RHp-zeros, LQG, stabilizationn and state estimation

Håkon Dahl-Olsen NTNU, Trondheim, 20 May 2009

We have a system with two possible measurements and a single input. The transfer functions for these measurements are;

$$g_1 = \frac{1}{-5s+1}$$
 and $g_2 = \frac{-4.8s+1}{5s+1}$.

 $\dot{x} = Ax + Bu$

This system has a minimal state-space realization

with

$$A = \begin{bmatrix} 0.2 & 0 \\ 0.5 & -0.2 \end{bmatrix}, B = \begin{bmatrix} -0.2 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ -0.96 & 0.784 \end{bmatrix}, D = 0.$$

The system has open-loop poles at 0.2 and - 0.2 (can read this off the diagonal of A because the system matrix is triagonal).

We consider three cases:

- 1. We can measure both states directly excellent performance for load disturbance and process noise.
- 2. Observer design: because the sensor used to measure x_1 can fail, we design a Kalman filter to estimate x_1 based on measurement of y_2 .
- 3. Sensor failure: feedback control using estimate of x_1 .

The control objective is stabilization. We use an LQR controller with minimum input usage; Q=0, R=1. This gives feedback gain of

$$K_{LQR} = \begin{bmatrix} -2 & 0 \end{bmatrix}.$$

Case 1: Full state measurement

The resulting controller is a proportional controller for y_1 with set point $y_1 = 0$ and controller gain $K_c = -2$. The closed-loop poles are now both located at -0.2 and the system is closed-loop stable. A unit step added to u at time t = 10 and a unit step is added to x_1 at time t = 40. The state responses are shown in Figure 1 and the measurements and input usage are shown in Figure 2.

 $\begin{array}{c} 1.5 \\ 1 \\ 0.5 \\ 0 \\ 0.5 \\ -1 \\ -1 \\ -1.5 \\ -2 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ Time \\ \end{array}$

Figure 1: Simulation case (A): blue line is x_1 , which is the only state used for feedback control. The minimum input controller clearly stabilizes the solution.

Figure 2: Simulation case (A): blue line is y_1 , which is the only state used for feedback control. The green line is y_2 ; observe the inverse response resulting from the RHP zero in g_2 . The black line is the input usage (u).

Case 2: Build an estimator for y_1 based on y_2

We replace the C-matrix above with its second row-only to disallow measurement of y_1 . Further, we assume no load disturbances, but significant process noise in the system. Based on this we design a Kalman filter using the kalman function in the Matlab control systems toolbox:

[Kfilter,ObserverGain,RiccatiMatrix] = kalman(ss(A,B,C,D),1,0.1);

The resulting gain matrix is

ObserverGain =
$$10^4 \times \begin{bmatrix} 0.98\\ 1.23 \end{bmatrix}$$

A simulation of the system in closed-loop, but still using direct measurement of y_1 yields the following observer estimates; states are shown in Figure 3 and the measured output in Figure 4. In spite of the big error when the step disturbance in the state occurs, we will try this in closed-loop because we may not have too many good options here if the sensor for y_1 fails.

Figure 3: Simulation case (B): solid lines show true state values, Figure 4: Simulation case (B): even though state estimates are whereas dashed lines are estimates. We see that the state estimates do not respond well to process noise.

bad, the situation looks good in the output. This is what is visible online, which confirms the importance of dynamic simulation.

Case 3: Sensor failure

We now test closed-loop behavior when applying the estimator for y_1 . The results are shown in Figure 5 (states) and Figure 6 (output, input). Note the excessive input usage, compare with Figure 2! If the input

Figure 5: Simulation case (C): solid lines show true state values, Figure 6: Simulation case (C): the observer fits the output perwhereas dashed lines are estimates. Although the system is stable fectly here. Note the black line (input usage); input usage is exand the observer seems to work, look at the excessive overshoot; cessive! the closed-loop performance is obviously bad.

had been limited, the system would have been closed-loop unstable. To illustrate we simulate the system but with a saturation on the input signal;

 $-5 \leq u(t) \leq 5$.

The resulting trajectories are shown in Figure 7 and Figure 8.

Figure 7: Saturation on u gives unstable closed-loop behavior. System blows up on the state disturbance.

Figure 8: Input and output when system blows up (blue: output, black: input).

The lesson learned from this example is that non-minimum phase behavior can create great difficulties for stabilization. Just because a system is state-observable does not mean that estimating more well-conditioned measurements that for some reason are not available from the measurements we do have, it does not mean it is a good idea to do so, at least not if there are fundamental limitations in the input-output behavior of the available measurements.

Computer simulations

The computer simulations used to generate these plots were done using Matlab/Simulink. There are four Simulink files, corresponding to the four simulations above:

- caseA.mdl: Case 1
- caseB.mdl: Case 2
- caseC.mdl: Case 3
- CaseCb.mdl: Case 3 with input saturation

Before running these files, run the script file get_lqg.m which contains the following:

```
%Define dynamics
A = [0.2 \ 0; \ 0.5 \ -0.2];
                           % open-loop A-matrix has poles in 0.2 and -0.2
B = [-0.2; 0];
C = [1 \ 0; \ -0.96 \ 0.784];
D = 0;
G=ss(A, B, C, D);
%For Case 2: Kill one measurement
C2=C(2,:);
Gred=ss(A, B, C2, D);
%Create LQR controller
O=zeros(2); R=1;
                     %Q=0 gives minimum input usage
Klqr=lqr(A,B,Q,R);
%Set disturbance signal parameters (for use in Simulink)
loadD=1; stateD=1; LTime=10; STime=40;
%Create Kalman filter based on (A,B,C2):
[Kest1,L1,P1]=kalman(Gred,1,0.1);
%Simulate each case for tf=80.
%Simulation variables are stored in workspace, with naming convention
   VariableName CASE #
%To avoid opening simulink for each case, use the syntax
   sim('caseA',80)
```