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Abstract

In this thesis, we explore the possibility to significantely alter the neutrino oscillation proba-
bility in matter using realistic detector dimensions. Especially, the implications of a single and
multiple non-adiabatic density shifts in the trajectory of a neutrino beam are investigated. As
it turns out, there exists a set of resonance parameters in the case of multiple density shifts
that gives a full flavor conversion for both neutrinos and antineutrinos, regardless of neutrino
source. Although this is an analytical fact, it is not a plausible scenario when restricted
to realistic detector densities and lengths. The obtainable results are presented for relevant
neutrino species. To make this thesis self-contained, electro-weak theory is briefly reviewed
together with the fundamentals of neutrino oscillations and interactions with matter.
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Chapter 1

Introduction

The neutrino is a leptonic particle which possesses an almost neglible mass of O(eV) (see Sec.
2.2). Since it has no charge, the only experimentally verified interactions are via the weak
force. These properties makes the neutrino quite elusive and difficult to observe in detection
experiments.

Neutrinos (or ν’s to be more specific) were first detected in the famous experiment of Reines
and Cowan in the late 50’s (see Ref. [1]). They exploited the fact that neutron decay taking
place in a nuclear reactor would produce antineutrinos through n→ p+ e−+ νe. This offered
the possibility to look for the signature νe+37Cl→ e++37Ar in a detection setup close to the
reactor. The detector itself consisted of ∼ 400 l of water mixed with cadmium chloride, in
addition to two large scintillation detectors which would serve as photon registrators. When
the positron was created, it would almost instantly be annihilated together with an electron
from the water, emitting two 0.511 MeV photons in the process. The scintillator detectors
would detect these photons and evidence would be at hand for the neutrino-induced reac-
tion.A production of 37Ar was indeed observed, which earned Reines and Cowan the Nobel
prize in 1995 for the detection of antineutrinos.

A decade after this discovery, the Homestake neutrino detection site (see Ref. [2]) was de-
signed with the objective to catch neutrinos originating from the sun, specifically from the
processes 7Be + e− → 7Li + νe and 8B → 8Be + e+ + νe. The Homestake experiment ran
consecutively from 1970 - 1992, capturing neutrinos through the inverse β-decay reaction 37Cl
+ νe → 37Ar + e−. Although the neutrinos certainly turned up in the detector, they did so
in a much smaller number than expected from the predictions of the standard solar model
(SSM) of the time being. The final results, subtracting estimated background levels, yielded
an average of 0.437 ± 0.042 produced 37Ar atoms per day, a number roughly one third of what
the SSM predicted. This number was also in reasonable agreement with the observations at
the Kamiokande detector (see Ref. [3]) during the period 1987-1990, when both detectors
were measuring the solar neutrino flux.

The missing neutrinos were truly a puzzle. However, an interesting concept called neutrino
oscillations had been proposed by the russian physicist Bruno Pontecorvo in 1958 (see Ref.
[4]), not long after the the antineutrino detection experiment of Reines and Cowan. In short,
the theory states that the physical neutrino νl produced in weak interactions, which comes
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2 Chapter 1. Introduction

in three flavors l = e, µ τ , really is a superposition of so-called mass eigenstates denoted by
νi, i = 1, 2, 3. With each mass eigenstate having a mass mi, the resulting flavor neutrinos νl

obtain a time-dependent phase. A quantitative analysis of this scenario gives a well-defined
probability to measure a different flavor νl′ at a given time after the creation of the νl (see
Sec. 3.1). This will be referred to as the oscillation probability.

Introducing neutrino oscillations would explain the solar neutrino deficit. If a νe was produced
in the sun and during its travel to Earth changed its identity to a νµ, it would not be registered
by a detector expecting to find an electron-neutrino. The theory of neutrino oscillations has
evolved significantly over the years (see e.g. Refs. [5, 6]), allowing us to have a pretty clear
understanding of neutrino behaviour today. Results from major neutrino detection sites such
as SNO and KamLAND (see e.g. Refs. [7, 8]) all point in the direction of oscillations being
a real phenomena, giving the theory status as the accepted explanation to the missing solar
neutrino flux.

The objective of this thesis is to study coherent neutrino interactions with matter, and if
it is possible to exploit these matter-effects in terms of significantely altering the oscillation
probability. If this is possible, one would obtain additional experimental constraints on the
neutrino masses and the magnitude of the mixing between the flavors. These mixing param-
eters are denoted {∆m2, θ}, where ∆m2 is the square mass difference between two neutrino
mass eigenstates, and θ is the mixing angle that couples flavor- with mass eigenstates. Neutri-
nos are available from several different sources, ranging from ”natural” sources such as the sun,
atmosphere or supernovae, to ”man-made” sources such as accelerator and reactor neutrinos.
Each type of neutrinos carry its own specific fingerprint in terms of for instance kinetic energy
E and distance source-detector L0, often referred to as baseline length. Using the framework
of quantum field theory and electro-weak interactions in conjunction with fundamental the-
ory for neutrino oscillations makes it possible to study how the oscillation probability can be
manipulated.

This thesis is organized as follows. In chapter 2, neutrino interactions in standard electro-
weak theory is treated. Chapter 3 deals with fundamental oscillation theory, while neutrino
interactions with matter are discussed in chapter 4. The special case of non-adiabatic tran-
sitions from vacuum to a medium is given attention in chapter 5. Chapter 6 follows up with
a discussion concerning neutrino coherence, in addition to an analysis of the required dimen-
sions for a neutrino detection setup meant to exploit the effect of these non-adiabatic density
shifts. Finally, a conclusion is given in chapter 7.

The reader is assumed to have good knowledge of quantum mechanics and some knowledge
of field theory. We shall use bold-face notation for three-vectors, e.g. p, and italic notation
for four-vectors, e.g. p. Unless specifically stated otherwise, we will work in natural units
~ = c = 1. Also, we apply Minkowsky metric defined as ηµν = diag(1,−1,−1,−1), and
xµ = (t,x).



Chapter 2

Standard electro-weak field theory

The standard electro-weak theory is the unification of electromagnetic and weak interactions,
and is in agreement with a vast majority of experiments conducted (see e.g. Ref. [9]). How-
ever, neutrino oscillations have required some revision of the theory since neutrino masses no
longer can be assumed to be zero, although they certainly have upper limits as shown in Tab.
2.2. Also, the predicted Higgs boson remains undetected.

This chapter is not meant as an elaborate introduction to the large topic of the electro-weak
theory. The intention is to say something about neutrino interactions and techniques used to
evaluate particle reactions, which we shall find useful in later sections. We shall mainly stick
with the notation of Mandl & Shaw [10].

2.1 Lagrangian and gauge-particles

In the unitary gauge, the Lagrangian density of the standard electro-weak theory is L =
L0 + LI, where

L0 = l(i∂/−ml)l + νl(i∂/−mνl
)νl −

1
4
AµνA

µν (2.1)

− 1
2
W †

µνW
µν +m2

WW †
µW

µ − 1
4
ZµνZ

µν +
1
2
m2

ZZµZ
µ +

1
2
(∂µσ)(∂µσ)− 1

2
m2

Hσ
2 (2.2)

and LI consists of several interaction terms L(1)
I + L(2)

I + ... responsible for coupling the sep-
arate fields. In Eq. (2.1), we have defined ∂/ ≡ γµ∂µ ≡ γµ(∂/∂xµ), where γµ are the Dirac
gamma-matrices (see for instance Mandl & Shaw [10] Appendix A). Also, the abbrevation
Xµν ≡ ∂νXµ − ∂µXν , X ∈ {A,W,Z} has been introduced.

Now, the l- and νl-fields describe leptons in the model, while Aµ corresponds to the free elec-
tromagnetic field. The W± and Z bosons are described by the W and Z fields, respectively.
The terms involving σ constitute the Lagrangian density for a neutral Klein-Gordon field,
precisely what we need for a spin zero Higgs boson. Field masses are represented by mi,
i ∈ {l, νl,W,Z,H}. The gauge-particles of this theory are given in Tab. 2.1.

The Higgs boson has not yet been discovered, and the best mass estimate as of today is 117
GeV (see the Particle Data Group [11]), just slightly above the highest available energies

3



4 Chapter 2. Standard electro-weak field theory

Table 2.1: Gauge-particles in standard electro-weak theory. Numerical values obtained from Ref.
[11].

Gauge particle Mass (GeV)
Photon, γ < 6.000× 10−26

W -boson, W± 80.43± 0.038
Z-boson, Z 91.19± 0.002

in the electron-positron accelerator LEP at CERN, before it had to close down in 2000. It
is therefore reasonable to assume that the discovery of the Higgs boson is right around the
corner, i.e. when the Large Hadron Collider (LHC) in Switzerland becomes operational in
2007, should the Standard Model be correct in its predictions. As pointed out in Ref. [12],
electroweak precision data, such as Z pole asymmetries and the W boson mass, are now pre-
cise enough to constrain mH significantly. At a confidence level of 95%, the theoretical upper
limit on the mass of the Higgs boson is 205 GeV. Consider Fig. 2.1 taken from Ref. [12] for
the mass probability distribution for the Higgs boson. It is worth to note that the probability
distribution is a direct result of a priori assumptions concerning the validity of experimental
e+e− collision data from the CERN LEP Collaboration.

Figure 2.1: Mass probability distribution for the Higgs boson from Ref. [12]. The dark area denotes
a total of 50% probability.

2.2 Neutrino interactions in electro-weak theory

Now, all of the interaction terms in LI from Sec. 2.1 aren’t needed for our purposes. In the
following, we shall not consider neutrino interactions with the electromagnetic field Aµ(x),
since the electromagnetic transition moments of the neutrino are too weak for any significant
coupling to photons. The upper limit for the neutrino magnetic moment is ∼ 10−10µB, taken
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from the Particle Data Group [11]. When dealing with neutrino interactions, it is sufficient
to consider the interaction terms involving W and Z exchange for reactions with νl. Higgs
exchange will be neglected since it couples very weakly to neutrinos compared to W and Z
(see Sec. 4.1.1). The resulting interaction Lagrangian density is then

LI = LI,W + LI,Z

= − g

2
√

2

[
Jµ

W (x)W †
µ(x) + Jµ†

W (x)Wµ(x)
]
− g

cos θW
Jµ

Z(x)Zµ(x), (2.3)

where Jµ
W (x) and Jµ

Z are the charged and neutral currents

Jµ
W (x) =

∑
l

l(x)γµ(1− γ5)νl(x)

Jµ
Z(x) =

1
4

∑
l

[
νl(x)γµ(1− γ5)νl(x)− l(x)γµ(1− γ5 − 4 sin2 θW )l(x)

]
. (2.4)

In Eq. (2.4), θW is the Weinberg angle and g is the weak coupling constant. Now, Eq. (2.3)
is valid for all neutrino energies, but we would like to derive an expression for the low-energy
limit which often occurs in realistic scattering experiments. More specifically, consider the
limit of the external momenta being much smaller than the vector boson masses mW and mZ .
This means that

lim
m2

W�k2

[
−i(gµν − kµkν/m

2
W )

k2 −m2
W + iε

]
=

igµν

m2
W

lim
m2

Z�k2

[
−i(gµν − kµkν/m

2
Z)

k2 −m2
Z + iε

]
=

igµν

m2
Z

, (2.5)

with gµν = diag(1,-1,-1,-1). Making these substitutions corresponds to the interaction trans-
formation in Fig. 2.2, and provides us with the effective interaction Lagrangian density for
neutrino interactions (see e.g. Ref. [6])

Leff
I = Leff

I,W + Leff
I,Z = −

( g

2
√

2

)2 1
m2

W

Jµ
WJ†Wµ −

( g√
2 cos θW

)2 1
m2

Z

Jµ
ZJ

†
Zµ.

W or Z boson

k

lim{m2
W ,m2

Z} � k2

Figure 2.2: Effect of low-energy approximation with dominant mW and mZ .

The gauge boson masses are related by mW /mZ = | cos θW |. u and d quarks can also be
incorporated into this model, merely by adding extra terms to the currents in Eq. (2.4), thus
producing
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Jµ
W (x) =

∑
l

[
l(x)γµ(1− γ5)νl(x)

]
+dθ(x)γµ(1− γ5)u(x)

Jµ
Z(x) =

1
4

∑
l

[
νl(x)γµ(1− γ5)νl(x)− l(x)γµ(1− γ5 − 4 sin2 θW )l(x)

]
+ u(x)γµ(1− γ5 −

8
3

sin2 θW )u(x)− d(x)γµ(1− γ5 −
4
3

sin2 θW )d(x), (2.6)

where dθ(x) = d(x) cos θC + s(x) sin θC . The Cabbibo angle θC has been experimentally
determined to cos θC ≈ 0.98, so we shall exclude the s quark part from now on and set
dθ(x) = d(x). The introduction of quark terms enable us to describe processes such as
νe + n → p + e. When adding the quark terms, we have used the general expression for the
neutral current found in Quigg [13] p.107-113, namely

Jµ
Z(x) =

1
2

∑
i

ψi(x)γ
µ
[
I3
i (1− γ5)− 2Qi sin2 θW

]
ψi(x), (2.7)

where ψi = (l, νl, u, d), while I3
i is the belonging particle isospin and Qi is the particle charge

in units of e.

The second quantized expansion for Dirac fields reads

l(x) =
∑
sp

√
1

2V Ep

[
as(p)us(p)e−ipx + b†s(p)vs(p)eipx

]

l(x) =
∑
sp

√
1

2V Ep

[
bs(p)vs(p)e−ipx + a†s(p)us(p)eipx

]
, (2.8)

and similarly for νl(x), u(x), d(x). Here, Ep is the energy of the lepton with momentum p,
V is a normalization volume, {as(p), a†s(p)} and {bs(p), b†s(p)} are annihilation and creation
operators for particles and antiparticles, respectively, while {us(p), vs(p)} are Dirac spinors.
Note that l(x) ≡ l†(x)γ0.

The effective Hamiltonian density is also very useful when doing calculations on for instance
scattering reactions. This can be written as Heff = Heff

I,W + Heff
I,Z , where (see e.g. Peskin &

Schröder [14] chapter 20)

Heff
I,W =

GF√
2
JWµJ

µ†
W , (2.9)

Heff
I,Z =

4GF√
2
Jµ

ZJZµ. (2.10)

We have introduced the Fermi constant, defined as GF =
√

2g2/8m2
W . Eqs. (2.9) and (2.10)

will come in handy in chapter 4.
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The experimental limits for neutrino masses are given in Tab. 2.2 with data from the Particle
Data Group [11]. It is important to realize that these limits are calculated assuming the
abscence of mixing, and stem from decay experiments such as 3H- and τ -decay. As pointed
out in Ref. [15], the most sensitive experiments with respect to mνµ and mντ are 4-6 orders
of magnitude less accurate than the best attempts to measure mνe . This means that each of
the neutrino masses could very well be of order eV or less, which is exactly what is indicated
by cosmological constraints introducing the restriction from Ref. [16]∑

α

mνα ≤ 1.74 eV, 95% C.L. (2.11)

Table 2.2: Neutrino mass limits from particle decays. Numerical values obtained from Ref. [11].

Neutrino type Upper mass limit
νe 3 eV
νµ 190 keV
ντ 18.2 MeV

2.3 Feynman rules

The Feynman diagram is a indispensible tool for analysis of any particle reaction, in order to
distuingish between different outcomes and to equip us with an elegant manner of visualizing
important physical quantities, such as the cross section. The Feynman amplitude can be read
from the diagram with some training and quantifies the process. To set the notation, we give
a list of the relevant symbols and algebraic equivalents used in Feynman diagrams describing
weak processes for our needs. This is seen in Fig. 2.3. In addition to the already defined
symbols, we introduce the axial and vector coupling constants gi

A and gi
V , i ∈ {l, νl, u, d}. In

order to derive these, one needs to start with the condition of local gauge-invariance for the
Lagrangian density (see e.g. Peskin & Schröder [14] chapter 20). Here, we state the results
in Tab. 2.3.

Table 2.3: Relevant weak coupling constants for our needs with l = {e, µ, τ}.

Particle Axial coupling gA Vector coupling gV

l −1/2 2 sin2 θW − 1/2
νl 1/2 1/2
u 1/2 1/2− 4 sin2 θW /3
d −1/2 2 sin2 θW /3− 1/2
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Initial lepton line l− or νl

Initial lepton line l+ or νl

Final lepton line l− or νl

Final lepton line l+ or νl

Internal Z boson

ur(p)

ur(p)

vr(p)

vr(p)

i(−gαβ+kαkβ/m2
W )

k2−m2
W

+iε

i(−gαβ+kαkβ/m2
Z)

k2−m2
Z

+iε

Internal W boson

νl l

i i

W

Z

α

α

−ig
2 cos θW

γα(gi
V − gi

Aγ5)

−ig

2
√

2
γα(1− γ5)

(p, r)

(p, r)

(p, r)

(p, r)

k

k

CHARGED CURRENT VERTEX SYMBOL FACTOR IN M

EXTERNAL LINES SYMBOL FACTOR IN M

PROPAGATORS SYMBOL FACTOR IN M

NEUTRAL CURRENT VERTEX SYMBOL FACTOR IN M

Interaction between leptons {l, νl}

Interaction between particle i and Z,
i ∈ {l, νl, u, d}, l ∈ {e, µ, τ}

and W, l ∈ {e, µ, τ}

Figure 2.3: Algebraic expressions for Feynman symbols in standard weak theory, relevant for our
needs.



Chapter 3

Neutrino oscillations

In this chapter, we give an introduction to the fundamental theory of neutrino oscillations.
Also, the question of Dirac and Majorana neutrinos is briefly reviewed.

3.1 Fundamental theory

Neutrinos are created and absorbed in three different flavors |να〉, α = e, µ, τ , which are
linear superpositions of mass eigenstates |νi〉, i = 1, 2, 3. The mass eigenstates stem from the
diagonalization of the Lagrangian density term that couples leptons with the Higgs field, thus
providing them with mass. The mixing between these two sets of states is given by

|να(x, t)〉 =
3∑

i=1

Uαi|νi(x, t)〉, (3.1)

where |νi(x, t)〉 is the mass eigenstate with mass mi, and U is a 3× 3 neutrino mixing matrix
usually parametrized as in Ref. [6],

U = U23U13U12 =

 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 . (3.2)

In Eq. (3.2), sij = sin θij and cij = cos θij , where θij are the mixing angles between the neu-
trino states. δCP is the CP -violating phase with allowed values δCP ∈ [0, 2π]. For δCP ∈ {0, π},
we have CP invariance, while the violation is at its largest when δCP ∈ {π/2, 3π/2}. For our
purposes, δCP is set to zero. This is commented on in the end of this section. Note that we
have intentionally left out diagonal Majorana phases that are of no consequence for oscillation
experiments (see Sec. 3.2).

Now, the flavor states are produced and appear in weak interactions, while the mass eigen-
states are fit to describe a non-interacting propagating neutrino. Since the flavor states
are linear combinations of the mass states, we can invert Eq. (3.1) to obtain |νi(x, t)〉 =∑

α U
∗
iα|να(x, t)〉. The mass eigenstates are plane waves given as |νi(x, t)〉 ∼ ei(pix−Eit), where

pi is the momentum and Ei =
√

p2
i +mi

2 is the total energy of mass eigenstate i. The

9



10 Chapter 3. Neutrino oscillations

combination of these relations lead to

|νβ(x, t)〉 =
3∑

i=1

∑
α

UβiU
∗
iαe−iEit|να(x, 0)〉. (3.3)

Given that we start off with να, we obtain the probability for an oscillation to have occurred
in the ordinary quantum mechanical fashion

Pνα→νβ
(t) = |〈να(x, 0)|νβ(x, t)〉|2. (3.4)

Direct insertion of our quantities yields

Pνα→νβ
(t) =

∣∣∣ 3∑
i=1

UβiU
∗
iαe−iEit

∣∣∣2. (3.5)

Here, we have demanded that mass eigenstates satisfy the orthonormality condition

〈νi(x, t)|νj(x, t)〉 = δij . (3.6)

Assuming equal momentum |pi| ≡ E for all neutrinos and taking the masses as small compared

to this momentum, Ei =
√

p2
i +mi

2 ' E+mi
2/2E, we arrive at our final result for the three-

flavor scenario
Pνα→νβ

(t) =
∑

i∈1,2,3
j∈1,2,3

Jαβije−i∆m
2
ijt/2E (3.7)

with Jαβij = UβiU
∗
iαU

∗
βjUjα. ∆m2

ij is the square mass difference and E is the neutrino ki-
netic energy. Although Eq. (3.7) might look suspicious with respect to being a real quantity,
which we humbly must insist on for a probability function, the reader should not be alarmed.
Pνα→νβ

is expressed in this compact manner for aesthetic reasons, and it is easily verified that
Jαβij = J∗αβji. The exponential terms exp(−i∆m2

ijt/2E) also find matching partners in the
sum over {i, j} to form real cosine and sine terms.

Neutrinos are ultrarelativistic due to their tiny mass, i.e. Ei ' E, which means that the
time-dependent exponential factor is almost exactly identical in either case. It is true that
the validity of this argument seems questionable when considering Tab. 2.2. A tau-neutrino
mass of mντ ' 18 MeV hardly can be dismissed as ”tiny” compared to for instance solar
neutrino kinetic energies of O(MeV). Our justification of treating the neutrino masses as very
small is given at the end of Sec. 2.2.

In the two-flavor scenario, the relation between flavor and mass eigenstates is parametrized
by a 2× 2 mixing matrix U , reading

[
νe

νµ

]
=

U︷ ︸︸ ︷[
cθ sθ

−sθ cθ

] [
ν1

ν2

]
(3.8)

for the {νe, νµ} case. The exact probability amplitude is calculated in the same way as for
three flavors. With {α, β} designating neutrino flavor and ∆m2 equal to the square mass
difference of the two mass eigenstates, it is found that

Pνα→νβ
(t) =

Amplitude term︷ ︸︸ ︷
sin2(2θ) ×

Oscillation term︷ ︸︸ ︷
sin2 t∆m

2

4E
, (α 6= β). (3.9)
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In the following, we shall name the amplitude term A and the oscillation term W. The
frequently used expression for probability amplitude of two-flavor oscillations in vacuum is
obtained by extracting proper numerical constants, leaving us with

Pνα→νβ
= sin2(2θ)× sin2 1.27L(km)∆m2(eV2)

E(GeV)
, (α 6= β). (3.10)

The transition from Eq. (3.9) to Eq. (3.10) was mediated by the very good approximation
that neutrinos travel with the speed of light, so that t = L in natural units. Neutrino flavor
conservation dictates that Pνα→να = 1− Pνα→νβ

.

In the following, we shall use the notation ∆m2
SOL ≡ ∆m2

12, θSOL ≡ θ12, ∆m2
ATM ≡ ∆m2

23,
θATM ≡ θ23. The reason is simply that the set of parameters that best describes solar neutrino
data from experimental sites such as Super-Kamiokande and SNO involves ∆m2

12 and θ12,
while atmospheric neutrino data from the Kamiokande detector in particular are described
by ∆m2

23 and θ23. Thus, experimental data indicate that the solar and atmospheric neutrino
oscillations constitute two decoupled 2-flavor scenarios, i.e. θ13 ' 0. When comparing to
Eq. (3.2), we see that U23 = UATM and U12 = USOL. The observed solar neutrino oscillations
involve νe ↔ νµ with a small fraction of νe ↔ ντ , while atmospheric neutrino oscillations read
νµ ↔ ντ . Tab. 3.1 from Ref. [17] presents todays best-fit values for neutrino parameters with
belonging confidence intervals, assuming normal mass hierarchy m3 > m2 > m1.

Table 3.1: Values for neutrino parameters from Ref. [17].

Parameter Best-fit Range Confidence Level
∆m2

SOL 7.1× 10−5 eV2 [6.0, 9.0]× 10−5 eV2 99%
∆m2

ATM 2.5× 10−3 eV2 [1.3, 3.9]× 10−3 eV2 90%
θSOL 0.59 rad [0.47, 0.77] rad 99%
θATM 0.78 rad [0.65, 0.78] rad 90%
θ13 n/a [0.00, 0.16] rad 90%

As is seen in Tab. 3.1, the value of θ13 still suffers from a significant uncertainty, although
reactor neutrino experiments such as CHOOZ (see e.g. Ref. [18]) have been helpful in
assigning upper limits to its value. Now, in the beginning of this section we set the CP -
violating phase equal to zero. A non-zero value of θ13 is actually necessary to enable CP -
violation in the lepton-sector of the standard model. Due to the smallness of θ13, we assume
that it is safe to set δCP = 0.

3.2 Representation

A neutrino state can be described by two different representations. The Dirac representation
is based upon the assumption of particles and antiparticles having unequal physical proper-
ties. This is the only real alternative for the electron and positron, for instance, since they
have opposite electrical charge. On the other hand, a Majorana representation is necessary
for spin 1

2 particles that are identical to their antiparticles, like the s = 1 photons are.
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This definition is rather crude. A more sophisticated argument is presented in Boehm & Vogel
[19] chapter 1, and goes as follows. A massive left-handed neutrino νL, i.e. with negative
helicity (momentum antiparallel to spin), can always be turned into a right-handed neutrino
νR by a Lorentz boost to a frame of reference moving faster than the neutrino itself. If we
instead operate with CPT on the νL, it is turned into a right-handed antineutrino νR. Simi-
larly, a νL is created by operating with CPT on a νR. The punchline is that if all of these four
states {νL, νR, νL, νR} are distinct, then the neutrino is a Dirac particle. But if the νL(νR)
and νL(νR) states are equal, i.e. the effect of CPT is the same as a Lorentz boost, then the
neutrino is a Majorana particle.

The neutrino-case is unfortunately not a clear cut. Most experiments before the new mille-
nium indicated that the best-fit values of ∆m2 for the neutrino and corresponding antineu-
trino flavors seemed to be equal, i.e. m2

να
−m2

νβ
= m2

να
−m2

νβ
. The so-called LSND anomaly

(see Ref. [20]) stirred things up in 1999 when the results demanded an square mass differ-
ence of ∆m2 ' 1 eV2 for νµ → νe oscillations, a number far greater than the best-fit value
∆m2

SOL = 7.1 × 10−5 eV2 for the νµ → νe scenario. As a consequence, the neutrino would
have to be a Dirac particle since the antineutrino possessed a different mass, in addition to
CPT -invariance being violated in the standard model.

Should the LSND results turn out to be valid one of two things will happen. One option is to
abandon the theorem of CPT -invariance, but this is a highly unattractive alternative since
the CPT -theorem constitutes a cornerstone in relativistic quantum field theory. The second
option would be to introduce a fourth, sterile (non-interacting) neutrino flavor to explain
the results. But this option is not particularly welcome either ever since the triumph at the
Sudbury Neutrino Observatory (SNO) in 2001 (see Ref. [8]). In this experiment, the total
detected neutrino flux of active, as opposed to sterile, neutrinos νl was consistent with theoret-
ical predictions of the electron-neutrino production in the sun, i.e. ΦSun

e = ΦSNO
e +ΦSNO

µ +ΦSNO
τ .

This result is the strongest evidence yet of three-flavor oscillations occuring, thus pretty much
ruling out the existence of a fourth, sterile neutrino flavor.

The MiniBOONE experiment conducted at Fermilab, USA (see e.g. Ref. [21]) is specifically
designed to check the results of LSND, and will be of great importance in determining whether
CPT-violation is actually happening. Neutrino detection experiments cannot in themselves
determine whether the neutrino is a Dirac or Majorana particle. However, the neutrinoless
double beta decay Z

AX →A
Z+2 X + 2e offers the possibility to determine the Dirac-Majorana

argument for the neutrino (see e.g. Boehm & Vogel [19] chapter 6). In ordinary double
beta decay, two antineutrinos are emitted with the electrons. But if the neutrino is its own
antiparticle, the neutrinos could annihilate eachother and result in neutrinoless beta decay. Up
to this date, there is no compelling evidence in either direction concerning Dirac or Majorana
neutrinos.



Chapter 4

Neutrino interactions with matter

The reactions in which neutrinos mainly participate with matter on Earth and the belonging
Feynman diagrams are shown in Fig. 4.1.

νl νl

p

n
d

Z0

l = (e, µ, τ)

νl l

d u

νl l

u d

WW

NEUTRAL CURRENT REACTIONS

CHARGED CURRENT REACTIONS

νl νl

l′ l′

Z0

l

νl′

W

νl

l′

l = (e, µ, τ)

(l, l′) = (e, µ, τ)

νl νl

q q

Z0

l = (e, µ, τ) q = (u, d)

l = (e, µ, τ)(l, l′) = (e, µ, τ)

Figure 4.1: Neutrino reactions with matter on Earth types and their corresponding Feynman dia-
grams.

Note that we have intentionally left out the reactions mediated by the Higgs boson H for
reasons that will become apparent in Sec. 4.1.1. The reactions in Fig. 4.1 become important
as we leave the vacuum scenario of neutrino oscillations and turn our attention to oscillations
in matter. The vacuum oscillation probability is given in Eq. (3.9), but this expression is

13
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modified when the neutrinos travel through matter, due to the so-called MSW-effect (see Ref.
[22]), named after the physicists Mikheyev, Smirnov, and Wolfenstein. The MSW-effect favors
certain neutrino reactions, dependent on the medium. For instance, since Earth has an excess
of electrons compared to muons and tauons, νe will acquire a charged current contribution
to the reaction νe + e → νe + e. The νµ and ντ , however, will still only interact with the Z
boson. Thus, the balance is shifted in the favor of the electron-neutrinos.

We briefly review relevant neutrino cross sections, before we calculate matter potentials in-
duced by Earth and the resulting MSW-effect.

4.1 Neutrino cross sections

The differential cross section dσ says something about how incoming particles are scattered
in space, and the likelihood of the scattering to occur at all. More precisely, since the in-
terpretation of σ is the number of particles scattered into a specific final state per unit time
divided on the incident flux, the expression for dσ is

dσ =
wV

vrel
×

∏
f

V dp′f
(2π)3

, (4.1)

where w is the transition probability from |i〉 to |f〉 per unit time, vrel is the relative velocity

between incident and target particles, and
∏

f

V dp′f
(2π)3

is the number of states with momentum
in the interval (p′f ,p

′
f + dp′f ). In the special case of two incoming particles, the differential

cross section reads

dσ =
1

4E1E2vrel
(2π)4δ(4)

( ∑
f

p′f −
∑

i

pi

) ∏
f

dp′f
(2π)32E′f

|M|2, (4.2)

where pi are the 4-momenta of the incoming particles, p′f are the 4-momenta of the outgoing
particles, and M is the Feynman amplitude of the process. Calculations are often simplified
when considering the process from the Center-of-Mass (CM) system. There, Eq. (4.2) is
reduced to

( dσ
dΩ

)
CM

=
1

64π2(E1 + E2)2
|p′1|
|p1|

|M|2. (4.3)

For a detailed derivation of these quantities, consider Mandl & Shaw [10] chapter 7 and 8.
Note that we have chosen a slightly different normalization of the Feynman amplitude com-
pared to Ref. [10], excluding a factor 2m for each of the interacting particles, where m is the
particle mass.

In the following sections, we first give attention to neutral current neutrino-fermion scattering.
Next, we generalize to charged current reactions mediated by the W boson.

4.1.1 Neutral current scattering

To begin with, we shall consider νlf (l 6= f) scattering, where l is a lepton and f is a fermion.
This process is only mediated by the Z boson, if we disregard the Higgs boson as a gauge
particle. The reason for this is the fact that the Feynman amplitude corresponding to the
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scattering process mediated by H is of O(mνl
mf/m

2
H) compared to the Z diagram. Now, the

only relevant lowest order Feynman diagram for νlf (l 6= f) scattering is shown in Fig. 4.2.
Using our Feynman rules from Sec. 2.3 gives the Feynman amplitude

νl(p1) νl(p′
1)

Z0

f(p2) f(p′
2)

kZ = p1 − p′
1

Figure 4.2: Lowest contributing order Feynman diagrams for νl + f → νl + f .

M = uνl
(1′)[− ig

2 cos θW
γα(gνl

V − g
νl
Aγ5)]uνf

(1)i
(−gαβ + kZαkZβ/m

2
Z

k2
Z −m2

Z + iε

)
× uf (2′)[− igγβ

2 cos θW
(gf

V − g
f
Aγ5)]uf (2, )

Observe that we have shortened down usi(pi) to u(i), and are using the general coupling
constants gV and gA for the neutrino and the fermion, although Sec. 2.2 already has revealed
these to be equal to 1/2 for neutrinos. These expressions can be simplified a great deal, when
making some considerations. It is reasonable to expect m2

W � k2
W when using mW = 80.4

GeV for the intermediate vector boson W±. The same inequality goes for mZ = 91.2 GeV
and mH ≥ 112 GeV. By applying this low-energy limit, we regain the effective propagator
from Sec. 2.2, arriving at

M =
−2iGF√

2
uνl

(1′)[γα(gνl
V − g

νl
Aγ5)]uνl

(1)uf (2′)[γα(gf
V − g

f
Aγ5)]uf (2). (4.4)

We now pursue the absolute square of the Feynman amplitude, |M|2, which is part of the
differential cross section in Eq. (4.3). In a perfect world, the polarization, i.e. spins, of the
reacting particles would be known. Unfortunately, this is the exception rather than the rule.
If one does not know the initial and final spins of the neutrinos and electrons, this must be
compensated for by averaging over the incoming spin states and adding the final states. This
normally corresponds to an averaging factor of 1/2 and summation of spins for each incoming
particle.

Neutrinos, however, are special cases. Although they are massive, their mass is so small that
it is ordinarily set to zero in the standard model. This means that there is only one helicity
state for the neutrino, since it consequently travels with the speed of light and never can be
overcome in any Lorentz frame. Neutrinos are therefore not expected to be unpolarized, but
retain the left-handed helicity state they were originally created with. Thus, there is only one
spin state to consider for the neutrinos. We therefore perform the substitution

|M|2 → 1
2

∑
si,s′f

|M|2
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in order to obtain the unpolarized cross-section. By exploiting the fact that |M|2 = MM∗

and (γµ)† = γ0γµγ0, the problem is attacked. Inserting Eq. (4.4) gives

1
2

∑
si,s′f

|M|2 =
1
2

∑
si,s′f

[
−2iGF√

2
uνl

(1′)γα(gνl
V − g

νl
Aγ5)uνf

(1)uf (2′)γα(gf
V − g

f
Aγ5)uf (2)

]

×

[
2iGF√

2
uf (2)γβ(gf

V − g
f
Aγ5)uf (2′)uνl

(1)γβ(gνl
V − g

νl
Aγ5)uνl

(1′)

]
We stride on by recalling the completeness relations for the Dirac spinors u and v∑

s

ulα(p, s)ulβ(p, s) = (p/+ml)αβ ,
∑

s

vlα(p, s)vlβ(p, s) = (p/−ml)αβ .

Attaching indices on spinors and matrices provides us with

1
2

∑
si,s′f

|M|2 = G2
F

∑
si,s′f

[
uνlκ(1′)

[
γα(gνl

V − g
νl
Aγ5)

]
κλ
uνlλ(1)ufγ(2′)

[
γα(gf

V − g
f
Aγ5)

]
γδ
ufδ(2)

]

×

[
ufε(2)

[
γβ(gf

V − g
f
Aγ5)

]
ετ
ufτ (2′)uνlσ(1)

[
γβ(gνl

V − g
νl
Aγ5)

]
σρ
uνlρ(1

′)

]

= G2
F Tr

{
(p/′1 +mνl

)γα(gνl
V − g

νl
Aγ5)(p/1 +mνl

)γβ(gνl
V − g

νl
Aγ5)

}

×Tr

{
(p/′2 +mf )γα(gf

V − g
f
Aγ5)(p/2 +mf )γβ(gf

V − g
f
Aγ5)

}
. (4.5)

We designate

1© = Tr

{
(p/′1 +mνl

)γα(gνl
V − g

νl
Aγ5)(p/1 +mνl

)γβ(gνl
V − g

νl
Aγ5)

}

2© = Tr

{
(p/′2 +mf )γα(gf

V − g
f
Aγ5)(p/2 +mf )γβ(gf

V − g
f
Aγ5)

}
, (4.6)

and consider each of the traces separately. Using the general relations for traces

Tr{A+B + ...} = Tr{A}+ Tr{B}+ ...

Tr{γ5} = Tr{γ5γα} = Tr{γ5γαγβ} = Tr{γ5γαγβγγ} = 0

Tr{γ5γαγβγγγδ} = −4iεαβγδ

Tr{γαγβ...γργσ} = 0 if γαγβ ...γργσis an odd number of γ-matrices, (4.7)

where εαβγδ is a completely antisymmetric tensor, we obtain

1© =8p′1µp1ν

[
igνl

V g
νl
A ε

µανβ +
1
2
[(gνl

V )2 + (gνl
A )2](ηµαηνβ + ηµβηνα − ηµνηαβ)

]
2© =8p′σ2 p

ρ
2

[
igf

V g
f
Aεσαρβ +

1
2
[(gf

V )2 + (gf
A)2](ησβηρα + ησαηρβ − ησρηαβ)

]
+ 4m2

f (g2
V − g2

A)ηαβ

(4.8)



4.1. Neutrino cross sections 17

in the limit mνl
→ 0. From Eq. (4.3) we see that the differential cross-section in the CM

system must be ( dσ
dΩ

)
CM

=
X

64π2(E1 + E2)2
|p′1|
|p1|

, (4.9)

where
X =

1
2

∑
si,s′f

|M|2 = G2
F

[
1©× 2©

]
.

The product of the two traces is

1©× 2© = 128gf
V g

f
Ag

νl
V g

νl
A

[
(p′1p

′
2)(p1p2)− (p′1p2)(p1p

′
2)

]
+ 32[(gf

V )2 + (gf
A)2][(gνl

V )2 + (gνl
A )2]

[
(p′1p2)(p1p

′
2) + (p′1p

′
2)(p1p2)

]
− 32m2

f [(gf
V )2 − (gf

A)2][(gνl
V )2 + (gνl

A )2](p′1p1). (4.10)

Our situation now looks like Fig. 4.3 in the CM frame with 4-momenta

p1 = (E, 0, 0, E),

p2 = (
√
E2 +m2

f , 0, 0,−E),

p′1 = E(1, cosφ sin θ, sinφ sin θ, cos θ),

p′2 = (
√
E2 +m2

f ,−E cosφ sin θ,−E sinφ sin θ,−E cos θ), (4.11)

where E ≡ ECM is the CM kinetic energy of the neutrino. Since all 4-momenta now are

νl f

νl

f

p1 p2

p′
1

p′
2

θ

z-direction

BEFORE AFTER

Figure 4.3: νlf (l 6= f) scattering in the CM frame.

known, insertion of Eq. (4.11) into Eq. (4.10) gives

1©× 2© = 128gf
V g

f
Ag

νl
V g

νl
A

[
(E

√
E2 +m2

f + E2)2 − (E
√
E2 +m2

f + E2 cos θ)2
]

+ 32[(gf
V )2 + (gf

A)2][(gνl
V )2 + (gνl

A )2]
[
(E

√
E2 +m2

f + E2)2 + (E
√
E2 +m2

f + E2 cos θ)2
]

− 32m2
f [(gf

V )2 − (gf
A)2][(gνl

V )2 + (gνl
A )2]E2(1− cos θ). (4.12)

The total cross section for νlf (l 6= f) scattering is now within our grasp, and reads

σ[νlf (l 6= f)] =
G2

F

32π(E +
√
E2 +m2

f )2

∫ π

0
[ 1©× 2©] sin θ dθ. (4.13)



18 Chapter 4. Neutrino interactions with matter

From Eq. (4.12), it is clear that we must evaluate three types of integrals, namely∫ π

0
sin θ dθ = 2,

∫ π

0
cos θ sin θ dθ = 0,

∫ π

0
cos2 θ sin θ dθ =

2
3
. (4.14)

Note that s = (p1 + p2)2 = (E +
√
E2 +m2

f )2. At this point, we insert the neutrino coupling

constants gνl
V = gνl

A = 1/2 and our integrals Eq. (4.14) into Eq. (4.13), which consequently
reduces to

σ[νlf (f 6= l)] =
G2

F (s−m2
f )2

4πs

[
(gf

V + gf
A)2 + (gf

V − g
f
A)2

[m2
f

s
+

(s−m2
f )2

3s2
]

− [(gf
V )2 − (gf

A)2]
m2

f

s

]
. (4.15)

Eq. (4.15) provides us with the total cross section for neutrino-fermion scattering processes
mediated by Z. The cross section for antineutrino-fermion scattering νlf(f 6= l) is obtained
from the following argumentation. In the limit mνl

→ 0, l = e, µ, τ , neutrinos are always
left-handed while antineutrinos will be right-handed. Thus, only a parity transformation
P on the neutrino vertex part of the Feynman amplitude Eq. (4.4) is required to obtain
νll

′ (l 6= l′) scattering. Now, a scalar product of two axial vectors is invariant under a parity
transformation, and so is the scalar product of the vector quantities as well. Recall that axial
vectors yµ = (y0,y) transform as yµ P7−→ ỹµ = (−y0,y) under parity, while vector quantities
zµ = (z0, z) transform as zµ P7−→ z̃µ = (z0,−z). Thus, it follows that the scalar product of a
axial and vector quantity is not invariant under parity transformations, since

yµzµ
P7−→ ỹµz̃µ = −y0z0 + yz = −yµzµ (4.16)

As a consequence, all mixed terms gνl
V g

νl
A will change sign. This means that the cross section

for antineutrino-fermion scattering is found by making the substitutions

σ[νlf (l 6= f)] = lim
g

νl
V g

νl
A→(−g

νl
V g

νl
A )
σ[νlf (l 6= f)]. (4.17)

For νlf (l 6= f) scattering, gf
V g

f
A will also change sign, yielding

σ[νlf (l 6= f)] = σ[νlf (l 6= f)]. (4.18)

Two specific limits of Eq. (4.15) are of particular interest. By taking mf → 0, the resulting
cross section corresponds to elastic neutrino scattering on light leptons. This approximation
is very good for f = {e, µ}. In this case, Eq. (4.15) reduces to

lim
mf→0

σ[νlf (f 6= l)] =
G2

F s

3π

[
g2
V + g2

A + gV gA

]
, (4.19)

where we have dropped the supercript f for the fermions. Another interesting scenario is
the limit ELAB/mf � 1. The physical interpretation of such a limit is neutrino scattering
on heavy fermions, e.g. protons, where the resulting recoil energy of the fermion is small.
Imposing this limit on Eq. (4.15), one finds that

lim
ELAB/mf�1

σ[νlf (f 6= l)] =
G2

FE
2
LAB

π

[
g2
V + 3g2

A

]
. (4.20)
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Eq. (4.20) agrees with the result of Ref. [23], which proposes elastic neutrino-proton scatter-
ing for detection of supernova neutrinos.

Fig. 4.4 contains a plot of Eq. (4.15) for the most common fermion scattering components on
Earth, f = e, n, p. The respective coupling constants are summarized in Tab. 2.3, where the
quark terms are used to construct the nucleon coupling constants through gp

V = 2gu
V + gd

V ,
gp
A = 2gu

A + gd
A and gn

V = gu
V + 2gd

V , gn
A = gu

A + 2gd
A. 1

Figure 4.4: The elastic neutrino-fermion scattering cross section Eq. (4.15) for f = e, n, p as a
function of the CM neutrino kinetic energy E.

4.1.2 Charged current scattering

Having derived the general expression Eq. (4.15) for elastic neutrino-fermion scattering pro-
cesses mediated by the Z boson, we can now include the case f = l. This process is mediated
by the W boson in addition to Z, thus providing Feynman diagrams as shown in Fig. 4.5. The

νl(p1) νl(p′
1) νl(p1) l(p′

2)

l(p1) νl(p′
1)

WZ0

l(p2) l(p′
2)

kZ = p1 − p′
1 kW = p1 − p′

2

Figure 4.5: Lowest contributing order Feynman diagrams for νl + l→ νl + l.

1Note that this is a truth with modifications for gp
A and gn

A, due to the axial current anomaly (see e.g.
Peskin & Schröder [14] chapter 19) that leads to adjusted values for the axial vector coupling constants for
nucleons.
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total Feynman amplitude in the low-energy limit k2 � {m2
Z ,m

2
W } is now M = MZ +MW ,

where

MZ =
−2iGF√

2
uνl

(1′)[γα(gνl
V − g

νl
Aγ5)]uνl

(1)ul(2′)[γα(gl
V − gl

Aγ5)]ul(2),

MW =
−iG√

2
ul(2′)[γα(1− γ5)]uνl

(1)uνl
(1′)[γα(1− γ5)]ul(2). (4.21)

By using the Fierz identity 2

u1[γα(1− γ5)]u2u3[γα(1− γ5)]u4 = u1[γα(1− γ5)]u4u3[γα(1− γ5)]u2 (4.22)

for arbitrary spinors ui, MW obtains the same sequence of spinors as MZ . This leaves us
with

M =
−2iG√

2
uνl

(1′)
[
γα(gνl

V − g
νl
Aγ5)

]
uνl

(1)ul(2′)
[
γα[(gl

V + 1)− (gl
A + 1)γ5]

]
ul(2). (4.23)

This is exactly the amplitude Eq. (4.4) with the replacements gf
V → gl

V +1, gf
A → gl

A +1. We
are immediately able to write down the total cross section for elastic νll scattering, namely

σ[νll] = lim
g
f
V
→gl

V
+1

g
f
A
→gl

A
+1

σ[νlf (l 6= f)]. (4.24)

4.2 Matter potentials

Restricting ourselves to two neutrino flavors, the vacuum Hamiltonian in mass eigenstate space
reads Hmass

0 = diag(E1, E2). We transform to flavor space by performing Hflav
0 = UHmass

0 U−1,
where U is the mixing matrix from Eq. (3.8). The MSW-effect is included by taking into
account neutrino interactions with the W and Z bosons. The induced matter effects are
added to H, producing

H = H0 +Hn
Z +Hp

Z +He
Z +Hµ

Z +He
W +Hµ

W . (4.25)

Here, H i
Z = diag(V i

Z , V
i
Z) with i ∈ {n, p, e, µ}, He

W = diag(V e
W , 0), and Hµ

W = diag(0, V µ
W ),

omitting the notation flav for quantities in flavor space from now on. The superscript refers
to the scattering component while the subscript indicates which gauge boson mediates the
reaction, i.e. neutral or charged current. For example, V µ

Z represents the effective matter
potential due to neutral current scattering on muons.

The diagonal form of the neutral current Hamiltonians is due to the fact that both neutrino
flavors are equally affected by this potential. On the other hand, the charged current Hamil-
tonians only affect one of the neutrino flavors, dependent on the scattering component. For
instance, it is clear that while a νe feels a charged current potential due to scattering on
electrons, a νµ does not.

2See e.g. Mandl & Shaw [10] chapter 14.
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4.2.1 Derivation of V n
Z and V e

W

First, we seek the quantity

V e
W = 〈νe(p1, s1)e(p2, s2)|HW |νe(p1, s1)e(p2, s2)〉, (4.26)

where HW is the charged current contribution due to scattering on electrons. Since we are
dealing with elastic scattering, it is fair to assume that the neutrinos and electrons conserve
their momentum as shown in Eq. (4.26). From Eq. (2.9), we immediately write down the
low-energy Hamiltonian density relevant for νee scattering

HW (x) =
GF√

2

[
e(x)γβ(1− γ5)νe(x)

][
νe(x)γβ(1− γ5)e(x)

]
, (4.27)

omitting the superscript eff for clarity. Näıve insertion of this density into

HW =
∫

V
HW (x)dx, (4.28)

is not correct. The presence of electrons in a medium leads to two important modifications.
First of all, the statistical energy distribution of the electrons in the medium is accounted for
by integration over the Fermi function f(Ee, T ) which is normalized to

∫
f(Ee, T )dpe = 1.

Secondly, since we do not know the polarization of the electrons, an averaging over spins
1/2

∑
s is needed. In total, this corresponds to transforming Eq. (4.27) to

HW (x) =
∫
f(Ee, T )

GF√
2
× 1

2

∑
s2

[
e(x)γβ(1− γ5)νe(x)

][
νe(x)γβ(1− γ5)e(x)

]
dp2. (4.29)

Since only electrons with (p, s) = (p2, s2) will contribute to Eq. (4.26), we obtain[
e(x)γβ(1− γ5)νe(x)

][
νe(x)γβ(1− γ5)e(x)

]
|νe(p1, s1)e(p2, s2)〉

=
1

2V E2(p2)
[
a†s2

(p2)as2(p2)us2(p2)γβ(1− γ5)νe(x)
]

×
[
νe(x)γβ(1− γ5)us2(p2)

]
|νe(p1, s1)e(p2, s2)〉. (4.30)

Making the identification of the number operator Nums2(p2) = a†s2(p2)as2(p2), insertion of
Eq. (4.30) into Eq.(4.26) produces

V e
W = 〈νe(p1, s1)e(p2, s2)|

GF

4
√

2V
×

∫ ∫
f(Ee, T )

∑
s2

Nums2(p2)
Ee(p2)

[
us2(p2)γβ(1− γ5)νe(x)

]
×

[
νe(x)γβ(1− γ5)us2(p2)

]
dx dp2|νe(p1, s1)e(p2, s2)〉. (4.31)

It should be clear that the νe(x) and νe(x) symbols refer to the second quantized fields
from Eq. (2.8), while |νe(pi, si)〉, i = 1, 2, simply are representations for neutrinos with 4-
momentum pi and spin si. In order to continue without too many complications, assume that
the material is isotropic and holds an equal number of electrons with spin up as spin down,
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i.e. a non-magnetic material. This leads to

V e
W = 〈νe(p1, s1)e(p2, s2)|

GF

4
√

2
×

∫ ∫
f(Ee, T )Ne(p2)

Ee(p2)

∑
s2

[
us2(p2)γβ(1− γ5)νe(x)

]
×

[
νe(x)γβ(1− γ5)us2(p2)

]
dx dp2|νe(p1, s1)e(p2, s2)〉

= 〈νe(p1, s1)e(p2, s2)|
GF

4
√

2
×

∫ ∫
f(Ee, T )Ne(p2)

Ee(p2)
νe(x)γβ(1− γ5)νe(x)

×
∑
s2

[
us2(p2)γβ(1− γ5))us2(p2)

]
dx dp2|νe(p1, s1)e(p2, s2)〉. (4.32)

Here, we have used the Fierz identity Eq. (4.22) on arbitrary spinors {ui} to re-arrange the
νe and e spinors in a fashion that makes it possible to extract the neutrino-spinor part from
the summation over s2. The remaining sum is evaluated by∑

s2

[
us2(p2)γβ(1− γ5)us2(p2)

]
= Tr{(p/2 +me)γβ(1− γ5)}

= p2αTr{γαγβ(1− γ5)} = 4pβ
2 , (4.33)

using standard relations for γ-matrices. Eq. (4.33) in synthesis with (4.32) leads to

V e
W = 〈νe(p1, s1)e(p2, s2)|

GF√
2
×

∫ ∫
f(Ee, T )Ne(p2)

Ee(p2)

× νe(x)γβ(1− γ5)νe(x)p
β
2dx dp2|νe(p1, s1)e(p2, s2)〉

= 〈νe(p1, s1)e(p2, s2)|
GFNe√

2
×

∫
νe(x)γ0(1− γ5)νe(x)dx|νe(p1, s1)e(p2, s2)〉, (4.34)

where we have exploited the isotropy
∫

p2f(Ee, T ) dp2 = 0 and the expression for the total
electron density

∫
f(Ee, T )Ne(p2) dp2 = Ne. Only integration over x remains, such that we

obtain

V e
W = 〈νe(p1, s1)e(p2, s2)|

GFNe√
2
×

∫
νe(x)γ0(1− γ5)νe(x)dx|νe(p1, s1)e(p2, s2)〉

= 〈νe(p1, s1)e(p2, s2)|
GFNe√

2
× 1

2V Eνe

∫
Tr{(p/νe +mνe)γ

0(1− γ5)}

×

Nums1 (p1)︷ ︸︸ ︷
a†s1

(p1)as1(p1) dx|νe(p1, s1)e(p2, s2)〉

= 〈νe(p1, s1)e(p2, s2)|
GFNe√

2
× 1

2V Eνe

∫
4Eνedx|νe(p1, s1)e(p2, s2)〉. (4.35)

Assuming normalized state vectors |νe(p1, s1)e(p2, s2)〉, Eq. (4.35) reduces to

V e
W =

GFNe√
2
× 2
V

∫
dx〈νe(p1, s1)e(p2, s2)||νe(p1, s1)e(p2, s2)〉 =

√
2GFNe. (4.36)

Note that νee scattering would reverse the sign of V e
W (x), since HW (x) → −HW (x) in this

case. Let us show this. For νee scattering, we must calculate the expectation value

V
e
W (x) = 〈νe(p1, s1)e(p2, s2)|He

W |νe(p1, s1)e(p2, s2)〉. (4.37)
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The procedure is identical to the case of νee up to Eq. (4.35). There, we are confronted with

V
e
W = 〈νe(p1, s1)e(p2, s2)|

GFNe√
2
×

∫
νe(x)γ0(1− γ5)νe(x)dx|νe(p1, s1)e(p2, s2)〉. (4.38)

This gives an extra minus sign compared to V e
W , and here is why. In the general case, the

operator part of this expression takes the form

〈0|bν(p)
[ ∑

k,k′

bν(k)b†ν(k
′)
]
b†ν(p

′)|0〉, (4.39)

where the sum over bν(k)b†ν(k′) comes from the second quantized fields νe(x)νe(x). Using the
canonical commutation relation [bν(k), b†ν(k′)]+ = δ(k′−k) for fermions, Eq. (4.39) becomes

−〈0|bν(p)
[ ∑

k,k′

b†ν(k
′)bν(k)

]
b†ν(p

′)|0〉. (4.40)

The only non-vanishing contribution from this term is obtained by taking k = p′,k′ = p. In
our case of elastic scattering, we then impose the limit p→ p′. Now it is evident from where
the relative minus sign comes. Using this treatment on Eq. (4.38) produces

V
e
W = 〈νe(p1, s1)e(p2, s2)|

GFNe√
2
× 1

2V Eνe

∫
Tr{(p/νe −mνe)γ

0(1− γ5)}

×

-Nums1 (p1)︷ ︸︸ ︷
[−b†s1

(p1)bs1(p1)] dx|νe(p1, s1)e(p2, s2)〉

= −〈νe(p1, s1)e(p2, s2)|
GFNe√

2
× 1

2V Eνe

∫
4Eνedx|νe(p1, s1)e(p2, s2)〉. (4.41)

Demanding normalized state vectors |νe(p1, s1)e(p2, s2)〉, Eq. (4.41) reduces to

V
e
W = −GFNe√

2
× 2
V

∫
dx〈νe(p1, s1)e(p2, s2)||νe(p1, s1)e(p2, s2)〉 = −

√
2GFNe. (4.42)

Comparing Eq. (4.42) to Eq. (4.36), it is clear that V e
W = −V e

W .

We now set out to find V n
Z due to ναn, α = e, µ, τ scattering. This reaction is mediated by

the Z boson, so we must use the effective Hamiltonian density Eq. (2.10). Now, the neutron
consists of one u and two d. The u part of the Hamiltonian is then

GF

2
√

2

[
u(x)γµ(1− γ5 −

8
3

sin2 θW )u(x)
][
να(x)γµ(1− γ5)να(x)

]
, (4.43)

while the d part is

− GF

2
√

2

[
d(x)γµ(1− γ5 −

4
3

sin2 θW )d(x)
][
να(x)γµ(1− γ5)να(x)

]
. (4.44)

These contributions are to be added in the ratio 1:2 to obtain the relevant Hamiltonian for
νen scattering. In total, this gives

GF

2
√

2

[
ψnγ

µ
[
(1− γ5−

8
3

sin2 θW )− 2× (1− γ5 −
4
3

sin2 θW )
]
ψn

][
να(x)γµ(1− γ5)να(x)

]
= − GF

2
√

2

[
ψnγ

µ(1− γ5)ψn

][
να(x)γµ(1− γ5)να(x)

]
. (4.45)
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We are left with the effective Hamiltonian

HZ(x) = − GF

2
√

2

∫
f(En, T )× 1

2

∑
s

[
ψn(x)γµ(1− γ5)ψn(x)

]
×

[
να(x)γµ(1− γ5)να(x)

]
dpn. (4.46)

Here, we have introduced the statistical Fermi distribution for neutrons f(En, T ) and sum-
mation over the neutron spins due to the assumption of unpolarized medium, just as for the
electrons. We see that Eq. (4.46) is of the same form as Eq. (4.29) if we use the earlier
mentioned Fierz identity, such that the rest of the analysis is equivalent to the derivation of
V e

W . Following the same procedure as above, we find

V n
Z = −〈να(p1, s1)n(p2, s2)|

GFNn

2
√

2
×

∫
να(x)γ0(1− γ5)να(x)dx|να(p1, s1)n(p2, s2)〉

= −〈να(p1, s1)n(p2, s2)|
GFNn

2
√

2
× 1

2V Eνα

∫
Tr{(p/να +mνα)γ0(1− γ5)}

×

Nums1 (p1)︷ ︸︸ ︷
a†s1

(p1)as1(p1) dx|να(p1, s1)n(p2, s2)〉

= −〈να(p1, s1)n(p2, s2)|
GFNn

2
√

2
× 1

2V Eνα

∫
4Eναdx|να(p1, s1)n(p2, s2)〉. (4.47)

With normalized state vectors |να(p1, s1)n(p2, s2)〉, Eq. (4.47) leads to

V n
Z = −GFNn

2
√

2
× 2
V

∫
dx〈να(p1, s1)n(p2, s2)||να(p1, s1)n(p2, s2)〉 = −GFNn√

2
. (4.48)

4.2.2 Derivation of V p
Z and V e

Z

The axial and vector coupling constants were treated in Sec. 2.3. As it turns out, the con-
tributions to M from the electron and proton exactly cancel eachother. We see this from the
fact that gTOT

V = g
(e)
V + 2g(u)

V + g
(d)
V = 0, and gTOT

A = g
(e)
A + 2g(u)

A + g
(d)
A = 0, leaving us with

only the neutron contribution to the scattering of neutrinos of arbitrary flavor 3. However,
this is only valid if the electron and proton densities in the medium are equal. Let us prove this.

The claim is that V p
Z + V e

Z = 0 when Ne = Np. Now, the expression for V e
Z is found by

including the relevant terms from Eq. (2.10), which for νee scattering reads

− GF

2
√

2

[
νe(x)γµ(1− γ5)νe(x)

][
e(x)γµ(1− γ5 − 4 sin2 θW )e(x)

]
. (4.49)

Taking into account the Fermi distribution of electrons and the averaging of spins, the ex-
pression for V e

Z(x) takes the form

HZ(x) = − GF

2
√

2

∫
f(Ee, T )× 1

2

∑
s

[
νe(x)γµ(1− γ5)νe(x)

]
×

[
e(x)γµ(1− γ5 − 4 sin2 θW )e(x)

]
dpe. (4.50)

3As pointed out earlier, the axial current anomaly modifies the value of gp
A, such that the total coupling

constant gTOT
A does not vanish. However, the vector current is conserved. Therefore, since the potentials V e

Z

and V p
Z turn out to be proportional to their respective vector coupling constants ge

V and gp
V , the axial coupling

is irrelevant when proving that the potentials cancel eachother.
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As before, the rest of the analysis is equivalent to the derivation of V e
W . Analogous to Eq.

(4.35), it is found that

V e
Z = −〈νe(p1, s1)e(p2, s2)|

GFNe

2
√

2
×

∫
(1− 4 sin2 θW )να(x)γ0

× (1− γ5)να(x)dx|νe(p1, s1)e(p2, s2)〉

= −〈να(p1, s1)e(p2, s2)|
GFNe

2
√

2
× 1

2V Eνe

∫
(1− 4 sin2 θW )Tr{(p/νe +mνe)γ

0(1− γ5)}

×

Nums1 (p1)︷ ︸︸ ︷
a†s1

(p1)as1(p1) dx|νe(p1, s1)e(p2, s2)〉

= −〈νe(p1, s1)e(p2, s2)|
GFNe

2
√

2
× 1

2V Eνe

∫
(1− 4 sin2 θW )

× 4Eνedx|νe(p1, s1)e(p2, s2)〉. (4.51)

Demanding normalized state vectors |νe(p1, s1)n(p2, s2)〉, Eq. (4.51) leads to

V e
Z = −GFNe

2
√

2
× 2
V

(1− 4 sin2 θW )
∫

dx〈νe(p1, s1)e(p2, s2)||νe(p1, s1)e(p2, s2)〉

= −GF (1− 4 sin2 θW )Ne√
2

. (4.52)

In order to derive V p
Z , we attack the problem in the same way as for V n

Z . A proton consists
of two u and one d quarks, so the total contribution to the proton is seen to be

GF

2
√

2

[
ψpγ

µ
[
2× (1− γ5−

8
3

sin2 θW )− (1− γ5 −
4
3

sin2 θW )
]
ψp

][
να(x)γµ(1− γ5)να(x)

]
=

GF

2
√

2

[
ψpγ

µ(1− γ5 − 4 sin2 θW )ψp

][
να(x)γµ(1− γ5)να(x)

]
,

(4.53)

when adding Eqs. (4.43) and (4.44) in the ratio 2:1, and including the extra overall factor 2
due to the double quark contribution from Eq. (2.10). This gives the effective Hamiltonian
for ναp, α = e, µ, τ scattering, namely

HZ(x) =
GF

2
√

2

∫
f(Ep, T )× 1

2

∑
s

[
ψp(x)γ

µ(1− γ5 − 4 sin2 θW )ψp(x)
]

×
[
να(x)γµ(1− γ5)να(x)

]
dpn. (4.54)
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The further analysis is then just as for V e
W , and leads to

V p
Z = −〈να(p1, s1)p(p2, s2)|

GFNp

2
√

2
×

∫
(1− 4 sin2 θW )να(x)γ0

× (1− γ5)να(x)dx|να(p1, s1)p(p2, s2)〉

= 〈να(p1, s1)p(p2, s2)|
GFNp

2
√

2
× 1

2V Eνα

∫
(1− 4 sin2 θW )Tr{(p/να +mνα)γ0(1− γ5)}

×

Nums1 (p1)︷ ︸︸ ︷
a†s1

(p1)as1(p1) dx|να(p1, s1)p(p2, s2)〉

= 〈να(p1, s1)p(p2, s2)|
GFNp

2
√

2
× 1

2V Eνα

∫
(1− 4 sin2 θW )

× 4Eναdx|να(p1, s1)p(p2, s2)〉. (4.55)

As before, we require the state vectors |να(p1, s1)p(p2, s2)〉 to be normalized. Eq. (4.55) then
gives

V p
Z =

GFNp

2
√

2
× 2
V

(1− 4 sin2 θW )
∫

dx〈να(p1, s1)p(p2, s2)||να(p1, s1)p(p2, s2)〉

=
GFNp(1− 4 sin2 θW )√

2
. (4.56)

From Eqs. (4.52) and (4.56) it is easily seen that

V e
Z + V p

Z

∣∣∣
Ne=Np

= 0. (4.57)

Thus, there is no effective matter potential felt by neutrinos due to scattering on protons and
electrons mediated by Z in an electrically neutral medium.

4.2.3 Derivation of V µ
Z and V µ

W

Since Earth contains practically no µ particles, Nµ ' 0, and the terms {V µ
Z , V

µ
W } are set to

zero. This means that the only effective potentials felt by the νe and νµ neutrinos travelling
through Earth are V n

Z and V e
W , due to scattering of νe and νµ on neutrons and the scattering

of νe on electrons, respectively.

We summarize our results in Tab. 4.1. A more comprehensive list of neutrino matter po-
tentials can be found in e.g. Ref. [24]. Generalization to matter potentials for ντ -scattering
should be trivial. The upper sign refer to neutrinos, while the lower gives the matter potential
for antineutrinos.

4.2.4 Potential strength comparison

To get an impression of how strong these matter potentials are, consider Fig. 4.6. The graph
has been produced from Tab. 4.1 by assuming an electrically neutral medium, such that

GFNe = GFNn = GFNp = 2.67× 10−14 × ρ[g/cm3]. (4.58)
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Table 4.1: Neutrino matter potentials.

Type of reaction Matter potential
V n

Z ∓GFNn/
√

2
V p

Z ±GF (1− 4 sin2 θW )Np/
√

2
V e

Z ∓GF (1− 4 sin2 θW )Ne/
√

2
V µ

Z ∓GF (1− 4 sin2 θW )Nµ/
√

2
V e

W ±2GFNe/
√

2
V µ

W ±2GFNµ/
√

2

Thus, one finds that for instance V e
W [eV] =

√
2×2.67×10−14×ρ[g/cm3]. As is seen from the

figure, realistic densities give rise to very weak interaction potentials. The charged current
contribution from scattering on electrons is O(10−13) eV, compared to the upper mass limit
mνe ' 3 eV from Tab. 2.2. The MSW-effect is thus very small for normal Earth conditions.

Figure 4.6: Induced matter potentials from Earth.

4.3 MSW-effect for constant electron density

Now, the equation of motion for neutrinos in matter is

i
d
dt

[
νe

νµ

]
= H

[
νe

νµ

]
. (4.59)

In the previous section, we proved that the only non-vanishing contributions from Earth to
the matter potential were V n

Z and V e
W . However, Hn

Z in Eq. (4.25) is not relevant for neutrino
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oscillations since it is proportional to the identity matrix I. This means all flavors will be
equally affected by the neutral current contribution. Such a common phase factor can be
disregarded with respect to oscillations. He

W , on the other hand, will only affect the electron
neutrinos, thus shifting the balance in their favor. The equation of motion then explicitely
reads

i
d
dt

[
νe

νµ

]
=

[
1

2E

[
m2

1c
2
θ +m2

2s
2
θ cθsθ(m2

2 −m2
1)

cθsθ(m2
2 −m2

1) m2
1s

2
θ +m2

2c
2
θ

]
+

[ √
2GFNe 0

0 0

]][
νe

νµ

]
. (4.60)

Using basic trigonometric relations and designating ∆m2 = m2
2 −m2

1, Σm2 = m2
2 +m2

1, and
N = 2

√
2GFNeE/∆m2, Eq. (4.60) is rewritten to

i
d
dt

[
νe

νµ

]
=

1
4E

[
(Σm2 + ∆m2N )I + ∆m2

[
N − c2θ s2θ

s2θ −N + c2θ

]][
νe

νµ

]
.

Suppose now that the flavor states in matter are described by a set of new mass eigenstates
{νm

1 , ν
m
2 }, obtained through

[
νe

νµ

]
=

Um︷ ︸︸ ︷[
cθm sθm

−sθm cθm

] [
νm
1

νm
2
.

]
If so, the modified amplitude term in matter Am will be obtained simply by substituting
θ → θm in Eq. (3.9). The pursuit of θm begins by demanding that Um diagonalizes our
Hamiltonian with the result

U−1
m HUm =

[
H+ 0
0 H−

]
, (4.61)

where

H± =
(Σm2 + ∆m2N )∓∆m2

√
(N − c2θ)2 + s22θ

4E
. (4.62)

The calculation of θm is straight-forward but tedious, and we shall make do with the result

s22θm
=

s22θ

s22θ + (N − c2θ)2
. (4.63)

We see that θ = θm in the case of Ne = 0, i.e. vacuum, as would be expected for consistency.
Now, the oscillation term W is also affected by the presence of matter through a shift of mass
eigenvalues. This means we must make the replacement ∆m2 → ∆M2 in Eq. (3.9) where
Mi are the mass eigenvalues for neutrinos in matter. These are given by M2

1 = 2EH+ and
M2

2 = 2EH−. The total transformation from vacuum scenario to presence of matter is thus
obtained by substituting the vacuum parameters with their matter equivalents, i.e. θ → θm

and ∆m2 → ∆M2, for the case of a constant electron density. Performing these operations on
Eq. (3.9) results in the total oscillation probability for neutrinos traversing through matter
PMSW

νe→νµ
(t) = s22θm

sin2(∆M2t/4E) = AmWm. Explicitely, this reads

PMSW
νe→νµ

(t) =
s22θ

s22θ + (N − c2θ)2
× sin2

t∆m2
√
s22θ + (N − c2θ)2

4E
(4.64)
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This result tells us how the oscillation probability is modified for the MSW-effect. Eq. (4.64)
was first derived by Wolfenstein in 1978 (see Ref. [22]), but with the wrong sign on the matter
potential.

The mixing between neutrinos becomes maximal when θm = π/4 since this leads to Am = 1.
The resonance condition is thenN = c2θ, which means that there exists a resonance densityNe

for a given neutrino energy E and square mass difference ∆m2. This is readily seen from Fig.
4.7, where the maximum value of the oscillation probability in a medium [PMSW

νe→νµ
(t)]max = Am

is plotted against N .

N

Figure 4.7: Plot of Am against N for neutrinos and antineutrinos, using both solar and atmospheric
best-fit parameters. The resonance condition is never met for two-flavor antineutrino
oscillations, but is very close for atmospheric best-fit mixing parameters.
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Chapter 5

Exploiting step-wise density shifts

The case of an electron density behaving like a unit-step function is of practical importance
since it models a very realistic situation, and has been studied in e.g. Refs. [25, 26]. Take for
instance accelerator neutrinos propagating through air and eventually hitting a solid detector.
The electron density is then exactly of the type described by a unit-step function, with an
abrupt shift at the boundary between air and detector.

5.1 Single unit-step density profile

We begin by rewinding our analysis from Sec. 4.3 back to Eq. (4.59), where the time
dependence of the electron density must be taken into account. The situation being considered
is illustrated in Fig. 5.1.

t

Ne(t)

N0

t0 = L0

Mixing angle θ Mixing angle θm

Figure 5.1: Neutrino transition from vacuum to a constant non-zero electron density modelled by a
unit-step function.

Our electron density is now described by

Ne(t) = N0 ×Θ(t− L0), (5.1)

where N0 is the electron density in the medium, L0 is the baseline length traversed by the
neutrinos before hitting the slab of material, and Θ(t−L0) is an ordinary unit-step function.
Such an abrupt shift in electron density is certainly non-adiabatic, and corresponds to a
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momentous change in mixing angles and mass eigenvalues for the neutrino eigenstates. The
question is how the phase information of the neutrino eigenstates is translated through the
shift of Ne(t). Can one assume that the phase information of W is conserved in the transition
between vacuum and matter, such that the neutrinos ”remember” the how far they have
traveled? Mathematically, this means that W would transform as

sin2 t∆m
2

4E
→ sin2 t∆M

2

4E
(5.2)

across the material slab at t = t0. If the neutrinos instead ”forget” their history up to t0, time
would effectively reset and the transformation would look like

sin2 t∆m
2

4E
→ sin2 (t− t0)∆M2

4E
. (5.3)

It is also possible that the solution is neither of these transformations, and consists of a
mixture of both. So let us investigate this. As pointed out in Ref. [6], the flavor eigenstates
must be continuous in the transition between vacuum and a massive medium even if the
density change is extremely non-adiabatic, i.e. abrupt. Since the flavor states are coupled to
the mass eigenstates through Eq. (3.8), this condition reads[

cθ sθ

−sθ cθ

] [
|ν1(x, 0)〉e−iE1t0

|ν2(x, 0)〉e−iE2t0

]
=

[
cθm sθm

−sθm cθm

] [
|ν1m(x, 0)〉
|ν2m(x, 0)〉

]
. (5.4)

We seek to express the new mass eigenstates |νim(x, 0)〉 in terms of the old |νi(x, 0)〉. Straight-
forward matrix multiplication leads to the equations

ν1m = ν1

[
cθcθm + sθsθm

]
e−iE1t0 + ν2

[
sθcθm − cθsθm

]
e−iE2t0

ν2m = ν1

[
cθsθm − sθcθm

]
e−iE1t0 + ν2

[
sθsθm + cθcθm

]
e−iE2t0 , (5.5)

where we have shortened down the notation to |νim(x, 0)〉 ≡ νim. We are ready to compute
the oscillation probability P̃να→νβ

given by Eq. (3.4), where the tilde represents our special
case of the non-adiabatic transition from θ → θm. In the general case, we start off with a
neutrino of flavor α at t = 0 and ask the question: What is the probability to measure a νβ at
t ≥ t0, given that the neutrino in question is a να at t = 0?

Now, the α-flavor in vacuum and β-flavor in matter are described by

|να(x, t)〉 = cθν1e−iE1t + sθν2e−iE2t, t ≤ t0

|νβ(x, t)〉 = −sθν1me−iE1m(t−t0) + cθν2me−iE2m(t−t0), t ≥ t0.

The probability for a flavor conversion from α to β after the neutrino has crossed the density
shift at t = t0 is then given by

P̃να→νβ
(t, t0) = |〈να(x, 0)|νβ(x, t)〉|2

=
∣∣〈cθν1 + sθν2|

− sθmν1me−iE1m(t−t0) + cθmν2me−iE2m(t−t0)〉
∣∣2, t ≥ t0. (5.6)
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Inserting the new mass eigenstates from Eq. (5.5) together with the orthogonality condition
Eq. (3.6) leads to

P̃να→νβ
(t, t0) = a2

1 + a2
2 + a2

3 + a2
4 + 2(a1a2 + a3a4) cos

[∆m2t0
2E

]
+ 2(a1a3 + a2a4) cos

[∆M2(t− t0)
2E

]
+ 2a1a4 cos

[∆M2(t− t0)
2E

+
∆m2t0

2E

]
+ 2a2a3 cos

[∆M2(t− t0)
2E

− ∆m2t0
2E

]
, t ≥ t0, (5.7)

where we have introduced the constants

a1 = −cθsθm

[
cθcθm + sθsθm

]
, a2 = −sθsθm

[
sθcθm − cθsθm

]
a3 = cθcθm

[
cθsθm − sθcθm

]
, a4 = sθcθm

[
sθsθm + cθcθm

]
. (5.8)

For consistency, we should have

P̃να→νβ
(t = t0, t0) = Pνα→νβ

(t0) (5.9)

for all θ. Above, Pνα→νβ
(t0) is the ordinary vacuum oscillation probability from Eq. (3.9).

Here, the reader is spared for the details of this criteria since it involves a nightmare of
trigonometic identities, but Eq. (5.9) can be shown to hold for all θ.

5.1.1 A study of P̃να→νβ
(t, t0)

To get an impression of how Eq. (5.7) behaves, consider Fig. 5.2. Here, Lp designates the
distance where the vacuum oscillation probability Eq. (3.9) reaches its first maximumW = 1,
i.e. Lp = 2πE/∆m2.

As is seen from the plot, there is hardly any distinction between P̃να→νβ
and Pνα→νβ

right
after the density shift. On a larger scale, the picture is quite different. Here, P̃να→νβ

actually
reaches unity after a sufficiently large interval for θm = π/4. An interesting observation of
the results in Fig. 5.2 is that there is a significant difference between the vacuum oscillation
probability and the equivalent in matter after a certain interval, dependent on where L0 is
chosen. This could be exploited to obtain experimental restrictions upon the mixing param-
eters {∆m2, θ}. We shall discuss this idea in detail later on.

For L0 ≥ Lp, the presence of a non-adiabatic density shift is seen to enhance the oscillation
probability immediately after the shift. Now, the mixing angle θm in the medium is in general
a function of several parameters such as kinetic energy E and electron density Ne. In the
following section, we study the density dependence of the mixing angle to understand what
kind of materials that are required in order to enhance oscillation probabilities.
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Figure 5.2: Eq. (3.9) compared to Eq. (5.7) for solar neutrino parameters. E = 1 MeV has been
chosen as a representative for this species. Comparison is shown for several values of L0.

5.1.2 Mass density vs. mixing angle

Recall Eq. (4.63), which can be slightly re-written to

s22θm
=

s22θ

s22θ + [(2
√

2GFNeE/∆m2 − c2θ)]2
. (5.10)

It is instructive to consider how the mixing angle depends on the total mass density ρ. In the
case of an electrically neutral medium, the total mass density is given by

ρ = Ne ×me × (
mp

me
+
mn

me
+
me

me
), (5.11)

where mp, mn, and me are the proton, neutron, and electron masses, respectively. Inverting
Eq. (5.10) leads to

θm =
1
2
arcsin

s2θ√
s22θ +

[√
2GF ρE

mp∆m2 − c2θ

]2
, (5.12)

where Eq. (5.11) has been inserted under the approximation mp ' mn � me. In the fol-
lowing, let ρR and NR

e denote the resonance mass density and electron density that gives
θm = π/4. Fig. 5.3 shows a plot of Eq. (5.12) for solar and atmospheric neutrino parameters.
Observe that the physical parameter space is spanned by θm ∈ [0, π/2] and ∆m2 ≥ 0.
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Figure 5.3: Mixing angle in medium θm as a function of total mass density ρ. Solar neutrino pa-
rameters ∆m2

SOL = 7.1 × 10−5 eV2, θSOL = 0.59 and atmospheric neutrino parame-
ters ∆m2

ATM = 2.5 × 10−3 eV2, θATM = 0.78, respectively. Resonance peak occurs at
θm = π/4 ' 0.78.

The total mass density scale does not exceed 20 g/cm3, since the most dense material on
Earth is Iridium with ρ ' 22 g/cm3 [27]. It is clear from the plot that resonance peaks
θm = π/4 occur for values of ρ within the set range for the atmospheric neutrinos, while the
solar neutrinos require impossible densities in order to satisfy the resonance condition.

From Fig. 5.3, we see that low densities ρ < ρR correspond to small mixing angles, but never
smaller than the vacuum mixing angle for the relevant species (solar or atmospheric). Larger
densities ρ > ρR forces θm down towards zero. However, the amount of material available in
large quantities for detection purposes drastically reduces for each increasing unit of ρ. In
an experimental setup, the mixing angle, i.e. material density, can be chosen dependent on
whether one wishes to significantely enhance or decrease the oscillation probability.

An interesting opportunity arises from this study. Effectively, the modified oscillation proba-
bility for a given species of neutrinos depends on kinetic energy E, material density ρ, baseline
length L0. By placing a slab of material in the way of the neutrino beam, the oscillation prob-
ability is changed, thus altering the expected ratio of να and νβ measured behind the slab,
compared to normal vacuum oscillations. This could actually be used to determine the neu-
trino parameters {∆m2, θ} to an even higher accuracy. By comparing the flux ratio Fνα/Fνβ

with and without a slab of material in front of the detector, information could be acquired
concerning these mixing parameters. This idea will recieve further attention in Sec. 6.1.
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5.2 Neutrino propagators

We can use a more instructive approach in order to derive Eq. (5.7). Consider the flavor
state vector |Ψ(x, t)〉 describing the neutrino. Our initial condition is that

|Ψ(x, 0)〉 =
[

1
0

]
, (5.13)

using a basis where

|να(x, 0)〉 =
[

1
0

]
|νβ(x, 0)〉 =

[
0
1

]
. (5.14)

The mass state vector is then given by

|Ψ(x, t)〉mass =
[
cθ −sθ

sθ cθ

]
|Ψ(x, t)〉 =

[
cθ
sθ

]
. (5.15)

Since the mass eigenstates have a time-dependence through the exponential factor exp(−iEit),
we can write the flavor state vector as |Ψ(x, t)〉 = K(t0)|Ψ(x, 0)〉, where the propagator K(t0)
is defined by

K(t) =
[

cθ sθ

−sθ cθ

] [
e−iE1t 0

0 e−iE2t

] [
cθ −sθ

sθ cθ

]
. (5.16)

Up to the point t0, our treatment is analogous to the vacuum case. Demanding that the flavor
eigenstate is contineous across the density shift, we write

|Ψ(x, t0)〉mass =
[
cθm −sθm

sθm cθm

]
|Ψ(x, t0)〉, (5.17)

where the subscript m denotes our transition to a massive medium. The propagation through
the medium is described by replacing the vacuum quantities with their medium equivalents,
such that the flavor state vector in the medium is

|Ψ(x, t, t0)〉 = Km(t− t0)K(t0)|Ψ(x, 0)〉, t ≥ t0. (5.18)

Here, Km(t− t0) is defined in a similar fashion as the vacuum propagator, namely

Km(t) =
[

cθm sθm

−sθm cθm

] [
e−iE1mt 0

0 e−iE2mt

] [
cθm −sθm

sθm cθm

]
. (5.19)

This is an interesting result. Eq. (5.18) provides us with the opportunity to use the K(t) and
Km(t) propagators to ”rotate” the original flavor eigenstate να into a νβ by an appropriate
choice of parameters. Simply put, if we write

|Ψ(x, t, t0)〉 =
[
A(t, t0)
B(t, t0)

]
, t ≥ t0 (5.20)

then a rotation to another flavor eigenstate means making |B(t, t0)|2 as large as possible, since
the lower component describes the β-flavor. B(t, t0) is identified as
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B(t, t0) = cθmsθm

(
e−iE2m(t−t0) − e−iE1m(t−t0)

)(
c2e−iE1t + s2θe

−iE2t
)

+ cθsθ

(
e−iE2t − e−iE1t

)(
c2θm

e−iE2m(t−t0) + s2θm
e−iE1m(t−t0)

)
(5.21)

through Eqs. (5.16), (5.18), and (5.19). The calculation of |B(t, t0)|2 is consistent with Eq.
(5.7), and expresses the probability that a να created at t = 0 would have oscillated into a νβ

at t after encountering a medium with an abrupt density shift at t = t0.

5.3 Multiple step-wise density profiles

The idea of using multiple propagators for rotating the neutrino eigenstate vector is interest-
ing in terms of detection. We wish to investigate the behaviour of the oscillation probability
when using multiple step-wise density profiles, as shown in Fig. 5.4.

L0 d ∆L dd d∆L ∆L

Neutrino production
point t = 0

Figure 5.4: Using multiple material slabs to rotate the neutrino flavor.

Similarly to Eq. (5.18), we obtain

|Ψ(x, L0,∆L, n, d)〉 = KTOT(L0,∆L, n, d)|Ψ(x, 0)〉. (5.22)

where

KTOT(L0,∆L, n, d) = Km(d)×
[
K(∆L)Km(d)

](n−1)
×K(L0), n = 1, 2, 3, .. (5.23)

Hopefully, it would be possible to adjust the parameters L0,∆L, n, and d so that the oscillation
probability significantely differs from the vacuum case after a reasonable number of iterations
n. A criteria for such behaviour is that the relevant neutrino species needs to have a short
oscillation length both in vacuum and matter of realistic density, so that the probability
varies on a sensible length scale. Solar and atmospheric neutrinos are poor candidates for
such a detector setup. The oscillation length is given as the length of a cycle in the oscillation
probability, i.e. the period where the argument of W goes from 0 to π. This means that

Losc =
4Eπ
∆m2

. (5.24)

Solar neutrinos yield typical values of LSOL
osc ' 104 − 105 m, while the atmospheric type offers

LATM
osc ' 106 − 107 m. Comfort is found in the LSND parameters (see Sec. 3.2) which yield

LLSND
osc ' 101 − 102 m. This is more to our liking, since these numbers mean that a full oscil-

lation cycle will take place over an interval of only about 100 m.
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So let us take on an analytical approach to find the conditions appropriate to rotate a neutrino
flavor. Eq. (5.23) can be written

|Ψ(x, L0,∆L, n, d)〉 = [UmDm(d)U−1
m UD(∆L)U−1](n−1)

× UmDm(d)U−1
m UD(L0)U−1|Ψ(x, 0)〉, (5.25)

where U and Um are the ordinary 2 x 2 mixing matrices in vacuum and the medium, whileD(x)
= diag(1, e−i∆m2x/2E) and Dm(x) = diag(1, e−i∆M2x/2E). To obtain the diagonal matrices D
and Dm, we have extracted common phase factors of the type eiϕ which are irrelevant when
pursuing the oscillation probability. The resonance |Ψ(x, L0,∆L, n, d)〉 = [0 1]T is obtained
when we set L0 = ∆L and choose the phases such that

∆m2∆L/2E = ∆M2d/2E = π. (5.26)

As a consequence, D(∆L) = Dm(d) = diag(1,−1), which results in

[UmDm(D)U−1
m ][UD(∆L)U−1] =

[
cos 2(θm − θ) sin 2(θm − θ)
− sin 2(θm − θ) cos 2(θm − θ)

]
. (5.27)

Eq. (5.27) is thus seen to be equal to e2i(θm−θ)σy
, where σy is the Pauli matrix

σy =
[

0 i
−i 0

]
. (5.28)

Eq. (5.25) then becomes |Ψ(x, L0,∆L, n, d)〉 = e2in(θm−θ)σy |Ψ(x, 0)〉, written out as

|Ψ(x, L0,∆L, n, d)〉 =
[

cos(2n∆θ)
− sin(2n∆θ)

]
, (5.29)

with the definition ∆θ ≡ (θm − θ). The resonance condition for the number of iterations
n is then 2n∆θ = ±π/2. If this condition is met, the probability for a flavor conversion
reads P̃να→νβ

= sin2(2n∆θ) = 1. In other words, it is possible to obtain a complete flavor
conversion for any neutrino or antineutrino species. It is important to realize that this res-
onance crucially depends on choosing the phases properly. To see this, recall that d and ∆L
must be chosen to satisfy Eq. (5.26). If d and L instead are slightly perturbed to satisfy
∆m2∆L/2(E + ∆E) = ∆M2d/2(E + ∆E) = π, the conversion probability never reaches
unity and is displaced. This is shown in Fig. 5.5.

In general, the width of the resonance depends on ∆θ. For ∆E/E ∼ ∆θ, it is seen from the
graph that one still gets reasonably close to the resonance. Larger values of ∆E destroys the
resonance, and gives a flat curve for P̃να→νβ

.

For solar and atmospheric best-fits (∆m2
SOL, θSOL) and (∆m2

ATM, θATM), Eq. (5.26) would re-
quire too large lengths d and ∆L to be satisfied in an realistic detection setup. Using LSND
parameters, however, it is possible to satisfy Eq. (5.26) using realistic detector dimensions of
O(102) m (same order of magnitude as the oscillation length). With the material density in
the range ρ = [1, 11] g/cm3, ∆θ ∼ 10−9, so that the resonance is very narrow. Actually, the
number of iterations required to increase P̃να→νβ

will be very large unless there is a way of
obtaining a large ∆θ in the medium. This is challenging when restricted to realistic densities
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Figure 5.5: Oscillation probability for the setup in Fig. 5.4 as a function of number of iterations. n is
given in units of N = π/∆θ. As expected, the resonance occurs at n = π/4∆θ. Material
density ρ = 1 g/cm3 has been used.

(see Sec. 5.1.2).

It is true that the oscillation probability in a medium can reach unity for a neutrino prop-
agating through a single material slab of resonance density (see Eq. (4.64)). The required
densities are unfortunately impossible to obtain for solar best-fit values. Antineutrinos, on
the other hand, cannot meet the resonance condition N = c2θ, since the potential sign is
reversed. Our treatment of multiple non-adiabatic density shifts, however, allows for a com-
plete conversion of one antineutrino flavor α to a flavor β, which is relevant for accelerator
and reactor experiments involving antineutrino oscillations (see Secs. 6.2.5 and 6.3.1).

This analysis has shown that it is possible, in theory, to obtain a complete flavor conversion
for any neutrino species by exploiting the MSW-effect for multiple non-adiabatic density
shifts. Gaining an angle ∆θ for every density shift in the oscillation probability, the final
expression P̃να→νβ

= sin2(2n∆θ) depends on the number of iterations n. A large ∆θ means
few iterations, but this is hard to achieve in laboratory experiments, as we have seen. In the
following, we shall estimate the deviation from the vacuum oscillation probability for a single
non-adiabatic density shift for specific neutrino species.



40 Chapter 5. Exploiting step-wise density shifts



Chapter 6

Detector dimensions and coherence
effects

In this chapter, we set out to investigate if it is possible to use either appearance or disappear-
ance experiments that exploit the MSW-effect with respect to gaining additional knowledge
about neutrino mixing parameters {∆m2, θ}. Using a neutrino source consisting of primarily
one flavor να, appearance experiments look for interactions with νβ originally not present in
the beam. Disappearance experiments look for a diminished flux of να due to oscillations.
The first case places a lower limit Pνα→νβ

> Plim on the oscillation probability, since one
at best can detect all νβ from oscillations. Similarly, the flavor conserving probability must
satisfy the condition Pνα→να < 1− Plim in the second case.

Using these conditions gives an allowed region of mixing parameters {∆m2, θ} that are consis-
tent with the experiments. In theory, one should obtain additional constraints on the mixing
parameters by exploiting the MSW-effect on the neutrinos as they interact with matter, which
we studied in chapter 5. This could be done by comparing the fluxes with and without a slab
of material in front of the detector. But as previously mentioned, this argument depends
upon whether the distinction between Pνα→νβ

and P̃να→νβ
is sufficiently large. Let us find

out.

6.1 Statistical analysis

Here, we quite simply ask the question: What kind of dimension is required for a massive
structure in front of a neutrino detector in order to produce a statistically significant difference
between the oscillation probability in vacuum and matter?

Let Φ0
α designate the να flux at a neutrino source. The flux of νβ at the detector site is then

given as Φβ = PαβΦ0
α, where we have shortened down our notation to Pνα→νβ

→ Pαβ . If we
place matter in front of the detector, an appearance experiment will measure a flux of Φ̃β at
the detector site. The difference in flux between the vacuum and matter case reads

∆Φβ = Φβ − Φ̃β = (Pαβ − P̃αβ)Φ0
α. (6.1)

In a disappearance experiment, the difference in the να flux is ∆Φα = ∆PααΦ0
α, with ∆Pαα

41
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≡ Pαα − P̃αα. Of course, the measured flux quantitites are subject to statistical uncertain-
ties, due to the non-exact nature of detection. If one is to obtain any significant results, i.e.
measurable ∆Φ, these uncertainties must not exceed the magnitude of the flux deviation.

To illustrate how the concept is meant to work, consider the following example. A neutrino
detector site is able to measure the solar neutrino flux of νe to an accuracy of ±a. During
a disappearance experiment, the flux without any interference of material prior the detector
is found to be Φα = A ± a. The flux at the neutrino source is assumed to be known from
theoretical studies, say Φ0

α = A0 ± a0. When placing a material slab of length d at a base-
line lengths L0, the neutrino flux at the detector is altered to Φ̃α = Ã ± a. Note that we
are operating with the same statistical uncertainty a in both cases. Thus, one obtains the
conditions

∆Φα(Li
0 + di)

Φ0
α

= ∆Pαα(Li
0 + di), i = 1, 2, 3.. (6.2)

for every baseline length Li
0 and material slab length di. ∆Φα(Li

0+di) must be found from di-
rect measurements of fluxes with and without the slab of material, each with its own statistical
uncertainty. Combining all of these arguments leads to the expression

[A(Li
0 + di)− Ã(Li

0 + di)]± 2a
A0 ± a0

= ∆Pαα(Li
0 + di), i = 1, 2, 3.. (6.3)

Since ∆Pαα depends on the neutrino mixing parameters, the measured fluxes will give rise to
restrictions on these quantities. Experiments would thus provide an allowed parameter region
in the (∆m2, sin2 2θ)-plane. Remember that Pαα and P̃αα are given by Eqs. (3.9) and (5.7).

Consider the following hypothetical experimental scenario. Neutrinos with E ∼ 1 MeV em-
anate from a nuclear reactor due to neutron decay, and travel a length of L0 before they
encounter an abrupt density shift. The medium has a given density ρ and a length d. For
these parameters, a contour plot of ∆Peµ (assuming νe ↔ νµ oscillations) is shown in Fig. 6.1.

Assume that the experimental data yields

[A(L0 + d)− Ã(L0 + d)]± 2a
A0 ± a0

= 0.29± 0.09 (6.4)

for the measured and theoretical fluxes A, Ã, and A0. Then, the allowed parameter region for
the neutrino mixing parameters is found by localizing the corresponding region in Fig. 6.1.
In our case, the allowed region is in the neighborhood of the darkest patch at ∆m2 ∼ 10−4.
By varying L and d, one would obtain additional contour plots with allowed regions that give
consistency between theory and experiment. The union of these contour plots then pinpoints
{∆m2, θ} down to a higher accuracy.

Of course, this crude analysis only serves as a simple introduction to how the presence of a
non-adiabatic density shift can be exploited in terms of determining the mixing parameters. In
the following sections, we investigate exactly how good results one can achieve using realistic
parameters for detection setups. But before doing so, we need to say a few words about
neutrino coherence.
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Figure 6.1: Contour plot of ∆Peµ in the (∆m2, sin2 2θ)-plane for our hypothetical parameter set
{L0, d, ρ}. Each contour line represents 5% increase for darker regions, and a 5% decrease
for brighter regions. The asymptotic lines close to ∆m2 = 100, 10−2, and 10−3 eV2 give
∆Peµ = 0.

6.2 Neutrino coherence

We defined the oscillation length in Sec. 5.3 by setting the argument of W in Eq. (3.9)
equal to π, which marks the beginning of a new cycle. The coherence of a neutrino beam
is determined by the energy spread ∆E of the neutrinos. If ∆E is large, then some of the
neutrinos will undergo significantly less oscillations than the rest, as seen when substituting
E with E+ ∆E in Eq. (3.9). As a result, it gets tougher to extract oscillation patterns at an
observation site, since the arriving neutrinos will be incoherent.

6.2.1 General arguments

Imagine a νe created in some weak interaction, for instance in the sun. At t = 0, this neutrino
consists of a certain linear combination between the mass eigenstates |νi〉, represented as wave
packets. Since these eigenstates have different masses mi, the corresponding wave packets will
propagate with different velocities. This means that the original νe-packet will disperse as
time goes, and that the mass eigenstate wave packets will eventually be spatially separated,
as illustrated in Fig. 6.2. Oscillations should be lost at the point of separation, meaning an
observer would have a constant probability of detecting the incoming wave packets as a given
flavor state. This corresponds to averaging out the oscillation term in Eq. (3.9), leaving us
with

Pνα→νβ
=

1
Losc

∫ Losc

0
sin2(2θ)× sin2 L∆m2

4E
dL =

1
2

sin2(2θ) (6.5)
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and Pνα→να = 1− 1
2 sin2(2θ) for two-flavor oscillations.

The original νe-packet at t = 0.

t increases

t increases
The wave packet begins to disperse.

The two mass eigenstates |ν1〉 and |ν2〉 are completely spatially separated.

Figure 6.2: The dispersion of the original νe wave packet at t = 0 into the two mass eigenstates |ν1〉
and |ν2〉.

One way of defining the coherence length of the neutrino beam is found in Ref. [28], where
Lcoh is the distance where a neutrino with energy E has oscillated one more time than a
neutrino with energy E + ∆E. This means that

Lcoh∆m2 + 4πE
4E

=
Lcoh∆m2

4(E + ∆E)
. (6.6)

Solving Eq. (6.6) for the coherence length yields Lcoh = Losc
E

∆E . Using practical units, we
express the coherence length as

Lcoh =
2.48E2(MeV)

∆m2(eV2)∆E(MeV)
. (6.7)

Lcoh is the distance from the neutrino source where the mass eigenstates that made up the
original wave packet have been spatially separated, thus no longer interfering and causing
oscillations.

There can be more than one cause of a neutrino energy spread, thus leading to a corresponding
number of coherence lengths. The shortest of these coherence length will determine the
effective Lcoh. It is necessary to analyze the various sources of energy spread in a neutrino
beam to find the effective coherence length. The authors of Ref. [29] point out the following
possible sources for the energy spread ∆E:

• Uncertainties in energy measurements for neutrinos interacting with a detector.

• Uncertainties related to the life-time of the neutrino-producing particle, e.g. a muon.
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• Uncertainties related to the energy and momentum of the neutrino at the production
point due to quantum-mechanical effects.

Our somewhat näıve interpretation of the coherence length deserves a comment. As pointed
out in Ref. [28], the accuracy ε to which we can measure the energy of an incoming neu-
trino is of significance when discussing coherence. Now, we just stated that when the mass
eigenstates constituting the wave packet become spatially separated after traveling a distance
Lcoh, all oscillations will be lost. Although this argument seems valid at first consideration, it
is not quite accurate and here is why. If the detector can measure the neutrino energy to an
accuracy ε, the time interval required for a measurement is t ∼ 1

ε . One can see this from the
Heisenberg principle of uncertainty εt ∼ 1/2. This means that even though the eigenstates
are spatially separated and arrive at different times, an oscillation would still be observed if
the slowest eigenstates arrives within the time interval it takes to do the measurement.

Let us solidify this argument quantitatively and see exactly which conditions that must be
fulfilled in order for oscillations to be detected even if the mass eigenstates are spatially
separated. Consider a να produced at t = 0. The flavor state is a superposition of the mass
eigenstates as described in Sec. 3.1. The mass eigenstates propagate with different velocities
due to their different masses, and thus arrive at our detector at different times ti. If the
mass eigenstate |νi〉 is detected at a time ti, and an oscillation has occured, the new flavor
eigenstate is given as

|νβ(x, t)〉 =
3∑

j=1

Uβj |νj(x, 0)〉e−iEj(t−tj). (6.8)

Thus, the flavor state can be thought of as a new superposition of mass eigenstates |νi〉 that
were created at t = ti. It is now uncomplicated to calculate the oscillation probability

Pνα→νβ
(t) = |〈να(x, 0)|νβ(x, t)〉|2

=

∣∣∣∣∣
3∑

i=1

3∑
j=1

UαiU
∗
βjδijexp

[
i[Ej(t− tj)− Ei(t− ti)]

]∣∣∣∣∣
2

(6.9)

For clarity, we continue with the two-flavor scenario. Eq. (6.9) then reduces to

Pνα→νβ
(t) = sin2 2θ × sin2

[E2(t− t2)− E1(t− t1)
2

]
= sin2 2θ × sin2

[(E2 − E1)t− E2t2 + E1t1
2

]
(6.10)

The coherent expression for oscillation probability Eq. (3.9) is regained if the condition
E2t2 = E1t1 is met. This can be written as (E + m2

2/2E)t2 = (E + m2
1/2E)t1 when taking

neutrino masses as small compared to the momentum E. As a result, we obtain

|t2 − t1| =
∣∣∣∆m2L0

2E2

∣∣∣ ≡ ∆t (6.11)

upon the substition t2 → L0 which defines the distance source-detector. Note that we could
just as well perform t1 → L0 and obtain the same result. Eq. (6.11) is generalized to

∆tij =
∣∣∣∆m2

ijL0

2E2

∣∣∣ (6.12)
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for the three-flavor scenario. The physical interpretation of Eq. (6.12) is that if the mass
eigenstate |νj〉 arrives within a time interval ∆tij after the mass eigenstate |νi〉, coherent
oscillations can be detected even though the eigenstates are spatially separated. ∆tij is then
the coherence time interval associated with detection of neutrinos. The magnitude of the
interval clearly depends on several parameters, and will be estimated for solar neutrinos in
the following section.

6.2.2 Solar neutrinos

Consider the sun as a neutrino factory. Neutrinos produced in the sun are emitted with a
wide variety of energies, thus also leading to different energy spreads for the wave packets
dependent on which line the neutrino originated from, i.e. from pp line, 8B line, pep line et.c.
We shall consider the common 7Be line. Now, the energy spread for the outgoing neutrinos
is related to factors such as Doppler shifts and collisions of the emitting atoms. The author
of Ref. [28] points out the small size of the captured electron wave packets as the largest
contribution to incoherence. The argument in its essence is that the electron and neutrino
wave packet sizes, denoted as de and dνe , are related by

dνe

c
=
de

ve
, (6.13)

where ve is the velocity of the electron. The thermal energy of electrons at the sun’s core
where T ∼ 15× 106 K corresponds to a velocity of ve = 0.087c. Estimating the extension of
the electron wave packet to be of the same order of magnitude as the thermal wave length
Λ = 2π/

√
3mekT , one arrives at the energy spread ∆E = (2πve/Λ) = 2.06 keV. The largest

flux for the 7Be line is achieved for 0.87 MeV neutrinos (see Ref. [30]) which enables us to
write down all essential parameters for this case in Tab. 6.1. Inserting these values into Eq.

Table 6.1: Considering the sun as neutrino factory. Essential parameters for the 7Be line.

Parameter Value
Kinetic energy E 0.86 MeV

Energy spread ∆E 2.06 keV
Distance source-detector L0 1 AU = 1.49× 1011 m
Square mass difference ∆m2 7.1× 10−5 eV2

(6.7) produces LSOL
coh,c = 1.25 × 107 m, where c denotes this particular source of incoherence,

anticipating that there could be others. Since L0 ∼ 1011 m for solar neutrinos, this result
implies that they should be incoherent when arriving at Earth.

The observant reader will notice that this source of incoherence really is a consequence of
a fundamental axiom in the theory of quantum mechanics itself, namely the uncertainty
principle of Heisenberg, ∆x∆p ∼ 1/2. Denoting this coherence length LSOL

coh,c as before, it
follows that this quantity must obey

LSOL
coh,c ∼

8E2π∆x
∆m2

SOL

, (6.14)
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which is exactly what we have used in the above analysis. Other sources of incoherence are
of no interest here, since the only relevant coherence length in a given scenario clearly is
LSOL

coh ≡ min{LSOL
coh,i}. As a result, neutrinos emanating from the sun cannot be assumed to

be coherent since LSOL
coh � L0. If the neutrinos are no longer coherent upon arrival at Earth,

the oscillation probability is reduced to the classical expression of Eq. (6.5) and all phase
information is lost.

But due to our argument in the end of Sec. 6.2, the possibility of detecting oscillations can
still not be completely excluded. We saw that if the neutrino mass eigenstates arrive at the
detector within the coherence time interval of the detection process, an interference pattern,
i.e. oscillation, could still be registred even though the mass eigenstates no longer spatially
overlap. The coherence time interval is directly correlated to the precision ε to which one can
determine the kinetic energy E of the neutrino interacting with the detector. For our 7Be
line, Eq. (6.12) dictates that our detector must have an accuracy of ε < 7.26×10−13 eV. Such
a detector precision is not possible, so the solar neutrino flux must be considered as incoherent.

It is important to note that even though the solar neutrinos certainly are incoherent upon
arrival at Earth, oscillations can still be indirectly detected through matter effects. As the
neutrinos traverse through several media on their way from the sun, the effective oscillation
probability must be averaged out for each medium with its corresponding mixing angle θm.
One can understand this by considering the day-night effect of solar neutrinos which in short
states that there is an asymmetry in the solar neutrino flux between day- and night mea-
surements. This is due to the fact that the neutrinos will pass through Earth, experiencing
matter effects, during night, whereas the neutrinos hit the detector directly during the day.
For a discussion of this in the three-flavor case, consider for instance Ref. [31].

6.2.3 Atmospheric neutrinos

Atmospheric neutrinos have their origin in cosmic rays colliding with nuclei in Earth’s upper
atmosphere and thus creating pions. The pions decay to π+ → µ+ + νµ and π− → µ− + νµ,
while the muons disintegrate further to µ+ → e++νµ+νe and µ− → e−+νµ+νe. Atmospheric
neutrinos are in general much more energetic than their solar relatives, reaching energies as
high as several GeV. This means that νµ → ντ are allowed and dominating the atmospheric
neutrino scenario. In fact, the observations of high-energy νe yield results that are statistically
consistent with zero oscillations to this flavor. The best-fit values are ∆m2

ATM = 2.5 × 10−3

eV2 and θATM = 0.78 (see Tab. 3.1).

In order to say something about the coherence length for atmospheric neutrinos, we first
identify the pion finite lifetime as a possible source of incoherence. Ref. [29] suggests that
the corresponding energy spread due to this effect is given as ∆Ea = Γπ+/π, where Γπ+ is
the decay halfwidth of the pion. This gives

LATM
coh,a =

4E2

Γπ+∆m2
ATM

, (6.15)

leading to LATM
coh,a = 1.39× 1019 m when assuming an E = 10 GeV atmospheric neutrino, since

the halfwidth is Γπ+ = 1/(3.44 × 1012) s−1 (see Particle Data Group [11]). This coherence
length is O(104) l.y., and can therefore be neglected. For consistency, we should also calculate
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the contribution from the finiteness of the muon lifetime. With Γµ+ = 3 × 10−16 MeV (see
Particle Data Group [11]), one obtains the coherence length

LATM
coh,b =

4E2

Γµ+∆m2
ATM

= 1.32× 10−7LATM
coh,a. (6.16)

Although seven orders of magnitude smaller than the coherence length due to the unstable
π+, this coherence length is of no physical significance.

The incoherence as a consequence of quantum mechanical uncertainty reads LATM
coh,c ∼ 8E2π∆x/∆m2,

just as in the previous section. To obtain the magnitude, we need to estimate the spatial width
∆x of the neutrino wave packet. There is no obvious way of doing this, but we can at least
put a coherence restriction on the spatial width if we are to observe any oscillations, namely
LATM

coh,c > 20 km. This translates directly to ∆x > 1.99 × 10−20 m for our 10 GeV neutrino.
Is this a reasonable number? Well, comparison to the solar neutrino width of O(10−6) cm
indicates that it shouldn’t be too far-fetched, but we are really just performing an educated
guess.

6.2.4 Accelerator neutrinos

In the accelerator neutrino scenario, high energy protons with energies of O(GeV) collide
with a metal target to produce µ+ which decay further to µ+ → e+ + νe + νµ

Oscillations−→
νe + p→ n+ e+. This decay chain is indirectly observed by registring the energy spectrum of
the positron [6]. Information is acquired concerning neutrino mixing parameters by looking
for CC reactions with νe in a beam originally consisting of νµ. Typical parameters for short-
and long-baseline accelerator experiments are shown in Tab. 6.2.

There is a conflict between the coherence length and oscillation term W = sin2(L∆m2/4E)
with respect to the distance L0 where one should place the detector. The detector must be
placed within the distance of the coherence length for oscillations to be observable, but the
oscillation term gets bigger the farther away from the source we place our detector. The
only compromise possible is to place the detector at a distance almost equal to the coherence
length Lcoh.

Table 6.2: Essential parameters for short-baseline vs. long-baseline accelerator neutrino experiments
with data from Refs. [5, 6].

Quantity Short-baseline Long-baseline
Baseline length L0 (km) 10−1 102 − 103

Neutrino energy E (GeV) 1− 10 10
∆m2 sensitivity (eV2) 10−1 − 10−2 10−2 − 10−3

Short-baseline accelerator
To consider short-baseline accelerator neutrinos as coherent, we impose the condition that
Lcoh > 1 km. Eq. (6.7) provides an upper limit for the neutrino energy spread ∆E for
fixed E and ∆m2. In the case of CPT -invariance, it is necessary to use the global best-fit
∆m2

SOL = 7.1× 10−5 eV2 for νµ → νe oscillations, while the LSND results from Ref. [20]) call
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for ∆m2
LSND = 1.2 eV2. Fig. 6.3 contains a plot of the ratio ∆E/E that satisfies the coherence

condition for both choices of the square mass difference.

Long-baseline accelerator
Consulting Tab. 6.2, we impose the condition Lcoh > 1000 km in order to consider long-
baseline accelerators as coherent. The resulting ratio ∆E/E is illustrated in Fig. 6.3.

Figure 6.3: Upper limits for ∆E/E in the short- and long-baseline accelerator neutrino case, using
∆m2

SOL and ∆m2
LSND.

Accordingly, both types of accelerator neutrinos can be considered coherent for solar best-fit
parameters even for energy spreads as large as ∆E ∼ E. LSND parameters would introduce
stricter limits on ∆E to justify coherence.

6.2.5 Reactor neutrinos

Reactor experiments display neutrino energies of O(MeV), while the baseline length L0 is
subject to a large variation. L0 ranges from 1 km for the CHOOZ experiment to ' 200 km
for the KamLAND detector site (see e.g. Ref. [18]). Nuclear reactors give rise to a flux
of νe as a biproduct of neutron decay. Oscillations are then indirectly observed through an
abscence of νe in the neutrino beam after a distance L, due to the process νe → νµ. Now, the
required coherence length for a neutrino detection experiment is dependent on the baseline
length, since we want Lcoh > L0. Fig. 6.4 plots the corresponding upper limits on ∆E/E for
several baseline lengths, using solar best-fit parameters.

Naturally, the restriction on ∆E becomes stricter for increasing Lcoh. In the following, we
shall assume that the energy spread is such that both accelerator and reactor neutrinos can
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Figure 6.4: Upper limits for ∆E/E for reactor neutrinos with varying baseline, using ∆m2
SOL.

be considered coherent.

6.3 Restrictions on mixing parameters

In this section, we consider the restrictions placed on the neutrino mixing parameters {∆m2, θ}
by exploiting a single non-adiabatic density shift. Right from the start, we can exclude the
solar and atmospheric neutrino species. As we have seen, there are problems associated
with considering solar neutrinos as coherent. Thus, we cannot say anything useful about the
phase information at a given point in spacetime, corresponding to the averaging of oscillation
probability described in Eq. (6.5). As far as atmospheric neutrinos are concerned, we need a
non-zero concentration of either muons or tauons to see any change in oscillation pattern from
the vacuum case, as described in Sec. 5.1.1. Since Earth is short on both types of particles,
there is no way we can exploit our idea to study the deviation ∆Pµτ . This leaves us with
accelerator and reactor neutrinos.

6.3.1 Accelerator neutrinos

Restricting ourselves to realistic detector dimensions, consider an experimental setup as shown
in Fig. 6.5a).

We have assumed that the distance source-detector L0 is sufficiently small to operate with
coherent neutrinos intruding the medium, which should not be a problem according to our
analysis in Sec. 6.2. This particular experimental setup is beneficial, since we are looking for
a medium with as high density as possible (to make ∆θ as large as possible), and as large d as
possible (so that the oscillation probability will increase significantely from zero). Assuming
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Underground mine

Detector

Surface of EarthAccelerator

Neutrino beam

Solid rock ρ ∼ 3 g/cm3

L0

d

a)

b)

Figure 6.5: a) Hypothetical long-baseline accelerator neutrino scenario. b) ∆Pµe for νµ → νe oscil-
lations, using solar best-fit parameters. L0 = 100 m, and material density corresponding
to solid rock, ρ ' 3 g/cm3, have been used.

solid rock of density ρ ∼ 3 g/cm3, the deviation ∆Peµ is illustrated in Fig. 6.5b). It is true
that there most certainly are local variations in the rock density, but these are assumed to
vary in an adiabatic manner, such that the corrections are very small.

As is seen from the graph, a deviation of O(10−4) can be expected at distances of several
hundred kilometers. Such a small deviation would drown in statistical uncertainties from
the detector precision. We therefore conclude that no realistic accelerator neutrino detection
experiment could take advantage of the implications of a non-adiabatic density shift in the
trajectory of the neutrino beam.

6.3.2 Reactor neutrinos

Similar to the accelerator neutrino scenario, we propose a detection setup where the neutrino
beam traverses through rock before hitting the detector, as shown in Fig 6.6. The setup in
b) offers the advantage of adjusting the parameters L0 and d by simply moving the cars, thus
obtaining a larger set of data values. A plot of the deviation between vacuum and MSW-
adjusted oscillation probability ∆Peµ is shown in Fig. 6.6c).

Similar to accelerator neutrinos, the deviation is of O(10−4) for maximal distances of several
hundred kilometers. Again, the difference is too small to produce any statistically significant
restrictions.
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Nuclear reactor

Train cars filled with rock

Solid rock

Detector

a)

b)

L0

L0 d

d

c)

Figure 6.6: Idea for exploiting the MSW-effect for reactor neutrinos using a) natural structures on
Earth as medium, and b) train cars filled with a substance (for instance rock). c) De-
viation ∆Peµ for reactor neutrinos. L0 = 100 m, and material density corresponding to
solid rock, ρ ' 3 g/cm3, has been used.



Chapter 7

Concluding remarks

The main result of this thesis is the analytical treatment of neutrino oscillations in the pres-
ence of a single and multiple step-wise density shifts. Having laid the foundation of neutrino
interactions and oscillations in the early chapters, we then showed that it is possible to find
a set of resonance parameters in the case of multiple density shifts that leads to a complete
flavor conversion for both neutrinos and antineutrinos, regardless of the source (see Sec. 5.3).
Confining ourselves to realistic detection setups, however, it is not possible to achieve the
exact values for the resonance parameter set.

Pursuing the idea with a single unit-step density shift, results were displayed for different
neutrino sources (see Sec. 6.3). When taking coherence arguments and matter effects into
account, only reactor and accelerator neutrinos were found to be fit subjects for manipulation.
Unfortunately, the resulting oscillation probability in matter cannot be significantely altered
for realistic detector dimensions, only deviating about 0.1% from the vacuum oscillation prob-
ability.

As an appetizer and inspiration for further research of neutrino interactions with matter,
consider the neutrino as an energy source substitute for the dominant fossile fuel industry.
Neutrinos pervade both space outside and within Earth’s atmosphere, carrying with them
great amounts of kinetic energy. Great is also a fitting word to describe the potential of neu-
trinos as a future energy source, given that we find ways to make them interact much more
frequently than we are able to do today. Imagine for instance space shuttles being powered
by a practically endless supply of energy from solar neutrinos roaming our interplantetary
space.

To make this more quantitative, consider a constant neutrino flux of ∼ 1011 cm−2 MeV−1

at the surface of Earth for neutrinos with E ∈ [0, 0.5] MeV (see e.g. Ref. [30]). This is
readily converted into an effect of 40 W/m2, which can be compared to the solar constant
(the amount of incoming solar radiation per unit area at the surface of Earth) of roughly
1367 W/m2. In other words, the neutrino kinetic energy constitutes about 3% of the solar
radiation. However, the neutrinos are available during the night as well, and we have not
considered the contribution from atmospheric neutrinos.

Before getting too carried away, it is clear that we are very far from implementing such an

53
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energy source as of today. But small steps are constantly taken towards a fuller understanding
of neutrino interactions and how one might be able to manipulate these interactions to our
benefit. Who knows what the future will bring?



Bibliography

[1] F. Reines, C. L. Cowan, F. B. Harrison, A. D. McGuire, H. W. Kruse, Phys. Rev. 117,
(1960)

[2] R. Davis, Prog. Part. Nucl. Phys., Volume 32, p.13-32 (1994)

[3] Y. Fukuda et al., (The Kamiokande collaboration), Phys. Rev. Lett 77, 1683 (1996).

[4] B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958).

[5] M. C. Gonzalez-Garcia, Yosef Nir, Rev. Mod. Phys. 75, p.345-402 (2003).

[6] T. K. Kuo, J. Pantaleone, Rev. Mod. Phys 61, p.941-958 (1989).
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