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We have a system with two possible measurements and a single input. The transfer functions for these 

measurements are; 
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This system has a minimal state-space realization 
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The system has open-loop poles at 0.2 and - 0.2 (can read this off the diagonal of A because the system 

matrix is triagonal). 

 

We consider three cases:  

1. We can measure both states directly – excellent performance for load disturbance and process 

noise. 

2. Observer design: because the sensor used to measure x1 can fail, we design a Kalman filter to es-

timate x1 based on measurement of y2. 

3. Sensor failure: feedback control using estimate of x1. 

 

The control objective is stabilization. We use an LQR controller with minimum input usage; Q=0, R=1. 

This gives feedback gain of  

  2 0 .LQRK    

Case 1: Full state measurement 
The resulting controller is a proportional controller for y1 with set point y1 = 0 and controller gain Kc = - 2. 

The closed-loop poles are now both located at – 0.2 and the system is closed-loop stable. A unit step add-

ed to u at time t = 10 and a unit step is added to x1 at time t = 40. The state responses are shown in Figure 

1 and the measurements and input usage are shown in Figure 2. 
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Figure 1: Simulation case (A): blue line is x1, which is the only 

state used for feedback control. The minimum input controller 

clearly stabilizes the solution. 

Figure 2: Simulation case (A): blue line is y1, which is the only 

state used for feedback control. The green line is y2; observe the 

inverse response resulting from the RHP zero in g2. The black line 
is the input usage (u). 



Case 2: Build an estimator for y1 based on y2 
We replace the C-matrix above with its second row-only to disallow measurement of y1. Further, we as-

sume no load disturbances, but significant process noise in the system. Based on this we design a Kalman 

filter using the kalman function in the Matlab control systems toolbox:  

 
 [Kfilter,ObserverGain,RiccatiMatrix] = kalman(ss(A,B,C,D),1,0.1); 

 

The resulting gain matrix is 

 4
0.98

ObserverGain 10 .
1.23


 

  
 

 

A simulation of the system in closed-loop, but still using direct measurement of y1 yields the following 

observer estimates; states are shown in Figure 3 and the measured output in Figure 4. In spite of the big 

error when the step disturbance in the state occurs, we will try this in closed-loop because we may not 

have too many good options here if the sensor for y1 fails. 

Case 3: Sensor failure 
We now test closed-loop behavior when applying the estimator for y1. The results are shown in Figure 5 

(states) and Figure 6 (output, input). Note the excessive input usage, compare with Figure 2! If the input 

had been limited, the system would have been closed-loop unstable. To illustrate we simulate the system 

but with a saturation on the input signal;  

 )5 ( 5.u t    

The resulting trajectories are shown in Figure 7 and Figure 8.  
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Figure 3: Simulation case (B):  solid lines show true state values, 
whereas dashed lines are estimates. We see that the state esti-

mates do not respond well to process noise. 

Figure 4: Simulation case (B): even though state estimates are 
bad, the situation looks good in the output. This is what is visible 

online, which confirms the importance of dynamic simulation. 
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Figure 5: Simulation case (C):  solid lines show true state values, 

whereas dashed lines are estimates. Although the system is stable 

and the observer seems to work, look at the excessive overshoot; 
the closed-loop performance is obviously bad. 

Figure 6: Simulation case (C): the observer fits the output per-

fectly here. Note the black line (input usage); input usage is ex-

cessive! 



 

The lesson learned from this example is that non-minimum phase behavior can create great difficulties for 

stabilization. Just because a system is state-observable does not mean that estimating more well-

conditioned measurements that for some reason are not available from the measurements we do have, it 

does not mean it is a good idea to do so, at least not if there are fundamental limitations in the input-

output behavior of the available measurements. 

Computer simulations 
The computer simulations used to generate these plots were done using Matlab/Simulink. There are four 

Simulink files, corresponding to the four simulations above:  

 

 caseA.mdl:  Case 1 

 caseB.mdl:  Case 2 

 caseC.mdl:  Case 3 

 CaseCb.mdl: Case 3 with input saturation 

 

Before running these files, run the script file get_lqg.m 

which contains the following: 

 
%Define dynamics 

A = [0.2 0; 0.5 -0.2];    % open-loop A-matrix has poles in 0.2 and -0.2 

B = [-0.2; 0]; 

C = [1 0; -0.96 0.784]; 

D = 0; 

G=ss(A,B,C,D); 

 

%For Case 2: Kill one measurement 

C2=C(2,:); 

Gred=ss(A,B,C2,D); 

 

%Create LQR controller 

Q=zeros(2); R=1;    %Q=0 gives minimum input usage 

Klqr=lqr(A,B,Q,R); 

 

%Set disturbance signal parameters (for use in Simulink) 

loadD=1; stateD=1; LTime=10; STime=40; 

 

%Create Kalman filter based on (A,B,C2): 

[Kest1,L1,P1]=kalman(Gred,1,0.1); 

 

%Simulate each case for tf=80. 

%Simulation variables are stored in workspace, with naming convention 

%   VariableName_CASE_# 

%To avoid opening simulink for each case, use the syntax  

%   sim('caseA',80) 
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Figure 7: Saturation on u gives unstable closed-loop behavior. 
System blows up on the state disturbance. 

Figure 8: Input and output when system blows up (blue: output, 
black: input). 


