ntnu Norges teknisk-
naturvitenskapelige universitet
NTNU
Institutt for fysikk
TFY 4270 Classical Field Theory Spring Semester 2006

FY3452 Gravitasjon og kosmologi/Gravitation and Cosmology

Våren 2008/Spring 2008


Black hole Curved space

  • Lecturer: Jens O. Andersen (jensoa@ntnu.no)

  • Referansegruppe:
    Eirik Eik Svanes (svanes@stud.ntnu.no)
    Troels Arnfred Bojesen (bojesen@stud.ntnu.no)

  • Textbook:
    In Tapir bookshop
  • Additional literature:
    Lecture notes "Klassisk feltteori" by Jan Myrheim (kjøpast på instituttkontoret for kr. 100.). Additional material can be downloaded from this site.

  • Alternative textbook:
    Introducing Einstein's Relativity av Ray A. D'Inverno. Clarendon Press, Oxford (2004).

  • Prerequisites
    Fysikk - og matematikkunskapar tilsvarende dei tre første åra av fysikk-studiet. Det er fullt mogleg å ta kurset i 3.klasse.

  • Prosjektoppgave: For dei som skal byrje i 5.klasse til hausten, er det mogleg å ta prosjektoppgave hjå meg. Eit slikt prosjekt som bygg på FY3454 kan vere studiar av kvite dvergar eller nøytronstjerner for ulike tilstandslikningar. Ein skal da løyse Tolman-Oppenheimer-Volkov likningane (desse likningane blir utleia frå generell relativitetsteori og generaliserer vanleg hydrostatisk teori). Det er ei blanding av analytisk og numerisk arbeid. Sjå og Prosjekt.

  • Engelsk-norsk ordliste:
    her

  • Læringsmål:
    The course aims at giving a general introduction to classical field theory, special and general relativity including applications.

  • Fagleg innhald:
    Gruppeteori. Lagrange og Hamiltonformulering av klassisk mekanikk og klassisk feltteori. Spesiell relativitetsteori. Gravitasjon og krumme rom. Generell relativitetsteori. Svarte hull (Scwarzschild, og Kerr). Kosmologi. Kvite dvergar og nøytronstjerner.

  • Forelesningar:
    Forelesningar: tuesday 12.15-14.00 (R73) and thursdays 10.15-12.00 (R60). Forelesning
    Første forelesning tirsdag 8. januar kl. 12.15. Siste forelesning torsdag 8. mai kl. 10.15.


  • Øvingar:
    Exercises are an integral part of the course and will be discussed during class whenever it falls natural.

  • Eksamen:
    Tuesday June 3 09.00-13.00h.
    Exam
    Solution
    Results
    I have been grading very generously, so please have a chat with me before filing a complaint.

    Question hour:
    Tuesday May 6th 13.15-14.00h. You can ask any question related to the curriculum of this course.

  • Kontortid:
    Mandagar 13.00-14.00h in E5-145. The week before the exam you can drop by my office anytime.

  • FINAL Pensum/syllabus:
    Chapter 2: 2.3-2.5, except box 2.3 Chapter 4: 4.3-4.5 (not box 4.3).
    Chapter 5: Everything except Box 5.1.
    Chapter 7: Whole chapter, except box 7.1, 7.2, and 7.3.
    Chapter 8: 8.1-8.3.
    Chapter 9: 9.1, 9.2, 9.3 (not Box 9.1 and not subsection The Shape of Bound orbits).
    Chapter 12: 12.1 (not box 12.1 and 12.2), 12.3 (not box 12.4 and 12.5)
    Chapter 15.1-15.3, 15.5 (only subsection Stationary Observers)
    Chapter 18: (not box 18.1)
    Lecture Notes: 4.1-4.3. 6.1-6.6. Appendix A, except Restklasser, Homogene rom, Konjugasjonsklasser, Invariante undergrupper,and the Baker-Hausdorff formula.
    Pdf file on geometry
    All exercises.

  • Gjennomgått uke:
    2: Group theory: Group axioms, abelian, group cyclic groups, subgroups, center of a group, order of a group and element of a group. Normal subgroups, Homomorphisms and isomorphisms. Lie groups, in particular O(n) and U(n). SO(2) and rotations. Generators of Lie groups. Finite group M.
    3: Generators of SO(2)and SU(2). Lie algebra. Exercises 1-5. Classical mechanics. Lagrangian and Hamiltonian as Legendre transforms. Lagrange's and Hamilton's equations. Cyclic coordinates and conserved quantities. Variational formulation of classical mechanics. Newtonian mechanics and Galilean transformations. Absolute time and simultaneity. Lorentz transformations and Minkowski space (space-time). Metric on space-time. Time dilation.
    4: Lorentz contraction. Straight lines maximizes proper time. Timelike, spacelike and lightlike curves. The relativity of simultaneity. Exercises 4.2, 4.3, 4.15, and 4.18. Solutions
    Geometric interpretation of boosts as rotations. Lorentz group (boosts and rotations). Time reversal, parity, and translations. Poincare group. Four-vectors, scalar products and basis vectors.
    5: Four-velocity, four-momentum, four-acceleration, and four-force. Generalization of Newton I and II. Exercises 5.3, 5.4, 5.6, and 5.7.
    Solutions
    Lagrangian and Hamiltonian for a free particle and for a particle in an electromagnetic field. Minimal substitution.
    6: Relativistic particle in electrostatic field and precession.
    Notes. Light rays and affine parameters. Wave four-vector and Doppler effect. Observers and observations; orthogonal set of basis vectors. Exercise 5.21. Covariant and contravariant vectors and tensors. Kronecker delta and raising and lowering of indices. Field theory and Lagrangian density. Variational principle for fields and Euler-Lagrange equation.
    7: Lagrangian for a scalar field and invariance under global phase transformations. Maxwells equations in terms of field tensor and its dual. Gauge invariant Lagrangian for the electromagnetic field. Local phase transformations, covariant derivative and invariant Lagrangians. Noether's theorem and conserved current. Energy-momentum tensor. Translational invariance and conservation of energy and momentum. Phase transformations and conservation of charge.
    8: Curves in Euclidean space. Tanget vector, normal and binormal vectors. Fresnet's equations. Curvature and torsion. Surfaces in Euclidean space. Vectors, tangent plane and metric. Example: S^2. Material. Exercise 2.5 and 2.7. Problem one spring 2001 Solution.
    9: Covariant derivative of vectors and Christoffel symbols. Example: plane in polar coordinates. Parallel vectors and parallel transport. Example from the plane (cartesian and polar coordinates). Geodesic curves: tangent vector is parallel transported and curves extremizing action. Christoffel symbols in terms of metric. Problem 8.2.
    10: Problem 9.2 from Lecture Notes (Parallel transport and geodesics on the sphere). Light cones and world lines. Example 7.3. Riemann normal coordinates, local inertial frame and example 7.2
    11: Lectures cancelled ("tiltaksveke").
    12: Easter holiday.
    13: Problem 8.9. Symmetries and Killing vectors. Formulas for length, area... and problem 7.14. Embedding diagrams and problem 7.20. Spacelike and null surfaces (example 7.11 and 7.12).
    14: Parallell transport and Riemann's curvature tensor. Ricci tensor and Ricci scalar. Example: sphere. Covariant derivatives of scalars and tensors of higher rank.Bianchi identity. Metric being covariant constant. Einstein's field equation and the cosmological constant. Newtonian gravity and gravitational potential for a point mass distribution. Field equation in vacuum and Schwarzschild solution. Symmetries: Time independence and rotational invariance. Coordinate and physical singularity. Gravitational redshift. Radial motion and effective potential.
    15: Radial orbits as functions of proper time and coordinate time. Singular behavio(u)r of t as r approaches the Scharwschild radius 2m. Escape velocity. Stable and unstable circular orbits. Angular velocity and Kepler's law. Problem 9.6 and 9.9. Black holes and the horizon (Schwarzschild radius). Eddington-Finkelstein coordinates and radial light rays. Kruskal-Szekeres coordinates. Kruskal diagrams. Problem 9.7 and 12.14.
    16: Problem 12.22 and exam 2006 problem 2. Cosmology as observational science. Visible matter, radiation, dark matter and dark energy. Expansion of the Universe and Hubble's law. Isotropic and homogeneous universe models. Cosmological redshift. Matter, radiation and vacuum energy. Friedman's equations for scale factor a(t). Evolution of flat FRW models.
    17: Exam 2001 problem 2. Evolution of flat FRW models and deceleration parameter. Conformal time and particle horizon. Age and size of the universe. Spatially curved FRW models. Problems 18.2, 18.5, and 18.11.
    18: Problem 3 exam 2006. General FRM models and effective potentials. Rotating black holes characterized by mass and angular moment. Properties (singularities, horizons, cyclic coordinates...) Lecture cancelled May first (labo(u)r day).
    19: Induced two-dimensional metric on surface of constant t and r. Exercise 15.7. Stationary observers, rotating observers and the ergosphere.
    Eksamen 2007.
    Fasit 2007.
    Solution to 15.14.

  • Oppgaver uke:
    2: None
    3: Oppgavesett 1.
    4: Exercises from chapter four: 4.2, 4.3, 4.15, and 4.18.
    5: Exercises 5.3, 5.4, 5.6, and 5.7.
    6: Exercise 5.21.
    7: Exercise 6.3 from lecture notes.
    8: Problem one, spring 2001 Help yourself. Exercise 2.5 and 2.7.
    9: Exercise 8.2.
    10:
    11: No exercises.
    12: Easter holiday. For those of you who are bored: Exercise 7.19 and 8.12. Solutions. Solutions.
    13: Exercise 8.9. Exercises 7.2, 7.14, and 7.20.
    14: Solutions.
    15: Problems 9.6-9.10. Problem 12.14.
    16: Problem 12.22. Problem 2 Exam spring 2006. Help yourself. Exercises chapter 18: 2, 5, 7, 11, 15.
    17: Problem 2 Exam spring 2001. Help yourself.
    18: Problem 3 Exam spring 2006. Help yourself.
    19: Problem 15.7.

    Oppdatert av Jens O. Andersen 9/6-2008.