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Abstract: This paper presents a unified approach for tuning PID controllers for stable,
integrative and unstable dead-time processes. The approach is based on a PID approximation of
the Filtered Smith Predictor that allows to control this kind of processes looking for a trade-off
between performance and robustness. The proposed control tuning method is simple to analyze
and use. Cases studies are included to illustrate the advantages of the proposed tuning rules.
Furthermore, comparisons with other existing methods are presented to show that the proposed
unified method provides promising results.
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1. INTRODUCTION

PID controllers are widely used in industry; mainly in
process control applications, where more than 95% of
the controllers are of PID type (Åström and Hägglund,
2005). As pointed out in (Skogestad, 2003), although
PID controller has only three parameters, it is not easy,
without a systematic procedure, to find adequate values
(settings) for them. In industry, large number of PID
controllers are poorly tuned (Åström and Hägglund, 2005).
Despite the development of other more powerful control
algorithms, and the fact that hundreds of tuning rules for
PID controllers have been proposed since 1942, every year
new works are developed aiming for the improvement of
PID tuning (O’Dwyer, 2003).

It is important to note that most of proposed tuning
rules are based on simple models, like stable first-order
plus dead time model (FOPDT), integrator plus dead
time model (IPDT) or unstable first-order plus dead time
model (UFOPDT). This is motivated by the fact that
these simple models are easy to obtain in industry from
process data. Many of these tuning rules are derived only
for FOPDT models (see for example, (Cohen and Coon,
1953; Rivera et al., 1986; Wang et al., 2001)), only for
IPDT models (see for instance (Tyreus and Luyben, 1992;
Luyben, 1996)), or only for UFOPDT models (see for
example (Depaor and O’Malley, 1989; Venkatashankar
and Chidambaram, 1994; Marchetti et al., 2001; Visioli,
2001)). In some cases, the proposed rules are valid for two
cases: FOPDT-IPDT (Ziegler and Nichols, 1942; Skoges-
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tad, 2003; Åström and Hägglund, 2004), IPDT-UFOPDT
(Lee et al., 1998) or FOPDT-UFOPDT (Padma et al.,
2004). Moreover, different control objectives are used to
obtain the PID parameters; for example in (Ziegler and
Nichols, 1942) and (Cohen and Coon, 1953), settings re-
sult in a very good disturbance response for integrating
processes, but give aggressive settings for set-point changes
and poor performance for dominant dead-time processes.
Robustness and good set-point responses are obtained
with the IMC approach (Rivera et al., 1986), however
with slow disturbance rejection in lag dominant plants.
More recently, a simple tuning was proposed (Skoges-
tad, 2003) which gives satisfactory set-point and distur-
bance responses for stable and integrative cases. On the
other hand, the AMIGO method proposed by Åström and
Hägglund (2004) provides simple tuning rules for stable
and integrative dead-time processes looking for a compro-
mise between robustness and performance. However, there
are not too many time domain tuning rules to be applied
for all cases, stable, integrative and unstable processes,
using a unique design approach.

Thus, this paper presents a PID tuning procedure which
can be used to control FOPDT, IPDT and UFOPDT pro-
cesses. The proposed PID is based on a simple modification
of the ideal dead-time compensation structure of the Fil-
tered Smith Predictor (FSP) (Normey-Rico and Camacho,
2007, 2009), where both the design and tuning of the
controller are intuitive and simple. In fact, the proposed
method has been developed looking for the objectives pro-
posed by Skogestaad in (Skogestad, 2003): (i) the tuning
rules are well motivated, model-based and analytically
derived; (ii) they are simple and easy to memorize (the
rules are simple and easy at the current version, although
perhaps not for all cases can be easy to be memorized);
(iii) they work well on a wide range of processes. Further-
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more, the proposed method considers a real PID controller,
which includes the filter of the derivative action in the
design.

The paper is organized as follows. Section 2 is devoted
to describe the controller design and the resulting tuning
rules for FOPDT, IPDT, and UFOPDT systems. First,
the FSP scheme is briefly described, and afterwards the
equivalent PID controller is obtained, which is then used
to derive the resulting tuning rules. Three simulated case
studies are presented in section 3, where the proposed
tuning rule is compared with other existing methods.
Finally, the paper ends with some conclusions.

2. THE PROPOSED METHOD

In a recent paper, a unified dead-time compensation struc-
ture which can be used to control stable, integrative and
unstable processes with a dead-time has been proposed
(Normey-Rico and Camacho, 2009). The structure is based
on a simple modification of the Smith Predictor (SP) and
both the design and tuning of the controller are simple and
allow fast closed-loop responses than other controllers. In
practice, the use of a dead-time compensator is the best
solution for a dead-time process, however some times the
only real-time allowable controller is a PID and a simple
first-order model (FOPDT, IPDT, or UFOPDT) is used
to represent the process. Therefore, the idea of this work
is based on two steps, first a FSP is computed for a first-
order model and then the equivalent FSP control law is
approximated by a PID. Furthermore, the resulting tuning
rule is derived to eliminate the slow or unstable dynamics
from the disturbance rejection responses.

2.1 FSP for FOPDT, IPDT, and UFOPDT processes

This section briefly revises the FSP tuning for FOPDT,
IPDT, and UFOPDT processes. The FSP controller is
shown in Figure 1 (Normey-Rico and Camacho, 2009). As
can be seen, the structure is the same as in the SP with
two additional filters. F (s) is a traditional reference filter
to improve the set-point response and Fr(s) is a predictor
filter used to improve the predictor properties.
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_

_
+

+
+

+
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Fig. 1. FSP: structure for analysis

In the structure, used for analysis, Pn(s) = Gn(s)e
−Lns is

a model of the process, Gn(s) is the dead-time-free model,
and C(s) a PI primary controller, C(s) = K 1+sτi

sτi
.

For the stable case, Gn(s) =
Kp

1+sT , for the integrative case,

Gn(s) =
Kp

s , and for the unstable case, Gn(s) =
Kp

sT−1 .

In the three cases the PI controller is tuned to obtain
a delay free nominal closed-loop system with a pole (or
double pole) in s = −1/To, giving:

• FOPDT: τi = T,K = T/(ToKp)
• IPDT: K = 1

ToKp
(P controller)

• UFOPDT: τi = To(2+To/T ),K = (To+2T )/(ToKp)

Filter Fr(s) is designed to avoid the effect of the open-loop
pole in the disturbance closed-loop response. This allows
for a internally stable system which rejects steps in steady
state with time constant To (Normey-Rico and Camacho,
2009). The obtained filter is

• FOPDT and IPDT: Fr(s) =
1+sβ
1+sTo

• UFOPDT: Fr(s) =
1+sβ

1+sTo(2+To/T )

where β is obtained for the specified conditions and To

is the only one tuning parameter for a trade-off between
robustness and performance. Note that increasing To a
slower and more robust system is obtained. Finally, a
reference filter F (s) = 1+sTr

1+sτi
can be used, if necessary,

to eliminate the effect of the controller zero. In this filter,
Tr regulates the overshoot of the set-point response.

r ( t ) y ( t ) 
P(s)C eq(s)

+

_

+

q ( t ) 
u( t ) 

+
e ( t ) 

F eq(s)

Fig. 2. 2DOF equivalent structure of the FSP

With these settings, the FSP allows to speed up the
disturbance response of the SP even for the case of lag
dominant processes and to control integrative and unstable
processes. In practice, the FSP equivalent 2DOF controller
shown in figure 2 is used for implementation purposes.

This 2DOF controller is given by:

Ceq(s) =
C(s)Fr(s)

1 + C(s)Gn(s)(1− e−LnsFr(s))
, Feq(s) =

F (s)

Fr(s)
,

and it is usually implemented in the discrete domain
(Normey-Rico and Camacho, 2009), in such a way that
Ceq(s) does not cancel the open-loop pole of the model.

2.2 PID approximation of the FSP

As mentioned, if only a PID controller is allowable, the
exact FSP solution can not be used. Thus, the idea of this
paper is to approximate, at low frequencies, the FSP by a
PID. To do it, first the equivalent Ceq(s) controller of the
FSP is computed for the three simple cases:

• FOPDT:

Ceq(s) =
K(1 + sβ)(1 + sT )

sτi(1 + sT ) +KKp[1 + sτi − e−Lns(1 + sβ)]

• IPDT:

Ceq(s) =
K(1 + sβ)s

s(1 + sTo) +KKp[1 + sTo − e−Lns(1 + sβ)]
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• UFOPDT:

Ceq(s) =
K(1 + sβ)(1 − sT )

sτi(1− sT ) +KKp[1 + sτi − e−Lns(1 + sβ)]

To obtain a PID controller Cpid(s) that approximates
Ceq(s), a Pade approximation of the dead time is used,

e−Lns = 1−0.5Lns
1+0.5Lns

. Afterwards, parameter β is calculated

to eliminate the zero of Ceq(s) at the desired value, that
is, s = −1/T in the stable case, s = 0 in the integrative
case, and s = 1/T in the unstable case.

The final real PID series controller (a realizable transfer
function) is:

Cpid(s) =
kc(1 + sTi)(1 + sTd)

sTi(1 + sαTd)
(1)

where Td = 0.5Ln and Kc, Ti, and α are given by:

• FOPDT:

Ti = T
[
1−

(2T − Ln)(T − To)
2

(2T + Ln)T 2

]
(2)

kc =
Ti

Kp(Ln + 2To − Ti)
(3)

α =
To

Ln + To +
LnTi

2To
− ToLn

2T

(4)

• IPDT:

Ti = 2To + Ln, kc =
2 + Ln/To

Kpδ
, α =

To

δ
(5)

δ = To + 0.5Ln(4 + Ln/To) (6)

• UFOPDT:

Ti =
To(2T + To)(2 + Ln/T ) + 2LnT

2T − Ln
(7)

kc =
TiT

Kpδ
, α =

T 2
o

δ
(8)

δ = T 2
o − T

(
L+ To

(
2 + To/T

)
− Ti

)
(9)

In the unstable case, the solution it is only valid for
proceses with L < 2T . Notice that this is not a very
hard constraint because it is difficult to find dominant
dead-time unstable processes in practice. Moreover, as
shown in (Normey-Rico and Camacho, 2007), dominant
dead-time unstable processes can be unstabilized with a
infinitesimal dead-time error, even using an ideal dead-
time compensator structure.

3. CASE STUDIES

This section is devoted to analyzed the three case studies,
FOPDT, IPDT, and UFOPDT, where the results obtained
for the proposed tuning rule are compared with other
algorithms found in literature. For all the examples, the
time unit is considered in seconds.

Such as discussed at the introduction section, there exist
many methods providing PID tuning rules for FOPDT,
IPDT, and UFOPDT systems (although none of them give
a general PID tuning for the three cases). Here, the time-
domain methods proposed by (Padma et al., 2004) for
FOPDT and UFOPDT, (Lee et al., 1998) for FOPDT,
(Lee et al., 2000) for IPDT and UFOPDT, and (Sko-
gestad, 2003) for FOPDT and IPDT, have been selected
considering the same features of the rule proposed in this
paper: simple tuning rule based on the process parameters
and easy understanding design procedure. Furthermore,
these four works include comparisons with other existing
methods and thus they are quite valuable to be used as
reference tests and to obtain adequate conclusions. The
method proposed in (Padma et al., 2004) presents a tuning
rule that is based on designing a standard PID controller
looking for matching the numerator and denominator of
the closed-loop transfer function. Simple equations (with
no tuning parameter) are derived for stable and unstable
processes, but the proposed rule for unstable processes is
limited to L/τ ≤ 1.2. The IMC-PID approach presented by
(Rivera et al., 1986) is generalized in (Lee et al., 1998) and
to show how to obtain PID parameters for general stable
process models. The standard PID controller is obtained
by taking the first three terms of the Maclaurin series
expansion of the single-loop form of the IMC controller.
The work presented in (Lee et al., 2000) proposes a method
that is an extension of the PID controller tuning presented
by (Lee et al., 1998) to general unstable and integrating
processes with time delay. Explicit PID controller tuning
rules based on IMC are proposed for unstable and in-
tegrative processes with time delay. On the other hand,
Sckogestard proposed a method based on analytic rules for
series PID controller tuning that are simple and still result
in good closed-loop behavior (Skogestad, 2003). They are
based on the IMC-PID tuning rules, where the rule for the
integral term is modified to improve disturbance rejection
for integrating processes. The resulting tuning rule works
well for both integrating and stable time delay processes,
and for both setpoints and load disturbances.

3.1 Stable case

For the FOPDT case, an example from Padma et al. (2004)
is selected where the process transfer function is given by

P (s) =
e−0.5s

s+ 1
(10)

The methods described above for stable processes were
used looking for obtaining a similar rise time (0.8 seconds)
for the setpoint tracking response. This decision was made
because the method proposed by (Padma et al., 2004)
does not provide any tuning parameter and thus the
other methods were tuned according to have similar rise
time. In this way, the method proposed by (Padma et al.,
2004) gives a controller with kc = 2.5, Ti = 1.25, and
Td = 0.217; that proposed by (Lee et al., 1998) results
in kc = 2.01, Ti = 1.21, and Td = 0.18 with λL = 0.1
(design parameter); the tuning rule from (Skogestad, 2003)
provides kc = 1.96, Ti = 1, and Td = 0 with λS = 0.01
(design parameter); and the parameters for the proposed
method according to (2)-(4) are kc = 1.94, Ti = 0.784,
Td = 0.25, and α = 0.31 with To = 0.4. For this
comparison, a reference filter was not used.

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WeA1.2



0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

y

t(s)

Unified method
Padma et al 2004
Lee et al 1998
Skogestad 2003
Reference

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

6

u

t(s)

Unified method
Padma et al 2004
Lee et al 1998
Skogestad 2003

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

frequency

m
ag

ni
tu

de

Unified method
Padma et al 2004
Lee et al 1998
Skogestad 2003
|dP|

Fig. 3. Stable case. Example for transfer function P (s) = e−0.5s/(s+ 1) for a reference value of r(t) = 1 ∀t ≥ 0 and a
load disturbance value of q(t) = 0.3 ∀t ≥ 12.5. Dead-time modelling error of 10% was used for robustness analysis.

Structure OS IAEr ITAEr tr IAEd ITAEd

Proposed 25.32 3.93 7.68 0.80 0.52 0.87
Padma et. al. 16.98 3.97 7.87 0.81 0.60 1.20
Lee et. al. 98 30.20 4.08 8.58 0.80 0.52 1.10
Skogestad 48.02 4.46 10.64 0.81 0.63 1.31

Table 1. Numerical results for stable case

Figure 3 and Table 1 shows the graphical and numerical
results for the different tuning rules, where in the table
OS is the overshoot, IAEr is the Integrated Absolute
Error for the reference tracking, ITAEr is the Integrated
Time weighted Absolute Error for the reference tracking,
tr is the rise time for the reference tracking, and IAEd

and ITAEd are equivalent measurements to IAEr and
ITAEr for the load disturbance response. Notice how
all the methods practically reach the same rise time.
Similar load disturbance responses are obtaining for the
three methods. The main differences are observed at the
setpoint tracking response, where an oscillatory behaviour
is obtained for all the methods, as expected. The minimum
and maximum overshoots are reached for the (Lee et al.,
1998) and (Skogestad, 2003) methods, respectively. On
the other hand, the method proposed in this paper is
that obtaining better responses for setpoint tracking and
load disturbance rejection based on the IAE and ITAE
values presented in Table 1. Finally, notice that from the
robustness analysis shown in Figure 3, where a dead-time
error of 10% was considered, the unified proposed method
is that with better robustness properties.

3.2 Integrative case

The following transfer function has been used for the IPDT
case (Skogestad, 2003)

P (s) =
e−s

s
(11)

In this case, the resulting PID parameters are kc = 0.502,
Ti = 6.87, and Td = 0.219 with λL = 2.75 for the (Lee

et al., 2000) method; kc = 0.526, Ti = 7.6, and Td = 0
with λS = 0.9 for the (Skogestad, 2003) method; and
kc = 0.48, Ti = 6.4, Td = 0.5, and α = 0.56 with
To = 2.75, for the proposed tuning rule following (5)-
(6). The different free tuning parameters were modified
in order to obtain similar responses for setpoint tracking
and load disturbance responses. In this example, a fist-
order reference filter has been used for the three methods
in order to obtain a underdamped response with F (s) =
(3.84s+ 1)/(6.4s+ 1).

The graphical responses and numerical results are pre-
sented in Figure 4 and Table 2, respectively. Notice how
practically the same response is obtained for the three
methods. Slight differences can be observed from Table
2, where it can be seen that the (Skogestad, 2003) method
is the slowest one for the load disturbance response, al-
though is also the method with less overshoot for the
setpoint tracking response. On the other hand, the pro-
posed method gives again the best results according to the
IAE and ITAE measurements, although such as pointed
out before, there are only some minor differences among
the three methods. Regarding the robustness analysis pre-
sented in Figure 4, the three methods showed also similar
robustness properties, having both the proposed method
and the Skogestad approach practically the same results.

3.3 Unstable case

Finally, a third example for UFOPDT system is presented
where the process transfer function is described by (Lee
et al., 2000)
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Fig. 4. Integrative case. Example for transfer function P (s) = e−s/s for a reference value of r(t) = 1 ∀t ≥ 0 and a load
disturbance value of q(t) = 0.3 ∀t ≥ 30. Dead-time modelling error of 10% was used for robustness analysis.

Structure OS IAEr ITAEr tr IAEd ITAEd

Proposed 1.04 5.81 18.60 7.80 13.2 89.90

Lee et. al. 00 2.10 6.00 20.40 7.90 13.67 96.35
Skogestad 0.59 5.81 18.90 12.7 14.46 110.42

Table 2. Numerical results for integrative case

P (s) =
e−0.4s

s− 1
(12)

The method proposed by (Padma et al., 2004) consists
in a direct design tuning rule without using any design
parameter. Thus, and for comparative reasons, the other
methods have been tuned trying to obtain similar load
disturbance responses in order to perform an adequate
conclusion. The resulting controller parameters are kc =
2.75, Ti = 2.22, and Td = 0.21 for the (Padma et al.,
2004) method; kc = 2.90, Ti = 2.10, and Td = 0.16 for the
(Lee et al., 2000) method with λL = 0.4; and kc = 1.07,
Ti = 1.86, Td = 0.2, and α = 0.21 with To = 0.4, for the
proposed tuning rule by using (7)-(9). Again, a first-order
reference filter was used for the three methods in order
to reduce the overshoot in the setpoint tracking response
with F (s) = (0.46s+ 1)(1.86s+ 1).

Figure 5 and Table 3 present the results for this case. It
can be observed how the responses for the (Lee et al.,
2000) method and the proposed tuning rule are giving
quite similar results. This fact can be better seen from
the measurements in Table 3, where the values for both
methods are practical identical. Furthermore, these two
methods not only improve the results with respect to
(Padma et al., 2004) method, but also both of them are
providing a design tuning parameter that allows to define
the desired closed-loop response. This fact is not available
at the (Padma et al., 2004) tuning rule such as mentioned
above. On the other hand, the three methods have similar

robustness capabilities such as shown in Figure 5, being
the proposed unified method slightly more robust.

4. CONCLUSIONS

This paper presents a unified PID design for FOPDT,
IPDT, and UFOPDT processes. The proposed controller
is simple to analyze and tune and it is based on a low
frequency approximation of the ideal dead-time compen-
sation structure of the FSP. Giving the process model,
only one parameter is used obtain a compromise between
performance and robustness. Three case studies were pre-
sented to illustrate the tuning procedure and to show that
the proposed controller allows for a closed-loop system
with similar or better performance and robustness than
other algorithms presented in literature. However, the
main contribution with respect to other existing methods
is that the proposed approach deals with stable, inte-
grative, and unstable processes using the same unified
procedure.

Furthermore, the presented method fulfills most of the
recommendations proposed by Skogestad in (Skogestad,
2003), mainly those dealing with well motivated rules,
model-based and analytically derived; and those others
saying that the rules work well on a wide range of pro-
cesses. However, Skogestad also suggests that rules must
be simple and easy to memorize. As discussed through
the paper, the rules presented here are easy and simple,
but in some cases they are not too easy to be memorized.
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Fig. 5. Unstable case. Example for transfer function P (s) = e−0.4s/(s− 1) for a reference value of r(t) = 1 ∀t ≥ 0 and a
load disturbance value of q(t) = 0.3 ∀t ≥ 12.5. Dead-time modelling error of 10% was used for robustness analysis.

Structure OS IAEr ITAEr tr IAEd ITAEd

Proposed 9.90 3.88 7.53 1.4 0.71 1.14

Padma et. al. 13.00 4.02 8.34 2.10 0.86 1.58
Lee et. al. 00 9.07 3.91 7.63 1.5 0.75 1.26

Table 3. Numerical results for unstable case

Thus, future works will be focused on simplifications of the
proposed tuning rules such that they are easy to memorize.
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