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Abstract: The paper presents theoretical insights which might lead to further development of improved 
relay-based PID autotuners. The analysis is based on the first generation of autotuners, namely the widely 
used Åström-Hägglund relay-feedback tuner. The analysis is accompanied by illustrative examples. The 
performance of the autotuners is evaluated against a reference PID controller which is designed using 
computer aided design tools and assuming full knowledge of the system’s transfer function. The paper is 
concluded by pointing towards some ideas to design a more generally valid version of the PID autotuner. 
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1. INTRODUCTION 

Along the many decades in the history of control, the 
inventions based on feedback control had a crucial impact in 
the mechanical, scientific, electrical, aerospace, and 
information revolutions (Bernstein and Bushnell, 2002). 
Despite the glorious and pioneering landmarks from the past, 
controller design is nowadays still an art, as much as a 
science. Tuning controllers for optimal closed loop 
performance depends heavily on the process to be controlled 
and identification is still a burden for the control engineer and 
remains a significant time-consuming task. 

To simplify this task, PID controllers can incorporate 
autotuning capabilities, which may reduce dramatically the 
start-up period (Åström and Hägglund, 1995). The autotuners 
are equipped with a mechanism capable of automatically 
computing a reasonable set of parameters when the regulator 
is connected to the process. Autotuning is a very desirable 
feature and almost every industrial PID controller provides it 
nowadays. These features provide easy-to-use controller 
tuning and have proven to be well accepted among process 
engineers (Leva et al., 2002). 

For the automatic tuning of the PID controllers, several 
methods have been proposed. Åström and Hägglund (Åström 
and Hägglund, 1984; Hang et al., 1991; Åström et al., 1992) 
report an important and interesting approach. Their (basic) 
method is based on the Ziegler-Nichols frequency domain 
design formula (Ziegler and Nichols, 1942), but they have 
also described plenty of extensions. A relay connected to the 
process in a feedback loop is used in order to determine the 
critical point. Usually these preliminary tests are used to 
determine some (limited) information on the process model, 
along with the tuning of controller parameters (Schei, 1994; 
Scali et al., 1999). 

In this contribution, we refer solely to relay based PID 
autotuning methods, with principles based on the beeline in 
the Nyquist plane. 

 

Based on the basic Åström-Hägglund (AH) method, we 
present an analysis, which is also illustrated by typical 
examples. The performance is always compared to the ‘best’ 
PID control design, i.e. a PID tuned via computer aided 
design (CAD) tools, with the full knowledge of the process 
model. 

The paper is structured as follows: the (basic) AH method 
and the computer aided design tool (Frequency Response 
toolbox) are summarized in the next section with reference to 
literature. An insight into the suboptimal performance of the 
AH controller for some type of processes is given in the same 
section. Next, a slightly different PID autotuner is presented 
along with theoretical insight on its suboptimal performance 
on illustrative examples. A final section summarizes the main 
outcome of this contribution and provides some ideas for the 
next generation of relay-based PID autotuners, namely a 
more generally valid controller with good performance on 
many process types. 

2. THE BASIC METHOD 

2.1  Relay-based PID design: Åström-Hägglund (AH) 

Consider the example of a process P(s) given by:  

( )6
1( )
1

P s
s

=
+

                               (1) 

 
of which the open loop unit step response is given in figure 1 
below. As a result of the AH relay test - which is 
schematically depicted in figure 2 - the output of the process 
will oscillate around the setpoint and after some transient 
time it will enter a regime with a certain output critical 
amplitude Ac and critical period Tc. The amplitude of the 
relay d is chosen according to the amplitude of the noise in 
the loop; i.e. it has to provide a good signal to noise ratio. 
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The typical result of such a relay experiment is depicted in 
figure 3. Given the oscillation amplitude, the critical gain is 

4
c

c

dK
Aπ

=  and the controller parameters are calculated as: 

 
0.6 ;    0.5 ;    0.25p c i c d iK K T T T T= = =                (2) 

 
with the (usual) choice Ti=4*Td corresponding to a controller 
transfer function having 2 identical zeros. 

 

Fig. 1. Open loop unit step response for process (1). 

 

Fig. 2. Schematic representation of the relay test setup. 

  

Fig. 3. An oscillatory output signal as a result of the relay 
test. 

2.2  A Computer Aided Design tool (FRtool) 

For comparison purposes, we use a computer aided design 
(CAD) tool for designing PIDs using full knowledge of the 
process model. In this paper, the CAD has been based on the 

Frequency Response tool (FRtool) for Matlab® as described 
in (De Keyser and Ionescu, 2006). The reader could also use 
the Root Locus approach (RLtool) in Matlab® or any other 
model-based PID design method in order to produce a well-
tuned PID which will serve as reference for the autotuner 
evaluation. 

The closed loop responses for a setpoint step (value +1) at 
t=0 and for an input disturbance step (value -1) at t=30 are 
depicted in figure 4 for the AH PID controller and for the 
reference PID (designed via FRtool). As observed from this 
figure, both controllers perform more-or-less similarly (from 
a ‘practical’ point-of-view). More specifically: for this type 
of process, the autotuner does a really great job! 

Fig. 4. Closed loop reference tracking and disturbance test 
for the process (1), with the AH and reference PID. AH: 
Kp=1.41, Ti=5.45, Td=1.36. FRtool: Kp=1, Ti=4, Td=1. 

2.3  Counter-example and theoretical insight 

Consider now the example of an integrating process (e.g. a 
positioning system) given by 
 

32( )
( 3)( 21)

P s
s s s

=
+ +

                          (3) 

 
with the open-loop impulse response given in figure 5.  

 

Fig. 5. Open loop unit impulse response for process (3). 
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The responses for a setpoint step (of value +1) and for an 
input disturbance step (of value -20) are shown in figure 6 for 
the autotuned PID controller and for the reference PID 
(designed via FRtool). As observed from this figure, the auto-
tuner fails to give a satisfactory performance. 

Fig. 6: Closed loop reference tracking and disturbance test for 
the process (3), with the AH PID and reference PID (FRtool). 
AH: Kp=26.34, Ti=0.41, Td=0.10. FRtool: Kp=25, Ti=0.8, 
Td=0.2. 

 
 

Fig. 7: The process Nyquist plot and the intersection of the 
beeline with the negative real axis (left) and schematic of the 
determined point (right) 
 
The Åström-Hägglund autotuning method is based on 
identifying one point in the Nyquist plane: the intersection of 
the process beeline with the negative real axis (see figure 7) 
(Åström and Hägglund, 1995). Notice that figure 7 is a 
generic figure, not specifically for process (3). The critical 
frequency can be identified from the critical oscillation 

period Tc: 
2

c
cT
π

ω = . The modulus and phase of the process at 

this critical frequency are as in figure 7: 
 

1( ) 180 ; ( )
4

c
c c

c

AP j P j M
d K

π
ω ω∠ =Φ = − ° = = =    (4) 

 
and the process can be described at this critical frequency by: 
 

1801 1( ) j j
c

c c

P j Me e
K K

ω Φ −= = = −                (5) 

 
The controller is derived in its textbook form: 

1( ) 1p d
i

R s K T s
T s

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
                  (6) 

 
which for the critical frequency becomes: 
 

2 1( ) 1
2c p d

c
i

c

R j K j T
T T

T

π
ω

π

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟= + −
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

         (7) 

 
and taking into account the values from (2): 

( )1( ) 0.6 1 0.6 0.28
4c c cR j K j K jπ

ω
π

⎡ ⎤⎛ ⎞= + − = +⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

 (8) 

 
The open loop frequency response is given by the product of 
the controller and the process ((8) and (5)): 
 

1( ) ( ) (0.6 0.28 )c c c
c

R j P j K j
K

ω ω
−

= + ⋅          (9) 

 
which indicates that the loop Nyquist curve goes through the 
point -0.6-0.28j, thus providing the robustness measure 
(defined here as the distance to point -1):  
 

2 2(1 0.6) 0.28 0.5AHRo = − + =            (10) 
 

Up-to-now, all these concepts are rather tutorial and they 
have been well described in the book (Åström and Hägglund, 
1995, 2006). To understand now why the AH autotuner fails 
to provide a good closed loop performance for the integrating 
process (3), it is useful to look at the scheme depicted in 
figure 8. If one calculates the location of the point given by 
(9) in the Nyquist plane, it follows that the controller has to 
introduce a phase lead of +25°. In the corresponding Bode 
plot in figure 9, depicting process P(s) from (3) and the AH 
PID controller, we can indeed verify that the controller 
introduces a phase lead of 25° at the frequency * 9ω = rad/s. 
From the same figure 9, one can also observe that around *ω  
the (positive) slope of the controller-phase is higher than the 
(negative) slope of the process-phase. Notice that this 
observation is generally valid for integrating processes (not 
just for the specific example from (3)!). This is due to the fact 
that the phase of the process is -180° at *ω . 
 

 
Fig. 8: Schematic representation of the AH tuning principle 
in the Nyquist plane, for the case of the integrating process 
(3). 
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Fig. 9: The Bode plot of the process (3) and the Bode plot of 
the corresponding AH PID 

This observation implies that at frequencies just below *ω , 
the phase of the process and controller (R*P) will be more 
negative than at *ω . The Nyquist curve of the loop (R*P) 
will thus cut the circle with radius 0.5, leading to a phase 
margin smaller than 25° and a modulus margin (distance to 
the point -1) less than 0.5. Notice that in practice a usual 
value for the phase margin is between 40° and 70° and for the 
modulus margin between 0.5 and 0.7.  
 
To conclude, it is important to notice that this insight is valid 
for all integrating processes, not only for the example from 
(3). When striving towards a generally-valid autotuner, it 
is therefore important to re-consider the location of *ω .  

3. JUST ANOTHER METHOD – NOT A BETTER ONE 

3.1  The Phase Margin (PM) autotuner (credits also to AH) 

Similarly to the AH relay test, the PM method finds the point 
as expressed in (5). The task is now to find the controller 
parameters such that a specified phase margin is obtained (De 
Keyser and Ionescu, 2010). A typical phase margin is 
between 40° and 70°. Generally, the larger the PM, the more 
robustness in the loop, less overshoot but larger settling time. 
Expressing that the loop frequency response should have a 

phase margin PM at the frequency 2
c

cT
π

ω =    we obtain: 

( 180 )( ) ( ) 1
cos( 180 ) sin( 180 )

j PM
c cR j P j e

PM j PM a jb
ω ω − °+= ⋅ =

− °+ + ⋅ − °+ = − −
 (11) 

 
with cosa PM=  and sinb PM= , ref. figure 10.   
 
It follows that (11) can be re-written as: 
 

[ ]( ) ( ) cos sinc cR j P j PM j PMω ω = − + ⋅          (12) 
 
and equivalence of (5)*(7) with (12) gives us the tuning rule 
for Kp (Kp=Kc*cos PM): 

cosp

c

K
PM

K
= , 1 sinp

d c
c i c

K
T PM

K T
ω

ω

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
  (13) 

 
Fig. 10: Schematic of the PM principle 
 
 
Choosing again 4i dT T= and using (13), it follows that  

1 tan
4d c

d c

T PM
T

ω
ω

− =              (14) 

 
The solution for Td is given by: 
 

( )

2

2

tan tan 0.25
2 2

tan 1tan tan 1
2 2 2 2cos

d c
PM PMT

PMPM PM
PM

ω ⎛ ⎞= ± + =⎜ ⎟
⎝ ⎠

+
± = ±

(15) 

 
Only the addition case will give a positive solution, hence: 
 

sin 1 sin 1
2cos 4 cosd c d c
PM PMT T T
PM PM

ω
π

+ +
= → =       (16) 

 
To validate the improved performance of the PM autotuner, 
we test it on the integrating process (3), with a phase margin 
specification of 50° and with the result given in figure 11. 
This figure shows the remarkable performance of the PM 
autotuner compared to the (basic) AH autotuner: it gives a 
similar result as the PID which was designed based on the 
full knowledge of the process.  
 

 
Fig. 11: Closed loop reference tracking and disturbance test 
for the process (3), with the auto-tuned PM PID and reference 
PID (FRtool). PM: Kp=28.22, Ti=0.71, Td=0.17. FRtool: 
Kp=25, Ti=0.8, Td=0.2. 
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3.2  Counter-example and theoretical insight 

Next, let us consider the following counter-example given by 
the process: 
 

252( )
(1 5 )(1 10 )

sP s e
s s

−=
+ +

                       (17) 

which has a significant time delay, as shown in figure 12 by 
its open loop step response.  

The result for the PM autotuner designed for a phase margin 
of 70° (very robust!) is given in figure 13, compared to the 
reference PID designed via FRtool. It can be observed that 
the PM PID is unstable.  

 
Fig. 12: Open loop unit step response for process (17) 

 
Fig. 13: Closed loop reference tracking and disturbance test 
for the process (17), with the PM PID and reference PID 
(FRtool). PM: Kp=0.24, Ti=133.58, Td=33.39. FRtool: 
Kp=0.25, Ti=20, Td=5. 

To understand why the PM PID is resulting is such lousy 
performance, we have to analyze again the results in the 
Nyquist plane and the Bode characteristic, as previously done 
for the AH PID controller. If again the location is calculated 
of the corresponding *ω  point in the Nyquist plane (ref. 
figure 14), it follows that the controller introduces a phase 
lead of +70°. In the corresponding Bode plot in figure 15, 
depicting process P(s) from (17) and the PM PID controller, 
we can indeed verify that the controller introduces a phase 
lead of 70° at the frequency * 0.08ω = rad/s.  
 

 
 

Fig. 14: Schematic representation of the PM tuning principle 
in the Nyquist plane, for the case of the time-delay process 
(17). 

From the same figure 15, one can also observe that around 
*ω  the (positive) slope of the controller-magnitude is higher 

than the (negative) slope of the process-magnitude. Again, 
this observation is generally valid for processes with 
considerable time-delay (i.e. not just for the specific example 
from (17)!). This observation implies that at frequencies 
higher than *ω , the magnitude of the process and controller 
(P*R) is increasing. As a result, the beeline of the process and 
controller in the Nyquist plane will go out of the unit circle, 
either remaining out (thus unstable closed-loop), either 
returning into the unit circle very close to the critical point -1. 
This has indeed been verified in figure 13 for the case of the 
closed-loop performance of the PM controller and the process 
from (17), but the theoretical insight is valid for all processes 
with significant time delay values.  

 
Fig. 15: The Bode plot of the process (17) and the Bode plot 
of the corresponding PM PID 

 
As a second conclusion, we can state that not only the 
location of the point *ω  is important! 

It is interesting to notice that the AH autotuner will give good 
results for the system (17). 
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3.3  Perspectives for a generally-valid PID relay-autotuner 

Above theoretical insights explain why well-known relay-
based autotuners give good results on some processes but 
might fail on other processes. Based on these insights, a new 
relay-based autotuner has been developed which gives good 
performance on all processes considered above (as depicted 
in figures 16-18 below). Due to lack of space, the theoretical 
insight and the tuning rules of this novel KC autotuner make 
the subject of a related paper (De Keyser et al., 2012).  

 
Fig. 16: The performance of the novel PID autotuner for the 
process (1) 

 
Fig. 17: The performance of the novel PID autotuner for the 
process (3) 

 
Fig. 18: The performance of the novel PID autotuner for the 
process (17) 

4. CONCLUSIONS 

In this paper, the dawn of a generally valid relay-based PID 
autotuner has been presented. Starting from the wonderfully 
inspiring concepts of the original Åström-Hägglund (AH) 
autotuner, the road to an alternative PM autotuner has been 
paved by means of illustrative examples. Theoretical insights 
have shown the limitations of both the AH PID and the PM 
PID, by means of Nyquist and Bode plots. The analysis in 
this paper might provide an explanation on the underlying 
reasons for failures of the current relay-based PID auto-
tuners. Hopefully this paper has presented some ideas to 
strive towards the ‘utopic’ autotuner, which is valid for all 
types of processes. 
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