
RHp-zeros, LQG, stabilizationn and state esti-
mation

Håkon Dahl-Olsen

NTNU, Trondheim, 20 May 2009

We have a system with two possible measurements and a single input. The transfer functions for these

measurements are;

1 2

1 4.8 1
 and .

5 1 5 1

s
g g

s s

This system has a minimal state-space realization

 x Ax Bu

with

0.2 0 0.2 1 0

, , , 0.
0.5 0.2 0 0.96 0.784

A B C D

The system has open-loop poles at 0.2 and - 0.2 (can read this off the diagonal of A because the system

matrix is triagonal).

We consider three cases:

1. We can measure both states directly – excellent performance for load disturbance and process

noise.

2. Observer design: because the sensor used to measure x1 can fail, we design a Kalman filter to es-

timate x1 based on measurement of y2.

3. Sensor failure: feedback control using estimate of x1.

The control objective is stabilization. We use an LQR controller with minimum input usage; Q=0, R=1.

This gives feedback gain of

 2 0 .LQRK

Case 1: Full state measurement
The resulting controller is a proportional controller for y1 with set point y1 = 0 and controller gain Kc = - 2.

The closed-loop poles are now both located at – 0.2 and the system is closed-loop stable. A unit step add-

ed to u at time t = 10 and a unit step is added to x1 at time t = 40. The state responses are shown in Figure

1 and the measurements and input usage are shown in Figure 2.

0 10 20 30 40 50 60 70 80
-2.5

-2

-1.5

-1

-0.5

0

0.5

Time

S
ta

te
s

0 10 20 30 40 50 60 70 80
-2

-1.5

-1

-0.5

0

0.5

1

1.5

Time

S
ta

te
s

Figure 1: Simulation case (A): blue line is x1, which is the only

state used for feedback control. The minimum input controller

clearly stabilizes the solution.

Figure 2: Simulation case (A): blue line is y1, which is the only

state used for feedback control. The green line is y2; observe the

inverse response resulting from the RHP zero in g2. The black line
is the input usage (u).

Case 2: Build an estimator for y1 based on y2
We replace the C-matrix above with its second row-only to disallow measurement of y1. Further, we as-

sume no load disturbances, but significant process noise in the system. Based on this we design a Kalman

filter using the kalman function in the Matlab control systems toolbox:

 [Kfilter,ObserverGain,RiccatiMatrix] = kalman(ss(A,B,C,D),1,0.1);

The resulting gain matrix is

 4
0.98

ObserverGain 10 .
1.23

A simulation of the system in closed-loop, but still using direct measurement of y1 yields the following

observer estimates; states are shown in Figure 3 and the measured output in Figure 4. In spite of the big

error when the step disturbance in the state occurs, we will try this in closed-loop because we may not

have too many good options here if the sensor for y1 fails.

Case 3: Sensor failure
We now test closed-loop behavior when applying the estimator for y1. The results are shown in Figure 5

(states) and Figure 6 (output, input). Note the excessive input usage, compare with Figure 2! If the input

had been limited, the system would have been closed-loop unstable. To illustrate we simulate the system

but with a saturation on the input signal;

)5 (5.u t

The resulting trajectories are shown in Figure 7 and Figure 8.

0 10 20 30 40 50 60 70 80
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Time

S
ta

te
s

0 10 20 30 40 50 60 70 80
-2

-1.5

-1

-0.5

0

0.5

Time

S
ta

te
s

Figure 3: Simulation case (B): solid lines show true state values,
whereas dashed lines are estimates. We see that the state esti-

mates do not respond well to process noise.

Figure 4: Simulation case (B): even though state estimates are
bad, the situation looks good in the output. This is what is visible

online, which confirms the importance of dynamic simulation.

0 10 20 30 40 50 60 70 80
-50

0

50

100

Time

S
ta

te
s

0 10 20 30 40 50 60 70 80
-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Time

O
u
tp

u
ts

Figure 5: Simulation case (C): solid lines show true state values,

whereas dashed lines are estimates. Although the system is stable

and the observer seems to work, look at the excessive overshoot;
the closed-loop performance is obviously bad.

Figure 6: Simulation case (C): the observer fits the output per-

fectly here. Note the black line (input usage); input usage is ex-

cessive!

The lesson learned from this example is that non-minimum phase behavior can create great difficulties for

stabilization. Just because a system is state-observable does not mean that estimating more well-

conditioned measurements that for some reason are not available from the measurements we do have, it

does not mean it is a good idea to do so, at least not if there are fundamental limitations in the input-

output behavior of the available measurements.

Computer simulations
The computer simulations used to generate these plots were done using Matlab/Simulink. There are four

Simulink files, corresponding to the four simulations above:

 caseA.mdl: Case 1

 caseB.mdl: Case 2

 caseC.mdl: Case 3

 CaseCb.mdl: Case 3 with input saturation

Before running these files, run the script file get_lqg.m

which contains the following:

%Define dynamics

A = [0.2 0; 0.5 -0.2]; % open-loop A-matrix has poles in 0.2 and -0.2

B = [-0.2; 0];

C = [1 0; -0.96 0.784];

D = 0;

G=ss(A,B,C,D);

%For Case 2: Kill one measurement

C2=C(2,:);

Gred=ss(A,B,C2,D);

%Create LQR controller

Q=zeros(2); R=1; %Q=0 gives minimum input usage

Klqr=lqr(A,B,Q,R);

%Set disturbance signal parameters (for use in Simulink)

loadD=1; stateD=1; LTime=10; STime=40;

%Create Kalman filter based on (A,B,C2):

[Kest1,L1,P1]=kalman(Gred,1,0.1);

%Simulate each case for tf=80.

%Simulation variables are stored in workspace, with naming convention

% VariableName_CASE_#

%To avoid opening simulink for each case, use the syntax

% sim('caseA',80)

30 35 40 45 50 55 60 65 70 75 80
-50

0

50

100

150

200

250

300

350

400

450

500

Time

S
ta

te
s

30 35 40 45 50 55 60 65 70 75 80
-10

0

10

20

30

40

50

Time

O
u
tp

u
ts

Figure 7: Saturation on u gives unstable closed-loop behavior.
System blows up on the state disturbance.

Figure 8: Input and output when system blows up (blue: output,
black: input).

