TFY4210, Quantum theory of many-particle systems, 2016: Tutorial 6

1. The Holstein-Primakoff representation.

(a) Show that an alternative and equivalent form of the spin commutation relations
\[
[S^x, S^y] = iS^z, \quad [S^y, S^z] = iS^x, \quad [S^z, S^x] = iS^y \tag{1}
\]
is given by
\[
[S^+, S^-] = 2S^z, \quad [S^z, S^±] = ±S^±. \tag{2}
\]

(b) The Holstein-Primakoff (HP) representation is given by
\[
S^+ = \sqrt{2S - a^\dagger a} a, \quad (3)
\]
\[
S^- = a^\dagger \sqrt{2S - a^\dagger a}, \quad (4)
\]
\[
S^z = S - a^\dagger a, \quad (5)
\]
where \(a\) and \(a^\dagger\) are canonical boson operators. Show that the HP representation satisfies the correct spin commutation relations and the relation \(S \cdot S = S(S + 1)\). NB! For this you should use the exact HP expressions; do NOT expand the square roots. Hint: Use that \([f(\hat{O}), g(\hat{O})] = 0\) for functions \(f\) and \(g\) of an operator \(\hat{O}\).

2. Ferromagnetic Heisenberg model with a spin anisotropy.

Consider spins on a two-dimensional square lattice with Hamiltonian
\[
H = J \sum_{(i,j)} S_i \cdot S_j - D \sum_i (S^z_i)^2. \tag{6}
\]
The sum in the first term is over all pairs of nearest-neighbour sites, and the sum in the second term is over all sites. The exchange constant \(J = -|J| < 0\).

(a) Assuming that the parameter \(D > 0\), argue that the spins will order along the +z or −z direction.

(b) Use spin-wave theory to calculate the ground state energy \(E_0\) and the magnon dispersion \(\omega_k\).

(c) The energy gap is defined as \(\Delta \equiv E_1 - E_0\) where \(E_1\) is the energy of the lowest excited state. Give an expression for \(\Delta\).

(d) What do you predict about the ordering direction if \(D < 0\), and why?
3. Physical picture of ferromagnetic spin waves

Consider a Heisenberg ferromagnet which has magnetic order with the magnetization vector pointing in the \(z \) direction. Let the state \(|k\rangle \equiv a_k^\dagger |0\rangle \) where \(|0\rangle \) is the ferromagnetic ground state, i.e. the state \(|k\rangle \) contains one magnon with wavevector \(k \) \((\neq 0) \). Let us define the transverse correlation function in the state \(|k\rangle \) as

\[
\langle k| S_i^\perp \cdot S_j^\perp |k\rangle, \tag{7}
\]

where the transverse spin operator \(S_i^\perp \) is the projection of the spin operator onto the \(xy \) plane:

\[
S_i^\perp = S_i^x \hat{x} + S_i^y \hat{y}. \tag{8}
\]

Use the truncated HP representation to show that

\[
\langle k| S_i^\perp \cdot S_j^\perp |k\rangle = \frac{2S}{N} \cos[k \cdot (r_i - r_j)]. \tag{9}
\]

Thus on average each spin has a small transverse component (i.e. perpendicular to the direction of the magnetization) and the orientations of the transverse components of two spins \(i \) and \(j \) differ by an angle \(k \cdot (r_i - r_j) \). This should hopefully make the origin of the terminology spin wave clearer.