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Abstract

Optimal operation of heat exchanger networks is much less studied than optimal

design. The control objective of a heat exchanger network is to control the temper-

ature out of the heat exchanger network within a certain range. Often the control

objective is to maximize the end temperature, and this is the focus of this study.

A typical example is feed preheating in a crude oil fractionator. There seem to be

no simple systematic ways to maximize the end temperature and the practical so-

lutions are often suboptimal. Alternatively, RTO is used which is both challenging

and expensive.

This study investigates the performance of a self-optimizing control strategy pro-

posed by PhD candidate Johannes Jäschke. The method maxmimizes the end tem-

perature and relies only on cheap temperature measurements, i.e. no flow mea-

surements or technical data (heat exchanger area, heat transfer coefficients, heat

capacities etc.) are necessary. The method has been demonstrated in four different

cases; two theoretical cases and two real cases. The real cases are from Perstorp

in Perstorp, Sweden and Statoil Mongstad outside of Bergen, Norway. A dynamic

model has been made for the Perstorp case. Also, it has been looked into if the same

self-optimizing control strategy can be used for an LNG process.

The self-optimizing control strategy perform well in all the cases investigated. At

Perstorp it improves the performance, while at Statoil Mongstad the performance

is just as good as the existing RTO. The results are presented for Perstorp and

Statoil Mongstad which both are optimistic about the method.

Key words: optimal operation, heat exchanger networks, feedback control, crude

oil fractionator, self-optimizing control, null space method, LNG, C3MR
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2 Introduction

Optimization of heat exchanger networks (HENs) has been studied extensively the

last 30 years (Gorji-Bandpy et al., 2011) and is a typical problem in process design.

There are three conventional methods available to help constructing the network,

including Pinch Analysis Method (Linnhoff and Hindmarsh, 1983), Mathematical

Programming Method (Bjork and Nordman, 2005) and Meta-heuristic Optimization

Methods (Lin and Miller, 2004). All of these methods aim to design a reasonable

trade-off between capital cost and operating cost (Glemmestad et al., 1999). When

Linnhoff and Hindmarsh (1983) proposed the Pinch Design Method, an approach

which sets up guidelines to design HENs, they established a theoretical foundation

for process integration which is found in many chemical engineering text books

(Novazzi and Zemp, 2009). However, Bjork and Nordman (2005) wrote that the

advantage with mathematical programming methods is that a rigorous optimization

of the structure, heat exchanger sizes and utility usage can be carried out, whilst

in the Pinch Analysis Method the designer must make these decisions. The meta-

heuristic optimization approach described in Lin and Miller (2004) uses a stochastic

optimization approach which uses adaptive memory.

According to Glemmestad et al. (1999), the total design effort required for a HEN

typically involves three steps:

1. Nominal design: Synthesize one or more networks with good properties for

nominal stream data.

2. Flexibility and controllability : Investigate the networks with regard to flexibil-

ity and controllability.

3. Operation: Design a control system to operate the HEN properly. Involves

control structure selection and possibly some method for on-line optimization.

This study focuses on the last step, operation of HENs, which is much less studied

compared to finding nominal and flexible HENs (Glemmestad et al., 1999). Bypass

selection for control of HENs was investigated by Mathisen et al. (1992), without

considering utility consumption. A method for operation of HENs that minimizes

utility consumption is proposed by Mathisen et al. (1994b). Repeated steady state
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optimization is presented by Boyaci et al. (1996) and a method for on-line optimiza-

tion and control of HENs by Aguilera and Marchetti (1998).

The control objective may be to control the temperature out of the heat exchanger

network within a certain range, but often it is to maximize the end temperature.

Two typical examples are air preheating in a power plant and feed preheating in a

crude oil fractionator. Stream splits are typical in HENs, see Figure 2.1.

To save energy, the objective could be to maximize the end temperature Tend or,

in other words, maximize the heat transfer Q1 + Q2, where Q indicates the heat

transfered from hot to cold side for HX1 and HX2, respectively. This is the problem

that will be studied in this report.

UA1

HX1

UA2

HX2

T0
mCp,0 = ω0

T2

Th,2
in

mCp,2 = ωh,2Th,2

Th,1
in

mCp,1 = ωh,1
Th,1

u T1

Tend
mCp,end = ωend

Figure 2.1: Heat exchanger network involving stream split

According to Jäschke and Skogestad (2011b) there seem to be no simple system-

atic ways to maximize Tend. Usually one of the folling is done in practice:

• Keep the split u constant

• Keep either T1 or T2 constant

• Let the operators adjust the split according to some heuristics

• Use real-time optimization

The first two methods are suboptimal, while the third can be optimal, but requires

some effort from the operators. Using RTO is challenging and expensive because of

difficulties in building and adapting accurate models for complex chemical processes
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(Chachuat et al., 2009) and since it involves steady state detection, state/parameter

estimation, data reconcilation and solving of a nonlinear optimization problem online

(White, 1997).

By using resultants to eliminate unknown variables, Jäschke and Skogestad

(2011b) have come up with a unique control strategy to maximize (or minimize)

the end temperature out of HENs involving splits. The method is further described

in Chapter 4. It does not require any model of the HEN, only simple temper-

ature measurements. Four different cases have been simulated to investigate the

performance of the method and these are described in Chapter 5, Chapter 6 and

Chapter 7.



3 HEAT EXCHANGE AND SELF-OPTIMIZING CONTROL 4

3 Heat Exchange and

Self-Optimizing Control

In this chapter the reader will be given a brief introduction to the relevant topics

for this study. First, the concept of heat exchange will be explained and then self-

optimizing control will be introduced.

3.1 Heat Exchange

3.1.1 Modelling of Heat Exchangers

Heat exchange is a process where the purpose is to transfer heat Q to or from a pro-

cess stream (Skogestad, 2003a). This heat transfer is conducted in a heat exchanger

where the heat is transfered from hot to cold side through the heat exchanger’s wall.

The hot and the cold stream can flow co-current or countercurrent, where counter-

current (see Figure 3.1) is the most effective. In shell-and-tube heat exchangers both

co-current and countercurrent flow exist. Other types of heat exchangers are spiral

plate heat exchangers, kettle type heat exchangers, plate fin heat exchangers and

sprial wound heat exchangers.

HEAT
EXCHANGER

Tc,in Tc,out

Th,inTh,out

Figure 3.1: Ideal countercurrent heat exchanger

Assuming a countercurrent heat exchanger and constant hot and cold inlet tem-

peratures, the heat transfer Q can be calculated according to the heat exchanger

model

Q = UAΔTLM (3.1)

where U is the overall heat transfer coefficient [W/K] and A is the heat exchanger

area [m2]. The overall heat transfer coeffiecient is the reciprocal of the overall
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resistance to heat transfer. If the fouling factors and tube wall thermal resistance

are neglected, and the hot and cold heat exchanger areas are assumed to be equal,

U is given by (Incropera et al., 2007):

U =
hchh

hc + hh
(3.2)

where hh and hc are the heat transfer coefficient in W/m2K for hot and cold side,

respectively.

ΔTLM is the logarithmic mean temperature difference (LMTD) for countercurrent

flow and is given by

ΔTLM =
(Th,in − Tc,out)− (Th,out − Tc,in)

ln
(

Th,in−Tc,out

Th,out−Tc,in

) =
Θ1 −Θ2

ln
(

Θ1

Θ2

) (3.3)

where the temperature differences Θ1 and Θ2 between hot and cold side for ideal

countercurrent flow have been introduced. The energy balance for the heat ex-

changer in Figure 3.1 is

Q = mccp,c(Tc,out − Tc,in) (3.4)

Q = mhcp,h(Th,in − Th,out) (3.5)

where constant heat capacities cp [J/kgK] are assumed, i.e. h = cpT . Summarized,

the steady state balance for heat exchangers can be expressed by three equations:

Q = UAΔTLM = mccp,c(Tc,out − Tc,in) = mhcp,h(Th,in − Th,out) (3.6)

In most of the case studies countercurrent flow will be assumed. However, in the

industry shell-and-tube exchangers are by far the most common type of heat transfer

equipment. Shell-and-tube heat exchangers are used in one of the case studies in

this work.
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3.1.2 Shell-and-tube Heat Exchangers

Some reasons for using shell-and-tube heat exchangers are (Sinnott and Towler,

2009):

1. The configuration gives a large surface area in a small volume

2. Good mechanical layout

3. Well-established fabrication techniques

4. Can be constructed from a wide range of materials

5. Easily cleaned

6. Well established design procedures

The heat exchanger consists of a bundle of tubes in a cylindrical shell. The flow

pattern is then a combination of countercurrent and cocurrent flow and the heat

exchanger model is given by

Q = UAΔTLMF (3.7)

where the LMTD correction factor F is introduced. F = 1 for true countercurrent

flow, and is less than 1 when shell-and-tube heat exchangers are used. Configurations

where F < 0.8 should not be used because the heat transfer is relatively inefficient.

The correction factor can be calculated analytically as follows (Serth, 2007):

R =
Ta − Tb

tb − ta
(3.8)

P =
tb − ta
Ta − ta

(3.9)

α =

(
1− RP

1− P

)1/N

(3.10)

S =
α− 1

α−R
(3.11)

F =

√
R2 + 1 ln

(
1−S
1−RS

)
(R− 1)ln

[
2−S(R+1−√

R2+1)

2−S(R+1+
√
R2+1)

] (3.12)
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where

Ta = inlet temperature of shell-side fluid

Tb = outlet temperature of shell-side fluid

ta = inlet temperature of tube-side fluid

tb = outlet temperature of tube-side fluid

N = Number of shells

If R = 1 the correction factor is given by

S =
P

N − (N − 1)P
(3.13)

F =
S
√

(2)

(1− S)ln
[
2−S(2−√

2)

2−S(2+
√
2)

] (3.14)

It should be noted that F is independent of which fluid is in the shell and which

is in the tubes, but R and P are not.

In this work the measumrent relations are not used. Hence, we can only eliminate

ng number of variables.

3.1.3 Approximation

In Equation (3.1) the LMTD was introduced for countercurrent heat exchangers.

When Θ1 = Θ2 the LMTD becomes singular and is defined as being equal to the

arithmetic mean temperature difference (AMTD) ΔTAM . Since ΔTAM is defined for

any combination of Θ1 and Θ2 and does not include the logarithmic term it is often

better to use than ΔTLM for numerical calculations. Skogestad (2003a) notes that if

1/1.4 < Θ1/Θ2 < 1.4 the error is less than 1% if LMTD is replaced by the AMTD:

ΔTLM =
Θ1 −Θ2

ln
(

Θ1

Θ2

) ≈ Θ1 +Θ2

2
= ΔTAM (3.15)

The approximation error for different selections of Θ1 and Θ2 is presented in

Figure 3.1.3.

The figure shows that when Θ1 and Θ2 are similar the error is close to zero. How-

ever, if Θ1/Θ2 is much smaller or larger than 1 the error can become significant. A
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Figure 3.2: Error by approximating ΔTLM with ΔTAM

literature search reveals that other approximations for LMTD have been found that

are associated with smaller approximation errors than the AMTD. Three approx-

mations by Chen (1987), Underwood (1933) and Paterson (1984) are, respectively:

ΔTCM1 =
3

√(
Θ1Θ2

2 +Θ2
1Θ2

2

)
(3.16)

ΔTUM =

(
Θ

1/3
1 +Θ

1/3
2

2

)3

(3.17)

ΔTPM =
2

3
ΔTGM +

1

3
ΘAM (3.18)

where ΔTGM =
√
Θ1Θ2 is the geometric mean temperature difference. Chen also

comes up with a ”tuned” version of Underwood’s approximation:

ΔTCM2 =

(
Θ0.3275

1 +Θ0.3275
2

2

)1/0.3275

(3.19)

Plotting the error of all these approximations in contour plots for different selec-

tions of Θ1 and Θ2 reveals which approximation is the better. The plot is presented

in Figure 3.3 where the error is defined as
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Error =
ΔT −ΔTLM

ΔTLM
(3.20)

where ΔT represents the different approximations. The size of the error is indicated

with different colours.

From the figure it is obvious that Chen’s tuned version of Underwood’s approx-

imation is the best (and most complicated) approximation and the AMTD is the

worst (and simplest) approximation.

In Chapter 4 the self-optimizing control strategy will be presented. The approach

makes use of sparse resultants which only works with polynomials. Hence, Paterson’s

approximation can not be used, but the rest are candidate approximations.

3.1.4 Steady State Simulation of Heat Exchangers

When the heat exchanger area is given and we want to simulate the heat exchanger,

the ε-NTU method can be applied. The equations used are the same as the energy

balances in Equation (3.6) (for countercurrent heat exchangers) and Equation (3.8)-

(3.12) (for shell-and-tube heat exchangers), just written in another way. The method

is easy to use and good for simulations. The number of transfer units is defined as

NTU ≡ UA

Cmin
(3.21)

where Cmin = min{mccp,c, mhcp,h}. If countercurrent flow is assumed the effective-

ness ε is given by (Incropera et al., 2007):

ε =
1− exp(−NTU(1 − Cr))

1− Crexp(−NTU(1 − Cr))
(3.22)

where Cr ≡ Cmin/Cmax and Cmax = max{mccp,c, mhcp,h}. If Cr = 1 Equation (3.22)

becomes singular and cannot be used. ε is then given by

ε =
NTU

1 +NTU
(3.23)

for countercurrent flow.

When shell-and-tube heat exchangers are used the effectiveness can be found by
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Figure 3.3: Error associated with approximating ΔTLM
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ε =

(
1−ε1Cr

1−ε1

)n
− 1(

1−ε1Cr

1−ε1

)n
− Cr

(3.24)

where n is number of shells and ε1 is the effectiveness for one shell pass:

ε1 =
2

1 + Cr +
√

1 + C2
r ×

1+exp
[
−(NTU)1

√
1+C2

r

]

1−exp
[
−(NTU)1

√
1+C2

r

]
(3.25)

In Equation (3.25) it is assumed that the total NTU is equally distributed between

shell pasees of the same arrangement, i.e. (NTU)1 = NTU/n.

The hot and cold temperature out can then be found:

Th,out =

(
1− Cminε

mhcp,h

)
Th,in +

Cminε

mhcp,h
Tc,in (3.26)

Tc,out =
Cminε

mccp,c
Th,in +

(
1− Cminε

mccp,c

)
Tc,in (3.27)

Thus, if the product UA, hot and cold heat capacities, inlet temperatures and

mass flows are known, the outlet temperatures can be calculated for both coun-

tercurrent and shell-and-tube heat exchangers. According to Equation (3.26) and

Equation (3.27), the ε-NTU method yields a linear relationship between the inlet

temperatures and the outlet temperatures. Note, however, that the outlet temper-

ature is nonlinearly dependent on the flow rate.

3.1.5 Dynamic Modelling of Heat Exchangers

Dynamic models are central in the subject of process dynamics and control and are

used to (Seborg et al., 2003):

• Improve understanding of the process

• Train plant operating personnel

• Develop a control strategy for a new process
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• Optimize process operating conditions

In this study a dynamic model has been obtained in one of the case studies. An

introduction to dynamic heat exchanger models is given below and the dynamic

model is presented in Chapter 6.3.

A heat exchanger can be approximated by a lumped model where each fluid is

modelled as mixed tanks in series (Mathisen et al., 1994a). The lumped model is

presented in Figure 3.4.

Th(1) Th(2) Th(i) Th(N)mh(0)
Th(0)

mh(1) mh(2) mh(i) mh(N)

Tc(N) Tc(N-1) Tc(j) Tc(1)
mc(N) mc(N-1) mc(j) mc(1) mc(0)

Tc(0)

Tw(N) Tw(N-1) Tw(j)

Q1

Q1

Q2

Q2

Qi

Qi

Tw(1)

QN

QN

Figure 3.4: Lumped model of heat exchanger (Mathisen et al. (1994a), modified)

Here, negligible heat loss, constant heat capacity, constant densities, negligible

pressure drop and equally distributed heat exchanger area A and volume V over the

N cells are assumed. The differential equations resulting from the energy balance

are:

dTh(i)

dt
=

(
Th(i− 1)− Th(i)− hhA

ωhN
ΔTh(i)

)
mhN

ρhVh
(3.28)

dTw(j)

dt
= (hhΔTw,h(j)− hcΔTw,c(j))

A

ρwcp,wVw
(3.29)

dTc(j)

dt
=

(
Tc(j − 1)− Tc(j)− hcA

ωcN
ΔTc(j)

)
mcN

ρcVc

(3.30)

where all subsript h, c and w denotes hot fluid, cold fluid and wall, respectively.

Further, T is temperature, h is the heat transfer coefficient, A is the heat exhcanger

area, V is volume, N is the model order, ρ is the density, cp is the heat capacity and

ω is the heat capacity rate. A complete derivation of the equations can be found in
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Mathisen et al. (1994a). According to the authors a model order of N > 6 is typical

and in this study a model order of 10 is used to be able to predict the apparent lag

with good accuracy.

3.2 Self-Optimizing Control

Self-optimizing control is when acceptable (close to optimal) operation is achieved

with constant setpoints for the controlled variables. The introduction to this concept

presented here is taken from Skogestad (2004).

The general optimization problem is to minimize a certain objective function

subject to some constraints:

minimize J(x, u0, d)

subject to g(x, u0, d) = 0, h(x, u0, d) ≤ 0
(3.31)

where J is the objective function (or cost function), x represents the state variables,

u0 the available degrees of freedom and d the disturbances. The equality constraints

g include the model equations which link the independent variables u and d with

the states x. The inequality constraints h are necessary because the system should

have, for instance, positive temperatures and mass flows. Some of the inequality

constraints are often active constraints, which means that they should be equal to

zero. These active constraints should be controlled with a corresponding number of

degrees of freedom. The main problem is then to decide what to control with the

remaining unconstrained degrees of freedom, u. If the states x are eliminated using

the model equations g the remaining unconstrained problem is

min
u

J(u, d) = J(uopt(d), d)
def
= Jopt(d) (3.32)

where uopt(d) is to be found and Jopt(d) is the optimal value of the cost function. The

solution if problems like this is extensively studied. We want to find which controlled

variables c (which is a selected subset of the measured variables y) to keep constant

at the optimal values copt. copt should be insensitive to the disturbances d to obtain

operation close to optimal. ”Close to optimal” means that there is a loss assosciated
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with keeping the controlled variable constant, and this loss can be expressed as

L(u, d) = J(u, d)− Jopt(d) (3.33)

The controlled variables can be single measurements or a combination of measure-

ments. The advantage is that we do not need to continuously solve the optimization

problem (as in real-time optimization, RTO) which can be costly both to install and

maintain. Self-optimizing control is (Skogestad, 2000):

... when we can achieve an acceptable loss with constant setpoint val-

ues for the controlled variables whithout the need to reoptimize when

disturbances occur.

To select the controlled variables, the following guidelines presented by Skogestad

(2000) can be used:

1. copt should be insensitive to disturbances (minimizes the effect of disturbances)

2. c should be easy to measure and control accurately (reduces the implementa-

tion error)

3. c should be sensitive to changes in the (steady state) degrees of freedom, i.e.

J = f(c) should be flat (minimizes the effect of the implementation error)

4. For cases with more than one unconstrained degrees of freedom, the selected

controlled variables should be independent (minimizes the effect of the imple-

mentation error)

An ideal self-optimizing variable, proposed among others by

Halvorsen and Skogestad (1997), is the gradient of the cost function,

cideal = Ju = ∂J
∂u
, which should be zero to ensure optimal operation for all

disturbances. However, measurement of the gradient is usually not available, and

computing it requires knowing the value of unmeasured disturbances. To find which

variables are the best to keep constant (approximations of the gradient), different

approaches can be used:

1. Exact local method
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2. Direct evaluation of loss for all disturbances (”brute force”)

3. Maximum (scaled) gain method

4. Null space method

Next, the null space method will be described. The exact local method is de-

scribed in Chapter 8.3.1. For details about the two other methods it is referred to

Skogestad and Postlethwaite (2005).

3.3 The Null Space Method

Instead of choosing single measurements as controlled variables, combinations of

measurements can also be considered. Choosing linear combinations we get

c = Hy (3.34)

where H is the measurement combination matrix (to be found) and y are all the

measurements available (Skogestad and Postlethwaite, 2005). Keeping c constant

may not be optimal because of the presence of implemenation error and distur-

bances. If the implemenation error is neglected, keeping c = cs is optimal if copt is

independent of the disturbances (i.e. copt = 0 · d). The individual measurements are

still dependent on d:

yopt =
dyopt
dd

d = Fd (3.35)

where F is the sensitivity matrix. By making small changes in d, yopt and F can be

found. Inserting Equation (3.35) in Equation (3.34), with c = copt, yields

copt = Hyopt

0 · d = HFd

HF = 0

(3.36)
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for all d. This is equivalent to H lying in the left null space of F. This is possible if

ny ≥ nu + nd, where ny is the number of measurements, nu the number of manip-

ulated variables and nd the number of disturbances (Skogestad and Postlethwaite,

2005).

Recently, a new derivation was found by Jäschke (2011), starting from the gradi-

ent Ju. If c = Ju, we have from Equation (3.34)

Ju = Hy (3.37)

After all the active contraints are controlled the gradient can be approximated to

first order as

Ju =
[
Juu Jud

] [u
d

]
(3.38)

and the measurements y are

y = G

[
u

d

]
(3.39)

Solving for [u, d]T gives

[
u

d

]
= G−1y (3.40)

and inserting into Equation (3.38) gives

Ju =
[
Juu Jud

] [
G
]−1

y (3.41)

If H is selected as H =
[
Juu Jud

] [
G
]−1

we end up with Equation (3.37). Control-

ling c = Hy = 0 results in zero loss. This shows that the nullspace method can be

considered as formulating the optimality conditions and eliminating u and d using

the measurements.
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3.4 Self-Optimizing Control for Polynomial

Systems

Extending the nullspace method described in Chapter 3.3 to polynomial systems,

we get

c = H(y) (3.42)

where H(y) is now nonlinear. According to Jäschke and Skogestad (2011a), self-

optimizing control has only been considered using linear process models and

quadratic approximation of the cost function. If the cost function has a strong

curvature at optimum, local analysis (i.e. linear) may not be sufficient and the

controlled variables not self-optimizing. We now try to achieve (close-to) optimal

operation using the null space method extended for polynomial systems. Only the

most important aspects are mentioned here, for all the details and proofs it is re-

ferred to Jäschke and Skogestad (2011a).

By abuse of notation, all the active constraints h = 0 in Equation (3.31) are

included in the equality constraint vector g. The optimization problem can then be

written as

minimize J(z, d)

subject to g(z, d) = 0
(3.43)

where the manipulated input variables u and the internal state variables x are com-

bined in z = [u, x]T .

Let z be a feasible point of the optimization problem and assume all gradient

vectors ∇zgi(z, d) and ∇zhi(z, d) associated with g = 0 and h = 0 are linear inde-

pendent. If z is locally optimal, then there exists Langrangian multiplier vectors λ

such that the first order optimality conditions are satisfied:

∇zJ(z, d) + [∇zg(z, d)]
Tλ = 0

g(z, d) = 0
(3.44)



3 HEAT EXCHANGE AND SELF-OPTIMIZING CONTROL 18

The expressions in Equation (3.44) could potentially be used for control as self-

optimzing variables, but they contain unknown variables in x, d and λ which must

be eliminated.

First, the Langrangian multipliers λ are eliminated. If N(z, d) is defined such

that [N(z, d)]T∇zg(z, d) = 0 (i.e. N is a basis for the null space of ∇g), then

premultiplying Equation (3.44) with [N(z, d)]T results in

[N(z, d)]T
(∇zJ(z, d) + [∇zg(z, d)]

Tλ
)
= [N(z, d)]T∇zJ(z, d) + 0λ

= [N(z, d)]T∇zJ(z, d)

def
= Jz,red

(3.45)

where the reduced gradient Jz,red has been introduced. Controlling Jz,red = 0 and

g(z, d) = 0 fully specifies the system at the optimum, but the reduced gradient still

contains unknown variables in x and d which must be eliminated.

The sparse resultant can be used for this purpose. Briefly said, the sparse resul-

tant R is replacing the constraint Jz,red = 0 with R = 0, as stated by Theorem 2 in

Jäschke and Skogestad (2011a):

Theorem 2 (Nonlinear measurement combinations as controlled vari-

ables). Given d̂ = [d, x]T ∈ (R)nd̂, and ny + ng = nd̂ independent relations

g(y, d̂) = m(y, d̂) = 0 such that the system

g(y, d̂) = 0

m(y, d̂) = 0
(3.46)

has finitely many solutions for d̂ ∈ (C∗)nd̂. Let R(J
(i)
z,red, g,m), i = 1 . . . nc be the

sparse resultants of the nc polynomial systems composed of

J
(i)
z,red(y, d̂) = 0, g(y, d̂) = 0, m(y, d̂) = 0 i = 1 . . . nc, (3.47)

then controlling the active constraints, g(y, d̂) = 0 and ci = R(J
(i)
z,red, g,m) = 0

i = 1 . . . nc, yields optimal operation throughout the region.

where C∗ denotes the set of complex numbers without zero and m(y, d̂) are the

measure, relations. m(y, d̂) is only used for elimination purposes since it does not
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affect the optimal solution (which, in contrast, g(y, d̂) does). This theorem states

that the number of measurements (ny) plus the number of model equations (ng) must

equal the number of unknowns (nd̂) in order to be able to eliminate the unkowns.

Then we have one more equation than unknowns because of Jz,red.

It is worth noticing how the state variable x is combined in a common variable

in two different ways for different purposes. In Equation (3.43)-(3.45) x and u

are combined in z = [u, x]T . In Equation (3.46) and Equation (3.47) x and d are

combined in d̂ = [d, x]T . z is used for optimization and d̂ is unknown and should be

eliminated.

Example (One disturbance) In this example we consider a system of two poly-

nomials in one unkown variable d and one measurement relation m(y, d) = 0. At

optimum we must have

Jz,red = [N(z, d)]T∇zJ(z, d) = a0(y) + a1(y)d+ a2(y)d
2 = 0

m(y, d) = b0(y) + b1(y)d = 0
(3.48)

The sparse resultant coincides in the case of univarite polynomials (polynomials

of only one variable) with the classical resultant, which is the determinant of the

Sylvester matrix. The Sylvester matrix of the system in Equation (3.48) is

Syl =

⎡
⎢⎢⎣
a0 a1 a2

b0 b1 0

0 b0 b1

⎤
⎥⎥⎦ (3.49)

and the restultant is

R = det(Syl) = a0b
2
1 − a1b0b1 + a2b

2
0 (3.50)

For a solution d to exist, R must equal zero. Since m(y, d) = 0 ∀ d, controlling

R = 0 is equivalent to controlling Jz,red = 0, and the operation will be optimal. The

unkown variable in the system in Equation (3.48) could also be the state variable x.

To do elimination with multivariate polynomials the package multires

(Buse and Mourrain, 1998) for Maple is used. Examples are presented as Case

Studies in Chapter 4.1 and Chapter 4.2.
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4 Self-Optimizing Control for

Heat Exchanger Networks

In this chapter self-optimizing control will be related to the operation of heat ex-

changer networks. Since the end temperature is to be maximized the optimization

problem is

minmize
u

J = −Tend

subject to g = 0
(4.1)

where g is the steady state model of the heat exchanger network and u are the

available degrees of freedom. It is assumed that the hot streams are disturbances

and not degrees of freedom, hence the number of degrees of freedom is equal to the

number of splits in the heat exchanger network.

Using the self-optimizing approach described in Chapter 3.2 and the extended

null space method for polynomial systems a good controlled variable can be found

for different heat exchanger networks. In this work HENs with a maximum of two

heat exchangers in series and an unlimited number of parallel heat exchangers will

be studied. In the following, a HEN with two heat exchangers in parallel and a HEN

with two heat exchangers in series and one in parallel will be studied.

4.1 Two Heat Exchangers in Parallel

Two heat exchangers in parallel with a common feed temperature of T0 is presented

in Figure 4.1.

The split u is the ratio of the respective mass flow with the total inlet mass flow.

To find the model equations g in Equation (8.1) the energy balances must be put up.

Assuming ideal mixing between stream 1 and stream 2 the resulting energy balance

is simply uω0T1+(1−u)ω0T2−ω0Tend. To find the other model equations Equation

(3.6) must be used.

If the LMTD was used the problem could be solved numerically, for example by

a real-time optimizer. However, the multires package mentioned in Chapter 3.4
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UA1

HX1

UA2

HX2

T0
mCp,0 = ω0

T2

Th,2
in

mCp,2 = ωh,2Th,2

Th,1
in

mCp,1 = ωh,1
Th,1

u T1

Tend
mCp,end = ωend

Figure 4.1: Two heat exchangers in parallel

requires polynomials as input. Six approximations was presented in Chapter 3.1.3,

but only the AMTD will be used here. The main reasons are that the approximation

is very simple and the error is small when Θ1 and Θ2 are similar. Also, it turns out

that the self-optimizing variable achieved when this approximation is used is very

simple as well. Thus, the heat exchanger model is

Q = UAΔTAM (4.2)

and the energy balance for the cold stream going through HX1 is:

U1A1ΔTAM = uω0(T1 − T0) (4.3)

0.5U1A1(T
in
h,1 − T1 + Th,1 − T0) = uω0(T1 − T0) (4.4)

2uω0(T1 − T0)− U1A1(T
in
h,1 − T1 + Th,1 − T0) = 0 (4.5)

where ω is the heat capacity ratemCp. All the other symbols are explained in Figure

4.1. The three other energy balances are done in the exact same manner and not

shown here. With all the energy balances in place, g can be written as

g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g1

g2

g3

g4

g5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

uω0T1 + (1− u)ω0T2 − ω0Tend

2uω0(T1 − T0)− U1A1(T
in
h,1 − T1 + Th,1 − T0)

2(1− u)ω0(T2 − T0)− U2A2(T
in
h,2 − T2 + Th,2 − T0)

2ωh,1(Th,1 − T in
h,1) + U1A1(T

in
h,1 − T1 + Th,1 − T0)

2ωh,2(Th,2 − T in
h,2) + U2A2(T

in
h,2 − T2 + Th,2 − T0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.6)
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The state variables x are the temperatures that varies:

x = [T1 T2 Tend Th,1 Th,2] (4.7)

and the manipulated variable is the split u. The combined vector z then becomes

z = [u x] = [u T1 T2 Tend Th,1 Th,2] (4.8)

Further, ∇zJ(z, d) is found to be

∇zJ(z, d) =
∂J

∂z
=

∂(−Tend)

∂z
= [0 0 −1 0 0 0 0] (4.9)

N(z, d) is calculated using Maple. For the complete Maple code see Appendix H.1.

Now the reduced gradient Jz,red from Equation (3.45) can be calculated (also using

Maple):

Jz,red = [N(z, d)]T∇zJ(z, d) = U2A2U1A1T1ωh,2ωh,1 − U2A2U1A1T2ωh,2ωh,1 . . .

− U2A2U1A1T2ωh,2uω0 + 2U1A1ω0T0uωh,2ωh,1 − 2U1A1uω0T1ωh,2ωh,1 . . .

− U1A1uω0T1U2A2ωh,1 − U1A1ω0T0U2A2ωh,1 + ω0T0U1A1uωh,2U2A2 . . .

− 2U2A2T2ωh,2uω0ωh,1 + U1A1ω0T0uU2A2ωh,1 + 2ω0T0uωh,2U2A2ωh,1 . . .

+ U1A1ω0T1U2A2ωh,1 − 2U1A1ω0T0ωh,2ωh,1 + 2U1A1ω0T1ωh,2ωh,1

(4.10)

The temperatures marked with red in Figure 4.1 are assumed measured. The cold

and hot inlet temperatures are normally measured along with the end temperature.

In addition it is assumed that the cold outlet temperatures are measured. Thus, u,

ω0, ωh,1, ωh,2, U1A1 and U2A2 are unknowns and must be eliminated. The sparse

resultant from Theorem 2 on page 18 is used for this, but since there are 6 unknowns

and we only have 6 equations (5 model equations g and Jz,red) we can only eliminate

5 variables. Thus, only u, ω0, ωh,1 and ωh,2 are eliminated using the multires

package. The sparse resultant is found to be

R(Jz,red, g) = −8UA2
1UA3

2a1a2a3 (4.11)
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where

a1 = (−T in
h,2 + T2 − Th,2 + T0)

2

a2 = −T in
h,1 + T1 − Th,1 + T0

a3 = T 2
0 T

in
h,2 + 2T 2

0T1 − T 2
0 T

in
h,1 − 2T 2

0T2 − 2T0T
in
h,2T1 + T0T

2
2 − T0T

2
1 + 2T0T2T

in
h,1 +

T in
h,2T

2
1 − T 2

2 T
in
h,1

The system of equations has a solution if and only if R = 0. The resultant is zero

when any of the factors a1, a2 or a3 are zero. Neither a1 nor a2 can be valid solutions

since they (independently) contain no information about the other stream; T in
h,1 is

clearly important information when the split should be set, so keeping a1 = 0 is not

sufficient. The same argument holds for a2. Thus, keeping a3 equal to zero makes

the resulatant zero and is a valid solution. Note that in Equation (4.11) neither

U1A1 nor U2A2 appear in a3 (luckily).

The resultant can further be simplified by moving the reference temperature.

Until now there has been no restrictions on temperatue units (could be ◦C, K, F

etc) which means that the reference temperature can be T0 and then write all the

other temperatures relative to T0:

ΔT0 = 0

ΔT1 = T1 − T0

ΔT2 = T2 − T0

ΔT in
h,1 = T in

h,1 − T0

ΔT in
h,2 = T in

h,2 − T0

All terms in Equation (4.11) containing T0 will then cancel and we end up with

the self-optimizing controlled variable

c =
ΔT 2

1

ΔT in
h,1

− ΔT 2
2

ΔT in
h,2

= 0 (4.12)

Hence, for a heat exchanger network with two heat exchangers in parallel five

measurements are needed to achieve self-optimizing control. More generally, two

measurements are needed for each heat exchanger (cold temperature out and hot

temperature in) plus the cold inlet temperature: nm = 2nHX + 1.
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By abuse of notation the ”Δ” is ommited in the report. The final self-optimizing

controlled variable is then

c =
T 2
1

T in
h,1

− T 2
2

T in
h,2

= 0 (4.13)

4.2 Two Heat Exchangers in Series and One in

Parallel

Two heat exchangers in series with one in parallel with feed temperature T0 is

presented in Figure 4.2.

UA1

HX1

UA11

HX11
T11

UA2

HX2

T0
mCp,0 = ω0

u
T1

T2

Tend
mCp,end = ωend

Th,2
in

mCp,2 = ωh,2Th,2

Th,1
in

mCp,1 = ωh,1

Th,1Th,11
in

mCp,11 = ωh,11

Th,11

Figure 4.2: Two heat exchangers in series and one in parallel

As before, performing energy balances g in Equation (8.1) can be found (the

derivations are not shown here):
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g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1

g2

g3

g4

g5

g6

g7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uω0T1 + (1− u)ω0T2 − ω0Tend

2uω0(T11 − T0)− U11A11(T
in
h,11 − T11 + Th,11 − T0)

2uω0(T1 − T11)− U1A1(T
in
h,1 − T1 + Th,1 − T11)

2(1− u)ω0(T2 − T0)− U2A2(T
in
h,2 − T2 + Th,2 − T0)

2ωh,11(Th,11 − T in
h,11) + U11A11(T

in
h,11 − T11 + Th,11 − T0)

2ωh,1(Th,1 − T in
h,1) + U1A1(T

in
h,1 − T1 + Th,1 − T11)

2ωh,2(Th,2 − T in
h,2) + U2A2(T

in
h,2 − T2 + Th,2 − T0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.14)

The measured variables are highlighted in red in Figure 4.2, the rest are unknowns

which must be eliminated. Following the same procedure as in Chapter 4.1 (the

Maple code can be found in Appendix H.2) the controlled variable is:

c =

(
T in
h,1 − T1

T in
h,11

− 1

)
T 2
11

T in
h,1 − T11

+
T 2
1

T in
h,1 − T11

− T 2
2

T in
h,2

= 0 (4.15)

Also here the temperatures are ”Δ”-temperatures, i.e. should be subtracted T0.

Equation (4.15) reduces to Equation (4.13) when the area of HX1 goes to zero,

i.e. T1 = T11:

c =

(
T in
h,1 − T11

T in
h,11

− 1

)
T 2
11

T in
h,1 − T11

+
T 2
11

T in
h,1 − T11

− T 2
2

T in
h,2

= 0

c =

(
T in
h,1 − T11

T in
h,11

)
T 2
11

T in
h,1 − T11

− T 2
2

T in
h,2

= 0 (4.16)

c =
T 2
11

T in
h,11

− T 2
2

T in
h,2

= 0

where HX11 is equivalent to HX1 in the previous case.

Note that we can divide the controlled variable in the following manner:

f1 =

(
T in
h,1 − T11

T in
h,11

− 1

)
T 2
11

T in
h,1 − T11

+
T 2
11

T in
h,1 − T11

(4.17)

f2 =
T 2
2

T in
h,2

(4.18)
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Then the controlled variable is c = f1− f2. With an approach like this it is possible

to consider two lines at a time and the self-optimizing control strategy proposed can

be extended to multiple streams.
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5 Case Studies

Now the self-optimizing variables found in Chapter 4 will be investigated through

two case studies: First with two heat exchangers in parallel and then with two

heat exchangers in series and one in parallel. For each case study four variables

are plotted against the split u: The end temperature Tend, the controlled variable c,

θ1/θ2 and the error related to the approximation ΔTLM ≈ ΔTAM .

The plot of the controlled variable c indicates which split a self-optimizing control

strategy results in, i.e. where the curve intersects 0 on the y-axis. The vertex of

the Tend plot indicates where the optimal split is located. The self-optimizing split

should be close to the optimal split, i.e. the ”loss” should be acceptable.

For both the case studies the inlet temperature T0 is 60◦C and the cold inlet

heat capacity rate (w0 = mCp,0) is 100 W/K, while the heat exchanger UA-values

and hot heat capacity rates and inlet temperatures vary. First, the hot and cold

outlet temperatures are calculated for every split using the ε-NTU method from

Chapter 3.1.4. Assuming ideal mixing the end temperature is given by Tend =

uT1 + (1 − u)T2. When all the cold outlet temperatures are known the controlled

variable can be calculated. Note that we use the self-optimizing strategy derived

from the arithmetic mean temperature difference approximation to control a HEN

where the heat transfer is driven by the logarithmic mean temperature difference.

The MATLAB software has been used to do the calculations, and the m-files can be

found in Appendix G.1.

5.1 Case I: Two Heat Exchangers in Parallel

With two heat exchangers in parallell the controlled variable is given in Equa-

tion (4.13) and the the flowsheet in Figure 4.1. One case study will be presented

here while six other case studies are presented in Appendix A.

The parameters for Case I-a are given in Table 5.1.

The temperature as a function of the split and the self-optimizing variable as a

function of the split is shown in Figure 5.1. By keeping c constant and equal to

zero, maximum end temperature is achieved (Tend ≈ 98.1◦C). The optimal split and
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ωh [W/K] Th,in [◦C] UA [W/K]

HX1 30 120 50

HX2 50 140 80

Table 5.1: Parameters for Case I-a

the self-optimizing split are very close, 0.35 and 0.34, respectively. The temperature

profiles for both the optimal split and the self-optimizing split are shown in Figure

5.2.
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Figure 5.1: T and c vs split

To check how good the approximation ΔTLM ≈ ΔTAM is for the given case a

plot of θ1/θ2 vs the split is made in Figure 5.3(a). If 1/1.4 < θ1/θ2 < 1.4 (marked

with pink lines as LB and UB) for both HX1 and HX2 the error will be less than

1% according to Skogestad (2003a). In Figure 5.3(b) the actual error is shown. The

low point for the curves (Error = 0%) indicates where θ1/θ2 = 1.

The resulting end temperature when using self-optimizing control is close to the

optimal end temperature for all the seven cases, even when the approximation error

is relatively large.
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Figure 5.2: Temperature profiles
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Figure 5.3: Approximation

5.2 Case II: Two Heat Exchangers in Series and

One in Parallell

With two heat exchangers in series and one in parallell the controlled variable is

given in Equation (4.15) and the the flowsheet in Figure 4.2. One case study will

be presented here while five other case studies are presented in Appendix B.

The parameters for Case I-b are given in Table 5.2.
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ωh [W/K] Th,in [◦C] UA [W/K]

HX11 30 120 50

HX1 50 140 140

HX2 20 140 65

Table 5.2: Parameters for Case I-b

The temperature as a function of the split and the self-optimizing variable as a

function of the split is shown in Figure 5.4. Again, by keeping c constant and equal

to zero, maximum end temperature is achieved (Tend ≈ 107.6◦C).
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Figure 5.4: T and c vs split

The temperature profiles for both the optimal split and the self-optimizing split

are shown in Figure 5.5.

To check how good the approximation ΔTLM ≈ ΔTAM is for the given case a plot

of θ1/θ2 vs the split is made in Figure 5.6(a). If 1/1.4 < θ1/θ2 < 1.4 for both HX1

and HX2 the error will be less than 1% according to (Skogestad, 2003a). In Figure

5.6(b) the actual error is calculated. The low point for the curves (Error = 0%)

indicates where θ1/θ2 = 1.

In Case B.3 (see Appendix B) Tsoc is deviating a bit from Topt (118.5
◦C vs 120.5◦C,

respectively). The reason for this is the high error assosciated with approximating
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Figure 5.5: Temperature profiles

LMTD with the arithmetic mean temperature difference, illustrated in Figure B.9.

θ1/θ2 is approximately 5 for HX2 resulting in an error of about 20%. In the other

cases the self-optimizing end temperature is close to the optimal end temperature.

Also, by looking on Case B.5 there does not exist any solution for this case.

According to Figure B.15 the error assosciated with the approximation is about

25% for HX2. The reason is because θ1 is about six times larger than θ2 for HX2.
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6 Perstorp Study

A case study has been performed on a heat exchanger network for a company pro-

ducing a wide range of chemicals called Perstorp, located in Perstorp, Sweden. The

heat exchanger network is shown in Figure 6.1. The actual flowsheet is presented

Figure C.1.
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Tend
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mCp,2 = ωh,2
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mCp,1 = ωh,1

Th,1

Th,2

Th,11
in

mCp,11 = ωh,11

Th,11

Figure 6.1: Simplified flowsheet for the Perstorp HEN

As can be seen from Figure 6.1 the heat exchanger network is build up of two

cases already studied. HX2 and HX3 constitute Case I while HX11, HX1 and HX2

(or HX3) constitute Case II, which means we can use the self-optimizing controlled

variables already found. We want to compare two and two ”networks”; this can be

done since it will assure that all the controlled variables are zero. Flow measurements

at Perstorp reveals that stream 2 is the largest stream (in other words, u2 is the

largest mass fraction). Thus, the temperatures related to HX2 will be present in

both the control loops. This will lead to the best dynamic performance. Defining

f1 =

(
T in
h,1 − T1

T in
h,11

− 1

)
T 2
11

T in
h,1 − T11

+
T 2
1

T in
h,1 − T11

(6.1)

f2 =
T 2
2

T in
h,2

(6.2)
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f3 =
T 2
3

T in
h,3

− T 2
2

T in
h,2

(6.3)

the controlled variables are

c1 = f1 − f2 (6.4)

c2 = f3 − f2 (6.5)

where all the temperatures are ”Δ”-temperatures, i.e. should be subtracted the

inlet temperature T0. The setpoints for the controlled variables are c1s = c2s = 0.

In Figure 6.2 the suggested control structure is presented, with two control loops

present. Since valve dynamics is not taken into consideration it is assumed that

flow controllers are used. To achieve feed back control the two flows in stream 1

and stream 3 must be measured (Fm). There exists already one flow measurement

on stream 1 (FT2047 in Figure C.1) which means that there should be installed a

flow transmitter on stream 3 as well. Alternatively the valve opening could be set

directly by using a valve positioner which eliminates the need for flow measurements.

All the measured variables (temperatures) are highlighted in red. Potential dis-

turbances in the HEN are all the hot inlet streams (T in
h,11, T

in
h,1, T

in
h,2 and T in

h,3). If,

for example, T in
h,3 suddenly increases, then c2 from Equation (6.5) will be negative.

To compensate for this the valve opening is increased, T3 is the decreased and c2

will eventually go back to zero. The inlet temperature T0 could also be considered

a disturbance.

6.1 Assumptions

Several assumptions are made to simplify the problem:

• As in all cases, the mCp is assumed to be constant throughout the heat ex-

changer. The inlet mCp (hot and cold) is used.

• Pressure and valve position have not been taken into consideration. Thus, it is

assumed that flow controllers are used to set the flow in the different streams.
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Figure 6.2: Control structure for Perstorp HEN

• Ideal mixing is assumed, i.e. Tend = u1T1 + u2T2 + u3T3.

• There exists a bypass on HX11 (H-202 in Figure C.1). This bypass was taken

into consideration through the heat transfer coefficient for HX11. It is assumed

that the total flow (the flow which actually flows through HX11 plus the bypass

flow) goes through HX11. Then the heat transfer coefficient is lowered to

match the inlet temperature of HX1 measured at Perstorp. Note: It is the

product h × A which matters (see Equation (3.28), (3.29) and (3.30)). I.e.,

either h or A could be adjusted.

• Detailed specifications was only available for HX1 (wall density and wall heat

capacity). Wall densities and heat capacities for the other heat exchangers

are assumed to be the same. It is assumed that the flow pattern is ideal

countercurrent for all the heat exchangers. This will not correspond to the

real case as HX1 is a plate and fin heat exchangers and the rest are spiral

plate heat exchangers.

• The volume was not available for HX1, but it was for another plate and fin heat
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exchanger. The volume for HX1 is assumed to follow the same area-volume

relationship as for this heat exchanger.

• The heat transfer coefficients has been estimated based on only one data point

(k = 4000) and it is assumed that the heat tranfer coefficients are the same for

the other data points as well. The heat transfer coefficients were adjusted until

outlet temperatures corresponded with measured temperatures from Perstorp.

6.2 Steady-State Analysis

A steady-state analysis of the Perstorp HEN has been conducted using the MATLAB

software. The m-file ’perstorp ss.m’ can be found in Appendix G.2. Relevant data

for three years (2008, 2009 and 2010) was received from the Perstorp company and

has been used in the simulations.

From Figure C.1 it can be seen that there does not exist flow transmitters on the

cold streams, except on the upper cold stream. Therefore, energy balances was used

to estimate the UA values for the heat exchangers. Cp values were received from

Perstorp and Equation (3.6) could be used to estimate the UA values since all the

temperatures are known.

Using the suggested control strategy presented above the end temperature using

self-optimizing control can be found and compared to the optimal end temperature.

Also, the actual end temperature is measured at Perstorp. In summray, three tem-

peratures are compared: The optimal end temperature (Topt), the end temperature

using self-optimizing control (Tsoc) and the actual end temperature measured at

Perstorp (Tm).

The result for one of the data points in 2010 (July 30, 6pm) is presented in Fig-

ure 6.3. The plot indicates how large the loss is when self-optimizing control is used.

Ideally, Topt = Tsoc, but this will never be the case because of the approximation

mentioned in Chapter 4.1 and Chapter 4.2 and disturbances, but we should be sure

that the loss is acceptable. The thinner red contour lines in the figure indicates

which end temperature (in ◦C) the different splits result in, and in the middle of

these contour lines the location of Topt is plotted (black dot). Further, the thicker

blue line indicates where the self-optimizing control variables c1 = 0 and the thicker

red line indicates where the self-optimizing control variables c2 = 0. The resulting
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temperature by using self-optimizing control, Tsoc is when both of the controlled

variables are zero, i.e. where the lines intersect. The end temperature measured

at Perstorp (Tp) is also indicated in the figure, but the exact splits are unknown

because of inconsistent flow measurements. Thus, Tm is plotted as a contour line as

well. The end temperatures are indicated with labels with yellow background and

Tm with green background.
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Figure 6.3: Steady-state results (July 30, 6pm)

From Figure 6.3 it is easy to see that Tsoc is close to Topt = 130.8◦C. Several other

case studies are presented in Appendix D. From the figures it can be seen that Tsoc

is close to Topt in all the cases.

It is only the lower left triangle of the plane Span{u1, u2} that is valid since

u1 + u2 + u3 = 1. Since u3 is in the region 0 ≤ u3 ≤ 1, then also 0 ≤ u1 + u2 ≤ 1.

The potential for improvement is investigated by plotting the difference Topt − Tm

for the whole year. These results are presented in Figure 6.4, Figure 6.5, Figure 6.6

for the years 2008, 2009 and 2010, respectively.
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Figure 6.4: Yearly variations in 2008
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Figure 6.5: Yearly variations in 2009
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Figure 6.6: Yearly variations in 2010

From the three figures it can be seen that the potential for increasing the end

temprature is high. Especially in the beginning of 2008 the potential for improve-

ment was high (about 3.5◦C), but also in the end of 2010 there was some potential.
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Some of the temperature differences are negative (marked with red); this indicated

that unaccurate parameters have been used in the simulations, for instance the heat

capacity. Another reason can be that the operation is at non-steady state. Very

high temperature differences also indicate non-steady state operation. The potential

for improvement seems to be about 1− 3◦C.

6.3 Dynamic Model

Using the equations presented in Chapter 3.1.5 the heat exchangers were modelled

using the Simulink software. The flowsheet is presented in Figure 6.7. Heat ex-

changer volumes and areas together with the heat exchanger wall mass and density

were received from Perstorp. The heat transfer coefficients were estimated by sim-

ulations; they were either increased or decreased to match the outlet temperature

out of each heat exchanger measured at Perstorp.

The model order of the dynamic model is 10 which will assure good accuracy. The

number of initial conditions in the dynamic model is 122. 30 for each heat exchanger

(10 for hot side, 10 for the wall and 10 for cold side) and 1 for each controller. Since

there seemed to be normal operation around hour 4000 in 2010 (June 15, 4pm)

this point was used when the heat transfer coefficients were estimated. Thus, all

the initial values for the four heat exchangers and the two controllers were taken

from steady-state at this point. The inital values were implemented as matrices,

which means that when other datas are used for simulation the system will not

start at steady state. The Simulink file was run from Perstorp dynamic.m, see

Appendix G.2.

The controllers are tuned using the Skogestad IMC (SIMC) PID tuning rules

(Skogestad, 2003b). Controller loop 1 is tuned first. After tuning the loop is closed

and controller loop 2 is tuned. The controllers are tuned by making a step (10%

increase) in the mass flows in the respective streams. The step and responses are

presented in Figure 6.8. The resulting PID tuning parameters for Controller 1 are

presented in Table 6.1.

Now some disturbances are applied. First, a temperature increase of 1% (from

153.2 ◦C to 154.7◦C) in T in
h,2 is applied. The responses of the controlled variables
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kc[
◦C
kg/s

] τI [s]

Controller 1 0.026 62

Controller 2 0.102 174

Table 6.1: PI tuning parameters

are shown in Figure 6.9. From the figure an inverse response is observed when the

disturbance kick in at t = 2min. The controller output is given by Equation (6.6).

c(t) = c̄+Kce(t) +
1

τI

∫ t

0

e(t∗) dt∗ (6.6)

where c̄ is the steady-state value of the controller, e is the error signal to the con-

troller, Kc the controller gain and τI the integral time. The error signal e is the

same as the controlled variable in this case since the setpoint is zero. I.e., when T in
h,2

is increased both c1 and c2 (by looking on Equation (6.4) and Equation (6.5)) will

turn positive immediately. The error signal is not zero (inverse response) and the

controller tries to counteract this. Inverse responses are associated with right-half

plane zeros (Seborg et al., 2003) and arrise from competing dynamic effects that

operate on two different time scales (in this case since we have two control loops

with interaction). The inverse response could be lowered by implementing a filter on

the disturbance, but this has not been done in this study. The undershoot observed

in Figure 6.9 could be also lowered by decreasing the controller gain. The time to

reach setpoint (c1s = c2s = 0) is about 15 minutes, which could be considered a fast

response since temperature changes are slow processes.

To easier visualize the effect of a hot temperature increase the temperature raise

of T in
h,2 is increased to 10%. The plot of how the splits change is presented in Figure

6.10 and the cold outlet temperatures in Figure 6.11. u2 has increased from 0.570

to 0.597 while u1 and u3 have decreased from 0.047 to 0.044 and 0.383 to 0.359,

respectively. The end temperature Tend has increased from 126.9◦C to 133.4◦C.

Split and temperature responses for a 10 % increase in T in
h,3 is shown in Figure 6.12

and Figure 6.13, respectively. Since the mass flow through stream 1 is relatively low

compared to stream 2 and 3, a temperature increase of 10 % for T in
h,11 or T in

h,1 does

not change the splits or cold temperatures out very much, hence the plots are not

shown here.



6 PERSTORP STUDY 41

By using the proposed self-optimizing control strategy it is assured that the

controlled variables reaches their sepotins and good disturbance rejection is also

achieved.
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c1 =((Th1in−T1)/(Th11in)−1)*(T11)
2/(Th1in−T11)+(T1) 2/(Th1in−T11)− (T2) 2/(Th2in)

c2  = (T3) 2/(Th3in)−(T2) 2/(Th2in)
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7 Crude Unit Heat Exchanger

Network

7.1 Introduction

As mentioned earlier preheating of crude oil in oil refineries is also a place where

the optimization objective is to save energy by recovering as much heat as possible,

i.e. maximize the end temperature. A typical heat exchanger network is shown in

Figure 7.1 (Lid and Skogestad, 2001).

Figure 7.1: Typical HEN for preheating of crude oil

In this case the cold crude oil is split in seven parallell streams (A-G), i.e. six

splits, to be preheated by various hot streams from the main fractionator. A study

has been performed for Statoil Mongstad which is the largest refinery in Norway

with a capacity of 10 million tonnes crude oil per year (Statoil, 2011). The crude
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unit HEN is controlled using RTO and this study will investigate if the proposed

self-optimizing control strategy can be used and improve the performance.

A simplified flowsheet of the heat exchanger network at Statoil Mongstad is pre-

sented in Figure 7.2. The number after the stream name (86.7 for stream A etc.)

are flows in tonnes/h. The blue numbers are cold temperatures and the red are hot

temperatures in ◦C. The actual heat exchanger network is shown in Appendix E.

Figure 7.2: Simplified heat exchanger network at Mongstad

All the streams are in complete liquid phase, according to Statoil Mongstad.

Hence, no evaporation occurs which justfies the constant mCp assumption. To

calculate the outlet temperatures for the heat exchangers B1, B2, C1 and C2 an

iterative approach has to be used since B1 and C1 cannot be solved before B2

and C2 are solved, respectively. The MATLAB function fsolve has been used for this

purpose. Given an inital hot inlet temperature T in
h,1 (for B1 and C1) the function

finds the hot outlet temperature Th,2 (for B2 and C2) that matches T in
h,1. The MATLAB

code is given in Appendix G.3.

The simplified flowsheet shows that there are maximum two heat exchangers

in series on each stream. At first sight one could think that the HEN could be

controlled in the same manner as demonstrated earlier. However, since stream G

is not united with the other streams until after the heat exchanger O1 it is not
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as straight forward. One of the main advantages with the self-optimizing method

proposed in this study is that not the entire heat exchanger network needs to be

included. Thus, letting stream G remain constant at a flow rate of 103.5 tonnes/h,

the rest of the HEN could be optimized.

Data (temperatures, UA-values, heat capacities and flows) have been received

from Statoil Mongstad and it is realized that stream F is the largest stream with a

flow rate of about 236 tonnes/h. Thus, this stream should be used as the reference

stream (as stream 2 was used as reference stream in the Perstorp Case). This is only

for dynamic purposes; the controlled variables will be zero regardless of which stream

is selected as reference stream, hence it will not affect the steady state operation.

Stream F is a bit special since it involves a heat exchanger prior to a split (F1)

and two succeeding heat exchanger in parallell (F2 and F3). Following the same

procedure as in Chapter 4.1 and Chapter 4.2 the self-optimizing variable could be

found for this case as well, but it would most likely be complicated. However, since

both F2 and F3 have the same hot inlet stream these two heat exchangers can be

simulated as one heat exchanger. The new heat exchanger, denoted F*, will then

have UAF ∗ = UAF2+UAF3 with heat capacity rate ωF ∗ = ωF2+ωF3 and stream F

is simulated with two heat exchangers in series.

It is worth checking how good the arithmetic mean temperature difference ap-

proximation is. In this case shell-and-tube heat exchangers are used which means

that the correction factor F must be included. Thus, it is investigated how large

the error assosciated with the approximation ΔTLMF ≈ ΔTAM is. The result is

presented in Table 7.1 along with hot and cold heat capacity rates, the ratio of

the temperature differences on both sides of each heat exchanger, number of shells,

LMTD, correction factor and AMTD. The inlet and outlet temperatures for each

heat exchanger can be found in Figure 7.2.

From the table it can be seen that there is a large error associated with some of the

heat exchangers, espescially A1, C1, C2, D2, F1, G1 and G2. Either the hot and cold

heat capacity rates for these heat exchangers differ in magnitues or the correction

factor is low. For C1 and C2 the correction factor is 0.84 and 0.85, respectively,

resulting in a high error. For G1 and G2 the hot and cold heat capacity rates are

very different (331 % and 356 %, respectively) resulting in a high error. These

relatively large errors may contribute to that the self-optimzing control strategy will
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deviate from the optimal point.

To make sure the energy balance was fulfilled the UA-values for each heat ex-

changer was estimated using the shell-and-tube heat exchanger model in Equa-

tion (3.7) on page 6 along with Q = mccp,c(Tc,out − Tc,in) = mhcp,h(Th,in − Th,out).

Two UA-values was then found, one using the cold energy balance and one using

the hot energy balance, and the average was used. Both the new UA-values and the

UA-values received from Statoil Mongstad can be found in Table F.1 in Appendix

F. From the table it can be seen that the deviations in the UA-values are negligible.

7.2 Self-Optimizing Variables

The self-optimizing variables are

cA = fA − fF (7.1)

cB = fB − fF (7.2)

cC = fC − fF (7.3)

cD = fD − fF (7.4)

cE = fE − fF (7.5)

(7.6)

where
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fA =
T 2
1A

T in
h,1A

(7.7)

fB =

(
T in
h,2B − T2B

T in
h,1B

− 1

)
T 2
1B

T in
h,2B − T1B

+
T 2
2B

T in
h,2B − T1B

(7.8)

fC =

(
T in
h,2C − T2C

T in
h,1C

− 1

)
T 2
1C

T in
h,2C − T1C

+
T 2
2C

T in
h,2C − T1C

(7.9)

fD =

(
T in
h,2D − T2D

T in
h,1D

− 1

)
T 2
1D

T in
h,2D − T1D

+
T 2
2D

T in
h,2D − T1D

(7.10)

fE =
T 2
1E

T in
h,1E

(7.11)

fF =

(
T in
h,2F − T2F

T in
h,1F

− 1

)
T 2
1F

T in
h,2F − T1F

+
T 2
2F

T in
h,2F − T1F

(7.12)

Also here all the variables should be subtracted the inlet temperature, T0, which

is measured to be 132.91◦C. The five controlled variables are implemented as five

equality constraints in the function fmincon in MATLAB. In addition the constraints

mG = 103.5 tonnes/h and sum(u) = 1 (where u is a vector containing all the seven

mass fractions) are implemented to assure that the flow through stream G is kept

constant and the mass balance is fulfilled, respectively. The fmincon function varies

the splits (or, equivalent, the mass flows) until all the constraints are equal to zero

(or as close as possible). Running the m-file mongstadSolve.m (see Appendix G.3)

the self-optimizing splits are calculated along with the new outlet temperaures of

each cold stream.

7.3 Results

The self-optimizing splits, together with the RTO splits calculated from received

data, are presented in Table 7.2. The RTO and SOC temperatures are presented

in Table 7.3. The optimizer reports that four iterations and thirty-five function

evaulations were required to find the optimum. The value of the maximum constraint

(cC) is reported to be −1.2 × 10−8 which indicates that all the constraints for any

practical reasons are zero.

The temperature T in Table 7.3 is the temperature before heat exchanger O1 and

Tend is the temperature after mixing with stream G, in accordance with Figure 7.2.
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RTO SOC Difference Difference [%]

uA 0.0944 0.0990 +0.0046 +4.8

uB 0.1902 0.1989 +0.0088 +4.6

uC 0.0699 0.0822 +0.0122 +17.5

uD 0.1396 0.1469 +0.0072 +5.2

uE 0.1360 0.1281 -0.0080 -5.8

uF 0.2571 0.2323 -0.0248 -9.7

uG 0.1127 0.1127 0 0

Table 7.2: RTO and self-optimizing splits

RTO [◦C] SOC [◦C] Difference [◦C]

T1A 234.0 230.5 -3.5

T2B 214.0 211.5 -2.5

T2C 215.7 206.2 -9.5

T2D 210.9 208.6 -2.3

TE1 213.4 216.7 +3.3

T2F 204.7 209.4 +4.7

T2G 234.5 234.5 0

T 213.0 212.9 -0.1

Tend 224.7 224.6 -0.1

Table 7.3: Cold outlet temperatures

Comparing the RTO and SOC case, the table shows that there is a decrease in

temperature out on stream A-D while there is an increase in temperature on stream

E and F. The large decrease in temperature on stream C is explained by the large

increase in mass fraction (+17.5 %).

According to this study using the proposed SOC strategy decreases Tend by 0.1◦C.

Since 0.1◦C is a very small number the SOC and RTO performance are in practice

the same. Also, since temperatures can not be measured exact one can not know

precisely what the result is unless the self-optimizing control strategy is implemented

on the plant. It can also be concluded that the optimum is flat since the SOC splits

are a bit different from the RTO splits, but the the end temperatures are almost the
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same.

The Mongstad HEN is a complicated network with some interconnection between

the different hot streams. For instance, the self-optimizing control strategy suggests

to increase uD by 5.2 % which results in a lower hot temperature out, Th,2D. Accord-

ing to the Mongstad HEN shown in Appendix E this stream (BSR12) is connected

with the hot stream in on G2 (BSR13). The temperature on this stream will then

also be higher which would justify an increase in the flow through stream G. Also,

the hot inlet stream on F2 and F3 is used to further heat the crude oil in O1 after

the streams A-F have been mixed. If the temperature of the crude oil is lower the

hot inlet temperature on F2 and F3 will also be lower and would hence justify the

decrease uF . However, since the crude oil is only about 0.1◦C lower this effect will

be negligible small.

In between Th,C2 and T in
h,C1 (HGO2 and HGO3, see Appendix E) there is a drier

which cools the liquid with about 1◦C. The ΔT over the drier is assumed to be

constant.

7.4 Parallel Heat Exchangers

After the six splits have been optimized the split related to the two parallel heat

exchangers F2 and F3 could be optimized. However, these are not optimized in the

RTO case (no controllers indicated, see Appendix E) and the streams are driven by

the pressur in the pipes. Because of equal heat capacities for the hot streams and

similar mass flows and UA-values for the two heat exchangers (110.7 kW/K and

112.2 kW/K) the split is close to 0.5, as indicated in Figure 7.3.

Finally, the split related to the H stream could also be optimized, but this split

is neither optimized in the RTO case. If the split was to be optimized, it should be

noted that the hot inlet of H2 is the hot outlet of H1. Thus, the controlled variable

would be

cH =
T 2
1

T in
h,1

− T 2
2

Th,1

, (7.13)

where subscript 1 refers to H1 and subscript 2 refers to H2.
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Figure 7.3: Optimal split between F2 and F3

It should be noted that there is a controller (TIC319 in Appendix E) that controls

the temperature after mixing with stream G, Tend, to 224.75◦C. This means that if

the temperature is lower than this more hot fluid will go through heat exchanger O1

(E153 in Appendix E) and hence less fluid will go through H1 and H2 (E174C/D

and E174A/B in Appendix E, respectively), resulting in a lower end temperature.

The argumentation is opposite for the case where the temperature after mixing

with stream G is higher than 224.75◦C. Hence, maximizing the temperature Tend

is equivalent to maximizing the temperature after H1 and H2, which is really the

temperature that should be maximized.

The SOC results are summarized in Figure 7.4.
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8 Self-Optimizing Control for

LNG Plants

Optimal design of LNG plants has been extensively studied, but not optimal op-

eration. Therefore it has been looked into if the proposed self-optimizing control

strategy could be utilized in this wide technology area as well. Since the process is

rather complicated it is believed that the simple controlled variable will not be suf-

ficient. If it fails other methods could be used, for instance the exact local method.

This optimization method will be described at the end of the chapter.

Only a brief introduction to the LNG technology will be given here. There are

many papers disussing this; for an overview, see Edvardsen (2010).

8.1 Introduction

Liquefied Natural Gas (LNG) is, as the name indicates, cooled and condensed nat-

ural gas at approximate atmospheric pressure and about -160◦C. Depending on the

natural gas feed the mixture consists of mainly methane (85-95 mole%) and heavier

hydrocarbons. The mixture often contains some nitrogen as well.

When the distance from the gas field to existing piping infrastructure is too

large, building a complete new pipeline is often not economical feasible. LNG is

produced to make the transportation of natural gas more convenient; liquefying

the gas reduces its volume by a factor of approximately 600 and the product can

be shipped by LNG carriers or transport trucks. Another benefit is the greater

flexibility to choose customers when the natural gas is not transported in a pipeline.

The initial investment costs are high for LNG, but the transport costs are lower

compared to pipelines (Pettersen, 2010).

To liquefy natural gas there are many different production principles, ranging

from the simple PRICO process to complicated cascade processes using mixed re-

frigerants like Statoil-Linde’s mixed-fluid cascade (MFC) technology. The lique-

faction of natural gas can be divided in three stages: precooling, liquefaction and

subcooling. Figure 8.1 shows the three stages where the red arrows indicate heat

transfer.
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Liquefaction 
Refrigerant

PRECOOLING

LIQUEFACTION &
SUBCOOLING
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Refrigerant

Sea water 
or air

Sea water 
or air

Sea water 
or air

Figure 8.1: Simplified LNG process

Assuming inlet conditions for the natural gas of 60 bara and 20◦C, the gas is

precooled to about -50◦C, condensed, liquefied and subcooled to about -150◦C. Dur-

ing this cooling process there is only a small pressure drop related to transport in

pipes and heat exchangers, so the pressure must be let down to about atmospheric

pressure after subcooling. This is done in the end flash process with a turbine and

a Joule-Thomson valve. The turbine lets down the pressure to almost the boiling

point to ensure that there is not a two-phase flow within the turbine. The end flash

is important to remove nitrogen from the natural gas and it is often used as fuel

gas. (Pettersen, 2010).

The C3MR process uses pure propane as precooling refrigerant and a mixed

refrgierant in the liquefaction part consisting of mainly methane and ethane, but

also some propane and nitrogen. C3MR is the most used LNG technology in the

world and therefore this technology will be studied here.

8.2 C3MR Technology

In Figure 8.2 a simplified flow scheme of the C3MR process is shown. The precooling

part consists of three (can also be two or four) heat exchangers in series; E1A, E1B

and E1C. The precooling medium is superheated in the heat exchangers to ensure

no liquid is introduced to the compressors. After compression to the saturation

pressure in C1 the precooling medium is condensed by heat exchanging with sea
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water or ambient air in CW1. The temperature is decreased by letting down the

pressure in an expansion valve, the two-phase flow is separated and the liquid is

introduced to the heat exchanger. Both the natural gas and the mixed refrigerant

for the liquefaction part are precooled. After precooling the mixed refrigerant is

a two-phase flow. The MR is separated in D1 and the heavier liquid fraction is

subcooled in E2A and used to liquefy the natural gas, while the lighter vapour

fraction is condensed and used to subcool the natural gas. The two heat exchangers

E2A and E2B shown in the scheme are actually one spiral wound heat exchanger.

(Pettersen, 2010).

Figure 8.2: C3MR process

8.3 Self-Optimizing Control

Up to now the objective function to be minimized has been J = −Tend, but in this

case the objective function is the opposite, J = +Tend, i.e. the end temperature

should be minimized. In either case the optimization problem is the same; as long

as the heat transfer is maximized the objective function is minimized.



8 SELF-OPTIMIZING CONTROL FOR LNG PLANTS 59

It is only in the precooling part that stream splits are involved. In Figure 8.2

there are two stream splits; downstream the two first (upper) separators the liquid

propane stream is split. This split could potentially be optimized using the self-

optimizing control strategy proposed in this study. A simplified flowsheet for the

precooling part is shown in Figure 8.3.

Precooled NG

PL

PL

PM

PHH

Mixed Refrigerant

Natural Gas Feed

PH

Condenser

PH

HE-300

Precooled MR

HE-200 HE-100

F1

F3

F2

PM

Figure 8.3: Precooling part of C3MR process

he objective function to be minimized is

minmize
u

J = −Ws

subject to c ≤ 0
(8.1)

where Ws is the compressor work and c are the constraints. The constraints are that

there should be superheated propane vapour out of each heat exchanger to make

sure that no liquid is introduced to the compressors.

The differences are many from the previous cases studied and the LNG/C3MR

case. Some of the differences are:

• The cold fluid (propane) is evaporating in the heat exchangers (superheated)

• The natural gas and mixed refrigerant are partially condensing in the heat

exchangers
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• The cold inlet temperatures (propane) are different for each heat exchanger

• The pressures are different in each of the cold (propane) inlet streams

Thus, the model equations are not the same, and the proposed self-optimizing

control strategy can not be used. A new invariant self-optimizing control variable

would have to be found by putting up new energy balances. For one heat exchanger

the energy balances are:

Q = mΔhvap (8.2)

Q = UAΔTLM (8.3)

where Δhvap is the heat of vaporization and 0◦C of superheating (saturated propane

vapour) is assumed out of the heat exchanger. In practice, 5◦C superheating is typ-

ically used. It is also assumed that neither the mixed refrigerant nor the natural gas

is condensing in the heat exchanger. As a start, these might be natural assumptions

to make. As before, ΔTLM could be approximated with ΔTAM . Since the inlet and

outlet temperature of the cold propane stream are the same, the AMTD is

ΔTAM =
Th,in + Th,out − 2Tc,in

2
(8.4)

However, it is unlikely that an approach using sparse resultants to eliminate

variables would result in a convenient self-optimizing variable. Instead, one of the

other methods mentioned in Chapter 3.2 could be used to achieve self-optimizing

control, for instance the exact local method.

8.3.1 Exact Local Method

The exact local method was derived by Halvorsen et al. (2003). If Wd (diagonal

matrix) contains the magnitude of disturbances andWe contains the implementation

errors assosciated with the controlled variables, then, assuming ||f ||2 = 1 where

f = [d e]T (d is the disturbance and e is the implementation error), the worst-case

loss is
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max
||f ||2≤1

L =
1

2
σ̄([Md Me])

2 (8.5)

where

Md = J1/2
uu (J−1

uu Jud −G−1Gd)Wd (8.6)

Me = J1/2
uu G−1We (8.7)

and σ̄ is the upper singular value, J is the cost function, G and Gd are the steady-

state gain matrix and disturbance model, respectively, and u degrees of freedom.

In our case the degrees of freedom are the three flows F1, F2, F3 and the three

pressures PH , PM and PL. PHH is set since this is the pressure propane condensates

at the given ambient temperature. G, Gd andWe are dependent on the measurement

combination matrix H through:

G = HGy; Gd = HGy
d; We = HWe (8.8)

Halvorsen et al. (2003) further propose a procedure to find the candidate set of

controlled variables c:

1. Specify the cost function J (J = Ws = Compressor work)

2. Solve the nominal optimization problem and find Juu and Jud

3. For each c, find the linear model Δc = GΔu+GdΔd

4. Find Wd and We

5. For each c, compute the singular value σ̄([Md Me])

6. The set c with the smalles singular value minimizes the loss in Equation (8.5)

The important disturbances in this case are the natural gas feed composition

and flow rate, and feed temperature and pressure (both natural gas and mixed

refrigerant). Here the mixed refrigerant is considered as a ”feed” to the precooling

section.
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Solving the nominal optimization problem (point 2 in the procedure above) can be

a difficult task for an LNG process. The process is extremely sensitive to changes in

the manipulated variables (u’s) and convergence failure is often a problem. However,

if the optimization problem could be solved this method is a good approach to

finding self-optimizing variables. It should be noted that the exact local method, as

the name implies, is only valid around the point which is linearized.
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9 Discussion and Further Work

This chapter is organized in three parts: A general part and two parts discussing

Perstorp and Statoil Mongstad, respectively.

9.1 General

In this work ideal mixing was assumed to calculate the end temperatures of the

different heat exchanger networks. When the streams have different temperature,

an exergy loss is associated with the mixing. If the temperature difference between

the streams increase the specific exergy of the mixture will remain unchanged, but

the absolute losses will increase (Semenyuk, 1976). A controlled variable which

would eliminate the exergy loss is c = T1 − T2 for a HEN with two heat exchangers

in parallel. However, the controlled variable was investigated through simulations

and it is revealed that the performance is not satisfactory, hence it is not a good

candidate as self-optimizing variable.

Also, the reduced gradient of the objective function, Jz,red, has been used in

the simulations as controlled variable. This results in optimal operation, but the

reduced gradient includes measurements like UA, u, ω0 and ωh which we would

avoid to measure.

9.2 Perstorp Study

It is obvious that some of the measured data from Perstorp are inconsistent. This

is easily realized by investigating the temperature difference between the outlet

temperature of the hot streams Th,11, Th,2 and Th,3 and the cold inlet temperature

T0. This temperature difference should be positive since negative heat transfer is

not possible. Similary, for HX1 the hot outlet temperature should be higher than

the cold inlet temperature. However, for some of the data points this is not the case,

and investigating the measurements for 2010 reveals that 557 of 8760 measurements

(6.8%) show this behaviour.

The heat exchangers in the Perstorp HEN are three spiral plate heat exchangers

and one plate and fin heat exchanger. In this study the flow pattern is assumed to
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be countercurrent which is approximately correct for a spiral plate heat exchanger.

However, the heat transafer is not pure counter-flow (Picon-Nunez et al., 2007). In

intermediate turns the hot stream exchanges heat with two adjacent cold streams at

different temperature. Hence, the temperature driving forces are lower than ΔTLM .

To improve the Perstorp model a correction factor FS could be introduced in the

heat exchagner model Q = UAΔTFS , where FS was determined by Bes and Roetzel

(1993):

FS =
ln(1 + CN2

CN2
) (9.1)

CN = 2

√
A

πAc
NTUcNTUh (9.2)

where CN is referred to as the criterion number. If the hot and cold heat transfer

area are the same the criterion number reduces to

CN =
2√
π
NTU (9.3)

If NTU is replaced by NTU × FS the efficiency is defined as in Equation (3.22).

The hot and cold outlet temperatures can then be found by using Equation (3.26)

and Equation (3.27), respectively.

The plate and fin heat exchanger model should also be improved since cross flow

is the flow pattern here. The equations that could be used are referred to in many

papers, for instance Sanaye and Hajabdollah (2010). This would ensure that a more

accurate model is used resulting in a more describing end temperature. However,

from the steady-state analysis that was conducted it was discovered that the self-

optimizing variable performed well in all the cases. Thus, it is likely to believe that

the performance is equally good if a more accurate model is used. It was stated that

the potential for improvement is about 1-3◦C. Since the optimal temperature will

be lower, because of the lower driving force ΔTLMFS, the potential for improvement

will also be lower. To quantify this value new simulations should be performed. This

is suggested as further work.
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9.3 Statoil Mongstad Study

It is assumed that the RTO performance is close to optimum, but the real optimum

is not known. However, this could be found by using fmincon in MATLAB. The

objective function should be implemented as J = −Tend and the constraints should

be removed, besides of the sum(u) = 1 constraint.

A dynamic model was not made for the Mongstad study. This is left as further

work.

The Mongstad model could also be improved further by performing some more

detailed Cp-calculations. Since the cold and hot fluids are all hydrocarbons the heat

capacity’s dependency on temperature is easily determined. In this study the Cp

has been calculated from received data from Statoil Mongstad and assumed constant

throughout the heat exchanger. Cp was calculated by taking the average of Cp,in and

Cp,out on each heat exchanger, both for cold and hot side. A better approach would

be to let the Cp vary with the corresponding mass flows (and hence temperatures)

for each heat exchanger. The MATLAB function fsolve could be used for this purpose.

By guessing an outlet Cp,0 value the average could be used to calculate the outlet

temperatures and then calculating again the outlet Cp. fsolve then varies the guessed

outlet Cp value until it matches with the calculated Cp value. This is left as further

work.

9.3.1 Improved approximation

Recall that for a countercurrent heat exchanger, if 1/1.4 < Θ1/Θ2 < 1.4 the error is

less than 1% if LMTD is replaced by AMTD. When shell-and-tube heat exchangers

are used the correction factor F must be included and the relevant approximation is

ΔTLMF ≈ ΔTAM . Since ΔTLM < ΔTAM and F ≤ 1 this approximation will differ

more than the approximation ΔTLM ≈ ΔTAM .

By looking at the Equations (3.8)-(3.12) it is obvious that F is dependent on the

hot and cold temperatures, not only Θ1 and Θ2. F is further dependent on R, P

and N , which means that if all the four temperatures (hot and cold inlet and outlet)

change by the same factor k, both R and P will remain unchanged and the same

number of shells will be required to achieve the same correction factor. Both the



9 DISCUSSION AND FURTHER WORK 66

LMTD and the AMTD will increase by the factor k resulting in the same error as

in the original case.

The higher temperature levels the higher is the approximation error for the same

number of shells. As an example, if the hot and cold inlet and outlet temperatures

are 20◦C, 10◦C, 7◦C and 18◦C, respectively, and the number of shells are 4, the

error associated with the approximation ΔTLMF ≈ ΔTAM is 32 %. If the hot and

cold inlet and outlet temperatures are increased to 200◦C, 100◦C, 97◦C and 198◦C,

respectively, the number of shells must be increased to about 38 to end up with

the same approximation error. This is clearly an unrealistic number of shells, but

illustrates the temperature dependency. Note that both Θ1 and Θ2 are equal for the

two cases.

It is obvious that the approximation can result in high errors in some cases. The

errors can potentially counteract each other, but that is just a matter of being lucky

or unlucky. If k < 1 is a constant and of similar size as F one could think that the

approximation

FΔTLM ≈ kΔTAM (9.4)

would improve the performance since F ≤ 1. Typically F is in the range 0.8 <

F < 1 which means that k could be chosen to by equal to 0.9. This will reduce

the approximation error where the original approximation is not good, but it will

increase the error where the original approximation is good. As an example, take

the errors listed in Table 7.1 on page 49. The absolute error,
√∑

Error2i , is 45.6

%, where i represents the individual stream. If k = 0.9 was used the absolute error

would be reduced to 27.4 %. The minimum absolute error for a constant k is for

k = 0.915, resulting in an absolute error of 26.6 %.

However, even if we model the heat transfer by Q = UAkΔTAM the self-

optimizing variable stays the same. Recall from Chapter 4.1 that the UA values

were eliminated even if it was not included in the list of variables to be eliminated.

Hence, since UA was eliminated, also the product kUA would be eliminated. In

other words, the size of k is not of importance in order to find a good self-optimizing

variable.
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9.3.2 Include stream G

When optimizing the crude unit heat exchanger network stream G was kept constant.

The complete network could be optimized by deriving a new model. It could be

imagined that the heat exchanger O1 was direcly installed on each stream A-F,

where the corresponding UA-value would be

UAi = UAO1ui i = A,B . . . F (9.5)

where u is the mass fraction (not including stream G) on each stream. On stream B,

C, D and F there would then be three heat exchangers in series and a new steady-

state model (g in Equation (8.1) on page 59) must be found using the same approach

as described in Chapter 3.4. This is left as further work.
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10 Conclusion

In this study a self-optimizing variable has been applied on several cases. The

performance has been satisfactory in all the cases. With the proposed self-optimizing

strategy the performance at Perstorp can be improved according to the simulations.

The performance at Statoil Mongstad is in practice the same using RTO and the

proposed SOC strategy.

Advantages with the method is that it relies only on simple temperature mea-

surements, hence no flow measurements are needed nor technical data like the heat

exchanger area, heat transfer coefficients and heat capacities are necessary. The

performance is best for well designed processes where ΔTAM is close to ΔTLM . The

control structure is simple since only PI controllers are needed. With well tuned

controllers good disturbance rejection can be achieved.

The self-optimizing variable is only used for relatively simple heat exchanger

networks. For more compliated HENs, for instance the ones we find in LNG plants,

further work is needed.
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A Case Studies (I)

A.1 Case II-a: ωh < ωc and high UA-values

ωh [W/K] Th,in [◦C] UA [W/K]

HX1 30 120 120

HX2 50 140 200

Table A.1: Parameters for Case II-a
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A.2 Case III-a: ωh = ωc and low UA-values

ωh [W/K] Th,in [◦C] UA [W/K]

HX1 50 120 50

HX2 50 140 80

Table A.2: Parameters for Case IV-a
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Figure A.4: T and c vs split
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Figure A.5: Temperature profiles
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A.3 Case IV-a: ωh = ωc and low UA-values

ωh [W/K] Th,in [◦C] UA [W/K]

HX1 50 120 120

HX2 50 140 200

Table A.3: Parameters for Case V-a
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Figure A.7: T and c vs split
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Figure A.8: Temperature profiles

Split, u

θ 1/θ
2

 

 

LB

UB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
HX1
HX2

(a) Approximation

Split, u

E
rr

or
 [%

]

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10
HX1
HX2

(b) Error

Figure A.9: Approximation
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A.4 Case V-a: ωh > ωc and low UA-values

ωh [W/K] Th,in [◦C] UA [W/K]

HX1 80 120 120

HX2 60 140 200

Table A.4: Parameters for Case VI-a
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Figure A.10: T and c vs split
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Figure A.11: Temperature profiles
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Figure A.12: Approximation
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A.5 Case VI-a: ωh > ωc and high UA-values

ωh [W/K] Th,in [◦C] UA [W/K]

HX1 80 120 120

HX2 60 140 200

Table A.5: Parameters for Case VII-a
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Figure A.13: T and c vs split
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Figure A.14: Temperature profiles
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Figure A.15: Approximation
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A.6 Case VII-a: ωh > ωc and high UA-values

ωh [W/K] Th,in [◦C] UA [W/K]

HX1 80 120 95

HX2 60 140 110

Table A.6: Parameters for Case VIII-a
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Figure A.16: T and c vs split
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Figure A.17: Temperature profiles
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Figure A.18: Approximation



B CASE STUDIES (II) 85

B Case Studies (II)

B.1 Case II-b: ωh > ωc and high UA-values

ωh [W/K] Th,in [◦C] UA [W/K]

HX11 30 120 100

HX1 50 140 180

HX2 40 140 60

Table B.1: Parameters for Case II-b
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Figure B.1: T and c vs split
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Figure B.2: Temperature profiles
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Figure B.3: Approximation
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B.2 Case III-b: ωh = ωc and low UA-values

ωh [W/K] Th,in [◦C] UA [W/K]

HX11 25 70 30

HX1 50 160 70

HX2 25 125 33

Table B.2: Parameters for Case III-b
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Figure B.4: T and c vs split
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Figure B.5: Temperature profiles
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Figure B.6: Approximation
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B.3 Case IV-b: ωh > ωc and high UA-values

ωh [W/K] Th,in [◦C] UA [W/K]

HX11 150 140 90

HX1 120 120 150

HX2 70 141 65

Table B.3: Parameters for Case IV-b
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Figure B.7: T and c vs split
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Figure B.8: Temperature profiles
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Figure B.9: Approximation
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B.4 Case V-b: ωh > ωc and intermediate UA-values

ωh [W/K] Th,in [◦C] UA [W/K]

HX11 30 110 50

HX1 70 75 80

HX2 40 125 65

Table B.4: Parameters for Case V-b
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Figure B.10: T and c vs split
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Figure B.11: Temperature profiles
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Figure B.12: Approximation
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B.5 Case VI-b: ωh > ωc and intermediate UA-values

ωh [W/K] Th,in [◦C] UA [W/K]

HX11 30 120 50

HX1 50 140 80

HX2 40 80 65

Table B.5: Parameters for Case VI-b
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Figure B.13: T and c vs split
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Figure B.15: Approximation
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C Perstorp Flowsheet
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Figure C.1: Perstorp flowsheet



D PERSTORP CASE: STEADY-STATE RESULTS 96

D Perstorp Case: Steady-State

Results
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Figure D.1: Steady-state results (2008, January 12, 6pm)
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Figure D.2: Steady-state results (2008, September 27, 8pm)
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Figure D.3: Steady-state results (2008, December 14, 8pm)
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Figure D.4: Steady-state results (2009, February 22, 2pm)
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Figure D.5: Steady-state results (2009, September 18, 4pm)
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Figure D.6: Steady-state results (2009, December 17, 10pm)
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Figure D.7: Steady-state results (2010, February 21, 4pm)
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Figure D.8: Steady-state results (2010, August 15, 7pm)

108

10
8

108

108

113

113

113

113

118

11
8

118

123

12
3

123128

126.6126.6

u
2

u 1

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
c

1
=0

c
2
=0

T
opt

Figure D.9: Steady-state results (2010, December 11, 12pm)
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E Mongstad HEN

Figure E.1: Flowsheet of Mongstad HEN
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F UA-values for Statoil

Mongstad

UAold

[
W
K

]
UAest

[
W
K

]
Difference [×103%]

A1 131025.48 131023.97 -1.15

B1 102709.10 102710.93 +1.78

B2 88644.82 88645.03 +0.23

C1 84642.10 84641.36 -0.87

C2 133605.46 133605.42 -0.03

D1 132831.92 132831.76 -0.12

D2 41563.90 41564.42 +1.26

E1 190981.94 190981.21 -0.38

F1 49437.00 49438.07 +2.15

F2 111426.08 111425.97 -0.09

F3 112627.18 112627.77 +0.53

G1 96449.75 96445.64 -4.26

G2 125079.36 125075.55 -3.05

O1 144051.68 144050.14 -1.07

Table F.1: UA values
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G MATLAB files

G.1 Case Studies

case1.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%% %%%%%

3 %%%%% CASE I %%%%%

4 %%%%% Two Heat Exchangers in Parallel %%%%%

5 %%%%% %%%%%

6 %%%%% Daniel Greiner Edvardsen %%%%%

7 %%%%% IKP , NTNU %%%%%

8 %%%%% June 14, 2011 %%%%%

9 %%%%% %%%%%

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11

12 % Info: This m-file calculates the hot and cold outlet

13 % temperatures for two heat exchangers in parallel

14 % for a given set of conditions. Further , the optimum

15 % is found (optimal split) that results in the

16 % maximum end temperature. The SOC split is also found

17 % and compared with the optimal split.

18

19 clc;

20 clear all;

21 close all;

22

23 %% Defining parameters

24

25 % Cases evaluated

26 % Vector parameters: [T0 w0 wh1 wh2 Th1in Th2in UA1 UA2]

27

28 caseI = [60 100 30 50 120 140 50 80];

29 caseII = [60 100 30 50 120 140 120 200];

30 caseIII = [60 100 15 15 120 140 120 200];



G MATLAB FILES 104

31 caseIV = [60 100 50 50 120 140 50 80];

32 caseV = [60 100 50 50 120 140 120 200];

33 caseVI = [60 100 80 60 120 140 50 80];

34 caseVII = [60 100 80 60 120 140 120 200];

35 caseVIII = [60 100 80 60 120 140 95 110];

36 HEN_F = [147.0776 154477.15 91650.28 90371.74 ...

37 248.07 248.07 110709 112203];

38 HEN_H = [241.1040+0.8019 422096.96 159606.70 ...

39 147970.52 358.5740 138842 209356];

40

41 % Select case

42 casesel = caseIII;

43

44 % Operation parameters

45 T0 = casesel (1); % Feed stream temperature [*C]

46 w0 = casesel (2); % [kW/K]

47

48 % Utility parameters

49 wh1 = casesel (3); % Hot stream 1 Heat Capacity [kW/K]

50 wh2 = casesel (4); % Hot stream 2 Heat Capacity [kW/K]

51 Th1in = casesel (5); % Hot stream 1 Temperature

52 Th2in = casesel (6); % Hot stream 2 Temperature

53

54 % Design parameters

55 UA1 = casesel (7); % [kW/K]

56 UA2 = casesel (8); % [kW/K]

57

58 % Number of iterations

59 iter=10000;

60

61 n = zeros(iter ,1);

62 T1=n; T2=n; Th1=n; Th2=n; Tmix=n; e1=n; eh1=n; e2=n; eh2=n;

63 C1=n; C2=n; NTU1=n; NTU2=n; U=n;

64

65 %% T-out , HE and CONSTRAINT

66 for i=1:iter
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67

68 u = i/iter;

69 U(i)=u;

70

71 % Calculating outlet temperatures and info about HEs

72 % (only u is changing )

73 [T HE] = tempCalc (T0,w0,UA1 ,UA2 ,Th1in ,wh1,Th2in ,wh2 ,u);

74

75 T1(i)=T(1); T2(i)=T(2); Th1(i)=T(3); Th2(i)=T(4);

76 Tmix(i)=T(5); e1(i)=HE(1); eh1(i)=HE(2); e2(i)=HE(3);

77 eh2(i)=HE(4); C1(i)=HE(5); C2(i)=HE(6); NTU1(i)=HE(7);

78 NTU2(i)=HE(8);

79

80 end

81

82 %% Results

83

84 % Self -optimizing variable

85 c = (T1-T0).^2./(Th1in -T0) - (T2-T0).^2./( Th2in -T0);

86

87 % Chen approximation

88 CHEN = 2.*T1.^2.*T2.^2.*Th2.* Th1in.*Th2in+8.*T1.*T2 .^3.*

Th2.*Th1.*Th1in -4.*T1.*Th2.*Th2in.*Th1in.^2.*T2.^2 -4.*T1

.*Th2 .^2.*Th1.*Th1in.*T2.^2+4.* T1.*T2.^3.*Th2.*Th1in

.^2+8.* T2.^2.*Th1.*Th2.*Th2in.*Th1in.^2 -8.*T1.^2.*Th2.*

Th1.*Th1in.*Th2in.^2 -2.*T1.^2.*Th2 .^2.*Th1.*Th2in.*Th1in

+4.*T1.^2.*T2.*Th2.*Th1 .^2.*Th2in+4.*T1.^2.*T2.*Th1.*

Th1in.*Th2in.^2 -2.*T1.^2.*T2.^2.*Th1.*Th2in.*Th1in+2.*T1

.^3.*Th1.*Th2in.*T2.^2 -4.*T1.^3.*T2.*Th1.*Th2in .^2+2.* T1

.^3.*Th1.*Th2 .^2.*Th2in+8.*T1.^3.*Th1.*Th2.*Th2in.^2 -4.*

T1.^2.*Th2.*Th1.^2.* Th2in .^2+2.* T1.^2.*T2.*Th1 .^2.*Th2in

.^2-T1.^2.*T2.^2.*Th1.^2.*Th2in+T1.^2.*T2 .^2.*Th2 .^2.*

Th1in -2.*T1.^2.*Th2.*Th1in.*T2.^3-T1.^2.*Th2.^2.*Th1

.^2.*Th2in -2.*T1.^2.*Th1.*Th2in .^3.*Th1in -2.*T1.*Th2

.^2.* Th1in.^2.*T2.^2 -2.*T2.^3.*Th1 .^2.*Th2.*Th1in -8.*T2

.^3.*Th1.*Th2.*Th1in .^2+T2.^2.*Th1 .^2.*Th2 .^2.*Th1in+4.*
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T2.^2.*Th1.*Th2.^2.* Th1in .^2+2.* T2.^2.*Th2.*Th1in .^3.*

Th2in -T1 .^2.*Th1 .^2.*Th2in .^3+2.* T2.^2.*Th1.^2.*Th2.*

Th1in.*Th2in -2.*T2.^3.*Th2.*Th1in.^3+T2.^2.*Th2.^2.*

Th1in .^3+2.* T1.^3.*Th1.*Th2in.^3 -8.*T1.^3.*T2.*Th1.*Th2

.*Th2in+8.*T1.^2.*T2.*Th2.*Th1.*Th2in.*Th1in -8.*T1.*Th2

.*Th1.*Th2in.*Th1in.*T2.^2;

89

90 %No exergy loss: T1 = T2

91 EQ = T1-T2;

92

93 % Gradient , GRAD

94 w1=w0.*U;

95 w2=w0.*(1.-U);

96

97 GRAD = UA2.*UA1.*T1.*wh2.*wh1+UA1.*w2.*T1.*UA2.*wh1+UA2.*T0

.*w1.*wh2.*UA1 -UA1.*T0.*w2.*UA2.*wh1 -UA2.*UA1.*T2.*wh2.*

wh1 -UA2.*T2.*wh2.*w1.*UA1+2.*UA2.*T0.*w1.*wh2.*wh1 -2.*

UA2.*T2.*wh2.*w1.*wh1 -2.*UA1.*T0.*w2.*wh2.*wh1 +2.*UA1.*

w2.*T1.*wh2.*wh1;

98

99 SUM = [U T1 Th1 T2 Th2 Tmix c];

100 HE = [e1 eh1 e2 eh2 C1 C2 NTU1 NTU2];

101

102 % Finding optimal split

103 [Tmixm ,nr]=max(Tmix);

104

105 split=U(nr);

106 T1m=T1(nr);

107 Th1m=Th1(nr);

108 T2m=T2(nr);

109 Th2m=Th2(nr);

110 Ceq=c(nr);

111 Tmixm;

112

113 % Information about the heat transfer (optimal split)

114 he=[e1(nr) eh1(nr) e2(nr) eh2(nr) C1(nr) C2(nr) ...
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115 NTU1(nr) NTU2(nr)]�;

116

117 % Finding the self -optimizing split

118 [Ceq2 ,nr2]=min(abs(c));

119

120 split2=U(nr2);

121 T1m2=T1(nr2);

122 Th1m2=Th1(nr2);

123 T2m2=T2(nr2);

124 Th2m2=Th2(nr2);

125 Ceq2;

126 Tmixm2=Tmix(nr2);

127

128 % Information about the heat transfer

129 he2=[e1(nr2) eh1(nr2) e2(nr2) eh2(nr2) C1(nr2) C2(nr2) ...

130 NTU1(nr2) NTU2(nr2)]�;

131

132 % Looking for the �Gradient split �

133 [Ceq3 ,nr3]=min(abs(GRAD));

134 split3=U(nr3);

135

136 % Looking for the �T1-T2 split �

137 [Ceq4 ,nr4]=min(abs(EQ));

138 split4=U(nr4);

139

140 % Looking for the �CHEN split �

141 [Ceq5 ,nr5]=min(abs(CHEN));

142 split5=U(nr5);

143

144 % Deviation from optimal split

145 best = abs([split2 ,split3 ,split4 ,split5]�-split);

146

147 % Calculating the temperature differences on each side of

148 % the HEs

149 dT11=Th1 -T0; dT12=Th1in -T1; dT21=Th2 -T0; dT22=Th2in -T2;

150
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151 Tr1=dT11./dT12;

152 Tr2=dT21./dT22;

153

154 % Calculating errors

155 [eAM1 eAM2] = errCalc(dT11 , dT12 , dT21 , dT22);

156

157 %% Some plots

158 close all;

159

160 % Tend and controlled variable

161 h = figure;

162

163 y1start =190; y1slutt =212; sprangy1 =2;

164 y2start =-100; y2slutt =120; sprangy2 =20;

165

166 [AX,H1,H2] = plotyy(U, Tmix , U,c);

167 set(get(AX(1),�Ylabel �),�String � ,...

168 �T_{end} [ \circC]�,�fontsize � ,12)

169 set(get(AX(2),�Ylabel �),�String � ,...

170 �Controlled variable , c [ \circC]�,�fontsize � ,12)

171 axis(AX(1) ,[0 1 y1start y1slutt ]);

172 axis(AX(2) ,[0 1 y2start y2slutt ]);

173 set(AX(1),�YLim�,[y1start y1slutt ])

174 set(AX(1),�YTick �,y1start:sprangy1:y1slutt)

175 set(AX(2),�YLim�,[y2start y2slutt ])

176 set(AX(2),�YTick �,y2start:sprangy2:y2slutt)

177 set(H1,�linewidth�,2)

178 set(H2,�linewidth�,2)

179 xlabel(�Split , u�,�fontsize � ,12);

180 hold on;

181 gridxy(split2 ,�Color �,�r�,�LineStyle�,�--�,�LineWidth�,2);

182 hold on;

183 grid on;

184 print(h,�-depsc�,�temp.eps�);

185

186 %Error plots
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187 h = figure;

188 plot(U,Tr1 ,U,Tr2 ,�linewidth�,2);

189 axis([0 1 0 0.1]);

190 xlabel(�Split , u�,�fontsize � ,12);

191 ylabel(�\theta_1 /\theta_2 �,�fontsize � ,12);

192 legend(�HX1�,�HX2 �,�fontsize � ,12);

193 hline ([1/1.4 1.4 1],{�magenta �,�magenta �,�black:�},...

194 {�LB �,�UB �,��})

195 hold on;

196 gridxy(split ,�Color �,�r�,�LineStyle�,�--�,�LineWidth�,2);

197 print(h,�-depsc�,�approx.eps �);

198

199 h = figure;

200 plot(U,eAM1 ,U,eAM2 ,�linewidth� ,2);

201 xlabel(�Split , u�,�fontsize � ,12);

202 ylabel(�Error [%] �,�fontsize � ,12);

203 legend(�HX1�,�HX2 �,�fontsize � ,12);

204 axis([0 1 0 500]);

205 hold on;

206 gridxy(split ,�Color �,�r�,�LineStyle�,�--�,�LineWidth�,2);

207 print(h,�-depsc�,�error.eps �);

208

209 % Temperature profiles

210

211 %Optimal profiles

212 w1opt=split*w0;

213 w2opt=(1-split)*w0;

214

215 [z dT1opt dT2opt] = Tprof(T0,Th1m ,Th2m ,w1opt ,w2opt ,...

216 wh1 ,wh2 ,UA1 ,UA2);

217

218 %SOC profiles

219 w1soc=split2*w0;

220 w2soc=(1-split2)*w0;

221

222 [z dT1soc dT2soc] = Tprof(T0,Th1m2 ,Th2m2 ,w1soc ,w2soc ,...
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223 wh1 ,wh2 ,UA1 ,UA2);

224

225 %Optimal

226 h = figure;

227 plot(z,dT1opt ,z,dT2opt ,�linewidth� ,2);

228 xlabel(�Length �,�fontsize � ,12);

229 ylabel(�\DeltaT [ \circC]�,�fontsize � ,12);

230 legend(�HX1�,�HX2 �,�fontsize � ,12);

231 grid on;

232 print(h,�-depsc�,�optprof.eps �);

233

234 %SOC

235 h = figure;

236 plot(z,dT1soc ,z,dT2soc ,�linewidth� ,2);

237 xlabel(�Length �,�fontsize � ,12);

238 ylabel(�\DeltaT [ \circC]�,�fontsize � ,12);

239 legend(�HX1�,�HX2 �,�fontsize � ,12);

240 grid on;

241 print(h,�-depsc�,�socprof.eps �);

tempCalc.m

1 function [T HE] = tempCalc(T0,w0,UA1 ,UA2 ,Th1in ,wh1 ,...

2 Th2in ,wh2 ,u)

3

4 w1 = u*w0;

5 w2 = (1-u)*w0;

6

7 NTU1 = UA1/w1;

8 NTU2 = UA2/w2;

9

10 C1 = w1/wh1;

11 C2 = w2/wh2;

12

13 if(C1 >0.999 && C1 <1.001)

14 C1=0.999;
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15 end

16

17 if(C2 >0.999 && C2 <1.001)

18 C2=0.999;

19 end

20

21 e1 = (1-exp(-NTU1*(C1 -1)))/(C1-exp(-NTU1*(C1 -1)));

22 e2 = (1-exp(-NTU2*(C2 -1)))/(C2-exp(-NTU2*(C2 -1)));

23 eh1 = e1*C1;

24 eh2 = e2*C2;

25

26 T1 = e1*Th1in + (1-e1)*T0;

27 T2 = e2*Th2in + (1-e2)*T0;

28 Th1 = (1-eh1)*Th1in + eh1*T0;

29 Th2 = (1-eh2)*Th2in + eh2*T0;

30 Tmix = u*T1+(1-u)*T2;

31

32 T = [T1 T2 Th1 Th2 Tmix];

33 HE = [e1 eh1 e2 eh2 C1 C2 NTU1 NTU2];

errCalc.m

1 function [eAM1 eAM2] = errCalc(dT11 , dT12 , dT21 , dT22)

2

3 %Logarithmic mean temperature difference

4 LM1 = (dT11 -dT12)./log(dT11./dT12);

5 LM2 = (dT21 -dT22)./log(dT21./dT22);

6

7 %Arithmetic mean temperature difference

8 AM1 = (dT11+dT12)./2;

9 AM2 = (dT21+dT22)./2;

10

11 %AM error

12 eAM1 = (AM1 -LM1)./LM1 *100;

13 eAM2 = (AM2 -LM2)./LM2 *100;
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Tprof.m

1 function [z dT1 dT2] = Tprof(T0,Th1 ,Th2 ,w1,w2,wh1 ,wh2 ,UA1 ,

UA2)

2

3 z=(0.0001:0.0001:1) �;

4

5 R1=(w1-wh1)./(w1*wh1);

6 R2=(w2-wh2)./(w2*wh2);

7

8 dT1 = (Th1 -T0).*exp(R1*UA1.*z);

9 dT2 = (Th2 -T0).*exp(R2*UA2.*z);
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case2.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%% %%%%%

3 %%%%% CASE II %%%%%

4 %%%%% Two Heat Exchangers in Series %%%%%

5 %%%%% and One in Parallel %%%%%

6 %%%%% %%%%%

7 %%%%% Daniel Greiner Edvardsen %%%%%

8 %%%%% IKP , NTNU %%%%%

9 %%%%% June 14, 2011 %%%%%

10 %%%%% %%%%%

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12

13 % Info: This m-file calculates the hot and cold outlet

14 % temperatures for two heat exchangers in series and

15 % one in parallel for a given set of conditions.

16 % Further , the optimum is found (optimal split) that

17 % results in the maximum end temperature. The SOC split

18 % is also found and compared with the optimal split.

19

20 clc;

21 clear all;

22 close all;

23

24 %% Defining parameters

25

26 % Cases evaluated. Vector parameters:

27 % [T0 w0 wh11 wh1 wh2 Th11in Th1in Th2in UA11 UA1 UA2]

28 caseI = [60 100 30 50 20 120 140 140 50 80 65];

29 caseII = [60 100 30 50 40 120 140 140 100 180 60];

30 caseIII = [60 100 25 50 25 70 160 125 30 70 33];

31 caseIV = [60 100 150 120 70 140 120 141 90 150 65];

32 caseV = [60 100 30 70 40 110 75 125 50 80 65];

33 caseVI = [60 100 30 50 40 120 140 80 50 80 65];

34

35 %Select case
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36 casesel = caseI;

37

38 %%%%%%%%%%%%%%% Operation parameters %%%%%%%%%%%%%%%%%%%%

39 T0 = casesel (1); % Feed stream temperature [K]

40 w0 = casesel (2); % m*Cp [kW/K]

41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

42

43 %%%%%%%%%%%%%%%% Utility parameters %%%%%%%%%%%%%%%%%%%%%%

44 wh11 = casesel (3); % Hot stream 1 Heat Capacity [kW/K]

45 wh1 = casesel (4); % Hot stream 11 Heat Capacity [kW/K]

46 wh2 = casesel (5); % Hot stream 2 Heat Capacity [kW/K]

47 Th11in = casesel (6); % Hot stream 1 Temperature [kW/K]

48 Th1in = casesel (7); % Hot stream 11 Temperature [kW/K]

49 Th2in = casesel (8); % Hot stream 2 Temperature [kW/K]

50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

51

52 %%%%%%%%%%%%%%%%%% Design parameters %%%%%%%%%%%%%%%%%%%%

53 UA11 = casesel (9); % [kW/K]

54 UA1 = casesel (10); % [kW/K]

55 UA2 = casesel (11); % [kW/K]

56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

57

58 % Number of iterations

59 iter=1000;

60

61 n = zeros(iter ,1);

62 T11=n; T2=n; T1=n; Th11=n; Th2=n; Th1=n; Tmix=n;

63 e11=n; eh11=n; e2=n; eh2=n; e1=n; eh1=n; C11=n;

64 C2=n; C1=n; NTU11=n; NTU2=n; NTU1=n; U=n; CON=n;

65 CHEN=n; CHEN2=n; CON2=n;

66

67 %% T-out , HE and CONSTRAINT

68 for i=1:iter

69

70 u = i/iter;

71 U(i)=u;
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72

73 % Calculating outlet temperatures and info about HEs

74 % Only u is changing

75 [T HE] = tempCalc2(T0,w0,UA11 ,UA2 ,UA1 ,Th11in ,Th2in ,...

76 Th1in ,wh11 ,wh2 ,wh1 ,u);

77

78 T11(i)=T(1); T2(i)=T(2); T1(i)=T(3); Th11(i)=T(4);

79 Th2(i)=T(5); Th1(i)=T(6); Tmix(i)=T(7); e11(i)=HE(1);

80 eh11(i)=HE(2); e2(i)=HE(3); eh2(i)=HE(4); C11(i)=HE(5);

81 C2(i)=HE(6); NTU11(i)=HE(7); NTU2(i)=HE(8);

82

83 end

84

85 %% Results

86

87 % Self -optimizing variable

88 c = (T2-T0).^2./(Th2in -T0) - (((Th1in -T1)./(Th11in -T0) -1)

.*(T11 -T0).^2./( Th1in -T11)+(T1-T0).^2./(Th1in -T11));

89

90 %No exergy loss: T1 = T2

91 EQ = T1-T2;

92

93 % Gradient , GRAD

94 w1=w0.*U;

95 w2=w0.*(1.-U);

96

97 GRAD = -4.*UA2.*T2.*wh1.*w1.^2.*wh11.*wh2 -2.*UA2.*T2.*w1

.^2.*UA1.*wh11.*wh2+2.*w1.*T1.*wh1.*UA1.*wh11.*w2.*UA2

+4.*w1.*T1.*wh1.*UA1.*wh11.*w2.*wh2 +2.*T1.*UA1.*wh1.*w1

.*wh11.*w2.*UA2+4.*T1.*UA1.*wh1.*w1.*wh11.*w2.*wh2 +2.*

UA2.*w1.*T1.*wh1.*UA1.*wh11.*wh2+2.*UA2.*T1.*UA1.*wh1.*

w1.*wh11.*wh2 -2.*UA2.*T2.*w1.*wh1.*UA1.*wh11.*wh2 -2.*UA2

.*UA11.*T2.*wh1.*w1 .^2.*wh2 -UA2.*T2.*w1.^2.*UA1.*UA11.*

wh2+2.*UA11.*w1.*T1.*wh1.*wh11.*w2.*UA2 +4.*UA11.*w1.*T1

.*wh1.*wh11.*w2.*wh2 +2.*UA2.*UA11.*w1.*T1.*wh1.*wh11.*

wh2 -2.*UA2.*UA11.*T2.*w1.*wh1.*wh11.*wh2+UA1.*UA11.*T1.*
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wh1.*wh11.*w2.*UA2+UA11.*w1.*T1.*wh1.*UA1.*w2.*UA2 +2.*

UA11.*T1.*UA1.*wh1.*w1.*w2.*wh2+UA11.*T1.*UA1.*wh1.*w1.*

w2.*UA2+2.*UA11.*w1.*T1.*wh1.*UA1.*w2.*wh2+UA2.*UA11.*w1

.*T1.*wh1.*UA1.*wh2+UA2.*UA11.*T1.*UA1.*wh1.*w1.*wh2-UA2

.*UA11.*T2.*w1.*wh1.*UA1.*wh2+UA11.*w1.*T1.*UA1.*wh11.*

w2.*UA2+UA2.*UA11.*w1.*T1.*UA1.*wh11.*wh2+2.*UA11.*w1.*

T1.*UA1.*wh11.*w2.*wh2 -UA2.*UA11.*T2.*w1.*UA1.*wh11.*wh2

+2.*UA1.*UA11.*T1.*wh1.*wh11.*w2.*wh2+UA1.*UA2.*UA11.*T1

.*wh1.*wh11.*wh2 -UA1.*UA2.*UA11.*T2.*wh1.*wh11.*wh2;

98

99 SUM = [U T11 Th1 T2 Th2 Tmix c];

100 HE = [e11 eh11 e2 eh2 C11 C2 NTU11 NTU2];

101

102 % Finding optimal split

103 [Tmixm ,nr]=max(Tmix);

104

105 split=U(nr);

106 T11m=T11(nr); T2m=T2(nr); T1m=T1(nr); Th11m=Th1(nr);

107 Th2m=Th2(nr); Th1m=Th1(nr); Ceq=c(nr); Tmixm;

108

109 Tm=[T11m T2m T1m Th11m Th2m Th1m Tmixm]�;

110

111 % Information about the heat transfer (optimal)

112 he=[e11(nr) eh11(nr) e2(nr) eh2(nr) C11(nr) C2(nr)

113 NTU11(nr) NTU2(nr)]�;

114

115 % �theta1 �/�theta2 (in optimum)�

116 Tr=[(Th11m -T0)/(Th11in -T11m)

117 (Th2m -T0)/(Th2in -T2m)

118 (Th1m -T11m)/(Th1in -T1m)];

119

120 % Calculating the temperature differences

121 % on each side of the HEs

122 dT111=Th1 -T0; dT112=Th11in -T11; dT21=Th2 -T0;

123 dT22=Th2in -T2; dT11=Th1-T11; dT12=Th1in -T1;

124
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125 Tr11=dT111./ dT112;

126 Tr2=dT21./dT22;

127 Tr1=dT11./dT12;

128

129 % Calculating errors

130 [eAM11 eAM2 eAM1] = errCalc2 (dT111 , dT112 , dT21 , dT22 , ...

131 dT11 , dT12);

132

133 int=round(split*iter);

134 eTOT=sqrt(eAM11(int)^2+eAM2(int)^2+ eAM1(int)^2);

135

136 % Finding the self -optimizing split

137 [Ceq2 ,nr2]=min(abs(c));

138 split2=U(nr2);

139 T11m2=T11(nr2); Th11m2=Th1(nr2); T2m2=T2(nr2);

140 Th2m2=Th2(nr2); T1m2=T1(nr2); Th1m2=Th1(nr2);

141 Ceq2; Tmixm2=Tmix(nr2);

142

143 Tm2=[T11m2 T2m2 T1m2 Th11m2 Th2m2 Th1m2 Tmixm2]�;

144

145 % Information about the heat transfer (SCOC)

146 he2=[e11(nr2) eh11(nr2) e2(nr2) eh2(nr2) C11(nr2) C2(nr2)

147 NTU11(nr2) NTU2(nr2)]�

148

149 % Looking for the �Gradient split �

150 [Ceq3 ,nr3]=min(abs(GRAD));

151 split3=U(nr3);

152

153 % Looking for the �T11-T2 split �

154 [Ceq4 ,nr4]=min(abs(EQ));

155 split4=U(nr4);

156

157 % Looking for the �CHEN split �

158 [Ceq5 ,nr5]=min(abs(CHEN));

159 split5=U(nr5);

160
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161 % Deviation from optimal split

162 best = abs([split2 ,split3 ,split4 ,split5]�-split);

163

164 %% Plots

165 close all;

166

167 % Tend and controlled variable

168 h = figure;

169 [AX,H1,H2] = plotyy(U, Tmix , U,c);

170 set(get(AX(1),�Ylabel �),�String �,�T_{end} [ \circC]� ,...

171 �fontsize � ,12)

172 set(get(AX(2),�Ylabel �),�String � ,...

173 �Controlled variable , c [ \circC]�,�fontsize � ,12)

174 set(H1,�linewidth�,2)

175 set(H2,�linewidth�,2)

176 xlabel(�Split , u�,�fontsize � ,12);

177 hold on;

178 gridxy(split2 ,�Color �,�r�,�LineStyle�,�--�,�LineWidth�,2);

179 hold on;

180 grid on;

181 print(h,�-depsc�,�temp.eps�);

182

183 %Error plots

184 h = figure;

185 plot(U,Tr11 ,U,Tr1 ,U,Tr2,�linewidth�,2);

186 axis([0 1 0 10]);

187 xlabel(�Split , u�,�fontsize � ,12);

188 ylabel(�\theta_1 /\theta_2 �,�fontsize � ,12);

189 legend(�HX11�,�HX1 �,�HX2 �,�fontsize � ,12);

190 hline ([1/1.4 1.4 1],{�magenta �,�magenta �,�black:�},...

191 {�LB �,�UB �,��})

192 hold on;

193 gridxy(split ,�Color �,�r�,�LineStyle�,�--�,�LineWidth�,2);

194 print(h,�-depsc�,�approx.eps �);

195

196 h = figure;
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197 plot(U,eAM11 ,U,eAM1 ,U,eAM2 ,�linewidth� ,2);

198 xlabel(�Split , u�,�fontsize � ,12);

199 ylabel(�Error [%] �,�fontsize � ,12);

200 legend(�HX11�,�HX1 �,�HX2 �,�fontsize � ,12);

201 axis([0 1 0 30]);

202 hold on;

203 gridxy(split ,�Color �,�r�,�LineStyle�,�--�,�LineWidth�,2);

204 print(h,�-depsc�,�error.eps �);

205

206 % Temperature profiles

207

208 %Optimal profiles

209 w1opt=split*w0;

210 w2opt=(1-split)*w0;

211

212 [z dT11opt dT2opt dT1opt] = Tprof2(T0,T11m ,Th11m ,Th2m ,...

213 Th1m ,w1opt ,w2opt ,wh11 ,wh2 ,wh1 ,UA11 ,UA2 ,UA1 ,iter);

214

215 %SOC profiles

216 w1soc=split2*w0;

217 w2soc=(1-split2)*w0;

218

219 [z dT11soc dT2soc dT1soc] = Tprof2(T0,T11m2 ,Th11m2 ,...

220 Th2m2 ,Th1m2 ,w1soc ,w2soc ,wh11 ,wh2 ,wh1 ,UA11 ,...

221 UA2 ,UA1 ,iter);

222

223 % Optimal

224 h = figure;

225 plot(z,dT11opt ,z,dT1opt ,z,dT2opt ,�linewidth�,2);

226 xlabel(�Length �,�fontsize � ,12);

227 ylabel(�\DeltaT [ \circC]�,�fontsize � ,12);

228 legend(�HX11�,�HX1 �,�HX2 �,�fontsize � ,12);

229 grid on;

230 print(h,�-depsc�,�optprof.eps �);

231

232 % SOC
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233 h = figure;

234 plot(z,dT11soc ,z,dT1soc ,z,dT2soc ,�linewidth�,2);

235 xlabel(�Length �,�fontsize � ,12);

236 ylabel(�\DeltaT [ \circC]�,�fontsize � ,12);

237 legend(�HX11�,�HX1 �,�HX2 �,�fontsize � ,12);

238 grid on;

239 print(h,�-depsc�,�socprof.eps �);

tempCalc2.m

1 function [T HE] = tempCalc2(T0,w0,UA1 ,UA2 ,UA3 ,...

2 Th1in ,Th2in ,Th3in ,wh1 ,wh2 ,wh3 ,u)

3

4 w1 = u*w0;

5 w2 = (1-u)*w0;

6

7 NTU1 = UA1/w1;

8 NTU2 = UA2/w2;

9 NTU3 = UA3/w1;

10

11 C1 = w1/wh1;

12 C2 = w2/wh2;

13 C3 = w1/wh3;

14

15 if(C1 >0.99999 && C1 <1.00001)

16 C1 =0.99999;

17 end

18

19 if(C2 >0.99999 && C2 <1.00001)

20 C2 =0.99999;

21 end

22

23 if(C3 >0.99999 && C3 <1.00001)

24 C3 =0.99999;

25 end

26
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27 e1 = (1-exp(-NTU1*(C1 -1)))/(C1-exp(-NTU1*(C1 -1)));

28 e2 = (1-exp(-NTU2*(C2 -1)))/(C2-exp(-NTU2*(C2 -1)));

29 e3 = (1-exp(-NTU3*(C3 -1)))/(C3-exp(-NTU3*(C3 -1)));

30

31 eh1 = e1*C1;

32 eh2 = e2*C2;

33 eh3 = e3*C3;

34

35 T1 = e1*Th1in + (1-e1)*T0;

36 T2 = e2*Th2in + (1-e2)*T0;

37 T3 = e3*Th3in + (1-e3)*T1;

38

39 Th1 = (1-eh1)*Th1in + eh1*T0;

40 Th2 = (1-eh2)*Th2in + eh2*T0;

41 Th3 = (1-eh3)*Th3in + eh3*T1;

42

43 Tmix = u*T3+(1-u)*T2;

44

45 T = [T1 T2 T3 Th1 Th2 Th3 Tmix];

46 HE = [e1 eh1 e2 eh2 e3 eh3 C1 C2 C3 NTU1 NTU2 NTU3];

errCalc2.m

1 function [eAM1 eAM2 eAM3] = errCalc2(dT11 , dT12 , dT21 ,...

2 dT22 , dT31 , dT32)

3

4 % Logarithmic mean temperature difference

5 LM1 = (dT11 -dT12)./log(dT11./dT12);

6 LM2 = (dT21 -dT22)./log(dT21./dT22);

7 LM3 = (dT31 -dT32)./log(dT31./dT32);

8

9 % Arithmetic mean temperature difference

10 AM1 = (dT11+dT12)./2;

11 AM2 = (dT21+dT22)./2;

12 AM3 = (dT31+dT32)./2;

13



G MATLAB FILES 122

14 %AM error

15 eAM1 = ((AM1-LM1)./LM1).*100;

16 eAM2 = ((AM2-LM2)./LM2).*100;

17 eAM3 = ((AM3-LM3)./LM3).*100;

Tprof2.m

1 function [z dT1 dT2 dT3] = Tprof2(T0,T1,Th1 ,Th2 ,Th3 ,w1 ,...

2 w2,wh1 ,wh2 ,wh3 ,UA1 ,UA2 ,UA3 ,iter)

3

4 size=1/ iter;

5

6 z=(size:size:1) �;

7

8 R1=(w1-wh1)/(w1*wh1);

9 R2=(w2-wh2)/(w2*wh2);

10 R3=(w1-wh3)/(w1*wh3);

11

12 dT1 = (Th1 -T0)*exp(R1*UA1.*z);

13 dT2 = (Th2 -T0)*exp(R2*UA2.*z);

14 dT3 = (Th3 -T1)*exp(R3*UA3.*z);
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G.2 Perstorp Study

perstorp ss.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%% %%%%%

3 %%%%% PERSTORP STEADY -STATE CASE STUDY %%%%%

4 %%%%% %%%%%

5 %%%%% Daniel Greiner Edvardsen %%%%%

6 %%%%% IKP , NTNU %%%%%

7 %%%%% June 14, 2011 %%%%%

8 %%%%% %%%%%

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 % Info: This m-file calculates the hot and cold outlet

12 % temperatures for a heat exchanger network with three

13 % streams; one the upper stream there are two heat

14 % exchangers in series , on the middle stream there is

15 % one heat exchanger and on the lower stream there is

16 % also one heat exchanger. The conditions are taken from

17 % Perstorp in Sweden.

18 % The optimum is found (optimal split) that

19 % results in the maximum end temperature. The SOC split

20 % is also found and compared with the optimal split and

21 % the actual split at Perstorp .

22

23 clc;

24 clear all;

25 close all;

26

27 % Which year? Alternatives: 2008.mat , 2009.mat , 2010.mat.

Remember to change �year �.mat in perstorpdata.m as well.

28 load 2010.mat;

29

30 % Which data point? k=1: first hour , k=8760: last hour

31 k=4000;

32
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33 %% DEFINING PARAMETERS

34 % Loading relevant temperatures , mass streams , heat

capacities , and densities from �perstorpdata.m� All

units in SI.

35 [T0 Tp Th11in Th1in Th2in Th3in Th11 Th1 Th2 Th3 T11_ T11

T1 T2 T3 m0 mh11 mh1 mh2 mh3 m11 m1 m2 m3 cp0 cp11 cp1

cp2 cp3 rho0 rho11 rho1 rho2 rho3 w0 w11 w1 w2 w3 wh11

wh1 wh2 wh3] = perstorp_data(k);

36

37 %% UA AND SPLIT RATIOS

38

39 % Calculating UA-values from Perstorp Data

40 UA11 = w11*(T11 -T0)/((Th11 -T0)-(Th11in -T11))*log((Th11 -T0)

/(Th11in -T11));

41 UA1 = w1*(T1-T11)/((Th1 -T11)-(Th1in -T1))*log((Th1 -T11)/(

Th1in -T1));

42 UA2 = w2*(T2-T0)/((Th2-T0)-(Th2in -T2))*log((Th2 -T0)/(Th2in

-T2));

43 UA3 = w3*(T3-T0)/((Th3-T0)-(Th3in -T3))*log((Th3 -T0)/(Th3in

-T3));

44

45 % Split ratios

46 ptm1 = m1/m0; ptm2 = m2/m0; ptm3 = m3/m0;

47 sum = ptm1+ptm2+ptm3;

48 pt1 = ptm1/sum; pt2 = ptm2/sum; pt3 = ptm3/sum;

49 P = [pt1 pt2 pt3];

50

51 %% ITERATION PROCEDURE

52

53 % Number of iterations

54 iter=100;

55

56 U1=1/iter:1/iter:1;

57 U2=1/iter:1/iter:1;

58

59 n = zeros(iter ,iter);
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60 T11=n; T1=n; T2=n; T3=n; Th11=n; Th1=n; Th2=n; Th3=n; Tmix=

n; e11=n; eh11=n; e1=n; eh1=n; e2=n; eh2=n; e3=n; eh3=n;

C11=n; C1=n; C2=n; C3=n; NTU11=n; NTU1=n; NTU2=n; NTU3=

n; U=n; CON=n; CHEN=n; CHEN2=n; CON2=n;

61

62 for i=1:iter

63 for j=1:iter

64

65 u1 = i/iter;

66 u2 = j/iter;

67

68 if(u1+u2 <1) % Assuring u3=1-u1-u2 is never = 0 (making NTU3

= inf) nor < 0

69

70 % Calculating outlet temperatures and info about HEs (Only

u1 and u2 are changing )

71 [T HE] = tempCalc3(T0,w0,UA11 ,UA1 ,UA2 ,UA3 ,Th11in ,Th1in ,

Th2in ,Th3in ,wh11 ,wh1 ,wh2 ,wh3 ,u1,u2);

72

73 T11(i,j)=T(1); T1(i,j)=T(2); T2(i,j)=T(3); T3(i,j)=T(4);

Th11(i,j)=T(5); Th1(i,j)=T(6); Th2(i,j)=T(7); Th3(i,j)=T

(8); Tmix(i,j)=T(9);e11(i,j)=HE(1); eh11(i,j)=HE(2); e1(

i,j)=HE(3); eh1(i,j)=HE(4); e2(i,j)=HE(5); eh2(i,j)=HE

(6); e3(i,j)=HE(7); eh3(i,j)=HE(8);C11(i,j)=HE(9); C1(i,

j)=HE(10); C2(i,j)=HE(11); C3(i,j)=HE(12); NTU11(i,j)=HE

(13); NTU1(i,j)=HE(14); NTU2(i,j)=HE(15); NTU3(i,j)=HE

(16);

74

75 else

76 break;

77 end

78

79 end

80 end

81

82 %% Results
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83

84 [v p]=max(Tmix);

85 [v2 p2]= max(max(Tmix));

86

87 p1=p(p2);

88

89 % OPTIMAL (maximum) temperature

90 Tmax = Tmix(p1,p2);

91

92 % OPTIMAL splits

93 u1 = p1/iter;

94 u2 = p2/iter;

95

96 % Controlled variables

97 c1 = ((Th1in -T1)./(Th11in -T0) -1).*(T11 -T0).^2./(Th1in -T11)

+(T1-T0).^2./(Th1in -T11) -(T2-T0).^2./( Th2in -T0);

98 c2 = (T3-T0).^2./(Th3in -T0)-(T2-T0).^2./(Th2in -T0);

99

100 %% Plot Self -Optimizing solution

101 close all;

102 %How many contour lines? Default: 20

103 v=fix(Tmax) -20:1:fix(Tmax);

104 %How many labels? Defalt: Every 5th

105 v2=fix(Tmax) -20:5:fix(Tmax);

106

107 figure

108 contour(U1,U2,double(c1) ,[0 0],�b�,�linewidth�,2); hold on;

109 contour(U1,U2,double(c2) ,[0 0],�r�,�linewidth�,2); hold on;

110

111 [C,h] = contour(U1,U2,double(Tmix), v, �HandleVisibility�,�

off �); hold on;

112 th = clabel(C,h,v2);

113 set(th,�BackgroundColor�,[1 1 .6],�Edgecolor� ,[.7 .7 .7])

114

115 [C2,h2]= contour(U1,U2,double(Tmix), round(Tp*10)./10, �

linewidth�,3,�HandleVisibility�,�off �); hold on;
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116 th2 = clabel(C2,h2);

117 set(th2 ,�BackgroundColor�,[0 1 0],�Edgecolor� ,[.7 .7 .7])

118

119 scatter(u2,u1,�k�,�filled �);

120

121 xlabel(�u_2�); ylabel(�u_1�);

122 legend(�c_{1}=0� ,�c_{2}=0�,�T_{opt}�);

123 grid on

perstorp data.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%% %%%%%

3 %%%%% PERSTORP DATA %%%%%

4 %%%%% %%%%%

5 %%%%% Daniel Greiner Edvardsen %%%%%

6 %%%%% IKP , NTNU %%%%%

7 %%%%% June 14, 2011 %%%%%

8 %%%%% %%%%%

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 function [T0 Tp Th11in Th1in Th2in Th3in Th11 Th1 Th2 Th3

T11_ T11 T1 T2 T3 m0 mh11 mh1 mh2 mh3 m11 m1 m2 m3 cp0

cp11 cp1 cp2 cp3 rho0 rho11 rho1 rho2 rho3 w0 w11 w1 w2

w3 wh11 wh1 wh2 wh3 ] = perstorp_data(k)

12

13 load 2010.mat;

14

15 %%%%% Convert hours to seconds %%%%%

16 h=3600;

17

18 %%%%% All temperatures in �Celsius � %%%%%%

19

20 T0 = ti1053y(k); %Feed temperature

21 Tp = ti2106y(k); %End temperature

22
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23 % HOT temperature IN

24 Th11in = ti2362y(k);

25 Th1in = ti2303y(k);

26 Th2in = fq2261y(k)/fq2064y(k) * ti2263y(k) +...

27 (1-fq2261y(k)/fq2064y(k))*ti2252y(k);

28 Th3in = ti2352y(k);

29

30 % HOT Temperature OUT

31 Th11 = ti2021y(k);

32 Th1 = tc2043y(k);

33 Th2 = ti2031y(k);

34 Th3 = ti2011y(k);

35

36 % COLD Temperatyre OUT

37 T11_ = ti2024y(k);

38 T11 = ti2042y(k);

39 T1 = ti2044y(k);

40 T2 = ti2034y(k);

41 T3 = ti2014y(k);

42

43 %%%%% All heat capacities in �J/kgK � %%%%%%

44

45 cp0 = (3728 -3701.6) /50 ...

46 *(T0 -50)+3701.6;

47 cp11 = 4006;

48 cp1 = 2827;

49 cp2 = 4216;

50 cp3 = (4166 -4105) /60* ...

51 (T0 -60)+4166;

52

53 %%%%%% Densities in �kg/m^3� %%%%%%

54 rho0 = (1021 -1054) /50*(T0 -50)+1054;

55 rho1 = 1257;

56 rho2 = 926;

57 rho3 = (926 -971.8) /60*(T0 -60)+926;

58 rho11 = rho3;
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59

60 %%%%%% Volumetric flow rates in �m^3/s� %%%%%%

61

62 v0 = fc2105y(k)/h;

63 vh11 = fq2502y(k)/h;

64 vh1 = fc2304y(k)/h;

65 vh2 = fq2064y(k)/h;

66 vh3 = (fq2032y(k)-fq2558y(k))/h;

67

68 %Using energy balances to calculate cold volume streams

69 v11 = (Th11in -Th11)/(T11_ -T0)*vh11*rho11/rho0*cp11/cp0;

70 v1 = (Th1in -Th1)/(T1-T11)*vh1*rho1/rho0*cp1/cp0;

71 v2 = (Th2in -Th2)/(T2-T0)*vh2*rho2/rho0*cp2/cp0;

72 v3 = (Th3in -Th3)/(T3-T0)*vh3*rho3/rho0*cp3/cp0;

73

74 %%%%%% Mass flow rates in �kg/s� %%%%%%

75

76 m0 = v0 * rho0;

77 m11 = v11 * rho0;

78 m1 = v1 * rho0;

79 m2 = v2 * rho0;

80 m3 = v3 * rho0;

81

82 mh11 = vh11 * rho11;

83 mh1 = vh1 * rho1;

84 mh2 = vh2 * rho2;

85 mh3 = vh3 * rho3;

86

87 %%%%%% All mCps in �W/K� (kg/s * J/kgK) %%%%%%

88

89 w0 = m0 * cp0;

90 w11 = m11 * cp0;

91 w1 = m1 * cp0;

92 w2 = m2 * cp0;

93 w3 = m3 * cp0;

94
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95 wh11 = mh11 * cp11;

96 wh1 = mh1 * cp1;

97 wh2 = mh2 * cp2;

98 wh3 = mh3 * cp3;

tempCalc3.m

1 function [T HE] = tempCalc3(T0,w0,UA11 ,UA1 ,UA2 ,UA3 ,Th11in ,

Th1in ,Th2in ,Th3in ,wh11 ,wh1 ,wh2,wh3,u1,u2)

2

3 u3=1-u1-u2;

4

5 w1 = u1*w0;

6 w2 = u2*w0;

7 w3 = u3*w0;

8

9 NTU11 = UA11/w1;

10 NTU1 = UA1/w1;

11 NTU2 = UA2/w2;

12 NTU3 = UA3/w3;

13

14 C11 = w1/wh11;

15 C1 = w1/wh1;

16 C2 = w2/wh2;

17 C3 = w3/wh3;

18

19 if(C11 >0.99999 && C11 <1.00001)

20 C11 =0.99999;

21 elseif(C1 >0.99999 && C1 <1.00001)

22 C1 =0.99999;

23 elseif(C2 >0.99999 && C2 <1.00001)

24 C2 =0.99999;

25 elseif(C3 >0.99999 && C3 <1.00001)

26 C3 =0.99999;

27 end

28
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29 e11= (1-exp(-NTU11*(C11 -1)))/(C11 -exp(-NTU11*(C11 -1)));

30 e1 = (1-exp(-NTU1*(C1 -1)))/(C1-exp(-NTU1*(C1 -1)));

31 e2 = (1-exp(-NTU2*(C2 -1)))/(C2-exp(-NTU2*(C2 -1)));

32 e3 = (1-exp(-NTU3*(C3 -1)))/(C3-exp(-NTU3*(C3 -1)));

33

34 eh11= e11*C11;

35 eh1 = e1*C1;

36 eh2 = e2*C2;

37 eh3 = e3*C3;

38

39 T11 = e11*Th11in + (1-e11)*T0;

40 T1 = e1*Th1in + (1-e1)*T11;

41 T2 = e2*Th2in + (1-e2)*T0;

42 T3 = e3*Th3in + (1-e3)*T0;

43

44 Th11= (1-eh11)*Th11in + eh11*T0;

45 Th1 = (1-eh1)*Th1in + eh1*T11;

46 Th2 = (1-eh2)*Th2in + eh2*T0;

47 Th3 = (1-eh3)*Th3in + eh3*T0;

48

49 Tmix = u1*T1+u2*T2+u3*T3;

50

51 T = [T11 T1 T2 T3 Th11 Th1 Th2 Th3 Tmix];

52 HE = [e11 eh11 e1 eh1 e2 eh2 e3 eh3 C11 C1 C2 C3 NTU11 NTU1

NTU2 NTU3];
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perstorp dynamic.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%% %%%%%

3 %%%%% PERSTORP DYNAMIC STUDY %%%%%

4 %%%%% %%%%%

5 %%%%% Daniel Greiner Edvardsen %%%%%

6 %%%%% IKP , NTNU %%%%%

7 %%%%% June 14, 2011 %%%%%

8 %%%%% %%%%%

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 % Info: This m-file simulates the dynamic simulink model

12 % perstorp_sim.mdl. The conditions are implemented in

13 % this file , the simulink file is then run and finally

14 % some plots are made in the end.

15

16 clc

17 clear all

18 load 2010.mat;

19

20 k=4000;

21

22 % Loading relevant temperatures , mass streams , heat

capacities ,

23 % and densities from �perstorpdata.m�

24 [T0 Tp Th11in Th1in Th2in Th3in Th11 Th1 Th2 Th3 T11_ T11

T1 T2 T3 m0 mh11 mh1 mh2 mh3 m11 m1 m2 m3 cp0 cp11 cp1

cp2 cp3 rho0 rho11 rho1 rho2 rho3 w0 w11 w1 w2 w3 wh11

wh1 wh2 wh3 ] = perstorp_data(k);

25

26 Th11in = double(Th11in);

27 Th1in = double(Th1in);

28 Th2in = double(Th2in);

29 Th3in = double(Th3in);

30

31 % ========================================================
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32 % MAIN HEAT EXCHANGERS

33 % ========================================================

34

35 % Heat transfer areas given from Perstorp [m^2]

36 A11 = 80;

37 A1 = 12.3;

38 A2 = 198;

39 A3 = 198;

40

41 % Volumes given from Perstorp [m^3]

42 Vh_tot = 0.775; % Hot side volume [m3] for HE2 and HE3

43 Vc_tot = 0.760; % Cold side volume [m3] for HE2 and HE3

44 Vh11_tot = 0.234; % Hot side volume [m3] for HE11

45 Vc11_tot = 0.232; % Cold side volume [m3] for HE11

46 Vh1_tot = 0.02226; % Hot side volume [m3] for HE1

47 Vc1_tot = 0.02164; % Cold side volume [m3] for HE1

48

49 N = 10; % Number of cells (Fixed)

50

51 % Estimation of heat transfer coefficients [W/m2*K]

52 h_h11 = 60.15;

53 h_h1 = 633;

54 h_h2 = 5615;

55 h_h3 = 5800;

56

57 h_c11 = h_h11;

58 h_c1 = h_h1;

59 h_c2 = h_h2;

60 h_c3 = h_h3;

61

62 % Hot side

63 Vh11 = Vh11_tot/N; % Cell volume [m3] for HE11

64 Ah11 = A11/N; % Cell area [m2] for HE11

65 Vh1 = Vh1_tot/N; % Cell volume [m3] for HE1

66 Ah1 = A1/N; % Cell area [m2] for HE1

67 Vh2 = Vh_tot/N; % Cell volume [m3] for HE2
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68 Ah2 = A2/N; % Cell area [m2] for HE2

69 Vh3 = Vh_tot/N; % Cell volume [m3] for HE3

70 Ah3 = A3/N; % Cell area [m2] for HE3

71

72 % Cold side

73

74 Vc11 = Vc11_tot/N;

75 Ac11 = A11/N;

76 Vc1 = Vc1_tot/N;

77 Ac1 = A1/N;

78 Vc2 = Vc_tot/N;

79 Ac2 = A2/N;

80 Vc3 = Vc_tot/N;

81 Ac3 = A3/N;

82

83 % Wall

84 mass_w = 568; % Weight of heat exchanger [kg]

85 rho_w = 1240; % Wall density [kg/m3] (TM10 -BFG)

86 V_w = mass_w/rho_w; % Wall volume [m3]

87 cp_w = 3000; % Wall heat capacity [J/kg*K]

88 V_i_w = V_w/N; % Volume of one wall segment [m3]

89 A_i_w = 200/N; % Area of one wall segment [m2]

90

91

92

93 % ========================================================

94 % INITIAL CONDITIONS [ C ]

95 % ========================================================

96

97 % Initial (temperature) conditions for the heat exchangers

98

99 % First column: Initial conditions , hot side (10)

100 % Second column: Initial conditions , wall (10)

101 % Third column: Initial conditions , cold side (10)

102

103 HX11init = [124.8292147 104.126289 57.63458142;
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104 122.027725 101.2997531 60.51387896;

105 119.2228461 98.4697978 63.38969738;

106 116.4145738 95.63641881 66.26204087;

107 113.6029042 92.79961204 69.13091364;

108 110.787833 89.95937334 71.99631989;

109 107.9693562 87.11569856 74.85826379;

110 105.1474697 84.26858353 77.71674953;

111 102.3221693 81.41802411 80.5717813;

112 99.49345082 78.56401612 83.42336326];

113

114 HX1init = [131.4011561 122.1805597 87.47503691

115 130.7910986 120.8480675 91.23232651

116 130.1332431 119.4111744 94.71662125

117 129.4238444 117.8617005 97.94775622

118 128.6588644 116.1908252 100.9441253

119 127.833948 114.3890367 103.7227861

120 126.9443994 112.4460778 106.2995566

121 125.9851545 110.3508879 108.6891057

122 124.9507527 108.0915396 110.9050364

123 123.8353054 105.6551712 112.9599633];

124

125 HX2init = [138.8461623 134.3475021 59.03362354

126 126.0206234 122.0035326 63.82875206

127 114.5680237 110.9809515 69.19872121

128 104.3413937 101.1383079 75.21244297

129 95.2094967 92.34929258 81.9470905

130 87.05514455 84.50111752 89.48908846

131 79.77369369 77.49306833 97.93522213

132 73.2717024 71.2352118 107.3938794

133 67.46573165 65.64724185 117.9864418

134 62.28127433 60.65744894 129.848842];

135

136 HX3init = [128.9568742 126.6540797 59.72703712

137 119.2940288 117.1471585 65.06361795

138 110.2854627 108.2839586 70.78778692

139 101.8868739 100.0208933 76.92769401
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140 94.05696035 92.31732685 83.51353367

141 86.75721666 85.13537517 90.57769335

142 79.95174458 78.43971929 98.15491273

143 73.60707656 72.19743174 106.2824546

144 67.69201118 66.37781456 115.0002881

145 62.17745971 60.95224842 124.3512852];

146

147 % Controllers

148

149 tc10 = -0.634632447104129;

150 tc20 = 0.278170600005430;

151

152 %% Tuning parameters

153

154 % Controller 1

155 kc1 = 0.026;

156 tc1 = 62;

157 I1 = kc1/tc1;

158

159 % Controller 2

160 kc2 = 0.102;

161 tc2 = 174;

162 I2 = kc2/tc2;

163

164 %% Simulation

165

166 %Simulation time

167 simtime =3600;

168

169 sim(�perstorp_sim�,simtime);

170 systemHandle = get_param(gcs , �Handle �);

171 saveas(systemHandle , �simulink .pdf �, �pdf �)

172 %% PLOTS

173 close all;

174

175 %Convert from seconds to minutes
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176 time=t/60;

177

178 figure

179 plot(time ,T11(:,1),time ,T1,time ,T2,time ,T3,time ,Tend ,�

LineWidth�,2)

180 % Title(�Cold side outlet temperatures �);

181 legend(�T11�,�T1 �,�T2�,�T3�,�Tend�)

182 xlabel(�Time [min]�);

183 ylabel(�Temperature [\circC]�)

184 axis([0 15 80 140]);

185

186 figure

187 plot(time ,Th11 ,time ,Th1,time ,Th2 ,time ,Th3)

188 % Title(�Hot side outlet temperatures �);

189 legend(�Th11�,�Th1 �,�Th2 �,�Th3 �)

190 xlabel(�Time [min]�);

191 ylabel(�Temperature [\circC]�)

192

193 figure

194 plot(time ,u1,time ,u2,time ,u3,�LineWidth�,2);

195 % Title(�Mass fractions �);

196 axis([0 10 0 0.7]);

197 xlabel(�Time [min]�); ylabel(�Splits �);

198 legend(�u_1�, �u_2 �, �u_3 �);

199 grid on;

200

201 figure

202 plot(time ,c1,time ,c2,�LineWidth�,2);

203 xlabel(�Time [min]�); ylabel(�Controlled variables�);

204 % axis([0 time(end) -1 1]);

205 legend(�c_1�, �c_2 �);

206 grid on;
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G.3 Crude Unit Heat Exchanger Network

mongstadSolve.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%% %%%%%

3 %%%%% MONGSTAD STUDY %%%%%

4 %%%%% %%%%%

5 %%%%% Daniel Greiner Edvardsen %%%%%

6 %%%%% IKP , NTNU %%%%%

7 %%%%% June 14, 2011 %%%%%

8 %%%%% %%%%%

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 % Info: This m-file calculates the hot and cold outlet

12 % temperatures for a heat exchanger network with seven

13 % streams in parallel . The conditions are taken from

14 % Statoil Mongstad . The SOC split is found and compared

15 % to the real RTO split.

16

17 clear all;

18 clc;

19

20 %% Defining all parameters

21

22 global T0;

23 global m0

24 global Tcold;

25 global Thot;

26

27 T0 = 132.909;

28 %% Initial flows (RTO)

29

30 m0A = 24.08753; % Stream A

31 m0B = 48.49833; % Stream B

32 m0C = 17.84011; % Stream C

33 m0D = 35.61500; % Stream D
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34 m0E = 34.68861; % Stream E

35 m0F = 65.57833; % Stream F

36 m0G = 28.73583; % Stream G

37

38 % Total flow minus m0G

39 m0=m0A+m0B+m0C+m0D+m0E+m0F;

40

41 % Initial splits (without stream G)

42 u0=[m0A m0B m0C m0D m0E m0F]./m0;

43

44 %% RTO results (0 (�zero �) indicates RTO)

45 [c,ceq0]= constraints(u0);

46 Tcold0=Tcold;

47 Thot0=Thot;

48

49 T1A0 = Tcold0 (1); T2B0 = Tcold0 (3); T2C0 = Tcold0 (5);

50 T2D0 = Tcold0 (7); T1E0 = Tcold0 (8); T2F0 = Tcold0 (10);

51

52 Tend0 = u0(1)*T1A0+u0(2)*T2B0+u0(3)*T2C0+u0(4)*T2D0+u0(5)*

T1E0+u0(6)*T2F0;

53

54 %% Running fmincon to find optimal solution

55 options = optimset(�Display �,�iter�);

56

57 % Function to be minimized , J = 1

58 % Results: fmincon finds the �u� that fulfils the

constraints

59

60 u = fmincon(@(x)1,u0 ,[],[],[],[],0,1,@constraints ,options);

61

62 % Calculating (intermediate) end temperature

63

64 Th1A = Thot(1); Th1B = Thot(2); Th2B = Thot(3); Th1C = Thot

(4); Th2C = Thot(5); Th1D = Thot(6); Th2D = Thot(7);

Th1E = Thot(8); Th1F = Thot(9); Th2F = Thot(10);
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65 T1A = Tcold(1); T1B = Tcold(2); T2B = Tcold(3); T1C = Tcold

(4); T2C = Tcold(5); T1D = Tcold(6); T2D = Tcold(7); T1E

= Tcold(8); T1F = Tcold(9); T2F = Tcold(10);

66

67 Tend = u(1)*T1A+u(2)*T2B+u(3)*T2C+u(4)*T2D+u(5)*T1E+u(6)*

T2F;

68

69 % New mass streams

70 m=u.*m0;

71 m(7) = m0G;

72

73 % Splits including stream G

74 unew = m./sum(m); % SOC splits

75 u0new=[m0A m0B m0C m0D m0E m0F m0G]./sum(m); % RTO splits

76

77 %% Temperature after O1

78

79 % Temperature after heat exchanger O1 (E153)

80 wc = 615377.76;

81 n = 1;

82 wh = 186285.21;

83 Thin = 282.608;

84 UA = 144051.68;

85

86 [T Th] = tempCalc (Tend ,Thin ,wc,wh,UA,n);

87

88 % Temperature after mixing with stream G

89 cp0 = 2406.224915;

90 wc1G = m0G*cp0;

91 n1G = 1;

92 wh1G = 289894.73;

93 Th1inG = 167.487;

94 UA1G = 96449.75;

95

96 [T1G Th1G] = tempCalc (T0,Th1inG ,wc1G ,wh1G ,UA1G ,n1G);

97
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98 wc2G = m0G *2622.608824;

99 n2G = 1;

100 wh2G = 317501.17;

101 Th2inG = 262.586;

102 UA2G = 125079.36;

103

104 [T2G Th2G] = tempCalc (T1G ,Th2inG ,wc2G ,wh2G ,UA2G ,n2G);

105

106 TendFinal = (1-unew(7))*T + unew(7)*T2G;

107

108 Tfinal = [T1A T2B T2C T2D T1E T2F T2G Tend TendFinal]�;

109

110 %% RTO temperature

111

112 % Temperature after heat exchanger O1 (E153)

113

114 [Trto Thrto] = tempCalc(Tend0 ,Thin ,wc,wh,UA,n);

115

116 % Temperature after mixing with stream G

117 TendFinal0 = (1-u0new(7))*Trto + u0new(7)*T2G;

118

119 Tfinal0 = [T1A0 T2B0 T2C0 T2D0 T1E0 T2F0 T2G Tend0

TendFinal0]�;

constraints.m

1 function [c,ceq] = constraints(u)

2

3 % Mass flows (m) in kg/s

4 % Temperatures in Celcius

5 % mCp �s in W/K

6 % UA�s in W/K

7 % n = number of shells

8

9 global T0;

10 global m0;



G MATLAB FILES 142

11 global T1; global Th1; global T2; global Th2;

12

13 %% Parameters for stream A

14

15 m0A = m0*u(1);

16 cp0A = 2570.944432;

17 wcA = m0A*cp0A;

18

19 nA = 4;

20 whA = 48187.09;

21 Th1inA = 300.416;

22 UAA = 131025.48;

23

24 [T1A Th1A] = tempCalc (T0,Th1inA ,wcA ,whA ,UAA ,nA);

25

26 %% Parameters for stream B

27

28 m0B = m0*u(2);

29

30 cp0B1 = 2445.743628;

31 wc1B = m0B*cp0B1;

32

33 wh1B = 92541.46;

34 nB1 = 2;

35 UA1B = 102709.10;

36

37 cp0B2 = 2618.432483;

38 wc2B = m0B*cp0B2;

39 nB2 = 2;

40 wh2B = 129499.93;

41 UA2B = 88644.82;

42

43 Th2inB = 270.254;

44

45 tparB = [T0 wc1B wh1B UA1B nB1 Th2inB wc2B wh2B UA2B nB2

1];
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46

47 %Using fsolve to find Th1in=Th2

48 Th1inB = fsolve(@(x) FindTh1in(x,tparB) ,232,optimset (�

Display �,�off �));

49

50 % Temperatures calculated in the function FindTh1in

51 T1B = T1; Th1B = Th1; T2B = T2; Th2B = Th2;

52

53 %% Parameters for stream C

54

55 m0C = m0*u(3);

56

57 cp0C1 = 2407.952102;

58 wc1C = m0C*cp0C1;

59

60 wh1C = 35816.4165;

61 UA1C = 84642.10;

62 nC1 = 2;

63

64 cp0C2 = 2584.355153;

65 wc2C = m0C*cp0C2;

66 wh2C = 38747.8648;

67 UA2C = 133605.46;

68 nC2 = 3;

69

70 Th2inC = 245.375;

71

72 tparC = [T0 wc1C wh1C UA1C nC1 Th2inC wc2C wh2C UA2C nC2

2];

73

74 %Using fsolve to find Th1in=Th2

75 Th1inC = fsolve(@(x) FindTh1in(x,tparC) ,175.5,optimset(�

Display �,�off �));

76

77 % Temperatures calculated in the function FindTh1in

78 T1C = T1; Th1C = Th1; T2C = T2; Th2C = Th2;
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79

80 %% Parameters for stream D

81

82 m0D = m0*u(4);

83 cp0D1 = 2483.068751;

84 wcD = m0D*cp0D1;

85

86 n1D = 4;

87 wh1D = 118477.94;

88 Th1inD = 226.181;

89 UA1D = 132831.92;

90

91 [T1D Th1D] = tempCalc (T0,Th1inD ,wcD ,wh1D ,UA1D ,n1D);

92

93 cp0D2 = 2649.127849;

94 wc2D = m0D*cp0D2;

95 n2D = 1;

96 wh2D = 33935.43;

97 Th2inD = 273.813;

98 UA2D = 41563.90;

99

100 [T2D Th2D] = tempCalc (T1D ,Th2inD ,wc2D ,wh2D ,UA2D ,n2D);

101

102 %% Parameters for stream E

103

104 m0E = m0*u(5);

105 cp0E = 2527.081131;

106 wcE = m0E*cp0E;

107

108 nE = 4;

109 whE = 79890.13;

110 Th1inE = 256.408;

111 UAE = 190981.94;

112

113 [T1E Th1E] = tempCalc (T0,Th1inE ,wcE ,whE ,UAE ,nE);

114
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115 %% Parameters for stream F

116

117 m0F = m0*u(6);

118 cp0F1 = 2382.242363;

119 wcF = m0F*cp0F1;

120

121 n1F = 1;

122 wh1F = 47248.68;

123 Th1inF = 203.201;

124 UA1F = 49437.00;

125

126 [T1F Th1F] = tempCalc (T0,Th1inF ,wcF ,wh1F ,UA1F ,n1F);

127

128 cp0F2 = 2535.118619;

129 wc2F = m0F*cp0F2;

130 n2F = 4;

131 wh2F = 175073.77;

132 Th2inF = 248.07;

133 UA2F = 224053.26;

134

135 [T2F Th2F] = tempCalc (T1F ,Th2inF ,wc2F ,wh2F ,UA2F ,n2F);

136

137

138 %% Saving temperatures

139 global Tcold

140 global Thot

141

142 Tcold=[T1A T1B T2B T1C T2C T1D T2D T1E T1F T2F];

143 Thot=[Th1A Th1B Th2B Th1C Th2C Th1D Th2D Th1E Th1F Th2F];

144

145 %% Controlled variables

146 fA = (T1A -T0).^2./( Th1inA -T0);

147 fB = ((Th2inB -T2B)./(Th1inB -T0) -1).*(T1B -T0).^2./(Th2inB -

T1B)+(T2B -T0).^2./( Th2inB -T1B);

148 fC = ((Th2inC -T2C)./(Th1inC -T0) -1).*(T1C -T0).^2./(Th2inC -

T1C)+(T2C -T0).^2./( Th2inC -T1C);
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149 fD = ((Th2inD -T2D)./(Th1inD -T0) -1).*(T1D -T0).^2./(Th2inD -

T1D)+(T2D -T0).^2./( Th2inD -T1D);

150 fE = (T1E -T0).^2./( Th1inE -T0);

151 fF = ((Th2inF -T2F)./(Th1inF -T0) -1).*(T1F -T0).^2./(Th2inF -

T1F)+(T2F -T0).^2./( Th2inF -T1F);

152

153 cA = fA - fF;

154 cB = fB - fF;

155 cC = fC - fF;

156 cD = fD - fF;

157 cE = fE - fF;

158

159 %% Constraints

160 c=[]; %No inequality constraints

161

162 % Equality constraints = 0

163 ceq=[cA

164 cB

165 cC

166 cD

167 cE

168 sum(u) -1];

tempCalc.m

1 function [T1 Th1] = tempCalc (T0,Th1in ,wc,wh,UA,n)

2

3 Cmin = min(wc,wh);

4 Cmax = max(wc,wh);

5

6 Cr = Cmin/Cmax;

7

8 NTU = UA/Cmin;

9 NTU1 = NTU/n;

10

11 scr=sqrt(1+Cr^2);
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12 a=1+exp(-NTU1*scr);

13 b=1-exp(-NTU1*scr);

14

15 e1 = 2/(1+Cr+scr*a/b);

16

17 %For only one shell pass

18 if(n==1)

19 e=e1;

20 end

21

22 %For n>1 Shell passes

23 if(n>1)

24 x = ((1-e1*Cr)/(1-e1))^n-1;

25 y = ((1-e1*Cr)/(1-e1))^n-Cr;

26

27 e = x/y;

28 end

29

30 % Cold temperature out

31 T1 = Cmin/wc*e*Th1in + (1-Cmin/wc*e)*T0;

32

33 % Hot temperature out

34 Th1 = (1-Cmin/wh*e)*Th1in + Cmin/wh*e*T0;

FindTh1in.m

1 function F = findTh1in(Tin ,tpar)

2

3 Th1in=Tin;

4

5 T0 = tpar(1);

6 wc = tpar(2);

7 wh1 = tpar(3);

8 UA1 = tpar(4);

9 n1 = tpar(5);

10 Th2in = tpar(6);
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11 wc2 = tpar(7);

12 wh2 = tpar(8);

13 UA2 = tpar(9);

14 n2 = tpar(10);

15 stream = tpar(11);

16

17 global T1; global Th1;

18 [T1 Th1] = tempCalc(T0,Th1in ,wc,wh1 ,UA1 ,n1);

19

20

21 global T2; global Th2;

22 [T2 Th2] = tempCalc(T1,Th2in ,wc2 ,wh2 ,UA2 ,n2);

23

24 if(stream ==1)

25 F = Th1in -Th2;

26 elseif(stream ==2)

27 F = (Th1in +1.205)-Th2;

28 end
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H Maple Code

H.1 Two Heat Exchangers in Parallel

1 restart;

2 with(LinearAlgebra):with(VectorCalculus):

3

4 # Model equations

5 g1:= u*w0*T1+(1-u)*w0*T2-w0*Tend:

6 g2:= 2*u*w0*(T1-T0)-UA1*(Th1in -T1+Th1 -T0):

7 g3:= 2*(1-u)*w0*(T2-T0)-UA2*(Th2in -T2+Th2 -T0):

8 g4:= 2*wh1*(Th1 -Th1in)+UA1*(Th1in -T1+Th1 -T0):

9 g5:= 2*wh2*(Th2 -Th2in)+UA2*(Th2in -T2+Th2 -T0):

10

11 g:=[g1,g2,g3,g4,g5]:

12

13 # z = MV �s (split u) and state variables

14 z:=[u,T1,T2,Tend ,Th1 ,Th2]:

15

16 gradG:= Jacobian (g,z):

17 N:= NullSpace(gradG):

18 N:=Matrix([N[1]]):

19 NT:= Transpose(N):

20

21 # Objective function

22 J:=[-Tend]:

23

24 gradJ:= Transpose(Jacobian(J,z));

25

26

27

28 # Calculating reduced gradient

29 Jzred:= MatrixMatrixMultiply(NT,gradJ):

30



H MAPLE CODE 150

31 # Simplifying

32 Jzred:= simplify(Jzred):

33 Jzred:= simplify(numer(Jzred[1 ,1])):

34 Jzred:=factor(Jzred);

35

36 # Loading �multires � package

37 read(" multires.mpl"):

38

39 # Variables to be eliminated

40 varlist :=[u,w0,wh1 ,wh2];

41

42 # Arguments for the sparse resultant

43 polylist :=[Jzred ,g2,g3,g4,g5];

44

45 #Sparse resultant

46 R:= det(spresultant(polylist ,varlist));

47 R:=factor(R);

48

49 # Simplifying

50 T0 :=0;

51

52 # Self -optimizing variable = 0

53 c:=R;

54

55 save Jzred ,R,c, "2HXpar";
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H.2 Two Heat Exchangers in Series and One in

Parallel

1 > restart;

2 > with(LinearAlgebra):with(VectorCalculus):

3 >

4 > DT11:= Th11in -T11+Th11 -T0:

5 > DT1 := Th1in -T1+Th1 -T11:

6 > DT2 := Th2in -T2+Th2 -T0:

7 >

8 > g1:= w0*Tend -u*w0*T1 -(1-u)*w0*T2:

9 > g2:= 2*u*w0*(T11 -T0)-UA11*DT11:

10 > g3:= 2*wh11*(Th11 -Th11in)+UA11*DT11:

11 > g4:= 2*(1-u)*w0*(T2-T0)-UA2*DT2:

12 > g5:= 2*wh2*(Th2 -Th2in)+UA2*DT2:

13 > g6:= 2*u*w0*(T1-T11)-UA1*DT1:

14 > g7:= 2*wh1*w0*(Th1 -Th1in)+UA1*DT::

15 >

16 > g:=[g1,g2,g3,g4,g5,g6,g7];

17 >

18 > # z = MV�s (split u) and state variables

19 > z:=[u,T11 ,T1,T2,Tend ,Th11 ,Th1 ,Th2]:

20

21 > gradG:= Jacobian(g,z):

22 > N:=NullSpace(gradG):

23 > N:=Matrix([N[1]]):

24 > N:=Transpose(N):

25 >

26 > # Objective function

27 > J:=[-Tend]:

28 >

29 > gradJ:=Transpose(Jacobian (J,z)):

30 >

31 > # Calculating reduced gradient

32 > Jzred:= MatrixMatrixMultiply(N,gradJ):
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33 >

34 > # Simplifying

35 > Jzred:=Jzred[1,1]:

36 > Jzred:=simplify (Jzred):

37 > Jzred:=simplify (numer(Jzred)):

38 > Jzred:=factor(Jzred);

39 >

40 > # Loading �multires � package

41 > read(" multires .mpl"):

42 >

43 > # Variables to be eliminated

44 > varlist :=[u,w0,wh11 ,wh2 ,wh1 ,UA11 ,UA1]:

45 >

46 > # Arguments for the sparse resultant

47 > polylist :=[Jzred ,g1,g2,g3,g4,g5,g6,g7]:

48 >

49 > #Sparse resultant

50 > R:=det(spresultant(polylist ,varlist)):

51 > R:=factor(R);

52 >

53 > # Simplifying

54 > T0:=0:

55 >

56 > # Self -optimizing variable = 0

57 > c:=R;

58

59 > save Jzred ,R,c, "2 HXser1HXpar";
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