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Abstract: Gain and time-constant factors shift the inverse process relative to its feedback
controller. A new robustness plot cross-graphs these shift factors that take the loop to the
stability boundary as a function of frequency.
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1. INTRODUCTION

Process dynamics may be imperfectly known and may
change over time. Production rate, feed composition, en-
ergy supply, wear, fouling, and the environment may cause
the change. Feedback-loop robustness is an ability to
maintain stability in the presence of process change or
uncertainty. Robustness limits may be quantified as the
smallest combination of probable parameter changes of
specific process elements that can bring the nominally sta-
ble loop to its stability boundary. Often such a completely
parameterized structural dynamic model of the process is
either not available or difficult to analyze. Instead generic
measures of unstructured uncertainty are commonly ap-
plied to nominally stable linearized input-output models
of the process and controller.

Phase information in the frequency neighborhood of open-
loop unity-gain crossings is critical for predicting feedback-
loop stability. Effective delay contributes to phase but not
amplitude at these frequencies. The effective delay time
includes deadtime plus other high-frequency dynamics.
Static nonlinearity also contributes to uncertainty. Zero-
frequency gain, as distinct from amplitude in the critical
frequency regions, is most easily measured or calculated
but may have little impact on stability.

2. TRADITIONAL ROBUSTNESS

The Nyquist plot is a graph of the product of the open-
loop process G {iω} and feedback-controller C {iω}. Its
polar amplitude-phase trajectory, as a function of fre-
quency, demonstrates stability by passing to the right of
the critical (1, 180◦) point, provided no unstable open-
loop poles are cancelled by zeros. Traditional robustness
measures (Åström & Hägglund, 2005) include gain and
phase margins, changes in gain and phase that would bring
the loop trajectory to the stability-limit point.

This multiplicative model emphasizes the controlled mea-
surement’s response y to process output noise n (mul-
tiplied by the sensitivity) or setpoint (and measurement
noise) r (multiplied by the complimentary-sensitivity):

y =
1

1 +GC
n+

1

1 + (GC)
−1 r (1)

Multiplicative compensation (for example stable-pole can-
cellation with a PID or model-feedback controller) may
achieve fast setpoint tracking, provided the controller out-
put does not limit, but may also provide poor load rejec-
tion.

Phase depends on frequency and time-constants. Small
deadtime changes can cause large phase changes at high
frequencies. This is particularly relevant for systems with
multiple unity-gain crossings. Multiple crossings may oc-
cur if the process has a resonance, a recycle stream, or a
lead (a zero), also if the controller has derivative action
or has deadtime feedback (e.g. Smith Predictor, Internal
Model, or Foxboro’s PIDτ (Shinskey 1994, Hansen 2003)
controllers).

At the stability limit:

1 + (G+ δG)C = 0 (2a)(
GC

1 +GC

)(
δG

G

)
= −1. (2b)

Maximizing magnitudes separately over frequency∣∣∣∣∣ 1

1 + (GC)
−1 {ω}

∣∣∣∣∣
max

.

∣∣∣∣δGG {ω}
∣∣∣∣
max

< 1.0 (2c)

assures stability. The maximum complementary-sensitivity
magnitude is at least 1. This unrestricted-frequency test
fails to demonstrate closed-loop robustness whenever the
process contains deadtime uncertainty, because the max
absolute process-change ratio is at least 2. A specified max
abs. process-change ratio less than 1 (restricted to all fre-
quencies where absolute complementary-sensitivity may
be 1 or more) leads to an allowable maximum absolute
complementary-sensitivity (circle) for use as a Nyquist-
plot robustness constraint in a controller-design optimiza-
tion.

3. PARAMETRIC ROBUSTNESS

Parameterized robustness is based on the sum of the
inverse-process (G {s})−1 and controller C {s}, thus avoid-
ing pole cancellation issues. This additive model em-
phasizes the controlled measurement’s response y to an
unmeasured-load disturbance v at the process input.
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y =
1

G−1 + C
v (3)

Additive compensation can achieve good load rejection
and setpoint response as shown in Figure 4.

A gain factor k multiplies the process amplitude; a value
greater than one shifts the inverse-process amplitude
|kG {ifω}|−1 downward relative to the controller |C {iω}|
on a Bode plot. A time-constant factor f simultaneously
multiplies all process time constants (lag, lead, integral,
resonant period, and delay times). Significant time con-
stants are often inversely proportional to production rate.
A value of f greater than one shifts the inverse process
amplitude and phase to the left, relative to the controller.
The robustness plot uses log scales to graph kSB vs. fSB ,
the values of k and f that bring the nominally stable
loop to the stability boundary, as a function of (radian)
frequency ω. A trajectory loop further away from the
nominal (1, 1) point indicates another root has reached
the stability limit.

4. DEADTIME EXAMPLE

Impending instability may not be apparent with a nominal
Nyquist trajectory as is demonstrated by an example.
Figure 1 is a polar Nyquist plot for the unity-gain pure-
delay process G {s} = e−τs and its “ideal” controller

C {s} = (1− e−τs)−1 (Hansen 2000). This model-feedback
controller is an extreme example of a PIDτ , a Smith Pre-
dictor, or an Internal Model controller. The polar Nyquist
trajectory makes an infinite number of clockwise encir-
clements of the origin and none of the critical (1. 180◦)
point, keeping this critical point to its left as frequency
increases. Thus the loop is stable. The gain margin is 2 (or
6 dB) and the phase margin is ± 60◦. The complementary-
sensitivity magnitude is 1. Even though the Nyquist plot
does not penetrate a max complementary-sensitivity cir-
cle, the loop is not robust.

Lack of robustness is shown by shifting the process in the
special characteristic equation expressed as:

C−1 {iω}+ kSBG {ifSBω} = 0 (4)

The phase mismatch is θSB ≡ (fSB − 1) τω. Using
algebra and trigonometric identities it can be shown that:

θSB = tan−1
(

sin τω

1− cos τω

)
= tan−1

(
1

tan τω
2

)
(5a)

kSB = 2 cos θSB , (5b)

fSB = 1 +
θSB
τω

. (5c)

When θSB = 0◦, kSB = 2, the gain margin. When
kSB = 1, θSB = ±60◦, the phase margin. However,
fSB approaches 1 as frequency increases, indicating a
diminishing stability region.

Figure 1c. is the robustness plot, kSB vs. fSB , using log-
arithmic scales. The robustness trajectory proceeds from
the lower right as frequency increases, encircling counter-
clockwise the nominal (1, 1) point with ever narrowing
loops.
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Fig. 1. “Ideal” Control of Deadtime Process (w = τ ω)

The parametric change ratios are (a0 is the inverse gain):

δa0
a0

=
1

k
− 1.0, (6a)

δτ

τ
= f − 1.0. (6b)

5. PID CONTROL

It is convenient to shift a PID (proportional P , Integral I,
derivative D) controller:

C {s} =
1

P

(
1

I s
+ 1 +Ds

)
, (7)

relative to the inverse process in order to locate the
robustness boundary:

kSB
P

(
−ifSB

Iω̄
+ 1 + i

Dω̄

fSB

)
= −G−1 {iω̄} , (8)

where ω̄ = fSBω.

Equating reals and imaginaries to 0:

kSB = −P Re
{
G−1 {iω̄}

}
, (9a)

fSB
Iω̄
− Dω̄

fSB
= −Im

Re

{
G−1 {iω̄}

}
. (9b)

Solving the quadratic:

fSB = ω̄

(
β +

√
β2 + I D

)
, (10)
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where β ≡ − I
2
Im
Re

{
G−1 {iω̄}

}
.

Many industrial processes can be modeled effectively as a
quadratic-delay:

G−1 {s} =
(
a0 + a1s+ a2s

2
)
eτs. (11)

The real and imaginary parts are:

Re
{
G−1 {iω̄}

}
=(

a0 − a2ω̄2
)

cos τ ω̄ − a1ω̄ sin τ ω̄, (12a)

Im
{
G−1 {iω̄}

}
=(

a0 − a2ω̄2
)

sin τ ω̄ + a1ω̄ cos τ ω̄. (12b)

Interacting loops and measured-loads may be decoupled
using (adapted) additive or multiplicative dynamic feed-
forward compensation of the interacting measurements
(Hansen 2003). Useful for linearizing are nonlinearly com-
pensated measurements and valves, and a fast cascaded
secondary (flow or valve-position) loop.

The f and k factors are also used in an adaptive selftuner
(Hansen 2003) to determine how much the process has
shifted relative to the controller at a complex closed-loop
root, identified from naturally-occurring-response features.
The nominally well-tuned PID controller’s I and D are
then multiplied by f , P is multiplied by k. This nearly
restores the original robustness as well as the desired load
and setpoint step-response shapes.

6. LAG-DOMINANT PROCESS

A common process type is lag-dominant. Examples include
liquid level, gas pressure, temperature, speed, and com-
position. A limiting example is an integral-delay process
(a0 = a2 = 0). Algebraic tuning of a PID for this process
gives: P = 0.938 τ

a1
, I = 2.7 τ , D = 0.313 τ .

Algebraic tuning (Hansen 2000) is a performance-based
quantitative controller tuning method that approximately
minimizes integrated-absolute-error (IAE) in response to a
load step with a controlled-variable response shape similar
to the Gaussian probability density.

Solving for fSB and kSB closest to 1 at each frequency:

kSB = 0.938 τ ω̄ sin τ ω̄, (13a)

γ ≡ β

τ
=

0.5 · 2.7

tan τ ω̄
, (13b)

fSB = τ ω̄
(
γ +

√
γ2 + 2.7 · 0.313

)
. (13c)

Figure 2c is the robustness plot for this loop. The trajec-
tory proceeds from the lower right as frequency increases,
encircling counter-clockwise the (1, 1) point. Another root
reaches the stability limit on each trajectory loop. High-
frequency loops are not closer to the (1, 1) point in this
example. The gain margin for this loop is 1.70 (or 4.61 dB).
The phase margin is 28.2◦. The max abs. complementary-
sensitivity is 2.1, allowing

∣∣ δG
G

∣∣ = 0.48. The Bode ampli-
tude plot Figure 2b uses a1 = 1 time unit. The nominal
setpoint- and load-step responses are shown in Figure 4a.
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Fig. 2. PID Control of an Integral-Delay Process (w = τ ω̄)

When f = 1.0, it appears that a process gain shift
k � 1.0 can be tolerated. However, the Bode amplitude
crossing would tend toward the integrating portion of
the controller’s amplitude trajectory where the net slope
approaches -2, resulting in nearly 180◦ of open-loop phase
lag and lightly-damped oscillatory closed-loop behavior.

Parametric change ratios are:

δa1
a1

=
f

k
− 1.0, (14a)

δτ

τ
= f − 1.0 (14b)

When both f and k are inversely proportional to produc-
tion rate, a dominant-lag control loop, tuned at minimum
production rate, will remain well damped, but not opti-
mally tuned, as production rate increases.

7. QUADRATIC-DOMINANT PROCESS

A less common process type is quadratic or resonance
dominant. Examples include control of a mass’s position
or two lags with small effective delay. A limiting example
is a two-integral-delay process (a0 = a1 = 0). Algebraic

tuning of a PID yields: P = 3.75 τ2

a2
, I = 5.5 τ , D = 2.5 τ .

Solving for fSB and kSB :

kSB = 3.75 (τ ω̄)
2

cos τ ω̄, (15a)

γ ≡ β

τ
= −0.5 · 5.5 tan τ ω̄, (15b)

fSB = τ ω̄
(
γ +

√
γ2 + 5.5 · 2.5

)
. (15c)
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Fig. 3. PID Control of a Two-Integral-Delay (w = τ ω̄)

Figure 3c is the robustness plot for this loop. The tra-
jectory proceeds from the lower right as frequency in-
creases, encircling counter-clockwise the (1, 1) point. High-
frequency trajectory loops are further away from the (1,
1) point. The smallest shift to the stability boundary is
f = 1.41.

This conditionally stable loop has slightly oscillatory load
and setpoint step-response shapes shown in Figure 4b. The
gain margin is 1.85 (or 5.34 dB). However the phase margin
is only 16.0◦. The Bode amplitude plot Figure 3b uses
a2 = 1.

Parametric change ratios are:

δa2
a2

=
f2

k
− 1.0, (16a)

δτ

τ
= f − 1.0. (16b)

If f2 ≤ k ≤ 1.0 the loop would remain well damped as
the process speeds up. The max absolute complementary-
sensitivity is 3.6, yielding an allowable

∣∣ δG
G

∣∣ = 0.28

compared with δτ
τ = 0.41, δa2

a2
= 1.0 allowed by the

robustness plot.

8. CONCLUSIONS

Feedback control-loop robustness is an ability to maintain
stability in the presence of process change or uncertainty.
Unmodeled high-frequency dynamics may be represented
as effective delay, contributing phase shift at the frequen-
cies critical for stability. Static nonlinearity may be repre-
sented as gain uncertainty.
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Fig. 4. Setpoint and Load Step Responses

The Nyquist plot represents the nominal process and
controller as a trajectory and the stability limit as a point.
Linear closed-loop stability can be proven with a Nyquist
plot of the open-loop gain – phase trajectory as a function
of frequency provided unstable poles in the process G or
controller C are not cancelled in the GC product. For the
three examples, the max abs. complementary-sensitivity

occurs at the unity-gain crossing. There,
∣∣ δG
G

∣∣ = 2 sin |θ|2
where θ is the phase margin. One example shows that a
stable Nyquist plot may not reveal poor robustness when
there are multiple unity-gain crossings.

Gain and time-constants shifts of the inverse process rel-
ative to the controller are visualized on a Bode plot,
when

∣∣G−1∣∣ and |C| are plotted separately. At the in-
tersection point the open-loop amplitude |GC| is one. If
the intersection point occurs in the well-tuned controller’s
integral region, the process is dominant effective delay,
dominant lag for a proportional region crossing, and dom-
inant quadratic for a derivative region crossing. A process
parameter significantly affecting robustness is a0 for a
dominant effective-delay process, a1 for a dominant lag,
and a2 for a dominant quadratic. As in the examples, the
other significant parameter is the effective delay which
combines phase contributions of higher frequency roots
and deadtime. Derivative action is usually avoided for a
dominant effective delay process to avoid multiple Bode
crossings.

Shifts less than 1.0 that maintain the same relative slope at
a single Bode crossing will have less phase shift contributed
by effective delay and therefore provide well-damped but
degraded unmeasured-load rejection.

The robustness plot represents the nominal process and
controller as a point and the stability limit as a trajectory
or boundary. Pole cancellation does not occur when the
characteristic equation is expressed as G−1 +C = 0. Shifts
to the stability boundary locate the stability region on
the robustness plot even when there can be multiple Bode
plot crossings. A stable region of the robustness plot is on
the left side of all (counter-clockwise) trajectory loops as
frequency ω increases. Non-significant process parameters
do not affect the stability boundary near the nominal (1, 1)
point.

The robustness trajectory is relatively easy to generate for
a PID control loop by solving a quadratic at each frequency
point. A more complicated controller may require itera-
tive solutions or the shifting of a simple (two-parameter)
inverse-process model relative to the controller. When us-
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ing computer software, special care may be required to
avoid trigonometric or polar angle jumps.

When the controller is designed for superior unmeasured-
load rejection, robustness is compromised significantly by
dominant process lags (or integrals) and by a controller
using deadtime. To maintain both good load rejection
and robustness over a range of production rates, it may
be necessary to gain schedule or frequently (adaptively)
retune the controller.
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