Exam TFY 4210 Quantum theory of many-particle systems, spring 2012

Lecturer: Associate Professor John Ove Fjærestad
Department of Physics
Phone: 73593448/97940036

Monday, 4 June, 2012
09.00-13.00h

Examination support:

Approved calculator
Rottmann: Matematisk Formelsamling
Rottmann: Matematische Formelsammlung
Barnett & Cronin: Mathematical Formulae

The exam has 3 problems, with subproblems (a), (b), ... All subproblems have the same weight. There are 6 pages in total. Some useful formulas are given on the last page.
Problem 1

(a) The Dirac equation reads (with $\hbar = c = 1$)

$$i \frac{\partial \psi}{\partial t} = H \psi \quad \text{where} \quad H = \vec{\alpha} \cdot \vec{p} + \beta m.$$

Briefly describe why Dirac sought an equation of this form.

(b) It turns out that an equation of this form also arises in the low-energy description of some 1-dimensional condensed matter systems. In the rest of this problem we therefore consider the Dirac equation in 1 spatial dimension. There is then only one α matrix, α_1. Use the same kind of reasoning as for the 3-dimensional case to show that in the 1-dimensional case one gets the conditions

$$\alpha_1^2 = \beta^2 = 1, \quad \alpha_1 \beta + \beta \alpha_1 = 0.$$

(c) A valid representation for β and α_1 that satisfies these equations is $\beta = \sigma_1$ and $\alpha_1 = \sigma_3$. Using this Pauli matrix representation, show that the eigenvalues of H are given by

$$E = \pm \sqrt{p^2 + m^2}$$

where p is the momentum eigenvalue.

(d) In terms of γ matrices ($\gamma^0 \equiv \beta$ and $\gamma^1 \equiv \beta \alpha_1$) the Dirac equation reads

$$(i \gamma^\mu \partial_\mu - m)\psi = 0.$$

where μ runs over 0 and 1. Derive this equation from the Lagrangian density

$$\mathcal{L} = \bar{\psi}(i \gamma^\mu \partial_\mu - m)\psi$$

where $\bar{\psi} = \psi^\dagger \gamma^0$.

(e) With our chosen representations for β and α_1, the γ matrices become $\gamma^0 = \sigma_1$ and $\gamma^1 = -i\sigma_2$. Consider the matrix $\gamma^5 \equiv \gamma^0 \gamma^1$, which is used to define a chiral transformation as

$$\psi \to e^{i\theta \gamma^5} \psi$$

where θ is an angular parameter. Show that under this transformation, $\bar{\psi}$ transforms as

$$\bar{\psi} \to \bar{\psi} e^{i\theta \gamma^5},$$
and show furthermore that the two-component vector
\[
\begin{pmatrix}
\bar{\psi}\psi \\
i\bar{\psi}\gamma^5\psi
\end{pmatrix}
\]
transforms as a rotation,
\[
\begin{pmatrix}
\bar{\psi}\psi \\
i\bar{\psi}\gamma^5\psi
\end{pmatrix} \rightarrow \begin{pmatrix}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{pmatrix}
\begin{pmatrix}
\bar{\psi}\psi \\
i\bar{\psi}\gamma^5\psi
\end{pmatrix}
\]
where the rotation angle $\phi = \phi(\theta)$. Find the values of θ that leave this two-component vector invariant. (These results have a natural interpretation in the condensed matter context that we mentioned in the introduction, but we don’t go into that here.)

Problem 2

In this problem we consider φ^4 quantum field theory. Subproblems (a) and (b) are about (position-space) Feynman diagrams for the 2-point function $\langle \Omega | T\{\varphi(x)\varphi(y)\} | \Omega \rangle \equiv D_F(x - y)_{\text{int}}$ in φ^4 theory. Subproblem (c) involves (momentum-space) Feynman diagrams for the Fourier transform $\tilde{D}_F(p)_{\text{int}}$ of the 2-point function.

(a) Using the Feynman rules for position-space Feynman diagrams, write down the expression for the two Feynman diagrams (i)-(ii) below (you can leave the symmetry factor S unspecified).

(b) After some simplifications, the perturbation expansion for the 2-point function can be written schematically as a sum over Feynman diagrams, i.e. $D_F(x - y)_{\text{int}} = \sum_i A_i$, where A_i represents a Feynman diagram appearing in this expansion. Among the 4 diagrams (i)-(iv) below, at least one of them is not of the valid type A_i. Identify the invalid diagram(s), and if a diagram is invalid, briefly state why.
(c) Consider the following approximation for $\tilde{D}(p)_{\text{int}}$:

Using the momentum-space Feynman rules, find an expression for the diagram with n loops in this series. [Hint: It may be helpful to start by finding expressions for the diagrams with 0, 1, and 2 loops, and then if necessary look at diagrams with more loops until you see a pattern. Note that the symmetry factor for the diagram with n loops is 2^n.] Use this to find an expression for $\tilde{D}_F(p)_{\text{int}}$ in this approximation. (Don’t try to evaluate nontrivial integrals.)
Problem 3

Consider a tight-binding model of noninteracting electrons in a one-dimensional crystal with \(N \) sites and periodic boundary conditions. The Hamiltonian is

\[
H = -t \sum_{j,\sigma} (c_{j,\sigma}^\dagger c_{j+1,\sigma} + \text{h.c.}) + t' \sum_{j,\sigma} (c_{j,\sigma}^\dagger c_{j+2,\sigma} + \text{h.c.}).
\]

Here \(c_{j,\sigma}^\dagger \) (\(c_{j,\sigma} \)) creates (annihilates) an electron with spin projection \(\sigma \) (= \(\pm 1/2 \)) on site \(j \). The first (second) term in \(H \) describes hopping between nearest-neighbour (next-nearest-neighbour) sites. These terms have hopping amplitudes \(-t\) and \(t'\), respectively.

(a) Show that \(H \) can be written on diagonal form as

\[
H = \sum_{k,\sigma} \varepsilon_k c_{k,\sigma}^\dagger c_{k,\sigma}
\]

where \(c_{k,\sigma}^\dagger \) (\(c_{k,\sigma} \)) creates (annihilates) an electron with wavevector \(k \) and spin projection \(\sigma \), the \(k \) sum is over the 1st Brillouin zone \([-\pi, \pi]\) and

\[
\varepsilon_k = -2t \cos k + 2t' \cos 2k
\]

(the wavevectors are dimensionless as we have set the lattice spacing to 1).

From now on, assume that \(t \) is positive and that the system is half-filled, i.e. the number of electrons \(N_e \) equals the number of sites \(N \). We will consider the ground state of the Hamiltonian for different nonnegative values of \(t' \). To be precise we define here a Fermi wavevector of a one-dimensional system as a wavevector that separates a region of occupied wavevectors from a region of unoccupied wavevectors in the ground state of the system.

(b) First consider the case \(t' = 0 \). Sketch \(\varepsilon_k \). What are the values of the Fermi wavevectors and the occupied wavevectors?

(c) Next consider \(t' \) to be positive and define the ratio \(r = t'/t \) (\(> 0 \)). Show that there is a critical value \(r_c \) such that for \(r < r_c \) the system has two Fermi wavevectors while for \(r > r_c \) the system has four Fermi wavevectors. Derive the value of \(r_c \) and find the Fermi energy at \(r = r_c \).
Formulas

\[\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]

\[\sigma_i \sigma_j + \sigma_j \sigma_i = 2\delta_{i,j} \quad (i, j = 1, 2, 3) \]

\[\hat{D}_F(p) = \frac{i}{p^2 - m^2 + i\epsilon} \]

\[\frac{1}{N} \sum_j e^{i(k-k')j} = \delta_{k,k'} \]