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Abstract: A performance comparison between PID and predictive PI (PPI) controllers, i.e.,
two different prediction methods, is presented. Optimization of controller and measurement
filter parameters, considering load disturbance rejection, robustness and noise sensitivity, is
performed for a batch of industrially representative processes. For a majority of the processes
and the constraints chosen, results show that the performances of the controllers are similar.
However, the PID controller yields better performance for processes where increased phase and
gain may be achieved over a wider frequency interval than what is possible by the PPI controller.

1. INTRODUCTION

Low-level controllers in the process industry are required
to have few tuning parameters, be easy to tune manually,
and the parameters should affect the control loop in an
intuitive manner. The most common control structure in
process industry is the PID structure, and most often is the
derivative action turned off, resulting in a PI controller.
This is due to the introduction of noise sensitivity by
the derivative part, but also because it requires tuning
and additional filtering. Adding derivative action may
increase performance significantly and joint design of PID
controller and measurement filter for load rejection, where
limitations on noise sensitivity may be set, have recently
emerged, see for instance Kristiansson and Lennartson
[2006], Garpinger [2009], Larsson and Hägglund [2011].

Adding derivative action to a PI controller yields phase
advance, i.e., prediction capability. Another type of pre-
diction is given by a Smith predictor, see Smith [1957].
The Smith predictor structure contains a model of the
process without dead-time, which is used for simulation
internally with the control signal as input. If the model is
accurate, its output is a prediction of the process output
with the prediction horizon equal to the process dead-
time. However, adding a predictor structure increases the
number of controller parameters significantly and adds to
the operational complexity. A simplified form of the Smith
predictor structure with a PI controller, denoted PIτ or
predictive PI (PPI), has the same number of parameters as
the PID controller and can be tuned manually in an anal-
ogous manner, see Shinskey [1994] and Hägglund [1996].

Performance comparisons between the PID and the PI
controller with a Smith predictor structure, regarding
load disturbances, have been made in e.g., Kristiansson
and Lennartson [2001] and Ingimundarson and Hägglund
[2002]. In this paper, comparison between the performance
of the PID and the PPI controller will be considered. The
differences to the before mentioned references are that
the compared control structures have the same number
of tuning parameters and the comparison is performed
in a discrete time setting. Additionally, both robustness
towards process uncertainty and control signal noise sen-
sitivity are considered using other types of measures.
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Fig. 1. Closed loop control structure with process P ,
controller C and measurement filter F .

2. FEEDBACK AND CONTROLLER STRUCTURES

The closed loop considered in the comparison is shown in
Figure 1, where P , C and F are the process, controller
and measurement filter, respectively. The sensor signal
Y , giving information about the process output X , is
corrupted by measurement noise N . The load disturbance
D is assumed to enter on the process input together with
the control signal U , which is calculated by the controller
from the control error E.

The considered PID controller is on parallel form with the
input-output relation

U = K

(

1 +
1

sTi

+ sTd

)

E,

where K, Ti and Td are proportional gain, integral time
and derivative time, respectively. The comparison will be
made in a discrete time setting and the integral and deriva-
tive parts are discretized using forward and backward
differences, respectively, with sampling period h.

The input-output relation of the PPI controller is

U = K

(

1 +
1

sTi

) (

E − K−1

sTi + 1

(

1 − e−sL
)

U

)

= K

(

1 +
1

sTi

)

E − 1

sTi

(

1 − e−sL
)

U,

where K, Ti and L are the proportional gain, integral
time and controller dead-time, respectively. Compared to
a PI controller with Smith predictor, the process model
in the PPI controller is parametrized with gain K−1, time
constant Ti and dead-time L. Thus, only for certain values
of the parameters is the PPI controller equal to a PI
controller with a Smith predictor using a first order model
with dead-time, i.e., model matching. The PPI controller is
not limited to model matching and its performance can in
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Fig. 2. Implementation of the predictive PI controller.

general be improved if model matching is not considered,
see Shinskey [2001]. Due to the model parametrization, the
PPI controller handles integrating processes, no additional
filters are required as for the Smith predictor structure.

The input-output relation of the PPI controller shows that
an ordinary PI controller acts on the control error E and
the prediction, due to the process model parametrization,
is performed by low-pass filtering the control signal U . The
transfer function of the PPI controller can be factorized
as C0Cpred, where C0 is a PI controller and Cpred is a
predictor structure as

C0 = K

(

1 +
1

sTi

)

, Cpred =
1

1 +
1

sTi

(1 − e−sL)
.

The predictor behavior is essentially determined by the
ratio L/Ti and its gain tends to 1 at high frequencies.
Thus, the PPI controller gain tends to K.

The PPI controller may be implemented by introducing
the dead-time L in the positive feedback in a PI controller
implementation, see Figure 2. Discretization is made by
zero-order hold of the positive feedback transfer function.

To achieve desired noise sensitivity level of the feedback,
measurement filters should be designed together with the
controllers, see Isaksson and Graebe [2002]. In Larsson and
Hägglund [2011], it was shown that a second order filter

with damping 1/
√

2 is preferable to a first order filter for
a PID. To achieve the same roll-off in the feedback when
using a PPI controller, a first order filter will be used
together with the PPI. The filters are parametrized by
the time constant Tf as

FPPI =
1

sTf + 1
, FPID =

1

s2T 2
f +

√
2Tfs + 1

,

and are discretized using zero-order hold. Thus, both the
design of a PID controller and a PPI controller, with their
associated measurement filters, will have four parameters
to determine.

3. COMPARISON OF PREDICTION METHODS

The two controllers presented in the previous section
perform prediction in two different ways. A Taylor series
expansion of the time-domain control error e(t + Td) is

e(t + Td) ≈ e(t) + Td

de(t)

dt
+ . . .

The two first terms is the linear prediction performed
jointly by the proportional and derivative part of the
PID controller. The prediction in the PPI controller is
performed by Cpred, which has the following Taylor series

expansion for small s, see Åström and Hägglund [2006],

Cpred =
1

1 + L/Ti

(

1 +
1

2

(L/Ti)
2

1 + L/Ti

Tis + . . .

)

.

In Figure 3, the transfer function Cpred, with Ti = 0.25
and L = 1, is shown together with a PD controller with K
and Td set using the Taylor series expansion of Cpred as

10
−1

10
0

10
1

10
2

10
−1

10
0

M
ag

nu
tid

e 
(a

bs
)

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

P
h
a
se

(d
eg

)

Frequency (rad/s)

Fig. 3. The predictor Cpred in the PPI controller (–) and
a PD controller (--).

K =
1

1 + L/Ti

, Td =
1

2

(L/Ti)
2

1 + L/Ti

Ti.

The predictor Cpred has a distinct phase advance peak,
associated with a peak in the gain. The phase advance falls
rapidly after the peak. The PD controller has an increasing
phase over a wider frequency interval, associated with a
steadily increasing gain. As noted in the previous section,
the gain of Cpred tends to 1 at high frequencies, while the
gain of the PD controller tends to infinity, hence the orders
of FPPI and FPID. Adding the measurement filters to the
predictors, the phase advances will be smaller and gains
lower, but the differences in characteristics remain.

4. ROBUSTNESS AND NOISE SENSITIVITY

Robustness towards process uncertainties is imperative to
consider at controller design. The Smith predictor struc-
ture, and thus also the PPI controller, is sensitive towards
modeling errors in the process dead-time, see Palmor
[1980]. A method to reduce the sensitivity, presented in
Normey-Rico et al. [1997], is to add a low-pass filter in the
feedback structure. This approach requires at least one
parameter in the added filter to be set, yielding undesir-
able increase in design complexity. Another method was
presented in Kristiansson and Lennartson [2001], where
an upper gain limit on the open-loop transfer function is
set after the phase cross-over frequency. In Ingimundar-
son and Hägglund [2002], the open-loop gain was instead
limited to be strictly less than 1 after the gain cross-over
frequency. The last two methods may be conservative as
they imply that any reduction in process dead-time will
never yield instability, even though bounds on the dead-
time uncertainty may be known.

The robustness measures for process uncertainties to be
used in this paper were presented in Larsson and Hägglund
[2009] for continuous time systems and can be used for dis-
crete time systems with negligible approximation errors if
an appropriate sample period is used, see Appendix A. The
measures consider upper amplitude limits on S∆ and T∆,
which are the closed loop sensitivity and complementary
sensitivity functions extended to depend on the process
dead-time uncertainty ∆L. Constraints may be set as
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‖S∆(∆L)‖∞ ≤ MS (1)

‖T∆(∆L)‖∞ ≤ MT , (2)

which should hold for all considered ∆L in an interval
∆L ≤ ∆L ≤ ∆L, where ∆L and ∆L and lower and
upper bounds on the dead-time uncertainty. Thus, the
constraints guarantee that the maximum gains of the
sensitivity functions S and T are less than or equal to
MS and MT , respectively, when the process dead-time
is changed within the interval. The parameters MS and
MT may be specified to set desired robustness towards
process gain and time constant uncertainties. See Larsson
and Hägglund [2009] for a method to calculate the largest
interval, which includes 0, for ∆L in Eqs. (1)–(2) when a
nominal Nyquist curve and MS and MT are given.

Measurement noise may yield undesirable activity of the
control signal. Assuming the noise is white with zero mean
and with variance, i.e., energy, σ2

n, then the constraint

‖CFS‖2 ≤ ηu,

where S is the sensitivity function, limits the control signal
energy due to measurement noise to σ2

u ≤ η2
uσ2

n. Rapid
variations in the control signal are also undesirable from
an actuator point of view. In Larsson and Hägglund [2011],
a measure was presented that considers the inter-sample
amplitude of the control signal, i.e., derivative, due to
measurement noise. It may be expressed as

‖∆zCFS‖2 ≤ η∆u,

where ∆z is the difference operator, i.e., ∆z = (z − 1)/z.
Both the above constraints on noise sensitivity of the
control signal will be used in the design of controllers and
measurement filters.

5. OPTIMIZATION FORMULATION
The controllers and measurement filters will be compared
using the integrated absolute error (IAE) at a load distur-
bance step as performance measure. The design optimiza-
tion problem, with the constraints in the previous section,
may be stated as follows,

minimize
K

h
∞
∑

k=0

|x(k)|

subject to ‖S∆(∆L)‖∞ ≤ MS, ∆L ≤ ∆L ≤ ∆L

‖T∆(∆L)‖∞ ≤ MT , ∆L ≤ ∆L ≤ ∆L

‖CFS‖2 ≤ ηu

‖∆zCFS‖2 ≤ η∆u

T f ≤ Tf ≤ T f ,

(3)

where K contains controller and measurement filter param-
eters, x(k) is the process output when a load disturbance
step is applied at initial time, and h is the sample period.
The constraints on the extended sensitivity functions are
required to hold for all dead-time uncertainties ∆L that
are in the interval defined by ∆L and ∆L. The lower limit
on Tf is set to T f = h/π due to sampling. The upper limit

T f is set such that the filter break point is at a higher
frequency than the frequency where derivative action or
prediction by Cpred is begun. That is, the filter may not
be used for loop-shaping at low- and mid-frequencies, only
for attenuation at high frequencies, i.e., as a measurement
filter. For the PPI controller, the inverse of the lowest fre-
quency where the controller amplitude curve has a positive
derivative, denoted ωf , is taken as an upper limit and may

be calculated numerically in the optimization. For PID
control, the limit is taken as the inverse of the largest
modulus of the controller zeros of the continuous time
transfer function. Thus, for FPPI and FPID, respectively,
the upper limits are

T f =
1

ωf

, and T f =

∣

∣

∣

∣

∣

1

2Td

+

√

1

4T 2
d

− 1

TiTd

∣

∣

∣

∣

∣

−1

.

The optimization problems are solved in Matlab
R© using

the Control System Toolbox
TM

, Optimization Toolbox
TM

,
and Simulink R©.

6. PROCESS BATCH AND DESIGN PARAMETERS

Controllers and filters have been optimized for the follow-
ing batch of 82 industrially representative processes,

P1 =
e−s

sT + 1
, T = 0.1, 0.2, 0.3, 0.5, 1, 1.5, 4, 10, 50

P2 =
e−s

(sT + 1)2
, T = 0.1, 0.2, 0.3, 0.5, 1, 2, 6, 10, 50

P3 =
1

(s + 1)(sT + 1)2
, T = 0.05, 0.1, 0.2, 0.5, 2, 5, 10

P4 =
1

(s + 1)n
, n = 3, 4, 5, 6, 7, 8

P5 =
1

Π3
k=0(α

ks + 1)
, α = 0.4, 0.5, . . . , 0.9

P6 =
e−sL1

s(sT1 + 1)
, P7 =

e−sL1

(sT + 1)(sT1 + 1)
, T = 1, 10

L1 = 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1, L1 + T1 = 1

P8 =
1 − αs

(s + 1)3
, α = 0.1, 0.2, . . . , 1.1

P9 =
1

(s + 1)((sT )2 + 1.4sT + 1)
, T = 0.1, 0.2, . . . , 1.

The batch includes both lag-dominated, delay-dominated,
oscillative and integrating processes as well as processes
with inverse step responses and are all sampled using zero-
order hold. The sample period used both for processes
and control structures is h = 0.02, i.e., small enough
for the differences in used discretization methods not to
effect the result. In all designs, MS = MT = 1.4, which
is a common value when considering upper limits on the
sensitivity functions, see Åström and Hägglund [2006]. The
noise sensitivity constraints are set to ηu = η∆u = 1,
see Larsson and Hägglund [2011] for design choices. For
simplicity, if the considered process has a dead-time L,
then ∆L = −L/10 and ∆L = L/10. If the process is
modeled without dead-time, only an additive dead-time
uncertainty is considered by ∆L = 0 and ∆L = L̃/10,

where L̃ is the apparent dead-time of the process.

7. BATCH RESULTS

Ratios between the resulting IAE for the PPI and PID
structures are found in Figure 4 as functions of the
normalized process dead-time τ . For a majority of the
processes, the performances of the two prediction methods
are similar, yielding ratios within 0.9–1.1. Comments on
the specific processes are given below.

For the PPI structure and P1 and P2 with τ > 0.5, it
is only the constraint on ‖S∆‖∞ that is active, limiting
the peak gains. For the PID structure, the corresponding
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limit is τ > 0.8. For these processes, a derivative part
may give gain increase and phase advance over a wider
frequency interval than the PPI predictor, which yields a
better performance for the PID structure. See Example I
in Section 8, where the designs for P1 with T = 0.3 are
shown in detail.

At τ close to 0, P1 is essentially a first-order process,
requiring no phase advance in the feedback for high low-
frequency gain and thus low IAE. Resulting feedbacks are
basically PI controllers with measurement filters and the
constraints on ‖CFS‖2 and ‖S∆‖∞ are active.

For higher order processes, phase advance in the feedback
may increase performance significantly. For P2 and P3

with large time constants, i.e., T ≥ 10, and thus small
τ , phase advance should be made at low frequencies for
high performance. As the constraint functions ‖CFS‖2

and ‖∆zCFS‖2 are calculated over all frequencies and
essentially only over high frequencies, respectively, signifi-
cant gain increase in the open-loop can be given in desired
frequency interval as the measurement filter can decrease
the gain sufficiently at high frequencies. This benefits the
PID structure, which can have phase advance and gain
increase over a wider frequency interval than the PPI
structure, and has therefore significantly better perfor-
mance for these processes. Both control structures have
the constraints on ‖S∆‖∞ and ‖CFS‖2 active. However,
the PID controller has higher gain than the PPI controller
at low frequencies, and the PPI controller has higher gain
than the PID controller at high frequencies.

In comparison with P2 and P3 with T ≥ 10, the other
non-integrating processes with 0 < τ < 0.5, except for
P1, have essentially smaller time constants. Thus, the
phase advance should be at higher frequencies. Here, the
phase advance and gain of the derivative part may not
be used over a significantly wider frequency interval than
the interval with phase advance and gain given by the
PPI predictor, resulting in similar performances of the two
controller structures. In general, both structures have the
constraint on ‖S∆‖∞ active for the considered processes.
The PID structure has always ‖CFS‖2 on the constraint,
but never ‖∆zCFS‖2. The PPI structure has in general a
smaller Tf than the PID structure, resulting in a higher
high-frequency gain and either ‖CFS‖2 or ‖∆zCFS‖2

active. This will be seen in Example II below, where P9

with T = 0.3 is considered.

The open-loop transfer function for the integrating pro-
cesses P6 has an initial phase of −π rad/s , requiring
phase advance to rotate the Nyquist curve away from the
robustness constraints. This can be made over a wider
frequency interval by the PID structure than by the
PPI structure, resulting in a significantly better perfor-
mance for the PID structure. Both control structures have
‖S∆‖∞ = ‖T∆‖∞ = 1.4, while the PID structure has
‖CFS‖2 active for all values of L and the PPI structure
has ‖∆zCFS‖2 active only for L < 0.3. Thus, the PPI
structure cannot give enough phase advance for L ≥ 0.3
over a wide frequency interval such that the gain can be
increased and yield the control signal constraints active.

8. DESIGN EXAMPLES

Table 1 shows the resulting IAE, parameter and constraint
function values for Example I and II below. Nyquist dia-
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Fig. 4. Ratios between IAE for PID and PPI feedback
structures as a function of normalized dead-time τ
for the processes in the batch.

grams, Bode diagrams of the feedbacks and load distur-
bance step responses are shown in figures 5–7 for Ex-
ample I and in figures 8–10 for Example II. In the load
disturbance response simulations, the measurement signal
is in the second half corrupted with zero mean white noise
with a standard deviation of 0.025.

8.1 Example I: P1, T = 0.3
The optimal PPI controller with measurement filter for
P1 with T = 0.3 was not able to give sufficient gain
for the noise sensitivity constraints to be active, yielding
the filter time constant to be at its lower bound. The
presented result for the PPI controller is therefore from
an optimization without measurement filter.

To yield phase advance, the PPI controller makes gain
peaks, resulting in loops in the Nyquist diagram. Prior
the phase cross-over frequency, ∆L = ∆L yields ‖S∆‖∞ =
MS, while the two first gain peaks yield ‖S∆‖∞ = MS for
∆L = ∆L. Hence, the robustness constraint limits the loop
gain to be even larger, and hence also the phase advance
of the predictor. After the two first peaks, the open loop
tends to 0 as the gain of the predictor tends to 1. The
PPI controller is not able to increase its gain at higher
frequencies, and the noise sensitivity constraints are not
active. The optimal controller parameters are not equal to
model-matched design.

The PID controller follows the initial phase advance of the
PPI controller, but the gain does not have, nor is able to
have, a distinct peak at mid frequencies. Prior the phase
cross-over frequency, ∆L = ∆L yields ‖S∆‖∞ = MS.
After the phase cross-over frequency, the PID controller
can increase its gain, yielding phase advance over a wide
frequency interval. As the process gain decreases with fre-
quency, the PID gain increases, making the Nyquist curve
to be almost circular and ‖S∆‖∞ = MS at the negative
real axis. At higher frequencies, the measurement filter
yields roll-off such that the noise sensitivity constraints
are met. The control signal from the PID controller, com-
pared to the PPI controller, reacts faster when the load
disturbance is seen in the measurement signal and is also
more sensitive to measurement noise.

The maximum phase advance and associated gain are
higher for the PPI structure than for the PID structure.
However, for this example, phase advance and gain in-
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Table 1. IAE, feedback parameter and constraint function values in Example I and II.

Process Controller IAE K Ti Td L Tf ‖S∆‖∞ ‖T∆‖∞ ‖CFS‖2 ‖∆zCFS‖2

P1, T = 0.3
PPI 2.17 0.60 0.17 - 1.1 - 1.40 1.00 0.61 0.84
PID 2.10 0.29 0.61 0.30 - 0.034 1.40 1.00 1.0 0.89

P9, T = 0.3
PPI 0.825 2.0 0.46 - 0.98 0.042 1.40 1.08 1.0 0.84
PID 0.892 1.1 0.77 0.32 - 0.096 1.40 1.13 1.0 0.52
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Fig. 5. Nyquist curves in Example I with PPI (–) and
PID (--). Circles correspond to ‖S‖∞ = ‖T ‖∞ = 1.4.
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Fig. 6. Bode diagram of feedbacks in Example I with
PPI (–) and PID (--).

crease over a wider frequency interval are better than over
a narrow interval. This results in a 5% lower IAE for the
PID structure compared to the PPI structure.

8.2 Example II: P9, T = 0.3

The optimal PPI controller with measurement filter for the
process P9 with T = 0.3, have the robustness constraint
‖S∆‖∞ ≤ MS active prior the phase cross-over frequency
when ∆L = ∆L. Phase advance is given by the predictor,
but is limited together with the gain as ‖S∆‖∞ = MS at
the negative real axis in the Nyquist diagram. The highest
gain of the predictor is at the first peak. Since the process
is of third order and the measurement filter time constant
yields roll-off such that the noise sensitivity constraints
are fulfilled, the Nyquist curve tends to 0 rapidly after the
first predictor peak. The process may be approximated
by a first order system with dead-time with static gain,
time constant and dead-time approximately equal to 1, 1
and 0.35, respectively. From the controller parameters, it
is seen that the design of the optimal PPI controller does
not resemble model-matched design.
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Fig. 7. Load disturbance responses in Example I with
PPI (upper curves) and PID (lower curves). Top:
Measurement signal. Middle: Control signal. Bottom:
Inter-sample difference of control signal. Biases of 0.5
and 0.2 are added for separation.

The PID controller follows the phase advance of the PPI
controller and has ‖S∆‖∞ = MS for ∆L = ∆L prior
the phase cross-over frequency. Compared to Example I,
the PID controller may not increase its gain and phase
over such a wide frequency interval above the phase cross-
over frequency due to the noise sensitivity constraints. The
differences in increased gain and phase given by the two
prediction methods are not as large as in Example I.

The optimal PPI structure yields a slightly higher gain
cross-over frequency compared to the PID structure. It
also has significantly higher gain at high frequencies. This
yields the inter-sample sensitivity of the control signal
due to noise to be larger, as seen in the load disturbance
responses, but gives also a more rapid response to load
disturbances. The PPI structure gives approximately 7.5%
lower IAE than the PID structure. Hence, in this example,
it is advantageous to use a feedback structure that may
yield significant gain and phase advance peaks over a
narrow frequency interval.

9. SUMMARY

This paper presented a comparison between PID and PPI
controllers with associated measurement filters, consider-
ing load disturbance rejection, robustness towards process
uncertainties and noise sensitivity of the control signal.
For chosen optimization parameters and the majority of
the processes in the batch, the performances of the two
different structures, and hence the different prediction
methods, are similar. However, for some processes with
comparatively large time constants, the derivative part is
allowed by the noise sensitivity constraints to yield phase
advance and gain increase over a frequency interval wider
than what is possible by the PPI predictor. This yields
better performance by the PID than by the PPI.
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PPI (–) and PID (--).
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Appendix A. ROBUSTNESS CALCULATION
The robustness calculation method presented in Larsson
and Hägglund [2009] is based on the open loop transfer
function C(s)F (s)G(s), where C(s) is the controller, F (s)
is the measurement filter and G(s) = G0(s)e

−sL is the
nominal process. The method considers a rotation of
the Nyquist curve such that a point on the curve with
amplitude close to 1 is rotated a certain angle. From the
rotation, the corresponding change ∆L in dead-time can
be calculated. When G(s) is discretized using zero-order
hold (ZOH), then

G0(s)e
−sL ZOH−−−→ P0(z)z−n,

where n = ⌈L/h⌉, h is the sampling period, and ⌈·⌉ is the
ceiling function. Adding ∆L to the time delay does not
change G0(s), however, it may change P0(z) as

G0(s)e
−s(L+∆L) ZOH−−−→ P̃0(z)z−m,

where m = ⌈(L + ∆L)/h⌉. For the case ∆L = kh, i.e., ∆L

is an integer number of sample intervals, P̃o(z) = Po(z)

and m = n+k. However, for the case ∆L 6= kh, P̃o(z) and
Po(z) have minor differences in both phase and amplitude
affecting the Nyquist curve. The differences are mainly
at high frequencies close to the Nyquist frequency and if
an appropriate sampling period is selected, the differences
are negligible in the frequency interval wherein ∆L is
computed. Hence, the method to calculate ∆L in Larsson
and Hägglund [2009] may be used, yielding negligible
errors. This is confirmed when analyzing the designed
controllers and filters for the considered process batch.
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