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Abstract: This paper deals with the design of nonlinear PI control techniques for regulating a
class of fractional-order dynamics governed by a commensurate-order model, possibly nonlinear,
perturbed by an external disturbance. The suggested control algorithm is the combination
between a fractional-order PI controller and a nonlinear robust version of it, namely a second-
order sliding mode control algorithm called ”super-twisting” controller in the literature. A
key feature of the approach is the use of ad-hoc sliding manifolds whose construction involves
fractional order derivatives. A constructive Lyapunov based synthesis is illustrated, which leads
to simple tuning rules for the controller parameters guaranteeing the asymptotic rejection of the
external disturbance under appropriate smoothness restrictions. Computer simulations illustrate
the effectiveness of the proposed technique.
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1. INTRODUCTION

Fractional–order systems (FOSs), i.e. dynamical systems
described using fractional (or, more precisely, non-integer)
order derivative and integral operators, are studied with
growing interest in recent years. It has been pointed
out that a large number of physical phenomena can be
modeled effectively by means of fractional–order models
(see Sabatier et al. (2007)).

The long-range temporal or spatial dependence phenom-
ena inherent to the FOS present unique and intriguing
peculiarities, not supported by their integer-order coun-
terpart, which raise numerous challenges and opportuni-
ties related to the development of control and estimation
methodologies involving fractional order dynamics (see
Vinagre et al. (2002); Ladaci et al. (2006); Podlubny
(1999a)).

The pioneering applications of fractions calculus in control
theory date back to the sixties (see Manabe (1961)). In the
nineties, Oustaloup and his group proposed a non-integer
robust control strategy named CRONE (Commande Ro-
buste d’Ordre Non-Entier) (see Oustaloup et al. (1996)).
Another well-known fractional control algorithm is the
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fractional-order PID (FPID, or PIλDµ) controller intro-
duced by Podlubny (see Podlubny (1999a,b)). Recently,
fractional calculus is penetrating other nonlinear control
paradigms as well such as the model-reference adaptive
control (see Vinagre et al. (2002); Ladaci et al. (2006)).

It is the task of this paper to study the properties of
a control scheme for FOSs that combines together a
fractional PI controller and a nonlinear version of it. The
latter is a Sliding Mode Control (SMC) algorithm called
”super-twisting” controller in the literature (see Levant
(1993)).

Although fractional calculus has been previously com-
bined with the sliding mode control methodology in the
controller design for integer-order systems (see Efe et al.
(2008); Calderno et al. (2006)), SMC techniques have
been applied to fractional-order systems only recently, (see
Si-Ammour et al. (2009); Efe (2009)). In Efe (2009),
nonlinear single-input fractional-order dynamics expressed
in a form that can be considered as a fractional-order
version of the chain-of-integrators “Brunowsky” normal
form were studied, which will be the class of reference
in this work, too. Noticeably, sliding manifolds containing
fractional-order derivatives were used in Si-Ammour et
al. (2009) in combination with conventional relay control
techniques. The same type of sliding manifolds has been
later used, in combination with second-order sliding mode
control methodologies, to address control, observation and
fault detection tasks for certain classes of uncertain linear
FOS (see Pisano et al. (2010, 2011)).

In this paper we consider a class of nonlinear FOSs ex-
pressed in the previously mentioned chain-of-integrators
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form and we investigate the stability properties of a con-
trol scheme combining the fractional PI controller and
a fractional nonlinear PI algorithm. Unlike the standard
stand-alone PI controller, which can asymptotically reject
constant disturbances only, this combined scheme proves
to be capable of asymptotically rejecting a nonvanishing
disturbance of arbitrary shape and fulfilling the unique
constraint that its time derivative as uniformly bounded by
an a-priori known constant starting from some finite time
instant on. Convergence to zero of the system variables,
and asymptotic rejection of a class of matched distur-
bances, will be demonstrated by means of a Lyapunov
approach.

The paper is structured as follows: in Section II the main
definitions and properties of fractional order derivatives
and integrals are recalled, with emphasis on their composi-
tion which plays an important role in the present develop-
ments. Section III states the control problem under investi-
gation and presents the main result, namely the Lyapunov
based stability analysis of the combined linear/nonlinear
PI controller in question. Section IV presents some com-
puter simulations, and the final Section V gives some con-
cluding remarks and perspectives for next related research
activities.

2. FRACTIONAL OPERATORS AND THEIR
PROPERTIES

Definition 1. (Left) Riemann-Louville fractional in-
tegral of order α > 0 of a given signal f(t) at time instant
t ≥ 0 is defined as

Iαf(t) =
1

Γ(α)

t∫

0

f(τ)(t− τ)α−1dτ, (1)

where Γ(·) denotes the Euler gamma function (see Kilbas
et al. (2006)).

For integer values of α, relation (1) reduces to the well-
known Cauchy repeated integration formula (see Podlubny
(1999a)). It can also be shown that when α approaches zero
the fractional integral (1) reduces to the identity operator
(see (Saichev et al. (1996))). In the current paper, the
fractional integral of order zero is taken to represent the
identity operator by definition, i.e.

I0f(t) = f(t). (2)

Definition 2. (Left) Riemann-Liouville fractional
derivative of order α > 0 of a given signal f(t) at time
instant t ≥ 0 is defined as the nth derivative of the left
Riemann-Liouville fractional integral of order n−α, where
n is the smallest integer greater than, or equal to, α

RLDαf(t) =
(

d

dt

)n

In−αf(t). (3)

Definition 3. (Left) Caputo fractional derivative of
order α > 0 of a given signal f(t) at time instant t ≥ 0
is defined as the left Riemann-Liouville fractional integral
of order n − α of the nth derivative of f , where n is the
smallest integer greater than, or equal to, α

CDαf(t) = In−α

(
d

dt

)n

f(t). (4)

For α ∈ (0, 1) the Riemann-Liouville and Caputo deriva-
tives are related by the next equation, that will be used in
the sequel

RLDαf(t) =
1

Γ(1− α)
f(0)
tα

+ CDαf(t) (5)

Since the fractional integral of order zero is the identity
operator, in accordance with (2), it is obvious that both
definitions of fractional derivative reduce to the classical
derivative of order n when α = n. Particularly, when the
differentiation order is zero, both definitions of fractional
derivatives reduce to the identity operator. The next
useful properties of the fractional integral and differential
operators will be used in the sequel. The proofs can
be found in a number of well-known textbooks (see e.g.
(Kilbas et al. (2006)) and (Podlubny (1999a))).

Lemma 1. The left Riemann-Liouville fractional integral
satisfies the semigroup property. Let α > 0 and β > 0,
then

Iα
{
Iβf(t)

}
= Iβ {Iαf(t)} = Iα+βf(t) (6)

Lemma 2. The left Riemann-Liouville fractional deriva-
tive of order α ∈ (0, 1) is the left inverse of the Left
Riemann-Liouville fractional integral of the same order,

RLDα {Iαf(t)} = f(t), (7)

for almost all t ≥ 0. The opposite is, however, not true,
since

Iα
{

RLDαf(t)
}

= f(t)− f1−α(0)
Γ(α)

tα−1, (8)

where f1−α(0) = limt→0 I1−αf(t).

Lemma 3. The following is true when applying left Riemann-
Liouville fractional integral operator to the left Caputo
fractional derivative of the same order of a signal f(t)

Iα
{

CDαf(t)
}

= f(t)− f(0). (9)

It is important to notice that, unlike the classical deriva-
tive, the fractional derivative operators do not commute.
In general, in fact, one has that

RLDα
{

RLDβf(t)
} 6= RLDβ

{
RLDαf(t)

} 6= RLDα+βf(t),
CDα

{
CDβf(t)

} 6= CDβ
{

CDαf(t)
} 6= CDα+βf(t)

However, the following equalities hold true for all α > 0
and n ∈ N

dn

dtn
{

RLDαf(t)
}

= RLDn+αf(t), (10)

CDα

{
dn

dtn
f(t)

}
= CDn+αf(t). (11)

The next Lemma, that will be instrumental in the present
treatment, was proven in (Pisano et al. (2010)).
Lemma 4. Consider an arbitrary signal z(t) ∈ R. Let
β ∈ (0, 1). If there exists T < ∞ such that

Iβz(t) = 0 ∀t ≥ T (12)

then
lim

t→∞
z(t) = 0. (13)
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3. NONLINEAR FRACTIONAL PI CONTROL FOR
SISO FOS

We consider nonlinear uncertain commensurate-order frac-
tional systems governed by the “chain of (fractional) inte-
grators” dynamic model

CDαx1 = x2
CDαx2 = x3

...
CDαxn−1 = xn

CDαxn = f(x, t) + u(t) + ψ(t).

(14)

where α ∈ (0, 1) is the commensurate order of differenti-
ation of (14), vector x(t) = [x1(t), x2(t), ..., xn(t)] ∈ Rn

collects the process internal variables (the notion of state
variables is inappropriate and generally not used in the
context of FOS), u(t) ∈ R is the control input, ψ(t) ∈ R is
an exogenous disturbance, and f(x, t) : Rn × [0,∞) → R
is a nonlinear functions referred to as the “drift term”.
We refer to the Caputo definition of fractional derivatives
as it allows to take into account a finite and physically
reasonable initial condition x(0) for the process internal
variables.

The external disturbance ψ(t) is supposed to fulfill the
next restriction
Assumption 1. The exists an a-priori known constant M
such that ∣∣∣∣

d

dt
ψ(t)

∣∣∣∣ ≤ M, t ≥ 0. (15)

The aim is that of finding a control law capable of steering
the variables of the closed loop process to the origin
regardless of the presence of the unknown disturbance
term ψ(t), satisfying the Assumption 1.

Consider the fractional order sliding variable

σ(t) = I(1−α)

[
xn(t) +

n−1∑

i=1

cixi(t)

]
, (16)

where the constants c1, c2, ..., cn−1 are selected in such a
way that all the roots pi of the polynomial

P (s) = s(n−1) +
n−2∑

i=0

ci+1s
i = Πn−1

i=1 (s− pi) (17)

satisfy the next relation

α
π

2
< arg(pi) ≤ π. (18)

The stability of system (14) once constrained to evolve
along the sliding manifold σ(t) = 0 is analyzed in the next
Lemma 5. A controller capable of steering the considered
dynamics onto the sliding manifold in finite time will be
illustrated later on.
Lemma 5. Consider system (14) and let the zeroing of the
sliding variable (16) be fulfilled starting from the finite
moment t1, i.e. let

σ(t) = 0, t ≥ t1, t1 < ∞, (19)

with the ci parameters in (16) satisfying (17)-(18). Then,
the next conditions hold

lim
t→∞

xi(t) = 0, i = 1, 2, ..., n (20)

Proof of Lemma 5 Define the quantity

ξ(t) = xn(t) +
n−1∑

i=1

cixi(t). (21)

By taking into account Lemma 4 specialized with β = 1−α
and z(t) = ξ(t), it yields that the finite time zeroing of σ(t)
guarantees that signal ξ(t) decays asymptotically to zero.
We then simply derive from (21) that

xn(t) = −
n−1∑

i=1

cixi(t) + ξ(t) (22)

where
lim

t→∞
ξ(t) = 0. (23)

Now, in light of (22) we rewrite the first n − 1 equations
of (14) as

CDαx1 = x2
CDαx2 = x3

...

CDαxn−1 = −
n−1∑

i=1

cixi(t) + ξ(t)

(24)

and notice that (24) form a reduced-order (as compared
to (14)) fractional order system with an asymptotically
decaying input term ξ(t). It readily follows from (17)-(18)
that system (24) is Mittag-Leffler stable when ξ(t) = 0
(see Podlubny (1999a)), thereby the input decay property
(23) implies the same for the process variables xi(t) with
i = 1, 2, ..., n − 1. We now conclude from (22) that xn(t)
asymptotically decays, too. Lemma 5 is proved. ¤

It is worth to remark that the enforcement of conditions
(21), (23) actually “cancels” the last equation of (14) by
making the system to behave as the reduced order one
(24). We shall treat the sliding variable σ(t) in (16) as the
error variable, and we seek for a control law expressed in
the form

u(t) = up(t) + ui(t) + ueq(t) (25)

where up(t) and ui(t) are, respectively, nonlinear versions
of the proportional and integral control actions taking the
form

up(t) =−k1σ − k2|σ|1/2sign (σ) (26)

u̇i(t) =−k3σ − k4sign(σ), ui(0) = 0 (27)

and ueq(t) is a control component that will be specified
later on. By setting constants k2 and k4 to zero then the
sum of the control components (26)-(27) reduces to the
standard PI controller. On the other hand, by setting k1

and k3 to zero one obtains the well-known “super-twisting”
controller (see Levant (1993)), which belongs to the family
of second-order sliding mode controllers. The similarity

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 FrB2.1



Fig. 1. Architecture Comparison between linear (left) and
nonlinear PI.

between a classical PI controller and the super-twisting
(STW) one are evident (see Figure 1) in that they both
possess a static component (a pure gain, for the PI, and a
nonlinear gain with infinite slope at 0 for the STW) and
an integral component (a pure integration, for the PI, and
the integration of the sign of the sliding variable, for the
STW).

We are now in position to state the next main result.

Theorem 1. Consider system (14) along with the sliding
variable (16)-(18), and let Assumption 1 be in force. Then,
the control law (25)-(27), specified with

ueq(t) = −f(x, t)−
n−1∑

i=1

cixi+1(t), (28)

and with the tuning parameters chosen according to
k1 > 0, k2 > 2

√
ρ, k4 > ρ, (29)

k3 > k2
1

k2
2 + 5

2 [( 1
4k2

2 − ρ) + k2k4]
( 1
4k2

2 − ρ) + k2k4

. (30)

where
ρ > M, (31)

provides the asymptotic decay of the state x(t).

Proof of Theorem 1 By virtue of Definition 2, specified
with n = 1 and f(t) = xn(t)+

∑n−1
i=1 cixi(t), and exploiting

as well the linearity of the fractional derivative operator,
one can easily derive that

d

dt
σ(t) = RLDα

[
xn(t) +

n−1∑

i=1

cixi(t)

]

= RLDαxn(t) +
n−1∑

i=1

ci
RLDαxi(t) (32)

In light of relation (5), eq. (32) can be rewritten in terms
of Caputo derivatives as follows

d

dt
σ(t) = CDαxn(t) +

n−1∑

i=1

ci
CDαxi(t) + ϕ(t) (33)

where

ϕ(t) =
1

Γ(1− α)
xn(0) +

∑n−1
i=1 cixi(0)

tα
=

K0

tα
(34)

with implicitly defined constant K0 =
xn(0)+

∑n−1

i=1
cixi(0)

Γ(1−α) .

The system equations (14) can be now substituted into
(33), yielding the simplified expression

σ̇(t) = f(x, t) + u(t) + ψ(t) +
n−1∑

i=1

cixi+1(t) + ϕ(t) (35)

Although the disturbance (34) and all its time derivatives
are unbounded at t = 0, one has that the first-order time
derivative

d

dt
ϕ(t) = −αK0

tα+1
(36)

is bounded, in magnitude, along any time interval t ∈
[t1,∞), t1 > 0, according to
∣∣∣∣
d

dt
ϕ(t)

∣∣∣∣ ≤
αK1

tα+1
1

≡ Ψ1, K1 =

∣∣∣∣∣xn(0) +
n−1∑

i=1

cixi(0)

∣∣∣∣∣ . (37)

We now substitute the control (25)-(28) into (35), yielding

d

dt
σ =−k1σ − k2|σ|1/2sign (σ) + ui(t) + ψ(t) + α(t)

(38)
d

dt
ui =−k3σ − k4sign(σ) (39)

Define
z(t) = ui(t) + ψ(t) + α(t) (40)

and rewrite (38)-(39) as

d

dt
σ =−k1σ − k2|σ|1/2sign (σ) + z(t) (41)

d

dt
z =−k3σ − k4sign(σ) +

d

dt
ψ(t) +

d

dt
α(t) (42)

Notice that, by Assumption 1 and by relation (37), the
perturbation terms in (39) fulfill the next estimation∣∣∣∣

d

dt
ψ(t) +

d

dt
ϕ(t)

∣∣∣∣ ≤ M + Ψ1, t ≥ t1 > 0 (43)

with arbitrary t1 > 0. Thus, by setting ρ as in (31) it
readily follows that there exist a finite moment t2 > 0
such that | d

dtψ(t) + d
dtϕ(t)| ≤ ρ at every t ≥ t2.

Stability of a class of systems including the dynamics (41)-
(43) above was already investigated in the literature (cfr.
Moreno et al. (2008), Th. 5), where, particularly, the global
finite time stability of the uncertain system trajectories
was demonstrated by means of a positive definite and
radially-unbounded non-smooth Lyapunov function which
specifies as follows in the present context

V = ξT Πξ, ξ =


 |σ|

1/2sign(σ)
σ
z


 , (44)

Π =
1
2




(4k4 + k2
2) k1k2 −k2

k1k2 2k3 + k2
1 −k1

−k2 −k1 2


 . (45)

It turns out after the appropriate computations (cfr.
Moreno et al. (2008), Proof of Th. 5) that the tuning
conditions (29)-(31) imply the existence of a positive
constant γ1 such that

d

dt
V ≤ −γ1

√
V , t ≥ t1. (46)

Inequality (46) guarantees the global finite time con-
vergence of V to zero, and, hence, the same property
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for the σ(t) and z(t) variables. By (38), the finite time
convergence to zero of d

dtσ(t) can be easily concluded, too.
The asymptotic decay of x(t) , thus, readily follows from
Lemma 4. Theorem 1 is proven. ¤.

3.1 Uncertain drift term

Now assume that the uncertain drift term f(x, t) is im-
precisely known by means of a certain estimate f̂(x, t).
We shall devise a sufficient condition guaranteeing that
the previously presented control, with the estimate f̂(x, t)
used in (28) in place of the actual function f(x, t), guaran-
tees the same robust performance demonstrated in Theo-
rem 1. Denote

ε(x, t) = f(x, t)− f̂(x, t) (47)

and assume what follows

Assumption 2 There is an a-priori fixed constant W such
that ∣∣∣∣

d

dt
ε(x, t)

∣∣∣∣ ≤ W (48)

Under Assumption 2, it can be developed a synthesis
procedure similar to that in Theorem 1, which leads to the
same controller and tuning inequalities (29)-(30) for the
gains (k1, k2, k3, k4) , with the new restriction ρ > M +
W to be imposed instead of (31). A rigorous treatment
could be be straightforwardly derived from the previously
given one, and it is omitted for brevity. It is, however,
complicated to get an a-priori estimate of W as generally
the time derivative of ε(x, t) may explicitly depend not
only on the process variables vector x but on the control
input u as well, which is why this modified control deserves
more accurate investigations that will be made in next
research.

4. SIMULATION RESULTS

Consider system
CD0.5x1 = x2
CD0.5x2 = x3

CD0.5x3 = f(x, t) + u(t) + sin(πt).
(49)

with nonlinear drift term function f(x, t) = −0.5x1 −
0.5x3

2−0.5x3|x3| and a sinusoidal time dependent matched
uncertainty. This system was considered in the related
publication (Efe (2009)). Constant M upperbounding
the sinusoidal uncertainty time derivative according to
Assumption 1 can be evaluated as M = π. The initial
conditions are x1(0) = x2(0) = x3(0) = 2. Let us bear in
mind that the Caputo definition of the fractional derivative
in (49) allows to take into account finite and physically
meaningful initial conditions of the process variables, in
opposition to what happens with the RL definition which
brings infinite values for the initial conditions.

The fractional order sliding variable is defined according
to (16) as

σ(t) = I0.5 [x3(t) + c2x2(t) + c1x1(t)] , (50)

An effective choice for the c1 and c2 constants which
guarantees conditions (17)-(18) is as follows

c1 = λ2, c2 = 2λ, λ > 0 (51)

and, particularly, is such that p1 = p2 = −λ.

The perfect knowledge of the drift term function f(x, t)
is assumed in the first TEST 1, and control (25)-(31),
(50)-(51) has been implemented with the parameter values
λ = 10, k1 = 10, k2 = 10, k3 = 15, k4 = 15.

Figure 2 shows the time evolutions of the sliding variable
σ(t) and of signal ξ(t) = x3(t) + 2λx2(t) + λ2x1(t).
Particularly, the left plots show the entire history of
the signals while the right plots display a zoom of the
corresponding steady-state behaviour. The upper plots of
Figure 2 then confirm the finite-time convergence to zero of
the chosen sliding variable, while the lower plots show that,
according to Lemma 4, signal ξ(t) goes to zero once the
system motion is constrained along the sliding manifold
σ(t) = 0 featuring the slow “creeping” behaviour exhibited
by fractional order dynamics (see Podlubny (1999a)).

Figure 3 shows the time evolutions of the process vari-
ables, and figure 4 displays the control variable which, as
expected, is a continuous, although non smooth function
of time.
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Fig. 2. TEST 1. Fractional sliding variable σ(t) and signal
ξ(t).

In TEST 2, the control strategy has been implemented
by assuming an uncertain drift term, according to the
treatment of Subsection 3.1, and by letting its estimate
be f̂(x, t) = 0. Thus, in TEST 2 the control strategy
u(t) = up(t)+ui(t)−c1x2(t)−c2x3(t) is applied, which is a
mixture of fractional PI control (the first two components)
and conventional proportional feedback (the last two ele-
ments). Controller parameters are increased, as compared
to the setting used in TEST 1, to cope with the higher un-
certainty and the values k1 = 20, k2 = 20, k3 = 30, k4 = 40
are used. Figure 5 shows the convergence to zero of the
process variables in the TEST 2. It is concluded from
the presented analysis that the proposed control scheme
possesses strong robustness properties and provides good
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Fig. 3. TEST 1. Process variables xi(t), i = 1, 2, 3.
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Fig. 4. TEST 1. Control input u(t).

performance in presence of significant model uncertainties.
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Fig. 5. TEST 2. Process variables xi(t), i = 1, 2, 3.

5. CONCLUSIONS

A nonlinear PI control technique has been suggested and
analyzed in the framework of the regulation problem for
a class of nonlinear fractional-order processes. The pro-
posed methodology is capable of asymptotically rejecting
a class of arbitrarily shaped external disturbances with
uniformly bounded time derivative. Distinctive issue of the
approach is a fractional order siding surface tailored to
the considered class of systems. More complex tracking
control problems and more general classes of plants will

be investigated in the future. Additionally, new types of
sliding surfaces will be sought to speed up the conver-
gence of the process variables, which actually suffer of the
“creeping” effect, namely an extremely slow convergence
to the desired operating point.
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