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Abstract: This paper deals with a design problem of an adaptive PID control for discrete-
time systems with a parallel feedforward compensator (PFC) which is designed for making the
augmented controlled system ASPR. A PFC design scheme by a FRIT approach with only using
an input/output experimental data set will be proposed for discrete-time systems in order to
design an adaptive PID control system. Furthermore, the effectiveness of the proposed PFC
design and an adaptive PID control method will be confirmed through numerical simulations
for an uncertain discrete-time system.
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1. INTRODUCTION

PID control is one of the most common control schemes
and it has been applied to many industrial process and me-
chanical systems. However, when there are some changes
of system properties, because most PID parameter tuning
is done off line, it is difficult to maintain the desired control
performance and stability during operation. Therefore, a
great deal of attention has been focused on auto-tuning
and adaptive PID method (Åström and Hägglund (1995);
Chang et al. (2003); Kono et al. (2007)). Recently, an
auto-tuning and an adaptive PID control strategies based
on the almost strictly positive real (ASPR) property of
the controlled system have been proposed (Iwai et al.
(2006); Tamura and Ohmori (2007)). These adaptive PID
schemes based on the ASPR property of the system can
guarantee the asymptotic stability of the resulting PID
control system. Unfortunately, the ASPR conditions are
very severe restrictions for practical applications of the
adaptive PID control. To overcome this problem, an in-
troduction of the parallel feedforward compensator (PFC)
has been proposed (Iwai et al. (2006); Mizumoto et al.
(2010)). This method fulfills the ASPR conditions of aug-
mented system which consists of the plant and the PFC
by designing the PFC accordingly. It has been proposed
several methods how to design such a PFC. ,however,
most of the methods need a priori informations of the
controlled plant in order to design the PFC. To obtain
a priori informations of the plant, we need to derive the
system model or do experiment several times. This is time-
consuming task and becomes a problem when considering
the time and costs. From this reason, recently, PFC design
method via fictitious reference iterative tuning (FRIT)
approach has been proposed for continuous time system
(Mizumoto and Tanaka (2010A); Mizumoto and Tanaka
(2010B)). FRIT method can optimizes controller param-
eters for the uncertain plant from only one shot experi-
mental input/output data without using the plant model
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Fig. 1. Closed-loop systems

(Kaneko et al. (2010)). By applying FRIT method to PFC
design, PFC parameters could be optimized without using
a priori informations.

In this paper, we present a PFC design through FRIT ap-
proach for discrete-time systems and propose an adaptive
PID control system design for discrete-time systems with
a PFC designed via FRIT approach.

2. PFC DESIGN

2.1 Problem Statements

Consider a closed-loop system for a single input/output
system G with a controller C(ρC) and a PFC H(ρH),
which are parameterized by ρ = [ρC

T ρH
T ]T , as shown in

Figure 1.

The controller and the PFC with the parameter
ρ = [ρC

T ρH
T ]T are satisfies the following assumptions.

Assumption 1. H(ρH) = 0 with ρH = 0.

Assumption 2. C(ρC) = ρc1(constant) with
ρC = [ρC1, 0, · · · , 0]T .
In this case, the closed-loop system from r to the aug-
mented output ya(ρ) with a controller C(ρC) and a PFC
H(ρH) can be expressed by

Gac(ρ) =
(G+H (ρH))C(ρC)

1 + (G+H (ρH))C(ρC)
(1)
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Here, we assume that one can obtain an input/output data
set {u0(k), y0(k)} for appropriate controller C(ρC0) and
PFC H(ρH0) with parameters ρ0 = [ρC0

T ρH0
T ]T . Under

this statement, the objective here is to obtain a PFC which
renders the augmented system with the PFC ASPR.

To this end, we first consider a desired SPR system:

ySPR = GSPRr (2)

and then consider to find a parameter ρ = [ρC
T ρH

T ]T

which minimizes the error between SPR model out-
put ySPR and the obtained augmented system’s output
ya(ρ, k). That is, to find a parameter ρ = [ρC

T ρH
T ]T

which minimize the following performance function:

J(ρ) =

N∑
k=0

(ya (ρ, k)− y
SPR

)
2

(3)

is objective. However, this performance function cannot be
obtained directly, because the plant model G is unknown.
Therefore we adopt FRIT approach to the parameter
tuning.

2.2 PFC Parameter Tuning by FRIT Approach

In order to achieve the objective of PFC design by using an
input/output data set {u0(k), y0(k)}, here FRIT approach
is considered.

The following relation is satisfied for any parameter vector
ρ = [ρC

T ρH
T ]T :

C(ρC) (r
∗ (ρ, k)− ya0 (ρ, k)) = u0(k) (4)

where ya0(ρ, k) is the augmented output with the PFC
output H(ρH)u0(k):

ya0(ρ, k) = y0(k) +H(ρH)u0(k) (5)

This leads

r∗(ρ, k) =C(ρC)
−1u0(k) + ya0(ρ, k)

=C(ρC)
−1u0(k) + y0(k) +H(ρH)u0(k) (6)

r∗ (ρ, k) obtained from (6) is called ‘fictitious reference
signal’. Taking this signal r∗(ρ, k) as a reference signal,
the control system in Figure 1 with controller and PFC
of any parameter vector ρ gives the input u0(k) and the
outputy0(k).

Now, impose the following assumption.

Assumption 3. There exists an ideal parameter vector
ρd = [ρT

Cd ρT
Hd]

T with ρCd = [K∗, 0, · · · , 0] such that the
obtained closed-loop system with the controller C(ρCd) =
K∗ and the PFC H(ρHd)can be expressed by the given
SPR model G

SPR
. That is,

G
SPR

=
(G+H (ρHd))K

∗

1 + (G+H (ρHd))K
∗ (7)

Then, considering the fictitious reference signal r∗(ρd, k)
for the ideal parameter vector ρd, we have

ya0(ρd, k) =
(G+H (ρHd))K

∗

1 + (G+H (ρHd))K
∗ r

∗(ρd, k)

=G
SPR

r∗(ρd, k) (8)

Thus, from (6) and (7), the signal ya0(ρd, k) in (8) can be
obtained by

ya0(ρd, k) = G
SPR

r∗(ρd, k)

= G
SPR

(K∗−1u0(k) + y0(k) +H(ρHd)u0(k)) (9)

Furthermore, from (5) and (9), we have that

y0(k) = ya0(ρd, k)−H(ρHd)u0(k)

=G
SPR

(
K∗−1u0(k) + y0(k) +H (ρHd)u0(k)

)
−H(ρHd)u0(k) (10)

From this relation in (10), we define a virtual output
ỹ(ρ̄, k) for the system with a controller and a PFC with a
parameter ρ̄ as follows by using the input/output data set
{u0(k),y0(k)}.
ỹ(ρ̄, k) =G

SPR
(C (ρ̄C)

−1u0(k) + y0(k) +H (ρ̄H)u0(k))

−H(ρH)u0(k) (11)

ρ̄C = [ρ̄c1, 0, · · · , 0]T
Then, consider minimizing the following performance func-
tion:

JF (ρ̄) =

N∑
k=0

(ỹ (ρ̄, k)− y0(k))
2

(12)

The obtained optimal ρd by this FRIT approach can be ex-
pected to guarantee the minimization of the performance
function given in (3) .

Now, consider a typical PFC:H(z) given as the following
nth compensator.

H(z) =
b0z

n + b1z
n−1 + · · ·+ bn

zn + a1zn−1 + · · ·+ an
(13)

Here, we approximate this PFC with nmth FIR model as
follows:

H(z) = f0 + f1z
−1 + f2z

−2 + · · ·+ fnmz−nm (14)

Then the virtual output ỹ(ρ̄, k) can be represented as

ỹ(ρ̄, k) = ξT ρ̄+G
SPR

y0(k) (15)

where ξ = [ξ0 ξ1 ξ2 · · · ξnm+1]
T , ξ0(k) = G

SPR
u0(k),

ξi(k) = (G
SPR

− 1)u0(k + 1− i) and ρ̄ = [K∗−1 f0 f1 · · ·
fnm ]T .

From (15), we obtain

⎡
⎢⎢⎣

ỹ(ρ̄, 0)
ỹ(ρ̄, 1)

...
ỹ(ρ̄, N)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ξ0(0) ξ1(0) · · · ξnm+1(0)
ξ0(1) ξ1(1) · · · ξnm+1(1)
...

ξ0(N) ξ1(N) · · · ξnm+1(N)

⎤
⎥⎥⎦ ρ̄

+ [ y0SPR(0) y0SPR(1) · · · y0SPR(N) ]
T

= Φρ̄+ Y 0SPR (16)

where y0SPR(k) = GSPRy0(k) and

Y 0SPR = [y0SPR(0) y0SPR(1) · · · y0SPR(N)]
T
.

Moreover, by defining Y 0 = [y0(0) y0(1) · · · y0(N)]
T
,

the performance function JF (ρ̄) can be represented as

JF (ρ̄) =

N∑
k=0

(ỹ (ρ̄, k)− y0(k))
2
= ‖Φρ̄+ Y 0SPR − Y 0‖2

=
∥∥Φρ̄− Ȳ

∥∥2 (17)
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where Ȳ = Y 0 − Y 0SPR . Then, the optimal ρd which
minimize the performance function JF (ρ̄) can be obtained
by

ρd =
(
ΦTΦ

)−1

ΦT Ȳ (18)

2.3 The Robustness of The Designed PFC

The designed PFC must be supposed to render the aug-
mented system with the PFC ASPR if the performance
function was minimized. Unfortunately however, the ob-
tained closed loop system with the designed parameter
vector ρ̄ does not perfectly match to the ideal SPR model
G

SPR
in a practical sense. The resulting augmented system

Ga with the PFC H(ρ̄H) can be represented by

Ga = G+H(ρ̄H) = G∗
ASPR

(1 + Δ) (19)

where G∗
ASPR

is the ideal ASPR model given by G∗
ASPR

=
G+H(ρHd), and ΔH and Δ are defined as follows:

ΔH = 1−H(ρ̄H)
−1

H(ρHd), (20)

Δ = G∗
ASPR

−1H(ρ̄H)ΔH (21)

For the ASPR-ness of the augmented system (19) with
a mismatch Δ has been investigated as in the following
theorem (Mizumoto et al. (2010)).

Theorem 1. The augmented system (19) is ASPR if

(a) G∗
ASPR

is ASPR. (b) Δ ∈ RH∞. (c) ‖Δ‖∞ < 1.0.

It is apparent that the conditions (a) and (b) in Theorem
1 are satisfied for the obtained augmented system (19).
Thus, if the mismatch Δ between the ideal PFC H(ρHd)
and the obtained PFC H(ρ̄H) are sufficiently small, then
the resulting augmented system is ASPR even if the
designed parameter vector ρ̄ does not perfectly match to
the ideal parameter vector ρd.

Now, let consider the condition (c) under the Assumption
3. From the Assumption 3, the performance function (12)
would be as following.

JF (ρ̄) =
N∑

k=0

[{(
G

SPR
− 1

)(
H(ρ̄H)−H(ρHd)

)}
u0(k)

]2
(22)

Also, from (19), it can be represented as

JF (ρ̄) =
N∑

k=0

[(
G

SPR
− 1

)
H(ρ̄H)ΔHu0(k)

]2
(23)

Then, by applying the Percival theorem for discrete
Fourier transform, (23) can be evaluated as

JF (ρ̄)

=
1

N + 1

N∑
n=0

∥∥∥∥(GSPR
(n)− 1

)
H(ρ̄H , n)ΔH(n)u0(n)

∥∥∥∥
2

≤ δH
2

N + 1

N∑
n=0

∥∥∥∥(GSPR
(n)− 1

)
H(ρ̄H , n)

∥∥∥∥
2

‖u0(n)‖2 (24)

Here, δH = ‖ΔH‖∞ and u0(n) is discrete Fourier trans-
form of u0(k), k = 0, 1, · · ·, N , that is, u(n) =
N∑

k=0

u(k)W kn (W � e−j 2π
N+1 ). Moreover, by defining

δPH = ‖(G
SPR

(n)− 1
)
H(ρ̄H , n)‖∞ (25)

then, from (25), (24) can be evaluated by

JF (ρ̄) ≤ δH
2δPH

2
N∑

k=0

u0(k)
2 (26)

Finally, by defining βu =
N∑

k=0

u0(k)
2, we have

δH
2 ≥ JF (ρ̄)

δPH
2βu

(27)

On the other hand, from (21), ‖Δ‖∞ can be evaluated by

‖Δ‖∞ = ‖G∗
ASPR

−1H(ρ̄H)ΔH‖∞ ≤ δGHδH (28)

where δGH = ‖G∗
ASPR

−1H(ρ̄H)‖∞. This means that
δGHδH < 1.0 is necessary condition to be ASPR. Now,
from (28), define the lower limit of δH as

δ̄H =

√
JF (ρ̄)

δPH
2βu

(29)

Then, at least δGH δ̄H < 1.0 have to be fulfilled to be
δGHδH < 1.0. From this, as an one of the standard, when
it is δ̄H ≥ 1

δGH
, a PFC have to be redesigned. 1

3. CONTROL SYSTEM DESIGN

In this section, we propose an adaptive PID controller with
an adaptive Neural Network (NN) feedforward control.
Consider a SISO discrete-time system G expressed as

x(k + 1) = Ax(k) + bu(k)
y(k) = cTx(k)

(30)

where x(k) ∈ Rn is a state vector, u(k) ∈ R and y(k) ∈ R
are the input and the output of the system, respectively.

Suppose that the reference signal yr(k) which the output
y(k) is required to track are generated by the following
exosystem:

ω(k + 1) = Aωω(k), yr(k) = cTωω(k) (31)

and impose the following assumption.

Assumption 4. There exist an ideal state x∗(k) and an
ideal input v∗(k) which attain perfect tracking such that

x∗(k + 1) = Ax∗(k) + bv∗(k)
y(k) = cTx∗(k) ≡ yr(k)

(32)

and they are given by functions of ω(k) such as x∗(k) =
π(ω(k)) and v∗(k) = c(ω(k)).

1 The condition δGH δ̄H < 1.0 is the necessary condition that to
fulfill the condition (c) of Theorem 1. Also, Theorem 1 is the sufficient
condition that the control system would be ASPR. Therefore, there
exist ASPR control system which does not fulfill the conditions of
Theorem 1.
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For this system, consider the following PFC of order nm

designed via FRIT:

xf (k + 1) = Afxf (k) + bfu(k)
yf (k) = cTf xf (k) + dfu(k)

(33)

The augmented system with the PFC can be presented by

x(k + 1) = Ax(k) + bu(k)
xf (k + 1) = Afxf (k) + bfu(k)

ya(k) = y(k) + yf (k)
(34)

Now consider an ideal control input with an ideal PID gain
θ∗p, θ

∗
i , θ

∗
d, where θ∗p renders the closed loop system SPR.

Such a gain exists from the ASPR-ness of the augmented
system. The ideal PID control input with the ideal forward
input v∗(k) can be designed as follows:

u∗(k) = u∗
e(k) + v∗(k) (35)

u∗
e(k) =−θ∗p ēa − θ∗i {ēai(k − 1) + T ēa(k)}

−θ∗d
1

T
{ēa(k)− ēa(k − 1)} (36)

ēa(k) = ȳa(k)− yr(k) (37)

ēai(k) = ēai(k − 1) + T ēa(k) (38)

where ȳa(k) = y(k) + ȳf (k) and ȳf is a PFC output with
the input u∗

e(k) in (32), thus

x̄f (k + 1) = Af x̄f (k) + bfu
∗
e(k)

ȳf (k) = cTf x̄f (k) + dfu
∗
e(k)

(39)

Unfortunately, the ideal PID gains and ideal forward input
v∗(k) are unknown, and since the augmented ASPR sys-
tem has a direct feedthrough term of the input, a causality
problem will appear for realizing the controller. Then
we consider designing the controller adaptively without
causality problem.

First, we consider approximation of the ideal forward
input v∗(k) by a radial basis function (RBF) NN. We
approximate v∗(k) by the form of RBF NN as

vnn(k) = WTS(ω(k)) (40)

where W = [w1, · · ·, wl]
T ∈ Rl is the weight vector, l

is the number of NN nodes (weight number) and S(ω) =
[s1(ω), · · ·, sl(ω)]T is the radial basis function vector. This
basis function vector S(ω) is generally designed by the
Gaussian functions such as

si(ω) = exp

[−(ω − μi)
T (ω − μi)

η2i

]
(41)

i = 1, 2, · · ·, l

where μi = [μi1, · · ·, μiq]
T is the center of the receptive

field and ηi is the width of the Gaussian function.

Under Assumption 4, it has been clarified that, for a
sufficiently large l and a compact set Ωω ⊂ Rq, there exists
an ideal constant weight vectorW ∗ such that (Zhang et al.
(2002))

W ∗ � arg min
W∈Rl

{ sup
ω∈Ωω

|v∗ −WTS(ω)|} (42)

and thus the ideal input v∗(k) can be approximated by

v∗(k) = W ∗TS(ω) + ε(ω), |ε(ω)| ≤ ε∗ (43)

where ε(ω) is an approximation error. Then we impose the
following assumption.

Assumption 5. For a given NN nodes l, there exists an
ideal weight vector W ∗ that satisfies (42) for all ω ∈ Ωω.

Next, from u∗
e(k) in (36), the following equivalent input

u∗
e1(k) can be obtained:

u∗
e(k) = u∗

e1(k) =−θ̃∗p1êa(k)− θ̃∗i1ēai(k − 1)

+θ̃∗d1
1

T
ēa(k − 1) + μ∗(k) (44)

where

êa(k) = y(k) + cT x̄f (k)− yr(k) (45)

θ̃∗p1 = {1 + dfθ
∗
p}−1θ∗p, θ̃∗i1 = {1 + dfθ

∗
p}−1θ∗i

θ̃∗d1 = {1 + dfθ
∗
p}−1θ∗d (46)

μ∗(k) = −
(
T θ̃∗i1 +

1

T
θ̃∗d1

)
ēa(k) (47)

Further expanding (36), we have

u∗
e(k) =−

(
θ∗p + Tθ∗i +

1

T
θ∗d

)
ēa(k)

−θ∗i eai(k − 1) +
1

T
θ∗dea(k − 1) (48)

and then the following equivalent input u∗
e2(k) can also be

obtained:

u∗
e(k) = u∗

e2(k)

=−θ̃∗p2êa(k)− θ̃∗i2eai(k − 1) + θ̃∗d2
1

T
ea(k − 1) (49)

where

θ̃∗p2 = {1 + dfθ
∗
PID}−1θ∗PID, θ̃∗i2 = {1 + dfθ

∗
PID}−1θ∗i

θ̃∗d2 = {1 + dfθ
∗
PID}−1θ∗d, θ∗PID = θ∗p + Tθ∗i +

1

T
θ∗d (50)

It follows that u∗
e(k) ≡ u∗

e1(k) ≡ u∗
e2(k).

The actual control input is designed by adjusting the
equivalent input gains θ̃∗p2, θ̃

∗
i2 and θ̃∗d2 in u∗

2(k) and W ∗ in
(42) as follows:

u(k) = −θ̃
T
(k)z̃(k) + ŴT (k)S(ω(k)) (51)

where

θ̃
T
(k) =

[
θ̃p(k), θ̃i(k), θ̃d(k)

]

z̃(k) =

[
êa(k), σ̄ieai(k − 1),− 1

T
ea(k − 1)

]T
(52)

The parameter adjusting law is given by

θ̃(k) = θ̃(k − 1) + Γz̃(k)ēa(k)− σθ̃(k)

= σ̄θ̃(k − 1) + σ̄Γz̃(k)ēa(k) (53)

σ̄ =
1

1 + σ
, σ > 0, Γ = ΓT > 0

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WeA2.1



Ŵ (k) = σ̄nŴ (k − 1)− σ̄nΓnS(ω(k))ēa(k) (54)

σ̄n =
1

1 + σn
, σn > 0, Γn = ΓT

n > 0

In this case, the augmented output error ea(t) can be
obtained from (34), (51) and (53) as

ēa(k) =
êa(k)− σ̄df θ̃

T
(k − 1)z̃(k)

1 + σ̄df z̃
TΓz̃(k)

(55)

by using available signals. This means that the proposed
adaptive PID controller can be designed without causality
problems.

4. STABILITY ANALYSIS

The error system with the control input (51) can be
described as

xa(k + 1)=Acxa(k) + ba{ũ(k) + Δu(k) + μ∗(k)}
−b̄fΔv(k)

ea(k) = cc
Txa(k) + df{ũ(k) + Δu(k) + μ∗(k)} (56)

where Ac = Aa − θ̃∗p1bac
T
a , c

T
c = (1− df θ̃

∗
p1)c

T
a and

xa(k) = x̄a(k)− x̄∗
a(k)

x̄a(k) = [x(k)T , x̄f (k)
T ]T

ea(k) = ȳa(k)− ȳ∗a(k) (57)

ũ(k) =−θ∗i eai(k − 1) +
1

T
θ∗dea(k − 1)

Δu(k) = u(k)− u∗(k), Δv(k) = v(k)− v∗(k)
This error system is SPR, thus there exist positive definite
matrices P = P T > 0, Q = QT > 0, vector l and w such
that the following Kalman-Yakubovich Lemma is satisfied.

AT
c PAc − P =−Q− llT

AT
c Pba = cc + lw

bTa Pba = 2df − w2 (58)

Now, consider a positive definite function V :

V (k) = V1(k) + ρV2(k) + ρV3(k) + ρV4(k) (59)

where

V1(k) = xa(k)
TPxa(k)

V2(k) =
1

T
σ̄iθ̃

∗
i1eai(k − 1)2 +

1

T
θ̃∗d1ea(k − 1)2

V3(k) = σ̄Δθ̃(k − 1)TΓ−1Δθ̃(k − 1) (60)

V4(k) = σ̄nΔŴ (k)TΓn
−1ΔŴ (k)

Here, define ΔV (k) as

ΔV (k) = V (k + 1)− V (k) (61)

then ΔV1(k), ΔV2(k), ΔV3(k) and ΔV4(k) can be evalu-
ated as

ΔV1(k)≤−ρ(λmin[Q]− δλmax[P ])‖xa(k)‖2
+2ρea(k){ũ(k) + Δu(k) + μ∗(k)}

+
1

δ
λmax[P ]

∥∥b̄f∥∥2 |Δv(k)|2

ΔV2(k) =− 1

T
θ̃∗i1

(
1

σ̄i
− σ̄i

)
eai(k)

2 − 2ũ(k)ea(k)

−2μ∗(k)ea(k)− T (σ̄iθ̃
∗
i1ea(k)

2 + θ̃∗d1ead(k)
2)

ΔV3(k)≤−
{(

1

σ̄
− σ̄

)
− δ1

}
λmax

[
Γ−1

] ∥∥∥Δθ̃(k)
∥∥∥2

−2Δue(k)ea(k) +
σ2

δ1
θ̃
∗T
2 Γ−1θ̃

∗
2

ΔV4(k)≤−
{(

1

σ̄n
− σ̄n

)
− δ2

}
λmax

[
Γ−1
n

] ∥∥∥ΔŴ (k)
∥∥∥2

−2Δv(k)ea(k) +
σn

2

δ2
W ∗TΓn

−1W ∗ (62)

with 0 < δ < 1 and positive constants δ1, δ2. Thus, ΔV is
evaluated by

ΔV (k)≤−ρ(λmin[Q]− δλmax[P ]) ‖xa(k)‖2

− ρ

T
θ̃∗i1

(
1

σ̄i
− σ̄i

)
eai(k)

2

−ρT
(
σ̄iθ̃

∗
i1ea(k)

2 + θ̃∗d1ead(k)
2
)

−ρ
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)
− δ1

}
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∥∥∥2

−ρ
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1

σ̄n
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)
− δ2

}
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[
Γ−1
n
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− 1

ρδ
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max − δ3S
2
max

]∥∥∥ΔŴ (k)
∥∥∥2

−ρδ3

{∥∥∥ΔŴ (k)
∥∥∥Smax − 1

ρδδ3
λmax[P ]

∥∥b̄f∥∥2 ε∗
}2

+ρ
σ2

δ1
θ̃
∗T
2 Γ−1δ1θ̃

∗
2 + ρ

σ2
n

δ2
W ∗TΓ−1δ1W

∗

+
1

ρδ3

(
1

δ
λmax[P ]

∥∥b̄f∥∥2 ε∗
)2

+
1

δ
λmax[P ]

∥∥b̄f∥∥2
ε∗2 (63)

where ‖S(ω(k))‖ ≤ Smax and with positive constant δ3.

Consequently, for appropriate design parameters, ΔV (k)
can be evaluated as

ΔV (k) ≤ −αV (k) +R, α > 0 (64)

thus we can conclude that all the signals in the control
system are bounded.

5. SIMULATION

To confirm the effectiveness of the proposed method, this
section shows a numerical simulation results.

Let’s consider a tracking control of the following SISO
discrete-time system with the sampling period of 1.0 [s].

G(z) =

0.027z4 + 0.0065z3 − 0.018z2 − 2.5× 10−4z − 9.7× 10−7

z5 − 2.41z4 + 1.83z3 − 0.416z2 − 0.0074z − 3.3× 10−5

(65)
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To obtain an input/output data set {u0(k), y0(k)}, we
set the feedback gain:θp0 = 2.0, PFC:H(z) = 0, and
reference signal:yr = 1.0. Here, we considered that white
noise is added to the output signal of the plant, and the
power spectral density of white noise is 5.0 × 10−3. The
obtained input/output data set is shown in Fig.2. Then,
from (18), we designed a second order PFC:H(ρ̄) by using
SPR model:

G
SPR

=
0.99(15z − 13)

16z − 14
(66)

and obtained

H(ρ̄) = 0.2067 + 0.0217z−1 + 0.1278z−2 (67)

For the system with (70), the design parameters in the
adaptive controller are set by ω =, 1 σ = 1.0× 10−5, σi =
1.0 × 10−3, σn = 1.0 × 10−5, Γ = diag[γp, γi, γd], γp =
600, γi = 200, γd = 100, and Γn = 0.5. Also, the reference
signal yr(k) is given by

yr(k) =
1/17

z − (1− 1/17)
r(k), r(k) = 10 (68)

The simulation results are shown in Fig.3.

6. CONCLUSIONS

In this paper, we proposed an adaptive PID control
system design for discrete-time systems with PFC designed
through FRIT approach. The proposed method ensures
the stability of the resulting control system by an adaptive
PID control based on ASPR properties of the controlled
system and achieves the output tracking by an adaptive
NN feedforward control.
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