

Chemical Bioin Franc	IPOP (Wächter, La	PT Features aird, B., 2002-2009)
Nev	wton-Based Barrier Method	Hessian Calculation
• •	Globally, superlinearly convergent (Wächter and B., 2005) Easily tailored to different problem structures	 BFGS (full/LM and reduced space) SR1 (full/LM and reduced space) Exact full Hessian (direct) Exact reduced Hessian (direct) Preconditioned CG
Liii	e ocaren orobanzation	Widely Available
• 4	² exact penalty merit function augmented Lagrangian merit function	 Eclipse License and COIN-OR distribution: http://www.coin-or.org
•	Filter method (extended from Fletcher and Leyffer)	 Solved on many thousands of test problems and applications
		Broad, growing user community

Off-line Case Studies Dynamic Bioprocess Optimization Parameter Estimation of Batch Data Synthesis of Reactor Networks Crystallization Temperature Profiles Optimie Data Path Picture Profiles	On-line Case Studies NMPC of Tenn. Eastman Process Source Detection of Water Networks Cross-directional Sheet-forming Processes
 Optimal Batch Distillation Operation Satellite Trajectories in Astronautics Batch Process Integration Simulated Moving Bed Optimization Optimization of Polymerization Processes Optimal Pressure Swing Adsorption 	 Thermo-mech. Pulping NMPC D-RTO for Gas Pipelines Air Traffic Conflict Resolution NMPC for Refinery Distillation Ramping for Air Separation Columns Startup for Combined Cycle Power Generation Cyclic Operation for LDPE Process

Large-Scale Param	eter Estimation
Complex Kinetic Mechanisms	
Initiator decomposition $I_{1} \xrightarrow{k_{d_{1}}} 2R i = 1, N_{I}$ Chain initiation $R + M_{1} \xrightarrow{k_{d_{1}}} 2R_{I}$ Chain initiation $R + M_{2} \xrightarrow{k_{d_{2}}} Q_{h,1}$ Chain Propagation $P_{r,s} + M_{2} \xrightarrow{k_{d_{2}}} Q_{h,1}$ Chain Propagation $P_{r,s} + M_{2} \xrightarrow{k_{d_{2}}} P_{r+1,s}$ $Q_{r,s} + M_{2} \xrightarrow{k_{d_{2}}} Q_{r,s+1}$ Chain Transfer to Monomer $P_{r,s} + M_{1} \xrightarrow{k_{d_{2}}} P_{h,0} + M_{r,s}$ Chain Transfer to Monomer $P_{r,s} + M_{2} \xrightarrow{k_{d_{2}}} Q_{0,1} + M_{r,s}$ $Q_{r,s} + M_{2} \xrightarrow{k_{d_{2}}} Q_{0,1} + M_{r,s}$ $Q_{r,s} + M_{2} \xrightarrow{k_{d_{2}}} Q_{0,1} + M_{r,s}$ Chain Transfer to Selverd $P_{r,s} + S_{1} \xrightarrow{k_{d_{1}}} P_{h,0} + M_{r,s}$ $Q_{r,s} + S_{1} \xrightarrow{k_{d_{1}}} P_{h,0} + M_{r,s}$	Chain Transfer to Polymor $P_{r,s} + M_{r,y} \stackrel{k_{f,yy}}{ + p_{r,y}} P_{s,y} + M_{r,s}$ $P_{r,s} + M_{r,y} \stackrel{k_{f,yy}}{ + p_{r,y}} P_{s,y} + M_{r,s}$ $Q_{r,s} + M_{r,y} \stackrel{k_{f,yy}}{ + p_{r,y}} P_{s,y} + M_{r,s}$ $Q_{r,s} + M_{r,y} \stackrel{k_{f,yy}}{ + p_{r,y}} Q_{s,y} + M_{r,s}$ Termination by Combination $P_{r,s} + P_{r,y} \stackrel{k_{f,yy}}{ + p_{r,y}} \frac{M_{r+s,s+y}}{ + p_{r,s} + Q_{s,y} \stackrel{k_{f,yy}}{ + p_{r,y} + p_{r,y} + M_{r,s} + y}$ Termination by Disproportionation $P_{r,s} + P_{r,y} \stackrel{k_{f,yy}}{ + p_{r,y} + p_{r,y} + M_{r,y} + M_{r,y} + M_{r,y}$ $Q_{r,s} + Q_{r,y} \stackrel{k_{f,yy}}{ + p_{r,y} + p_{r,y} + M_{r,y} + M_{s,y}$ Backbining $P_{r,s} \stackrel{k_{f,y}}{ + p_{r,s} + p_{r,s} + p_{r,s}$ $P_{r,s} \stackrel{k_{f,y}}{ + p_{r,y} + m_{r,s} + P_{r,s}$ $P_{r,s} \stackrel{k_{f,y}}{ + m_{r,y} + P_{r,s}$ $P_{r,s} \stackrel{k_{f,y}}{ + m_{r,y} + p_{r,s}$
$k = k_0 \exp\left(-\frac{E_a + P E_v}{RT}\right)$	~ 35 Elementary Reactions ~100 Kinetic Parameters

Chernica	G Multi- D D	La Zone Data S Match	rge-Sc Tubular Re Sets: Operation : Temperation In-line Adju	actor - ting Cor re Profi	Para Quasi ditions les and Parame	ame Steady and P Produ	-State roperties ct Proper Track Ev	for E rties	mat Differer	tion ht Grades Disturbance	s
		□ K	inetic Para	meters	→ Dev	velopme	ent and D	Discri	minatio	on among F	Rigorous
-	Resu		dels								
_	11000	ື 🛛 S	ingle Data Se	et (On-lin	ie Adjus	ting Para	ameters)				
					1	0					
G	irade	Const	traints Par	ameter	s LB	UB	Iteratio	ons	CPU	5 NZJ	NZH
	А	119	955	32	374	4 361	11		17.03	3 166425	87954
	в	11:	283	32	374	4 361	8		10.06	5 138666	76890
		u M	ultiple Data S	ets (On-	line Adju	usting Pa	rameters	+ Kin	etics)		
	Data	Sets	Constraints	DOF	LB	UB	Iteration	5 (PUs	NZJ	NZH
	3	1	33900	121	1246	1207	68	4	51.51	520275	552738
	6	i.	68421	217	2467	2389	58	90	00.21	1058412	1119258
Во	ottlenec In Kl (Hand decom	ck - Me KT Fac lled th positi	mory Requir ctorization St rough blocky on of KKT ma	ements ep vise atrix)		$egin{aligned} & X(x_k,\lambda_k) \ & A(x_k)^T \ & V_k \end{aligned}$	A(x _k) - 0 0 2	$\begin{bmatrix} -I \\ 0 \\ X_k \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix}$	$\begin{bmatrix} \Delta x \\ \Delta \lambda \\ \Delta \nu \end{bmatrix} =$	$= -\begin{bmatrix} \nabla f(x_k) - X_k \end{bmatrix}$	$\left[+A(x_k)\lambda_k - \nu_k \\ c(x_k) \\ V_k e - \mu_\ell e \end{array} \right]$

- Computational Delay from On-line Optimization degrades

performance

Chernical

Some Related NMPC Research

Optimization and Optimal Control

 Pontryagin (1959), Bryson and Ho (1969), Ray (1981), Sargent and coworkers (1970s),...

Model Predictive Control

- Evolution from LQ, MPC (Kleinman, 1975; Kwon and Pearson, 1977),
- DMC (Cutler and Ramaker, 1979), QDMC (Garcia and Morshedi, 1984)
- Concepts and Analysis: Allgöwer and coworkers (1989), Bordons and Camacho (2001), Rawlings and Mayne (2009), Grüne and Pannek (2011)
- Real-time iteration (Diehl, Li, Ohtsuka, Oliveira, Santos, 1989)
- Neighboring extremal approaches (Bonvin, Marquardt, 2002)

	Background Optimization	Online Update	NLP Type		
Ideal	None	NLP	Various		
Real-time Iteration	None	QP	Multiple shooting		
Neighboring Extremal	Only once	KKT/ QP	KKT/ Single QP shooting		
asNMPC	Every step	ККТ	Γ Simultaneous Collocation		
[-	$\frac{\mathbf{K} \mid \mathbf{E}_0}{\mathbf{E}_0^T \mid 0} \begin{bmatrix} \mathbf{\Delta} \\ \mathbf{A} \end{bmatrix}$	$\left[\frac{\Delta v}{\Delta s}\right] = -$	$\begin{bmatrix} 0 \\ \hat{z}(\ell+2) - z^* \end{bmatrix}$		

Conclusions

Bigger NLPs are not harder to solve

- Embrace and exploit size, sparsity and structure
- Exact first and second derivatives are essential
- Newton-based optimization is fastOptimal sensitivity is (nearly) free

Chemical Process Operations: RTO \rightarrow D-RTO

- Essential for Batch Processes, Cyclic Processes, Transient Operations
- Need for First-Principles <u>Dynamic</u> Models
- Extension to On-Line Economic Decision-Making

NMPC and MHE Computational Strategies

- Full-Discretization + Fast Sensitivity Calculations
- Large-scale LDPE process with DAE model

From NMPC Setpoints to Economic Optimization

- Direct optimization in real-time
- · Maintain stability and exploit uncertainties
- <u>Still many open questions</u>

For more information: http://:numero.cheme.cmu.edu http://:capd.cheme.cmu.edu

