Exercises for week 16

Exercise 1

Consider the following Hamiltonian describing electrons hopping between nearest-neighbour sites on a two-dimensional square lattice:

\[H = -t \sum_{\langle i,j \rangle, \sigma} (c_{j,\sigma}^\dagger c_{i,\sigma} + \text{h.c.}). \] (1)

Here \(t > 0 \) is the hopping amplitude, \(i \) and \(j \) are labels for the sites of the square lattice, and \(\sigma = \pm 1/2 \) labels the electron spin projection. The leftmost sum is over all pairs of nearest-neighbour sites (each such pair being counted once).

(a) Show that the Hamiltonian can be written on the diagonalized form

\[H = \sum_{k,\sigma} \varepsilon_k c_{k,\sigma}^\dagger c_{k,\sigma}, \] (2)

where the sum over \(k \) runs over the 1st Brillouin zone of the square lattice. Give the dispersion relation \(\varepsilon_k \).

(b) Consider the density parameter \(n = N_e/N \), where \(N_e \) is the number of electrons in the system and \(N \) is the number of sites. Show that in the ground state of the system (for a given number \(N_e \) of electrons), \(n \) is proportional to the \(k \)-space area enclosed by the Fermi surface and find the proportionality constant.

(c) Sketch the Fermi surface for (i) \(n \ll 1 \), (ii) \(n = 1 \), and (iii) \(n = 2 \).

Exercise 2

(a) Show that an alternative and equivalent form of the spin commutation relations

\[[S^x, S^y] = iS^z, \quad [S^y, S^z] = iS^x, \quad [S^z, S^x] = iS^y \] (3)

(where we have set \(\hbar = 1 \)) is given by

\[[S^+, S^-] = 2S^z, \quad [S^z, S^\pm] = \pm S^\pm, \] (4)

where \(S^\pm = S^x \pm iS^y \) are the spin raising and lowering operators.
(b) The Holstein-Primakoff (HP) representation is given by

\[S^+ = \sqrt{2S - \hat{n}} a, \]
\[S^- = a^\dagger \sqrt{2S - \hat{n}}, \]
\[S^z = S - \hat{n}, \]

where \(a \) and \(a^\dagger \) are canonical boson operators, and \(\hat{n} = a^\dagger a \). Show that the HP representation satisfies the correct spin commutation relations and the relation \(S \cdot S = S(S + 1) \).