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Abstract

This study adapts the advanced step NMPC framework to Economic NMPC. Here,
sufficient conditions for nominal stability are derived for NMPC controllers that
incorporate economic stage costs with appropriate regularization. To guarantee
these conditions, we derive a constructive strategy to calculate the regularization
term directly. Moreover, we extend the sensitivity components in the advanced
step NMPC framework to consider a rigorous path-following algorithm. This ap-
proach accounts for active set changes and allows much weaker constraint quali-
fications. Moreover, using an `1 formulation of the NMPC problem satisfies these
constraint qualifications and allows more reliable solution of the moving horizon
optimization problem, even in the presence of noise. Finally, all of these concepts
are demonstrated on a detailed case study with a continuously stirred tank reactor.

Keywords: Economic model predictive control, Advanced step nonlinear model
predictive control, Nonlinear programming, Sensitivity, Path-following method

1. Introduction

The ultimate goal of any operation strategy for a process plant is to make
profit. Traditionally the approach for achieving this goal has been to translate
the economic objectives into control objectives [1], and then to design a control
system which meets the control objectives. This approach leads to a hierarchical
two-layer structure, where the upper layer performs the economic optimization
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and calculates the optimal setpoints for the controlled variables in the layer below.
The lower layer then keeps the controlled variables at their given setpoints. In
principle, any kind of controller may be used in the lower layer, but in the context
of controlling complex nonlinear plants, model predictive controllers (MPC) have
proved to be very successful because of their ability to handle interactive plants
with input and output constraints in an optimized manner.

However, simply controlling some measurements at their setpoints generally
does not maximize the economic potential, especially in complex plants. Instead,
this can be achieved by incorporating economic information into the lower layers,
by finding a set of self-optimizing controlled variables [2]. Here the controlled
variables are chosen systematically such that keeping them at their setpoints gives
an acceptable economic loss in spite of disturbances. Alternatively one may at-
tempt to select the controlled variables as the necessary optimality conditions as
done in NCO-tracking [3]. These approaches work well when the active con-
straints do not change too frequently, and may be combined [4].

An alternative option, which is available when an optimization-based con-
troller such as MPC is used, is to include the economic criterion directly into the
cost function of the controller. This approach is often referred to as Economic
MPC (eMPC), and has been gaining increased interest in recent years. The idea
of using an economic objective in nonlinear MPC (NMPC), instead of a tracking
objective has been applied in e.g. [5, 6]. This approach was shown to work well,
but at that time there were no fundamental results on the stability and robustness
for model predictive control with an economic objective.

While Lyapunov stability properties have been well-studied for tracking NMPC
problems [7], extending these results to Economic NMPC is not straightforward,
because the stage cost of the Economic NMPC controller generally does not at-
tain a minimum at the steady state optimal operation point. This poses challenges
for Lyapunov based stability proofs, which assume that the stage cost is minimal
at the desired equilibrium point, such that the value function can be used as a
Lyapunov function for the closed loop system. Results on the stability of MPC
for convex linear systems with an economic cost were obtained in [8], and a first
Lyapunov stability proof based on strong duality arguments was published in [9],
and later extended in [10] to dissipative systems. An easier to verify stability con-
dition based on convexity of Hessian of the steady state problem was given in
[11, 12], which also considered robustness properties for Economic MPC based
on Input-to-State (ISS) stability.

Another important issue for economic model predictive control is to obtain op-
timization results fast enough for use in a real-time optimization feedback scheme.
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Beside the development of more efficient hardware and software for solving non-
linear programming problems (NLP), this challenge has been met by calculating
fast approximate solutions, which are typically based on solution point sensitivity
[13, 14], and have proved to be very successful. In previous work [15] we devel-
oped the advanced step NMPC (asNMPC) algorithm, where the NLP associated
with the moving horizon controller is solved in background (between sampling
times) and a fast sensitivity update of the NLP solution is made once the actual
state is known. While these sensitivity approaches usually work well, they rely
on strong regularity assumptions (in the form of constraint qualifications and sec-
ond order conditions) that may not always hold in practice, and the problem of
changing active constraints is approached in a rather heuristic way. Further, as
the sensitivity based approach is inherently local, it is limited to small parameter
changes in the NLP.

In this paper we present a collection of recent advances in this area. One of the
main contributions of this paper is to extend Lyapunov stability results based on
convexity arguments to the case of Economic NMPC. We establish stability results
for three different terminal criteria: (1) fixed terminal point with finite cost func-
tion, (2) fixed terminal point with infinite horizon cost function, and (3) terminal
set and a terminal cost for a finite horizon cost function. Moreover, we provide a
simple constructive method based on Gershgorin bounds for regularizing the stage
cost such that stability is guaranteed.

Another contribution of this paper is an extension of asNMPC based on apply-
ing multiple sensitivity steps in a path-following fashion. Our new path-following
method is designed to handle non-unique multiplier values and changing active
constraints; it works especially well with `1 penalty formulations of the NMPC
problem. We review a very general sensitivity result, where a linear program (LP)
is solved to obtain the multiplier values, and a quadratic program (QP) is solved
for obtaining the directional derivative for a given perturbation. This sensitivity
result is then used as a basis for a new path-following method for obtaining fast
approximations of the optimal solution of the NMPC problem. Finally, a selection
of these results is demonstrated by a detailed case study based on a CSTR model.

We use the convention that the ∇-operator, when used without subscript, is
taken with respect to the optimization variables. We add a subscript, e.g. ∇p to
indicate that we consider the derivative with respect to p; this avoids ambiguity
when it is not clear from the context.
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2. Stability properties of Economic NMPC

Nonlinear model predictive control with tracking type objective functions has
seen considerable analytical development of properties, which guarantee both
nominal and robust stability, see e.g. [16] . When NMPC with economic objective
is considered, the conditions on the stage and terminal costs must be modified in
order to guarantee Lyapunov stability. This section discusses these modifications
and shows conditions for regularization of economic-based stage costs that lead
to the stability guarantee.

2.1. The NMPC formulation
We define the NMPC problem,

min
zl ,vl

Ψ(zN)+
N−1

∑
l=0

ψ(zl,vl) (1a)

s. t. zl+1 = f (zl,vl) l = 0, . . .N−1 (1b)
z0 = xk (1c)
zl ∈ X,vl ∈ U,zN ∈ X f (1d)

where we assume, without loss of generality, that the actual and predicted states
xk,zl ∈ ℜnx , and actual and predicted controls uk,vl ∈ ℜnu , are restricted to the
convex domains X and U, respectively, and the terminal state is restricted to a
convex terminal region X f . The stage cost is given by ψ(·, ·) : ℜnx+nu →ℜ, while
the terminal cost is denoted by Ψ(·) : ℜnx+nu → ℜ. For tracking problems, we
can assume that the state and control variables can be defined with respect to
setpoint and reference values, and that the dynamic model and costs are Lipschitz
continuous and satisfy f (0,0) = 0,ψ(0,0) = 0 and Ψ(0) = 0.

After solution of (1) the control action is extracted from the optimal trajectory
{z∗0...z∗N v∗0, ...,v

∗
N−1} as uk = v∗0. The plant then evolves as,

xk+1 = f (xk,uk) (2)

and we shift the measurement sequence one step forward, set k = k+ 1 and use
the new state estimate xk to solve the next NMPC problem (1).

Ideally the NMPC problem is solved instantly, and the plant inputs are updated
without any time delay as soon as new measurements are available. This hypo-
thetical case is referred to as ideal NMPC (iNMPC). In practice however, there
will always be computational delay to solve Problem (1).
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To show stability, we need the following:

Definition 1. A continuous function α(·) : ℜ→ ℜ is a K∞ function if α(0) =
0,α(s)> 0,∀s > 0, it is nondecreasing with s and α(s)→ ∞ when s→ ∞.

NMPC has well-known stability properties (see [17, 7]) with the following
assumptions.

Assumption 1. (Nominal Stability Assumptions of NMPC)

1. The terminal cost Ψ(·) satisfies Ψ(x) > 0,∀x ∈ X f \ {0}, where X f is the
terminal region.

2. There exits a local control law u = h f (x) such that f (x,h f (x)) ∈ X f ,∀x ∈
X f .

3. Ψ( f (x,h f (x)))−Ψ(x)≤−ψ(x,h f (x)),∀x ∈ X f .
4. ψ(x,u) satisfy αp(|x|) ≤ ψ(x,u) ≤ αq(|x|) where αp(·) and αq(·) are K∞

functions 1.

Problem (1) and Assumption 1 extend to consider three particular formula-
tions:

P1 N→ ∞, X f = {0} and Ψ(x,u) = 0. From an analytical perspective, this is the
desired case, but difficult to implement with nonlinear dynamic models in
(1).

P2 N is finite, X f = {0} and Ψ(x,u) = ψ(zN ,0). This case mirrors the infinite
horizon but specification of N sufficiently large is difficult in general.

P3 N is finite, a suitable terminal region X f has been calculated for (1) and a
controller h f (x) is known with a suitable terminal cost Ψ(x,u). In practice,
these conditions can be hard to determine although they are widely assumed.

Under the assumptions above we can state the following theorem.

Theorem 1. (Nominal Stability of Ideal NMPC) Consider the moving horizon
problem (1) and associated control law u = h f (x) that satisfies Assumption 1.
Then, the objective function of (1) is a Lyapunov function and the closed-loop
system is asymptotically stable.

1Boundedness of u by x follows when we make the assumption of weak controllability, i.e.,
∑

N−1
k=0 |uk| ≤ γ(|x|), where γ(·) is a K∞ function.
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Proof. See e.g [7].

Robust stability properties for NMPC are developed in [7]. In particular, ideal
NMPC satisfies the Input to State Stability (ISS) property for plants that have
bounded uncertainties.

2.2. Economic NMPC and dynamic real-time optimization
As noted in the introduction, Economic NMPC is not as simple as just replac-

ing the stage costs in (1) from a tracking type to an economic type, because a
number of challenges to stability and robustness must be considered. For Eco-
nomic NMPC, the setpoint (normalized to ’zero’ in Theorem 1) is unknown [8],
so it is not clear how to reach a steady state equilibrium point, and Assumption
1(4) is generally not satisfied by the economic stage cost, as required by Lyapunov
stability. In fact, Angeli et al. [10] note that stability cannot be expected in gen-
eral, and they show that, if the initial condition is feasible and there is at least one
admissible control sequence to an equilibrium point, then the asymptotically av-
erage performance is no worse than that of the best admissible steady state. That
is, asymptotically the controller may perform better by not going to a steady state
at all.

To satisfy Assumption 1(4) for the Lyapunov stability requirement, the Eco-
nomic NMPC Controller must satisfy a dissipativity condition on the stage cost
and dynamic model [10]. As discussed in [9, 10], a sufficient condition for dissi-
pativity is satisfied when the stage cost and dynamic model form a strongly dual
problem. Moreover, as shown in [11, 12], these strongly dual problems arise
when the steady state optimization problem has a uniformly strong convex La-
grange function. This sufficient condition is used in the current study to develop
an Economic NMPC Controller that satisfies nominal stability.

To define implicit reference values for the states and controls, we consider the
steady state optimization problem given by:

min
z,v

ψ(z,v), s.t. z = f (z,v),z ∈ X,v ∈ U (3)

with the solution given by (z∗,v∗). We introduce a transformed system by sub-
tracting the optimal steady state from the predicted values as follows:

z̄l = zl− z∗, v̄l = vl− v∗ (4)
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and the transformed state evolves according to

z̄l+1 = f̄ (z̄l, v̄l) = f (z̄l + z∗, v̄l + v∗)− z∗ (5)

and z̄l ∈ X̄ and ūl ∈ Ū, where X̄ and Ū are the corresponding sets for the trans-
formed system. From equation (5), we see that when (z̄l, v̄l) = (0,0) we have
z∗ = f (z∗,v∗). Similarly, we define the transformed stage and terminal costs as:

ψ̄(z̄l, v̄l) = ψ(z̄l + z∗, v̄l + v∗)−ψ(z∗,v∗) (6)
Ψ̄(z̄N) = Ψ(z̄N + z∗)−Ψ(z∗) (7)

so that Ψ̄(0) = ψ̄(0,0) = 0, and the transformed NMPC subproblem is now given
by:

min Ψ̄(z̄N)+
N−1

∑
l=0

ψ̄(z̄l, v̄l) (8)

s.t. z̄l+1 = f̄ (z̄l, v̄l), l = 0, . . . ,N
z̄0 = xk− x∗k , z̄l ∈ X̄, v̄l ∈ Ū, z̄N ∈ X̄ f

A key concern is that Assumption 1(4) generally does not hold for transformed
economic stage costs ψ̄ and, hence, the optimal objective of problem (8) is not a
Lyapunov function, which can be used to prove stability. Instead, as suggested in
[9, 12] we augment the transformed cost to form the rotated stage cost given by:

φ(z̄l, v̄l) = ψ̄(z̄l, v̄l)+ λ̄
T (z̄l− f̄ (z̄l, v̄l)) (9)

Φ(z̄N) = Ψ̄(z̄N)+ λ̄
T z̄N (10)

where λ̄ is the multiplier from the equality constraints in (3) (determined by equa-
tion (20) in Section 3). Note that the functions φ and Φ are zero at the origin
(φ(0,0) = Φ(0) = 0). Moreover, the stage cost φ satisfies Assumption 1(4) if it is
strongly convex. As shown next, the origin is also the unique, global minimum if
φ and Φ are strongly convex functions.

From f̄ (0,0) = 0, φ(z̄, v̄) ≥ 0, φ(0,0) = 0, and [z̄T v̄T ]∇φ(0,0) ≥ 0 we can
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write:

φ(z̄, v̄) = ∇φ(0,0)T
[

z̄
v̄

]
+

1
2

∫ 1

0
[z̄T v̄T ]∇2

φ(τ z̄,τ v̄)
[

z̄
v̄

]
dτ

≥ 1
2

∫ 1

0
[z̄T v̄T ]∇2

φ(τ z̄,τ v̄)
[

z̄
v̄

]
dτ. (11)

If φ(z̄i, v̄i) is strongly convex and bounded above by a K∞ function, we have for
some γ > 0,

αq(|z̄|)≥ φ(z̄, v̄) ≥ 1
2

∫ 1

0
[z̄T v̄T ]∇2

φ(τ z̄,τ v̄)
[

z̄
v̄

]
dτ

≥ γ(|z̄|2 + |v̄|2)≥ αp(|z̄|). (12)

and therefore Assumption 1(4) holds. A similar property holds for Φ(z̄) if it is
strongly convex and bounded above by a K∞ function. The resulting transformed
and rotated NMPC problem is given by:

min Φ(z̄N)+
N−1

∑
l=0

φ(z̄l, v̄l) (13)

s.t. z̄l+1 = f̄ (z̄l, v̄l), l = 0, . . . ,N
z̄0 = xk− x∗k , z̄l ∈ X̄, v̄l ∈ Ū, z̄N ∈ X̄ f

Now, if φ and Φ are not strongly convex functions, the original stage costs
can always be augmented with regularization terms in (1) as follows:

ψ(zl,vl) := ψ(zl,vl)+
1
2

∣∣∣∣∣∣∣∣[ zl− z∗

vl− v∗

]∣∣∣∣∣∣∣∣2
Q

(14)

Ψ(zl) := Ψ(zl)+
1
2
‖zl− z∗‖2

Q1
(15)

where Q =

[
Q1

Q2

]
is a suitably defined matrix containing the weightings

for the states (Q1) and the inputs (Q2). Such a regularization leads to the desired
convexity property for the rotated stage costs and ensures that Assumption 1(4)
holds.

8



In addition, from the definitions of φ and Φ it is easy to see that

Φ(z̄N+1)−Φ(z̄N)≤−φ(z̄N , v̄N)

holds when Assumption 1(3) holds. On the other hand, note that existence of a
terminal region in (13) must still be assumed.

To obtain nominal stability for Economic NMPC under Assumption 1, we
prove the following theorem.

Theorem 2 (Nominal Stability of Economic NMPC). Consider the moving hori-
zon problem (13) that satisfies Assumption 1 for the problem formulations de-
scribed by P1, P2 or P3. Then,

1. the objective function of (13) is a Lyapunov function and the closed-loop
system is asymptotically stable,

2. the minimizer of problem (13) is the same minimizer as in (8) for problem
formulations P1, P2 and P3, and hence, is equivalent to the minimizer of
problem (1) with the original economic stage and terminal costs.

Proof: The first part of the theorem follows directly from Assumptions 1 and
Theorem 1. For the second part of the theorem, we start with formulation P1 and
note that the objective at the unique, optimal solution of (13) is given by:

∞

∑
l=0

φ(z̄l, v̄l) =
∞

∑
l=0

[ψ(z̄l, v̄l)+ λ̄
T (z̄l− f̄ (z̄l, v̄l))]

=
∞

∑
l=0

[ψ(z̄l, v̄l)+ λ̄
T (z̄l− z̄l+1)]

= λ̄
T x̄k +

∞

∑
l=0

ψ(z̄l, v̄l). (16)

Other than the constant term λ̄ T x̄k in the objective of (13) we see that both (13)
and (8) are identical and consequently have the same values. To show that (z̄l, v̄l)
is also the optimal solution of (8), assume that this is not the case and that the
optimum of (8) is given by (ẑl, v̂l) 6= (z̄l, v̄l). Then from (16):

∞

∑
l=0

φ(z̄l, v̄l) = λ̄
T x̄k +

∞

∑
l=0

ψ(z̄l, v̄l)> λ̄
T x̄k +

∞

∑
l=0

ψ(ẑl, v̂l) =
∞

∑
l=0

φ(ẑl, v̂l)

which contradicts the optimality of (z̄l, v̄l) for (13). Hence (z̄l, v̄l) is also the opti-
mal solution of (8).
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For P2, with finite N, Ψ(z̄N) = ψ(z̄N ,0) and z̄N = 0, we have:

N−1

∑
l=0

φ(z̄l, v̄l)+Φ(z̄N) =
N−1

∑
l=0

[ψ(z̄l, v̄l)+ λ̄
T (z̄l− f̄ (z̄l, v̄l))]+ψ(0,0)+ λ̄

T z̄N

= λ̄
T x̄k +

N−1

∑
l=0

ψ(z̄l, v̄l). (17)

Again, other than the constant term λ̄ T x̄k in the objective of (13) we see that both
(13) and (8) are identical and consequently have the same solutions. Using the
same argument as for P1, it is clear that this is also the optimal solution of (8).

Finally for P3, with finite N we have:

N−1

∑
l=0

φ(z̄l, v̄l)+Φ(z̄N) =
N−1

∑
l=0

[ψ(z̄l, v̄l)+ λ̄
T (z̄l− f̄ (z̄l, v̄l))]+Ψ(z̄N)+ λ̄

T z̄N

= λ̄
T x̄k +

N−1

∑
l=0

ψ(z̄l, v̄l)+Ψ(z̄N). (18)

Again, we see that both (13) and (8) are essentially identical and consequently
have the same solutions. Using the same argument as for P1, it is clear that this is
also the optimal solution of (8).

Remark 1. Note that the transformation of the optimization variables and the
rotation of the cost function are not necessary for implementing the NMPC. They
are only needed to show the stability properties.

A similar, but more general stability result is presented in [10] for strictly
dissipative systems, where they also show that strong duality of the steady state
problem (19) is a sufficient condition for strict dissipativity. Moreover, strong con-
vexity of rotated stage costs is a sufficient condition for strong duality. The next
section shows that strong convexity can always be ensured through the addition of
quadratic regularization terms, which can be determined in a straightforward way.

3. Regularization of non-convex stage costs

Regularization of the stage cost is often necessary to satisfy Assumption 1(4),
whether by dissipativity, strong duality or strong convexity. While an unregular-
ized controller may perform asymptotically better by not going to a steady state
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[10], stable performance in reaching a steady state equilibrium point is generally
desired in most practical applications. Finding a sufficiently large regularization
parameter for Lyapunov stability is difficult, however. A regularization proce-
dure that leads to a sufficient condition for strict dissipativity is proposed in [10].
However, it requires global solution of a sequence of nonconvex maximization
problems.

In this section we adopt a simpler approach and derive a regularization term for
the original stage cost, as in (14), (15), that makes the rotated stage cost strongly
convex. For this, we present a simple approach to find a set of weightings, which
guarantee closed loop stability of the Economic MPC controller.

To facilitate the presentation, we consider the steady state minimization prob-
lem (3),

min
z,v

ψ(z,v)

s.t. z = f (z,v),z ∈ X,v ∈ U (19)

where the vector [zT vT ]T ∈ℜnx+nu denotes the steady state input and control vec-
tor. At a local steady state solution z∗,v∗, we have a KKT point given by:

∇zψ(z∗,v∗)+(I−∇z f (z∗,v∗))λ̄ +∇zg(z∗,v∗)η = 0

∇vψ(z∗,v∗)−∇v f (z∗,v∗)λ̄ +∇vg(z∗,v∗)η = 0

η ≥ 0, g(z∗,v∗)≤ 0, η
T g(z∗,v∗) = 0.

(20)

where we denote the regions X and U by the convex constraints g(z,v) ≤ 0. The
next result establishes a condition for strong convexity.

Lemma 3. Consider the modified steady state problem:

min
z,v

V (z,v)≡ ψ(z,v)+ λ̄
T (z− f (z,v))+1/2||(z,v)− (z∗,v∗)||2Q

s.t. g(z,v)≤ 0,
(21)

where Q is positive definite weighting matrix. If Q is selected sufficiently large,
then z∗,v∗ , the local solution of (19), is also the unique global solution of (21).

Proof: The point z∗,v∗ is already feasible, as it satisfies z∗− f (z∗,v∗) = 0, z∗ ∈
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X,v∗ ∈ U (19). The KKT conditions for (21) are

∇zψ(z∗,v∗)+Q1(z∗− z∗)+(I−∇z f (z∗,v∗))λ̄ +∇zg(z∗,v∗)η = 0 (22)
∇vψ(z∗,v∗)+Q2(v∗− v∗)−∇v f (z∗,v∗)λ̄ +∇vgv(z∗,v∗)η = 0

η ≥ 0, g(z∗,v∗)≤ 0, ηT g(z∗,v∗) = 0. (23)

and we find that z∗,v∗ satisfies the KKT conditions of both (19) and (21). We now
choose Q such that

∇
2V (z,v; λ̄ ) =

(
∇

2
ψ(z,v)−

nz

∑
i=1

∇
2 fi(z,v)λ̄i +Q

)
(24)

is positive definite for all z ∈X,v ∈U. Since V (z,v) is a strongly convex function
and X and U are convex regions, z∗,v∗ is the unique global solution.

Note that the rotated, regularized stage costs satisfy Assumption 1(4) when
∇2V is positive definite.

3.1. Finding the regularization Q
To find a valid diagonal regularization matrix Q we propose to use the Gersh-

gorin property for a matrix A = (ai, j), which states that

ai,i−∑
i 6= j
|ai, j| ≤ µi ≤ ai,i +∑

i 6= j
|ai, j|. (25)

where µi are the eigenvalues of A. This property can be used to systematically
find a regularization such that the rotated stage cost is strongly convex. Let ai, j
denote the elements of the matrix A = ∇2ψ(z∗,v∗)−∑

nz
i=1 ∇2 fi(z∗,v∗)λ̄i and let

the diagonal elements of Q be denoted as qi. To ensure that all eigenvalues of
∇2V = A+Q are positive, we require

0 < qi +ai,i−∑
i 6= j
|ai, j| ≤ µi +qi. (26)

Expressed as a simple condition on the elements of the diagonal matrix Q, this
becomes

qi > ∑
i 6= j
|ai, j|−ai,i, (27)

which nevertheless must be satisfied for all z,v satisfying z ∈ X,v ∈ U. This sim-
ple condition determines a “minimal” regularization that guarantees stability of
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Economic NMPC.

4. Sensitivity computations for fast NMPC

The central idea of advanced-step nonlinear model predictive control (asN-
MPC) [15] is to solve the nonlinear optimization one sample time in advance,
but with a predicted initial state. The asNMPC framework consists of three basic
steps:

1. At time k solve the (possibly regularized) problem (1) with the predicted
state value (zk+1 = f (xk,uk)) at time k+1.

2. At sample time k + 1, when the actual state xk+1 is known, compute an
approximation to the optimal solution using sensitivity analysis of (1).

3. Set k = k+1 and go to Step 1.

To compute the approximation in Step 2, the behavior of the solution of (1) is
analyzed in the neighborhood around the optimum, and based on solution point
sensitivity, a correction is determined to compensate for the error between the
prediction and the actual state. As the sensitivity updates can often be computed
very quickly compared to the solution of the NLP, the plant inputs can be adapted
to the new conditions with minimal delay.

The sensitivity corrections from the predicted optimal input can generally be
computed by two approaches. The first is to apply a single sensitivity step, as
proposed in [15]. This single step correction gives good results when the state
prediction is close to the actual state at time k+1, and care is taken to ensure fea-
sible inputs, e.g. through clipping [18]. The second approach, which we propose
in this paper is to apply several subsequent sensitivity updates in a path-following
manner. Let p0 = zk+1 be the predicted state at time k+ 1, and let p f = xk+1 be
the actual (measured) state at time k+1. The idea is now to track the path of op-
timal solutions along p(t) = p0 + t(p f − p0) for t = 0→ 1. Such path-following
or homotopy methods have been also been studied by [19, 20].

Especially when the prediction p0 is far from the actual state p f , we can expect
better results by applying this second approach.
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4.1. NLP sensitivity formulation
Before presenting the path-following approach, we present some established

sensitivity results in this section. To this end, we rewrite problem (1) as:

min F(x, p)
s. t. c(x, p) = 0

g(x, p)≤ 0,
(28)

where x ∈ ℜnx denotes the optimization variables, and p ∈ ℜnp denotes a vector
of parameters, which for problem (1), represents the initial state of the system.
Further, F : ℜnx×ℜnp →ℜ denotes the scalar cost function, c : ℜnx×ℜp→ℜnc

denotes the equality constraints, while g : ℜnx×ℜp→ℜng denotes the inequality
constraints. An optimizer of (28) is denoted x∗(p), or simply x∗, if the parameter
p is clear from the context.

Ideally, problem (28) is re-solved for a new set of parameter values (initial
states), i.e. at every sample time, and the optimal inputs are injected into the plant.
However, solving a large NLP may take a long time and this time delay may
cause instability [21] or suboptimal operation. So instead of obtaining the updated
inputs by solving the NLP every time we receive new state measurements, an
alternative approach is to compute fast approximated solutions based on solution
point sensitivity. Key properties and results for calculating the sensitivity of the
optimal solution of (28) can be found in [22, 23, 24]. To make this paper self-
contained and to highlight some important aspects which we use in our path-
following approach, we summarize these results below.

Associated with problem (28), we define the Lagrange function as

L(x,λ ,η , p) = F(x, p)+
nc

∑
i=1

λici(x, p)+
ng

∑
j=1

η jg j(x, p), (29)

where λ and η are multiplier vectors of appropriate dimension. A point x∗ is
called a KKT-point if there exist multipliers λ ,η , which satisfy

∇xL(x∗,λ ,η , p) = 0
c(x∗, p) = 0
g(x∗, p)≤ 0

η
T g(x∗, p) = 0

η ≥ 0.

(30)
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The set of all multipliers λ and η , which satisfy the KKT conditions (30) for a
parameter p, is denoted by M (p). To simplify notation, we omit the argument
when it is clear from the context and simply write M . The set of active inequality
indices is J =

{
j |g j(x∗, p) = 0

}
. The active set is defined as A = {1, . . . ,nc}∪J,

and for a given multiplier pair (λ ,η), we define the sets K+ =
{

j ∈ J : η j > 0
}

,
and its complement K0 =

{
j ∈ J : η j = 0

}
.

Definition 2 (Strict complementarity (SC) [25]). Given a vector p, a local solu-
tion x∗ of (28) and vectors (λ ,η) ∈M , we say that the strict complementarity
condition (SC) holds for λ ,η only if η j−g j(x∗, p)> 0 for each j = 1, . . . ,ng.

A constraint qualification is required for a local minimizer of (28) to be a KKT
point [25].

Definition 3 (LICQ). Given a vector p and a point x∗, the linear independence
constraint qualification (LICQ) holds at x∗ if the vectors

∇ci(x∗, p) i = 1, . . . ,nc,

∇g j(x∗, p) j ∈ J
(31)

are linearly independent.

The LICQ implies that the multiplier set M is a singleton, i.e. the multipliers
λ ,η are unique. For x∗ to be a minimum, a second order condition is required. In
this context, we use the strong second order sufficient condition

Definition 4 (SSOSC). The strong second order sufficient condition (SSOSC)
holds at x∗ with multipliers λ and η if

qT
∇xxL(x∗,λ ,η , p)q > 0 for all q 6= 0 (32)

such that

∇xci(x∗, p)T q = 0, i = 1, ..,nc

∇xg j(x∗, p)T q = 0, j ∈ K+.
(33)

Theorem 4 (Implicit function theorem applied to optimality conditions). Let x∗(p)
be a KKT point that satisfies (30), and assume that SC, LICQ and SSOSC hold at
x∗. Further let the functions F,c,g be at least k+1 times differentiable in x and k
times differentiable in p. Then
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• x∗ is an isolated minimizer, and the associated multipliers λ and η are
unique.

• for p in a neighborhood of p0 the set of active constraints remains un-
changed,

• for p in a neighborhood of p0 there exists a k times differentiable function
σ(p) =

[
x∗(p)T , λ (p)T , η(p)T ], that corresponds to a locally unique min-

imum for (28).

Proof. See Fiacco [22].

For the case of Theorem 4, the sensitivity can be calculated by applying the
implicit function theorem to the optimality conditions of (28), which results in ∇xxL ∇xc ∇xḡ

∇xcT 0 0
∇xḡT 0 0

 ∇px
∇pλ

∇pη̄

=−

 ∇pxL
∇pc
∇pḡ

 , (34)

where the derivatives of L,c and g are evaluated at x∗, p0, (λ ,η) ∈M (p0) and ḡ
and η̄ are vectors with elements ḡ j and η̄ j, j ∈ J, respectively.

The solution of the linear system (34) gives the optimal change of the solution
with respect to a small perturbation in p around p0. This approach is currently
used in the asNMPC framework, and is also implemented in the software sIPOPT
[26]. It has further been used by e.g. [27].

Theorem 4 requires strict complementarity (i.e. constant active set in the neigh-
borhood of p0) and LICQ (unique multipliers). In the cases where the active set
can change, it is important to determine the right active set, as incorrect active sets
can and generally will affect the accuracy and stability of the NMPC controller;
therefore further treatment is needed. A fast and simple way is to apply a strategy
named ‘clipping in first interval’ [18]. The basic idea is that instead of adding the
full value of the change calculated by (34) to the nominal optimum x∗(p0), only
part of the change is added to ensure that the bounds on the first manipulated vari-
able (v0 in Problem (1)) are not violated. Although the clipping approach works
well with input constraints, in more general cases, where the active constraints on
outputs may change (strict complementarity does not hold) and where the multi-
pliers are non-unique, a different approach is required. Here we need more general
constraint qualifications and a more general second order condition to guarantee
a locally unique minimizer, and to compute the corresponding sensitivity.
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Definition 5 (MFCQ). The Mangasarian-Fromovitz constraint qualification (MFCQ)
holds at the optimal point x∗(p) if and only if

a) the vectors ∇xci(x∗, p) are linearly independent for all i = 1, . . . ,nc

b) there exists a vector w such that

∇xci(x∗, p)T w = 0 for i = 1, . . . ,nc

∇xg j(x∗, p)T w < 0 for j ∈ J.
(35)

The MFCQ implies that the set of KKT multipliers, M (p) is a closed con-
vex polytope [28]. Another constraint qualification we need is the constant rank
constraint qualification.

Definition 6 (CRCQ [29]). The constant rank constraint qualification holds at
(x∗, p0), if for any subset S⊂ J of active constraints the family{

∇xg j(x, p) j ∈ S, ∇xci(x, p) i = 1, ..,nc
}

(36)

remains of constant rank near the point (x∗, p0).

Note that the CRCQ is neither stronger nor weaker than MFCQ in the sense
that one implies the other [29].

Definition 7 (GSSOSC). The general strong second order sufficient condition
(GSSOSC) is said to hold at x∗ if the SSOSC holds for all multipliers λ ,η ∈M .

It has been shown by Kojima [30] that the conditions KKT-point, MFCQ, and
GSSOSC are the weakest ones under which the perturbed solution of the (28) is lo-
cally unique. Under these general conditions we cannot expect the solution x∗(p)
to be differentiable any longer (because of active set changes). However, it can
be shown that the solution x∗(p) is directionally differentiable, and for obtaining
sensitivity updates in an NMPC context, directional differentiability is sufficient.

We begin by presenting a very general sensitivity result for the optimization
problem (28) due to [31, 23, 24].

Theorem 5. Let F,c,g be twice continuously differentiable in p and x near (x∗, p0),
and let MFCQ and GSSOSC hold at (x∗, p0). Then the solution x∗(p) is continu-
ous in a neighborhood of (x∗, p0), and the solution function x∗(p) is directionally
differentiable.
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Moreover, for each p in a neighborhood of p0, and direction s ∈ ℜnp there
exists a multiplier pair (λ ,η) ∈M such that the directional derivative uniquely
solves the following convex quadratic program

min
y

yT
∇xpL(x∗,λ ,η , p0)s+

1
2

yT
∇xxL(x∗,λ ,η , p0)y

s.t. ∇xci(x∗, p0)
T y+∇pci(x∗, p0)

T s = 0 i = 1 . . .nc

∇xg j(x∗, p0)
T y+∇pg j(x∗, p0)

T s = 0 j ∈ K+

∇xg j(x∗, p0)
T y+∇pg j(x∗, p0)

T s≤ 0 j ∈ K0.

(37)

If in addition the CRCQ holds, then the multiplier values (λ ,η) at which the
quadratic program (37) must be evaluated, can be found as a solution of the fol-
lowing linear program:

max
λ ,η

λ
T

∇pc(x∗, p0)
T s+η

T
∇pg(x∗, p0)

T s

s.t. (λ ,η) ∈M (p0)
(38)

Proof. See [31, 23, 24].

The first part of Theorem 5 says there exists some element in M (p0) which,
when used to set up QP (37), lets us compute the directional derivative in any
direction s. The second part of Theorem 5 provides a constructive way (under the
CRCQ assumption) to determine the multipliers that must be used to set up QP
(37).

The solution of the LP (38) is not always unique [24], i.e. there may be several
multiplier vectors, which may be used to compute the sensitivity. On the other
hand, by Theorem 5 the QP solution, i.e. the directional derivative in direction s
is unique, even if the solution of (38) is not a singleton.

4.2. Multiple sensitivity step corrections (Path-following algorithm)
4.2.1. General concept of the path-following approach

Strictly speaking, the sensitivity results of the previous section are valid only
for an infinitesimal perturbation around p0, and as the perturbation becomes larger,
the approximation becomes worse. This can have a significant impact on the per-
formance of the closed loop system.

Therefore, instead of doing a single sensitivity step for the full perturbation
∆p= p f − p0, as done in [15], we parameterize the change ∆p by a new parameter
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t ∈ [0,1], such that p(t)= p0+t(p f − p0). The idea is to use subsequent sensitivity
updates to track the path of optimal solutions from t = 0 (corresponding to p0) to
t = 1 (corresponding to p f ).

For a sequence of scalars t(m) ∈ [0, 1], m = 0,1,2, . . . ,nm such that t(m) <
t(m+1), and with t(0) = 0 and t(nm) = 1, the change in p between two instances of
t can be expressed as

s(m) =
(

t(m)− t(m−1)
)(

p f − p0
)
, m = 1, . . . ,nm, (39)

and the value of p at t(m) is

p(t(m)) = p0 +
m

∑
l=1

s(l), (40)

which is denoted p(m). Then we apply subsequent sensitivity updates to follow
the path of optimal solutions for each t(m) from p(0) = p0 to p(nm) = p f .

A path-following method in our context will compute estimates of the states
(xp) and the multipliers (λp,ηp) along the path, and will generally contain the
main steps given below:

1. Initialization: Set t = 0, choose ∆t, solve the NLP for t = 0, set xp = x∗(p0),
set λp = λ ∗(p0),ηp = η∗(p0)

While t < 1 do:

2. For a parameter change corresponding to ∆t, calculate sensitivity updates y
for the states xp

3. Update states: xp← xp + y
4. Update parameters: t← t +∆t
5. Calculate sensitivity updates δλ ,δη for the multipliers λp,ηp

6. Update multipliers:
λp← λp +δλ

ηp← ηp +δη

End do;
The concept is similar to applying an explicit Euler integration method for

finding the solution of an ordinary differential equation on a discretized time in-
terval, and applying multiple sensitivity steps in such a way results in a smaller
approximation error, as illustrated in Figure 1. Moreover, especially for large per-
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parameter
s1 s2 s3

p1p0

xo(p1)

xo(p0)

xs(p1)

xp(p1)

x

Figure 1: Path following approach and sensitivity update: For a large perturbation the single
step sensitivity update (black) results in a large error between the true solution x∗(p f ) and the
approximated solution xs(p f ). The path-following approach (blue) with three segments results in
a better approximation xp(p f ) of the optimal solution x∗(p f ).
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turbations p f − p0, which cause the active set to change, this approach can be
expected to give better performance.

In the next sections, we describe how the sensitivity updates for the states and
the multipliers can be computed.

4.2.2. Sensitivity updates for states x along the path
At each t(m), the approximated optimal solution x(m)

p = xp(t(m)) is calculated
as

x(m)
p = x(m−1)

p + y(m), (41)

where y(m) is sensitivity update for perturbation segment s(m). At t(0) the state x(0)
is computed by solving NLP (28) and the corresponding (non-unique) multipliers
are found by solving LP (38) for s(1). Along the path, for t(m), with m ≥ 1, the
state x(m)

p = x(m−1)
p +y(m) is computed by solving the following QP (using x(m−1)

p ,
p(m−1), λ

(m−1)
p , η

(m−1)
p from the previous iteration at t(m−1)):

min
y

(y(m))T
∇xpL(m−1)s(m)+

1
2
(y(m))T

∇xxL(m−1)y(m) (42)

s.t
∇x(c

(m−1)
i )T y(m)+∇p(c

(m−1)
i )T s(m) = 0 for i = 1, . . . ,nc

∇x(g
(m−1)
j )T y(m)+∇p(g

(m−1)
j )T s(m) = 0 for j ∈ K̃(m−1)

+

g(m−1)
j + ∇x(g

(m−1)
j )T y(m)+∇p(g

(m−1)
j )T s(m) ≤ 0 for j ∈ K̃(m−1)

0 ,

where

K̃(m−1)
+ =

{
j | η

(m−1)
j > 0

}
(43)

K̃(m−1)
0 =

{
j | η

(m−1)
j = 0

}
, (44)

and where c(m−1)
i and g(m−1)

j denote the value of the constraint i and j, respec-
tively, at the previous step m− 1. Note that for NLP constraints that are active
g(m−1)

j = 0.
Apart from the last constraint of QP (42), which represents the linearized in-

active inequality constraints, QP (42) is the same as the sensitivity QP (37). This
means that as long as no previously inactive constraint becomes active, the QPs
have the same solution. Whenever the optimal solution path leads to a constraint
that becomes active, QP (42) will attempt to satisfy this constraint to first order.
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If this is not possible, the QP will be infeasible, and the step size s(m) has to be
reduced by assigning a lower value to t(m) and re-solving the QP.

4.2.3. Sensitivity updates for the multipliers (λ ,η) along the path
The multipliers estimates λp and ηp are updated along the path according to

λ
(m)
p = λ

(m−1)
p +δλ

(m) (45)

η
(m)
p = η

(m−1)
p +δη

(m), (46)

where δλ and δη correspond to the sensitivity updates of the multipliers.
Unfortunately it is not possible to directly use the results from Section 4.1

for calculating the sensitivity updates for the multipliers, because the LP (38) is
infeasible unless evaluated at an optimal point, which generally requires the so-
lution of the full NLP. Under the assumption of LICQ and strict complementarity
of the active constraints of the sensitivity QP (37), the multipliers of the QP (37)
correspond to the sensitivity of the multipliers of the original NLP. Therefore, one
approach to determine the multiplier updates is to use the multipliers of QP (42).
However, if the sensitivity updates along the path lead to a point where MFCQ
holds, then the multipliers of the QP become non-unique, and it is not clear which
QP multiplier values to use for the sensitivity updates.

To obtain estimates of the multiplier sensitivities δλ and δη along the path,
we therefore propose a new method, which is inspired by LP (38), and where the
updates δλ (m) and δη(m) are obtained from the solution of

max
δλ (m),δη(m)

(
δλ

(m)
)T

∇pc(m)T
s(m)+

(
δη

(m)
)T

∇pg(m)T
s(m) (47)

s.t.

∇xpL(m−1)s(m)+∇xxL(m−1)y(m)

+
nc

∑
i=1

(∇xc(m−1)
i )T

δλ
(m)
i +

ng

∑
j=1

(∇xg(m−1)
j )T

δη
(m)
j = 0 (48)

δη
(m)
j ≥ 0, j ∈ K̃(m−1)

0 \ K̂(m−1)
0 , δη

(m)
j = 0, j ∈ K̂(m−1)

0 (49)

η
(m−1)
j +δη

(m)
j ≥ 0, j = 1..ng. (50)
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where

K̂(m−1)
0 = { j| j ∈ K̃(m−1)

0 ,g(m−1)
j +∇x(g

(m−1)
j )T y(m)+∇p(g

(m−1)
j )T s(m) < 0}.

Whenever QP (42) is feasible the constraints (48)-(49) are satisfied. This is
because (48)-(49) are the optimality conditions of the QP (42). The only con-
straint that can make the LP infeasible is (50), which becomes violated when a
perturbation s(m) is so large that the active set changes (a constraint becomes in-
active). In this case, the size of s(m) must be reduced by assigning a lower value to
t(m), and both QP (42) and LP (47)-(50) must be re-solved until the LP becomes
feasible. The largest value of t(m) at which constraint (50) is feasible corresponds
to the parameter value at which a previously active constraint becomes inactive.

4.2.4. Some implementation issues in the context of asNMPC
The path-following concepts described above can be included in the asNMPC

framework in several ways. A straightforward extension of the existing asNMPC
method would be to initialize the path-following algorithm with the full pertur-
bation, i.e. nm = 1 such that t(1) = 1 and s = p f − p0. Here the path-following
algorithm is used only when active set changes occur. If QP (42) is feasible for
s = p f − p0 (which is always the case for small perturbations without active set
changes), this gives the same result as conventional asNMPC based on the im-
plicit function theorem (assuming that LICQ is satisfied). However, if the active
set changes, the step-size reduction based on feasibility of QP and LP will detect
the points along the path where the active set changes.

An example path-following procedure using the building blocks presented
above is presented in Algorithm 1. This algorithm repeatedly solves QP (42)
and the corresponding LP (47-50) to update the states, constraints, multipliers and
parameters until t(m) = 1.

An alternative approach would be to initialize the path-following algorithm
with a finer discretization with ∆t < 1 (i.e. nm > 1). This will follow the optimal
path more closely, and adapt the step-size where necessary to detect the points
where the active set changes. This is especially interesting for problems with very
nonlinear behavior.

4.3. Modified NMPC optimization problem
Theorem 5 is based on very weak assumptions, and to the authors’ knowledge

this is at present the most general result for a constructive way to calculate NLP
sensitivity. Moreover, we can consider an equivalent reformulation of problem
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Algorithm 1 Pathfollowing Algorithm
1: Solve NLP for t = 0 . Initialize algorithm
2: Set ∆t = 1, t← ∆t . Initially try to make only one step
3: Set constants 0 < α1,α2 < 1 . Constants for reducing step size
4: while t ≤ 1 do
5: Solve QP (42) . Calculate sensitivity step
6: if QP(42) is feasible then
7: Solve LP (47-50) . Resolve nonunique multipliers
8: if LP (47-50) feasible then
9: xp← xp + y . Update states

10: λp← λp +δλ . Update multipliers
11: ηp← ηp +δη

12: t← t +∆t . Update parameter
13: ∆t← 1− t . Update time step
14: else
15: ∆t← α1∆t, t← t−α1∆t . Shorten step if LP is infeasible
16: Go to Step 5
17: end if
18: else
19: ∆t← α2∆t, t← t−α2∆t . Shorten step if QP is infeasible
20: Go to Step 5
21: end if
22: end while
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(1) that always satisfies CRCQ and MFCQ at its solution. Here we replace X and
X f in (1) with `1 penalties and assume, without loss of generality, that U can be
represented by simple upper and lower bounds on vl . The reformulated NLP (1)
takes the following form:

min
zl ,vl ,εl ,sl

Ψ(zN)+
N−1

∑
l=0

ψ̄(zl,vl)+ρ

N−1

∑
l=0

ε
T
l e (51)

s.t. zl+1 = f (zl,vl), l = 0, ...,N−1
z0 = xk

gz,l(zl)+ sl = εl,va ≤ vl ≤ vb, l = 0, ...,N−1
εl,sl ≥ 0,

where sl and εl are slack variables and e = [1,1, . . . ,1]T . Selecting ρ larger then
a certain threshold, ρ > ρ̄ , will drive εl to zero. As proved in [25] when εl = 0,
the stability properties of the mixed constrained problem (51) are identical to the
hard constrained problem (1). Since ρ > ρ̄ > 0 and εl 6= 0, implies problem (1) is
locally infeasible, we assume that a finite number ρ can be found2. Therefore we
solve Problem (51) everywhere instead of Problem (1).

Note that since the inequality constraints in (51) are now simple bounds with
constant constraint gradients, the CRCQ follows directly for this problem. More-
over, it is easy to show that since zl are uniquely determined once xk and vl are
fixed, the gradients for the equality constraints have full rank. Finally, at the so-
lution of (51), it is easy to find feasible directions into the interior of the feasible
region for those variables (vl , sl , εl) that are active at their bounds. As a result,
MFCQ holds at the solution of (51) as well.

5. Economic nonlinear model predictive control on a CSTR case study

We illustrate some of the above concepts on a case study of a CSTR from [9]
with a first order reaction A→ B. From a mass balance, we derive the following

2This corresponds to the common assumption that there exists a feasible input sequence, which
steers the system to the terminal set. Among other considerations, this requires that the horizon N
is long enough to satisfy the terminal conditions.
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dynamic model

dcA

dt
=

ṁ
V
(cA f − cA)− kcA

dcB

dt
=

ṁ
V
(−cB)+ kcA.

(52)

Here cA and cB denote the concentrations of components A and B, respectively.
The reactor volume is V = 10 l, and the rate constant k = 1.2 l/(mol·min). Further,
ṁ denotes the manipulated input in l/min, and cA f = 1mol/l denotes the feed con-
centration. Using state feedback NMPC, the economic stage cost in (1) is selected
as

ψ(cA,cB, ṁ) =−ṁ
(

2cB−
1
2

)
. (53)

Different from [9], we set the variable bounds as:

10≤ ṁ≤ 20 (54)
0.45≤ cB ≤ 1, (55)

When large disturbances occur, variable bounds might be violated. Due to safety
reasons, bounds on manipulated variables cannot be violated (hard constraints);
while the violation of state variable bounds may be tolerated when necessary.
Therefore we treat the bounds of cB as soft constraints. As described in Section
4.3 and [32], we add a non-negative slack variable ε to the lower and upper bounds
of cB,

0.45− ε ≤ cB ≤ 1+ ε, (56)

and we add an exact `1 penalty function that contains the slack variable to the
stage cost:

ψ(cA,cB, ṁ) =−ṁ
(

2cB−
1
2

)
+ρε (57)

where ρ is a number large enough to drive ε to zero. In our case we set ρ = 1000.
Also, we note that the optimal steady states (from Problem (3)), are c∗A = 0.5,c∗B =
0.5, ṁ∗ = 12.

5.1. Regularization of the stage cost
To ensure that the rotated stage cost is strongly convex, regularization terms

1
2 [qA(cA−c∗A)

2 +qB(cB−c∗B)
2 +qṁ(ṁ− ṁ∗)2] are added to the stage cost and the

26



Hessian matrix of the steady state optimization problem becomes:

∇
2V = A+Q =

 qA 0 1
0 qB 0
1 0 qṁ

 (58)

and from the approach described in Section 3 we find the following Gershgorin
bounds:

qA > 1, qB > 0, qṁ > 1 (59)

Moreover, through an eigenvalue calculation, we can find smallest positive weights
so that qA +qB +qṁ is minimized, while ensuring that A+Q is positive definite.
These weights correspond exactly to the bounds determined in (58).

5.2. Simulation results
Our simulation results are organized such that we first demonstrate the effect

of regularization on the CSTR with ideal NMPC with different levels of mea-
surement noise and regularization weights. Then we proceed to show results for
asNMPC where measurement noise causes the active set to change.

5.2.1. Effect of regularization
From the Gershgorin bounds, we set qA = 1+ δ , qṁ = 1+ δ , qB = δ > 0 to

ensure strong convexity. The prediction horizon is chosen as N = 30 and we sim-
ulate for 50 sample times.

Perfect case, no measurement noise
We assume that all the states are known exactly, and start with the scenario where
the model is known completely and there is no measurement noise. We consider
different regularizations, starting with the limit, where we set the value of δ = 0,
and compare it with δ = 10−3 and with the original weighting factors qi=A,B,ṁ =
1.1 used in [9]. Finally, we consider the case without any regularization, i.e.
qi=A,B,ṁ = 0.

Figure 2 shows the state profiles and control profiles obtained by simulating
the CSTR in closed loop with different weights on regularization terms.

From Figure 2 it can be seen that when we regularize, where δ > 0, the Ger-
shgorin weights are large enough so that their effects are the same as with the
weights in [9], that is the system is stable.

When δ = 0, Equation (59) is at the stability bound. Here the state profile is
identical as with qi = 1.1, but a few oscillations are observed in the control profile.
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Figure 2: Ideal NMPC, no measurement noise. The results with qi=A,B,ṁ = 1.1 are shown in blue;
with qA = qṁ = 1+10−3,qB = 10−3 is shown in red; with qA = qṁ = 1,qB = 0 is shown in green;
and with qi=A,B,ṁ = 0 is shown in magenta.

These oscillations disappear as we increase the time horizon.
In the case without any regularization at all, qi=A,B,ṁ = 0 we have an oscilla-

tory control action at the beginning, and it takes time for the manipulated variable
to converge to their steady state optimal values. Note that convergence to the
steady state optimal values is not a general property of unregularized Economic
NMPC. As Angeli et al. [10] have shown, there may also be cases, where a lower
cost can be observed by not converging to the steady state optimal values.

The third column in Table 1 shows the accumulated stage cost ∑
50
k=1[−ṁk(2cB,k−

1
2)]. It can be observed that the costs of all the cases are identical. Without noise,
slack variables ε of all cases are zero, and the state and control profiles with all
weighting factors except qi = 0 are the same, so the stage costs should be the same.
Without any regularization qi = 0, the state profiles are identical to the other cases,
while the control profile above ṁ∗ = 12 cancels with the profile below ṁ∗ = 12 in
order to yield the same accumulated cost.

Cases with measurement noise at different levels
For the two states we add measurement noise with standard deviations at 1%

of their equilibrium points. Figure 3 shows the state profiles and control profiles.
From Figure 3 we observe that because of the measurement noise, control profiles
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Table 1: Cost of ideal NMPC with different noise levels

Cost with No noise 1% noise 5% noise
No regularization qi=A,B,ṁ = 0 -147.35 -146.90 -144.95
Marginal regularization δ = 0 -147.35 -146.90 -145.20
Small regularization δ = 10−3 -147.35 -146.90 -145.20
Large regularization qi=A,B,ṁ = 1.1 -147.35 -146.90 -145.20

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

c
A

 

 

0 10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

time step

c
B

 

 

c
B

*
q=1.01 δ=10

−3
δ=0 q=0

c
A

*
q=1.01 δ=10

−3
δ=0 q=0

(a) State profiles

0 10 20 30 40 50
10

10.5

11

11.5

12

12.5

13

time step

ṁ
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Figure 3: Ideal NMPC, 1% of measurement noise. The results with qi=A,B,ṁ = 1.1 are shown in
blue; with qA = qṁ = 1+10−3,qB = 10−3 is shown in red; with qA = qṁ = 1,qB = 0 is shown in
green; and with qi=A,B,ṁ = 0 is shown in magenta.
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vary with different weights. But the difference is very small when (59) is satisfied.
Without any regularization terms, qi=A,B,ṁ = 0, there are oscillations in the control
profile, which leads to small oscillations in the state profiles. Table 1 shows the
accumulated stage costs. It can be seen that all of the accumulated stage costs
are essentially the same for all weighting factors. However, even with a small
level of measurement noise (1%), the lack of regularization (qi=A,B,ṁ = 0) leads
to significant oscillations in its control profile, which is unacceptable.

We then increase noise level to 5% of the equilibrium points. Figure 4 shows
the state and control profiles. As the noise level increases, oscillations are larger in
the control profile, which lead to larger oscillations in the state profiles compared
with Figure 3. Table 1 shows the accumulated stage costs for this case, too. One
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Figure 4: Ideal NMPC, 5% of measurement noise. The results with qi=A,B,ṁ = 1.1 are shown in
blue; with qA = qṁ = 1+10−3,qB = 10−3 is shown in red; with qA = qṁ = 1,qB = 0 is shown in
green; and with qi=A,B,ṁ = 0 is shown in magenta.

would expect that these costs would decrease with decreasing weights on regular-
ization terms. However, it seems that regularization makes a positive contribution
in the presence of measurement noise. Without regularization, i.e. qi=A,B,ṁ = 0,
the controller is not stabilizing, and we observe that its accumulated stage cost is
the highest.

Moreover, from Table 1 we observe that accumulated stage costs tend to in-
crease with increased noise levels. This is because the controller is optimizing
based on incorrect information (without knowledge of the noise), so performance
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deteriorates with increased noise.

5.2.2. Advanced-step NMPC with economic stage costs
In this section we study the performance of asNMPC, where the noise level

of 5% is chosen so that the active sets differ for the predicted problem and the
actual problem, for which a sensitivity based approximated solution is found. We
set qi=A,B,ṁ = 1.1 so that the controller is stable if optimal manipulated variables
when injected. To better demonstrate the effect, we zoom into the first 12 sample
times of closed loop simulations, and apply the advanced-step NMPC strategy to
the CSTR example. We show results for four cases:

Case 1 Ideal NMPC, as a benchmark.
Case 2 asNMPC, using the sensitivity calculation using sIPOPT [26], based on the

implicit function theorem (34). (Since this controller may violate bounds
on manipulated variables, it should not be implemented in practice.)

Case 3 asNMPC, as in Case 2, but with the manipulated variables v0 outside the
bounds “clipped” to remain within bounds[18].

Case 4 Path-following asNMPC (pasNMPC) with our new path-following approach
applied to handle active set changes.

Figure 5 shows the state and input trajectories of the different cases. In par-
ticular, the lower bound of ṁ becomes active at time = 2, and it is violated for
Case 2 when (34) is applied directly. This follows because the lower bound is
inactive at time = 1 and the sensitivity prediction from (34) leads to a large (and
inaccurate) step that does not include the lower bound, and consequently violates
it. This violation is corrected either by clipping (Case 3) or pasNMPC (Case 4).
Moreover, note that the control profile of pasNMPC is more accurate, i.e., closer
to Ideal NMPC (Case 1).

However, the heuristic clipping approach gives good results in this case-study,
too, and has been shown to perform well also in other contexts with input con-
straints [18].

Table 2 shows accumulated stage costs of Cases 1, 3 and 4. The cost of Case
2 is not given as it is infeasible. Interestingly, the ideal NMPC has the highest
cost. Here the noise is not predictable, and its effect on the cost may be positive or
negative. For this example it turns out that the effect of noise makes Ideal NMPC
peform slightly worse. Note however, that the absolute difference in costs is very
small. Finally, when these simulations are performed without measurement noise
(no active set changes), we observe no differences between Cases 1 to 4.
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Figure 5: Comparison of the four cases, 5% of measurement noise. Case 1 is plotted in blue; Case
2 is plotted in red; Case 3 is plotted in green and Case 4 is plotted in magenta.

Table 2: Cost of Economic asNMPC with 5% measurement noise and qi=A,B,ṁ = 1.1

Controller Cost
Ideal NMPC -33.00
Clipping asNMPC -33.15
Pathfollowing NMPC -33.05
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6. Conclusions

This study considers a number of important open issues in economic nonlinear
model predictive control, and our results lead to making NMPC a more viable
technology in industrial practice.

An important part of this paper has been devoted to extending the Lyapunov
stability proof using convexity arguments for the case with terminal costs and con-
ditions. Moreover, we have presented a constructive way of calculating a “min-
imal” stabilizing regularization. These tools are easy to use for imposing and
verifying stability on NMPC applications of large scale.

Further, we have presented and applied very general sensitivity results in or-
der to develop a path-following algorithm, which can be used to obtain fast ap-
proximate solutions in asNMPC. Our algorithm is designed to handle active set
changes and non-unique multiplier values along the path, and the step-size is ad-
justed based on the feasibility of the sensitivity QP and the corresponding LP. This
enables us to closely follow the active constraint set. Moreover, we have shown
that under a suitable problem reformulation, using `1 penalties within a suitably
regularized cost function, the NMPC problem satisfies the required conditions for
sensitivity calculation in the presence of active set changes. Our path-following
approach therefore deals with this issue in a rigorous manner, especially when
previously active constraints become inactive.

On the other hand, these stability results and the regularization procedure guar-
antee only nominal stability. In future studies we plan to extend these results to
robust stability, and therefore develop a rigorous framework that guarantees sta-
bility for Economic NMPC in the presence of noise and model mismatch.

As the regularization based on Gershgorin bounds still leaves some degrees
of freedom, another direction for future work is to examine if it is possible to
exploit these degrees of freedom in such a way that the economic cost is influenced
minimally, while stability is still guaranteed. In future work, we will extend our
predictor path-following algorithm further with a corrector element. We will also
analyze this algorithm with respect to convergence properties and error bounds.

Finally, although there has been much progress in these areas there are still
open issues for the application of eMPC that need further research. These include
further relaxing the conditions for stability proofs, numeric algorithms for fast
approximate solutions, and elucidating the relationship between the Economic
NMPC layer and the lower-level regulatory layer.
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