A model of interacting spins on a one-dimensional lattice.

In this problem you will investigate a model with Hamiltonian
\[\hat{H}(\gamma, \lambda) = -\sum_j \left[\frac{1}{2} (1 + \gamma) \hat{\sigma}_j^x \hat{\sigma}_{j+1}^x + \frac{1}{2} (1 - \gamma) \hat{\sigma}_j^y \hat{\sigma}_{j+1}^y + \lambda \hat{\sigma}_j^z \right]. \] (1)

The sum is over the sites \(j \) of a one-dimensional lattice. At each site there is a \(S = 1/2 \) spin \(\hat{S}_j = (\hbar/2) \hat{\sigma}_j \) where the \(\hat{\sigma}_\alpha^j \) operators (\(\alpha = x, y, z \)) can be represented by the standard Pauli matrices. The first two terms, which contain the parameter \(\gamma \), represent interactions between nearest-neighbor spins, while the last term, proportional to the parameter \(\lambda \), describes the coupling to an external magnetic field in the \(z \) direction. It is convenient to introduce the operators
\[\hat{\sigma}_j^\pm = \frac{1}{2} (\hat{\sigma}_j^x \pm i \hat{\sigma}_j^y), \] (2)

in terms of which the Hamiltonian becomes (from now on I drop writing \(\gamma, \lambda \) as arguments of \(\hat{H} \))
\[\hat{H} = -\sum_i \left[(\hat{\sigma}_i^+ \hat{\sigma}_{i+1}^- + \hat{\sigma}_i^- \hat{\sigma}_{i+1}^+) + \gamma (\hat{\sigma}_i^+ \hat{\sigma}_{i+1}^- + \hat{\sigma}_i^- \hat{\sigma}_{i+1}^+) + \lambda \hat{\sigma}_i^z \right]. \] (3)

It is possible to solve this model exactly. The exact solution involves the following sequence of steps: (1) a Jordan-Wigner transformation, (2) a Fourier transformation, and (3) a Bogoliubov transformation. The Jordan-Wigner transformation maps the original spin model to one describing spinless fermions hopping on the same one-dimensional lattice. This fermionic model only contains quadratic (as opposed to quartic) terms and so can be diagonalized exactly. By doing a Fourier transformation to fermionic operators that create/annihilate fermions in definite \(k \) states, a partial diagonalization is accomplished, in the sense that fermionic operators with different \(|k| \)'s become decoupled. Operators associated with opposite wavevectors \(k \) and \(-k \) are however still coupled after the Fourier transformation; these can be decoupled by a subsequent Bogoliubov transformation.

We now introduce fermionic creation and annihilation operators \(\hat{c}_j^\dagger, \hat{c}_j \) where the index \(j = 1, 2, \ldots N \) refers to the lattice site. (These fermions are referred to as spinless because they have no spin index, just a site index.) These fermions obey standard fermionic anticommutation relations
\[\{\hat{c}_j, \hat{c}_{j'}^\dagger\} = \delta_{j,j'}, \] (4)
\[\{\hat{c}_j, \hat{c}_{j'}\} = \{\hat{c}_j^\dagger, \hat{c}_{j'}^\dagger\} = 0. \] (5)
The spin operators can be expressed in terms of these fermion operators by a Jordan-Wigner transformation:

\[
\hat{\sigma}^+_i = \left[\prod_{j=1}^{i-1} (1 - 2\hat{n}_j) \right] \hat{c}_i, \tag{6}
\]

\[
\hat{\sigma}^-_i = \left[\prod_{j=1}^{i-1} (1 - 2\hat{n}_j) \right] \hat{c}_i^\dagger, \tag{7}
\]

\[
\hat{\sigma}^z_i = 1 - 2\hat{n}_i, \tag{8}
\]

where \(\hat{n}_j = \hat{c}_j^\dagger \hat{c}_j\). The relation (8) shows that the two possible eigenvalues \(\pm 1\) of \(\hat{\sigma}^z_i\) corresponds to the absence or presence of a fermion at site \(i\). Note that spin operators belonging to different sites commute while fermion operators on different sites anticommute. The ”string operator” \(\prod_{j=1}^{i-1} (1 - 2\hat{n}_j)\) is crucial in bringing about the change from anticommutation to commutation.

(a) Use the fermionic operator algebra [see (4)-(5), (26)-(30)] and the Jordan-Wigner transformation to show that for \(i \neq j\),

\[
[\hat{\sigma}^+_i, \hat{\sigma}^-_j] = 0. \tag{9}
\]

(You may assume \(i < j\).)

(b) The product \(\hat{\sigma}^+_i \hat{\sigma}^+_i\) appears in (3). Show that in terms of the fermions it becomes

\[
\hat{\sigma}^+_i \hat{\sigma}^+_i = \hat{c}_i \hat{c}_i^\dagger. \tag{10}
\]

Expressing the other terms in (3) in fermionic form as well, one finds

\[
\hat{H} = -\sum_j \left[(\hat{c}_j^\dagger \hat{c}_j + \hat{c}_j^\dagger \hat{c}_{j+1}) + \gamma (\hat{c}_{j+1} \hat{c}_j + \hat{c}_j^\dagger \hat{c}_{j+1}^\dagger) - 2\lambda \hat{c}_j^\dagger \hat{c}_j + \lambda \right]. \tag{11}
\]

We will use periodic boundary conditions on the fermion operators,\(^1\) i.e. \(c_{N+1} = c_1\). Writing \(\hat{c}_j\) as a Fourier series,

\[
\hat{c}_j = \frac{1}{\sqrt{N}} \sum_k e^{ikj} \hat{c}_k, \tag{12}
\]

the periodic boundary conditions imply \(e^{i k N} = 1\), i.e.

\[
k = \frac{2\pi n}{N} \tag{13}
\]

\(^1\)This is actually not completely correct. The choice of periodic boundary conditions on the spin operators results in boundary conditions on the fermion operators which are periodic or anti-periodic, depending on the number of fermions in the system. However, for our purposes it is sufficiently accurate to simply use periodic boundary conditions on the fermions.
where \(n \) is an integer. Since there are \(N \) values for the site index \(j \), there must be \(N \) inequivalent values of the wavevectors \(k \). Take \(N \) to be odd and the \(N \) values of \(n \) to be
\[
-\frac{N-1}{2}, \ldots, -1, 0, 1, \ldots, \frac{N-1}{2}.
\] (14)

(c) Show that the Hamiltonian (11) becomes
\[
\hat{H} = \sum_k [2(\lambda - \cos k)\hat{c}_k^\dagger \hat{c}_k + i\gamma \sin k(\hat{c}_{-k} \hat{c}_k + \hat{c}_{-k}^\dagger \hat{c}_k^\dagger) - \lambda].
\] (15)

In (15) fermionic operators with different \(|k| \)'s have been decoupled, but there is still a coupling between \(k \) and \(-k\) operators. To get rid of this remaining coupling, we define operators
\[
\hat{d}_k = u_k \hat{c}_k - iv_k \hat{c}_{-k}^\dagger
\] (16)
and \(\hat{d}_k^\dagger \equiv (\hat{d}_k)^\dagger \), where
\[
u_k = \cos \theta_k^2, \quad v_k = \sin \theta_k^2,
\] (17)
where the real parameter (angle) \(\theta_k \) is so far unspecified, except that we take
\[
\theta_{-k} = -\theta_k \Rightarrow u_{-k} = u_k, \quad v_{-k} = -v_k.
\] (18)
This implies that the \(\hat{d}_k \)-operators satisfy standard fermionic anticommutation relations just like the \(\hat{c}_k \) operators, i.e.
\[
\{\hat{d}_k, \hat{d}_{k'}\} = 0, \quad \{\hat{d}_k, \hat{d}_{k'}^\dagger\} = \delta_{k,k'}.
\] (19)

(d) Show that the inverse transformation of (16) is
\[
\hat{c}_k = u_k \hat{d}_k + iv_k \hat{d}_{-k}^\dagger
\] (20)

We will choose the parameter \(\theta_k \) such that the coefficients of all “anomalous” terms in the Hamiltonian vanish when expressed in terms of the \(\hat{d}_k \) operators. (By definition, these anomalous terms contain products of two creation operators or two annihilation operators, i.e. terms of the form \(\hat{d}_k \hat{d}_{-k} \) and its hermitian conjugate).

(e) Show that this leads to the following condition on \(\theta_k \):
\[
\tan \theta_k = \frac{\gamma \sin k}{\lambda - \cos k}.
\] (21)

Two values of \(k \) are inequivalent if they do not differ by an integer multiple of \(2\pi \).
Note that \(\cos^2 \theta_k = (1 + \tan^2 \theta_k)^{-1} = (\lambda - \cos k)^2/[\lambda - \cos k)^2 + \gamma^2 \sin^2 k] \) and that (21) leaves us with freedom to choose the sign of \(\cos \theta_k \). We will choose the sign such that

\[
\cos \theta_k = \frac{\lambda - \cos k}{\sqrt{\lambda - \cos k)^2 + \gamma^2 \sin^2 k}}.
\] (22)

(f) Using (21)-(22), show that the Hamiltonian is given on the diagonal form

\[
\hat{H} = \sum_k \varepsilon_k \hat{d}_k^\dagger \hat{d}_k + C
\] (23)

and give expressions for \(\varepsilon_k \geq 0 \) and \(C \).

(g) What is the ground state energy \(E_0(\gamma, \lambda) \) of the model?

The ground state of (23) can be written

\[
|G\rangle = \left(\prod_{k \geq 0} \hat{G}_k \right) |0\rangle,
\] (24)

where \(|0\rangle\) is the vacuum of the \(\hat{c}_k \)-operators (i.e. \(\hat{c}_k |0\rangle = 0 \) for all \(k \)).

(h) Show that the operator \(\hat{G}_k \) in (24) is, for \(k > 0 \), given by

\[
\hat{G}_k = \cos \frac{\theta_k}{2} + i \sin \frac{\theta_k}{2} \hat{c}_k^\dagger \hat{c}_k^\dagger.
\] (25)

(i) Let \(E_1(\gamma, \lambda) \) be the energy of the first excited state. Determine the region of parameter space \((\gamma, \lambda) \) for which the excitation energy \(E_1(\gamma, \lambda) - E_0(\gamma, \lambda) = 0 \) (or approaches 0 in the thermodynamic limit \(N \to \infty \)).

Some results that may be useful:

\[
\hat{c}_j^2 = 0 = (\hat{c}_j^\dagger)^2,
\] (26)

\[
\hat{n}_j^2 = \hat{n}_j, \quad \text{(where } \hat{n}_j \equiv \hat{c}_j^\dagger \hat{c}_j \text{)}
\] (27)

\[
[\hat{n}_j, \hat{n}_j^\dagger] = 0,
\] (28)

\[
[\hat{n}_j, \hat{c}_{j'}] = -\delta_{j,j'} \hat{c}_j,
\] (29)

\[
[\hat{n}_j, \hat{c}_{j'}^\dagger] = \delta_{j,j'} \hat{c}_j^\dagger.
\] (30)

[Aside: While the first two lines here are only valid for fermions (being manifestations of fermionic anti-symmetry and the Pauli principle), the last three lines are valid also for bosons.]

If both \(k \) and \(k' \) are of the form (13) with \(n \) and \(n' \) taking values in the set (14), then

\[
\frac{1}{N} \sum_{j=1}^N e^{i(k \mp k')j} = \delta_{k,\pm k'}.
\] (31)