning that 0.0048 mol of initiator is added to
the system. Also in this case, only a small portion of the available initiator is consumed in the
process, leaving a relatively large residual amount, compared to the charged initiator amount.
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Figure 6.9: Monomer conversion and initiator consumption for monomer to initiator ratio and constant
temperature optimization.

The optimal constant temperature TR,0 is calculated to be 114.2 ◦C, which is fairly close to
the minimum time temperature identified in the pre-optimization simulations. The cooling
duty required to keep the temperature constant at this value, given the heat generation from
the polymerization reactions, is given in Figure 6.10. The linear constraint from Equation 6.2
is also shown in the figure. In the point of maximum reaction heat generation, the cooling
capacity constraint is active. Since the optimal reactor conditions in this case is quite similar to
those of the optimization in Section 6.4.2 where the constraint is not active, it is not expected
that relaxing this constraint would give a significantly improved solution in terms of batch time.
However, the relation between initiator concentration, temperature and cooling demand is rather
complex. Choosing a higher constant reactor temperature gives an increased propagation rate,
which will further result in enlargement of the heat of reaction. The higher reactor temperature
will give a decline in cooling demand, while the increased heat generation will simultaneously
increase the need of cooling. Similarly, a change in initiator concentration will also influence
the propagation rate due to the dependence of radical chain concentration, altering the demand
for cooling.
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Figure 6.10: Cooling demand and cooling capacity constraint for monomer to initiator ratio and con-
stant temperature optimization

The SQP algorithm converges for the given decision variables in 8 iterations. The resulting
batch time is 189.5 minutes, which is 8.5 and 4.6 minutes shorter than the pre-optimization
simulation solution and the monomer to initiator ratio optimization at TR = 113.5 ◦C, respec-
tively. The optimal initiator addition is here slightly lower than both the previous cases, and the
corresponding constant temperature is slightly higher. The higher temperature allows for faster
polymerization, which gives the improvement in the end time of the batch, and less initiator is
optimal in order to keep M̄n sufficiently high given the increased temperature.

6.4.4 Optimization of Monomer to Initiator Ratio and Temperature Profile

As a final step in the process towards finding a complete set of optimal reactor conditions
according to the scope of this work, the reactor temperature is allowed to vary in time, including
dTR as a manipulated variable along with the initial temperature and the initiator amount. The
weights used in the optimization problem are shown in Table 6.2.

Table 6.2: Weights in the optimization of monomer to initiator ratio and reactor temperature trajectory.

Weight Value

q 450.0
r1 0.01
sdTR 1.0

The product quality weight and the batch time constraint weights are the same as in the previous
cases. sdTR is set to 1.0 by trial and error, as this part of the problem formulation must be
perfectly tuned to obtain the correct behavior. It is desired to penalize the change rate of the
temperature derivative in order to obtain a smooth temperature profile without oscillations,
that can easily be implemented as an optimal path for a real process application. On the other
hand, this variable must be given sufficient freedom to move in order to produce a temperature
profile that gives optimal performance.

The resulting number and weight average molecular weight developments are shown in Figure
6.11. The development is similar to the ones seen for constant temperature operation, only
different in the approximately linear decline with respect to time after the initial region of
high average molecular weights. The end number average molecular weight is 99.9 kg/mol, which
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is only 0.1% from the desired value. This shows that including more degrees of freedom in
the problem allows for increased precision when it comes to end product quality. However,
the measurement uncertainty for molecular weight measurements is expected to be multiple
times this model precision, and it can therefore improbably be fully exploited in a real process
application. The weight average molecular weight is 182.9 kg/mol, giving a polydispersity index
of 1.83. This value of the PDI is about 0.1 units higher than seen for the constant temperature
cases, meaning that having varying temperature in this case results in a wider molecular weight
distribution.
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Figure 6.11: Number and weight average molecular weights for monomer to initiator ratio and tem-
perature profile optimization.

The styrene conversion and initiator content development are shown in Figure 6.12. The con-
version rate in the beginning of the batch is significantly larger than the conversion rate of
the optimal cases with constant temperature shown in Figures 6.6 and 6.9. The monomer to
initiator ratio calculated in this case is 647.9, meaning that the optimal initiator amount is very
small and equal to 0.0015 mol. Because the temperature trajectory shown in Figure 6.13 is in
a significantly higher range than the constant temperatures calculated in the previous sections,
it is necessary to reduce the initiator concentration in order to keep the number average molec-
ular weight at a sufficiently high level to meet the quality requirements at the end of the batch.
However, it is important to note that ability to dose such a small portion of initiator with high
precision is highly unlikely in a practical application. In addition, the model assumes an ideal
case where no initiator is lost to the continuous phase, which will not be entirely true in a real
process.
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Figure 6.12: Styrene conversion and initiator consumption for monomer to initiator ratio and temper-
ature profile optimization.

Finally, the optimal temperature profile and the cooling demand with the temperature difference
dependent cooling constraint are shown in Figure 6.13. The optimal initial temperature TR,0
is calculated to be 121.7 ◦C. From the initial point, the temperature increases slowly to the
maximum allowed temperature of 140 ◦C during the first 85 minutes of the batch. The cooling
constraint reflects the changes in the reactor temperature according to Equation 6.2, and the
constraint is active in the time period from 5 minutes to 40 minutes into the batch. This means
that the allowed temperature in this region is constrained by the available heat transport to the
cooling system. Because of the relatively large time period of active cooling capacity constraint,
it is likely that this constraint affects the quality of the optimization solution. Without this
constraint present, the optimization routine could possibly find another temperature path that
gives improved batch time.
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Figure 6.13: Temperature profile and cooling demand for monomer to initiator ratio and temperature
profile optimization.

In this case, the SQP algorithm converges in 5 iterations, and the resulting batch time is 103.9
minutes. This is 94.1, 90.2 and 85.6 minutes shorter than the pre-optimization simulation,
the isothermal monomer to initiator ratio optimization and the combined temperature and
monomer to initiator ratio optimization for isothermal operation, respectively. This means that
allowing the temperature to vary, using an optimal temperature trajectory compared to optimal
isothermal operation is gives a significant reduction of the batch duration.

The above results are obtained with a constant cooling water temperature of 10 ◦C. As men-
tioned in the introduction of Section 6, the cooling water temperature often varies throughout
the year. Corresponding results as the ones shown in this section, using a cooling water tem-
perature of 20 ◦C are shown in Appendix B. The temperature profile and cooling demands of
the two cases are compared in Figure 6.14.
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Figure 6.14: Temperature profile and cooling demand for cooling water temperatures of 10 and 20 ◦C.

Using a higher cooling water temperature gives a tighter bound on the cooling demand. This
causes a small reduction in quality performance and the batch time is slightly increased. The
temperature profile starts at a lower value, and it stays below the temperatures of the original
case. However, the temperature reaches the maximum limit approximately at the same point
in time. In addition, the initiator amount is a bit higher. This means that there exist optimal
actions to handle the changed cooling capacity and mitigate the effects on product quality and
polymerization time. The conclusion is that utilizing updated information on the available
cooling resources is important to make the correct decisions on what recipe to use and what
temperature setpoints the reactor should be controlled to.

6.4.5 Summary

Table 6.3 shows a summary of the attained optimization results.

Table 6.3: Key numbers from the optimization results.

Case Decision variables TR [◦C] M/I[-] tf [min] Mn,f [kg/s] # SQP iterations

Isothermal, simulation − 113.5 200 198.0 100.0 −
Isothermal, optimal M/I nI,0 113.5 196.4 194.1 99.6 6
Isothermal, optimal M/I and TR,0 nI,0, TR,0 114.2 208.2 189.5 100.0 8
Optimal M/I and TR (TJ,const = 10 ◦C) nI,0, TR,0, dTR 121.7-140.0 647.9 103.9 99.9 5
Optimal M/I and TR (TJ,const = 20 ◦C) nI,0, TR,0, dTR 121.0-140.0 625.0 106.4 99.8 6

Overall, the observed trend shows that allowing more variables to be determined by the op-
timization routine, the initiator amount is reduced and the temperature increased to produce
the correct number average molecular weight in the least amount of time. It is also apparent
that increasing the number of optimized variables, the duration of the batch is shortened while

56



the product quality precision remains high. This is especially seen in the last case where the
monomer to initiator ratio and the temperature trajectory in time are optimized. As men-
tioned in Section 6.3, this case has a total of 187 decision variables, compared to 1 and 2 in
the isothermal optimization cases with given and optimized temperature, respectively. The
increased freedom to optimally determine temperature dynamically shows a powerful effect in
the end time of the batch. The number of SQP iterations does not seem to be systematically af-
fected by the change in the decision variable set, but the time associated with one SQP iteration
increases significantly when introducing time varying temperature.
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7 Conclusion

Theoretical concepts regarding modeling of polymerization processes and semi-batch reactors
have been established in this report. This gave a basis for the development of a model from first
principles. The result was a simple and numerically robust model, enabling for application of a
simple solver, which provided for low computational effort in simulation. It was also qualitatively
in accordance with expectations with respect to how it reacts to changes in initiator and blowing
agent concentrations, as well as reactor temperature.

Parameters collected from experimental research literature were applied to the model, and an
attempt of improving these parameters in order to restore a very limited set of measurements
from a lab-scale plant was performed. Unfortunately, lack of high quality basic data is a
key issue in the polymer industry, as measurements of many important variables have slow
dynamics and are associated with high uncertainty. The result from the performed parameter
estimation showed improved dynamic characteristics but the precision in predicting the end
product quality was seemingly not enhanced. It is therefore recommended to perform further
work with the model in the line of parameter estimation and model validation with access to
extended supporting data that covers the entire duration of the batch. A good fit between the
model and the real process is crucial to have in place before the model is applied to a real system
for offline optimization, NMPC or DRTO.

Overall, the results from the optimization part of this work proved that increasing the number
of degrees of freedom available for optimization reduced the time associated with producing
the desired end product quality at 80% conversion. Moreover, choosing higher temperatures in
order to improve the batch time, and at the same time reducing the initiator concentration to
keep the number average molecular weight at the high desired level of 100.0 ± 1.0 kg/s, appeared
to be optimal. The optimization routine was in all the investigated cases able to produce this
desired product quality with high precision. However, the measurement uncertainty associated
with molecular weight measurements is often high, and therefore, it is doubtful that the full
potential of this precision can be exploited in a real process application.

Optimization of the monomer to initiator ratio and the temperature trajectory turned out
to give very promising results. Using optimally varying temperature was according to the
model capable of reducing the batch duration with 1.5 hours, compared to optimal isothermal
operation. Because the model used was not properly fitted to the real process, and several rough
assumptions were made in the development of the model, these results can only be said to be
qualitatively correct. However, the conclusion is that allowing the temperature to optimally
vary in contrast to isothermal operation could potentially give significant improvements in
plant capacity utilization for EPS production facilities.

Investigations on optimal conditions with two different cooling water temperatures were also
performed. The results proved that there exist optimal actions to mitigate the effects on the
end product quality and batch duration with disturbances in the cooling water temperature. In
conclusion, it is useful to re-optimize once new information about the availability of resources
comes to light. Preferably, the combination of NMPC and DRTO, which re-optimizes for
disturbances while the batch process is operating and tracks the path changes, should be applied
to the system. This is a natural next step in the future work with this system.
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A Model Parameters

Table A.1: Values of the parameters used in the model.

Parameter Description Value Unit Source

a Gel effect tuning parameter 1.75 − [28]
A Gel effect tuning parameter 0.465 − [28]
Acr Gel effect critical point parameter 9.44 (kg/mol)0.5 [28]
Al Gel effect testing parameter 0.348 − [28]
B Glass effect tuning parameter 1.00 − [28]
C Cage effect tuning parameter 1.00 − [28]
Ecr Gel effect critical point exponent parameter 1.60e4 J/mol [28]
Ed Chemical initiation activation energy, DCP 1.53e5 J/mol [28]
Edm Thermal initiation activation energy 1.16e5 J/mol [11]
Ep Propagation activation energy 3.25e4 J/mol [28]
Etc Termination activation energy 1.40e4 J/mol [28]
EtrM Transfer to monomer activation energy 1.27e5 J/mol [28]
f Initiator efficiency 0.85 − −
kd,0 Chemical initiation frequency factor, DCP 9.24e15 1/s [28]
kdm,0 Thermal initiation frequency factor 0.219 m6/mol2 · s [11]
kp,0 Propagation frequency factor 4.27e4 m3/mol · s [28]
ktc,0 Termination frequency factor 1.47e7 m3/mol · s [28]
ktrd,max Reaction diffusion maximum bound 1.74e-27 − [28]
ktrd,min Reaction diffusion minimum bound 2.34e-26 − [28]
ktrM,0 Transfer to monomer frequency factor 6.05e12 m3/mol · s [28]
R Gas constant 8.314 J/molK −
Tg,C5 Glass transition temperature, pentane 123 K [28]
Tg,M Glass transition temperature, monomer 185 K [28]
Tg,P Glass transition temperature, polymer 370 K [28]
Vf,cr,d Critical free volume for cage effect onset 0.069 − [28]
Vf,cr,p Critical free volume for glass effect onset 0.0465 − [28]
Wag Agitation work 500 W/m3 −
αC5 Fractional free volume for pentane 0.00079 − [28]
αM Fractional free volume for monomer 0.001 − [28]
αP Fractional free volume for polymer 0.00028 − [28]
δc Segmental diffusion parameter 0.001 − [28]
∆HR Reaction enthalpy -7.11e4 J/mol [11]
ρC5 Density of pentane 649− 1.15(TR − T0) kg/m3 [37]
ρI Density of initiator, DCP 1560.00 kg/m3 [43]
ρM Density of styrene 924.0− 0.918(TR − T0) kg/m3 [44]
ρP Density of polystyrene 1084.8− 0.605(TR − T0) kg/m3 [44]
ρW Density of water 1000.00 kg/m3 −

I



B Optimization of Monomer to Initiator Ratio and Tempera-
ture Profile with High Cooling Water Temperature

Figures B.1-B.3 show the results from optimization of the monomer to initiator ratio and tem-
perature profile using a constant cooling water temperature of 20 ◦C. This could for instance
be the water temperature of a river in the summer.
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Figure B.1: Number and weight average molecular weights for monomer to initiator ratio and temper-
ature profile optimization.
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Figure B.2: Styrene conversion and initiator consumption for monomer to initiator ratio and temper-
ature profile optimization.
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Figure B.3: Temperature profile and cooling demand for monomer to initiator ratio and temperature
profile optimization.

The end product number average molecular weight is 99.8 and the corresponding value for
the weight average molecular weight is 187.59. The optimal monomer to initiator ratio was
calculated to be 625, and the temperature varies from TR,0 = 120.1 ◦C and the maximum
temperature of 140.0 ◦C. These conditions result in a batch time of 106.4 min.
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