1. The sublattice magnetization correction for the Heisenberg antiferromagnet at nonzero temperature.

(a) The dispersion relation for antiferromagnetic magnons is \(\omega_k = JSz\sqrt{1 - \gamma_k^2} \) where \(\gamma_k = \frac{2}{z} \sum \delta \cos(k \cdot \delta) \) and \(z = 2d \) is the number of nearest neighbour sites. Show that for small \(|k| \),

\[
\gamma_k \approx 1 - \frac{k^2}{2d},
\]

\(\omega_k \approx 2JS\sqrt{d|k|}. \)

In the lectures we found that the temperature-dependent part of the sublattice magnetization correction \(\Delta M_A \) is given by

\[
\frac{2}{N} \sum_k n_k \frac{1}{\sqrt{1 - \gamma_k^2}}
\]

where \(n_k = \frac{1}{e^{\omega_k/k_BT} - 1} \).

(b) Show that in \(d = 1 \) and \(d = 2 \) the contribution from small \(k \) makes (3) diverge. Hence there is no magnetic order in the Heisenberg antiferromagnet at finite temperatures in one and two dimensions.

(c) In contrast, show that in \(d = 3 \) the expression (3) is finite (i.e. there is no divergence at small \(k \)) and scales as \(T^2 \).

2. 0th and 1st order perturbation theory for the interacting electron gas.

Consider the 3-dimensional interacting electron gas (more precisely the so-called jellium model introduced in Problem 2 in Tutorial 3) with Hamiltonian

\[
H = \sum_{k,\sigma} \frac{\hbar^2 k^2}{2m} c_{k\sigma}^\dagger c_{k\sigma} + \frac{1}{2\Omega} \sum_{q \neq 0} \sum_{k,\sigma} \sum_{k',\sigma'} \frac{e^2}{\epsilon_0 q^2} c_{k+q,\sigma}^\dagger c_{k'-q,\sigma'}^\dagger c_{k',\sigma'} c_{k,\sigma}.
\]

It will be convenient to introduce the length scale defined by the Bohr radius \(a_B = \frac{4\pi\epsilon_0\hbar^2}{me^2} \) and the energy scale \(\text{Ry} = \frac{\hbar^2}{2ma_B^2} \) (the Rydberg). Let \(r_0 \) be a measure of the average distance between electrons (defined as the radius of a sphere whose volume equals the volume per electron) and define the dimensionless quantity \(r_s \equiv r_0/a_B \).
(a) First consider the noninteracting electron gas, whose Hamiltonian is given by the kinetic energy term only. Its ground state is the filled Fermi sphere $|\text{FS}\rangle$ with radius k_F. Show that

$$k_F a_B = \left(\frac{9\pi}{4} \right)^{1/3} \frac{1}{r_s}$$

and that the ground state energy per particle is given by

$$\frac{E^{(0)}}{N} = 3 \left(k_F a_B \right)^2 \text{Ry} \approx \frac{2.21}{r_s^2} \text{Ry}. \quad (6)$$

(Here you may make use of results already derived in the lectures for $E^{(0)}/N$ and the relation between k_F and the electron density.)

(b) Next consider the interaction term in (4) as a perturbation on the kinetic energy term. Show that the 1st order correction to the ground state energy per particle is given by

$$\frac{E^{(1)}}{N} = -3 \frac{\pi}{2} (k_F a_B) \text{Ry} \approx -0.916 \frac{r_s}{r_s} \text{Ry}. \quad (7)$$

[A few hints: Note that $\mathbf{q} \neq 0$ in the interaction term and show that therefore

$$\langle \text{FS}| c^{\dagger}_{\mathbf{k}+\mathbf{q},\sigma}\mathbf{c}^{\dagger}_{\mathbf{k}'} c_{\mathbf{k}',\sigma'} c_{\mathbf{k},\sigma}|\text{FS}\rangle = -\delta_{\mathbf{k}',\mathbf{k}+\mathbf{q}} \delta_{\sigma,\sigma'} \theta(k_F - |\mathbf{k} + \mathbf{q}|) \theta(k_F - |\mathbf{k}|)$$

where $\theta(x)$ is the (Heaviside) step function. Convert the sums over \mathbf{k} and \mathbf{q} to integrals over spherical coordinates. Observe that for a fixed \mathbf{q} the \mathbf{k}-integration amounts to finding the volume of the intersection of two spheres of radius k_F displaced from each other by a vector \mathbf{q}.]

Calculate the Fourier transform of the single-particle retarded Green function, $G_{0R}(\nu,\omega)$, for noninteracting bosons with Hamiltonian

$$H_0 = \sum_{\nu} \xi_{\nu} c^\dagger_{\nu} c_{\nu}. \quad (8)$$

4. The basis invariance of the trace.

Show that the trace of an operator is independent of the basis chosen to evaluate it. [Hint: First define $\text{Tr } O$ as the sum of the diagonal elements of O in some particular, but arbitrarily chosen basis. Then do a transformation to an arbitrary different basis and show that $\text{Tr } O$ can be rewritten as the sum of the diagonal elements of O in the new basis.]