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Abstract: This paper deals with the stability of an event-based proportional-integral controller.
In particular, necessary and sufficient conditions on the controller parameters for the existence
of equilibrium points without limit cycles are given for a first-order-plus-dead-time process.
Practical issues related to the controller implementation are also addressed. The presented
conditions enable a simpler tuning of the controller. Simulation and experimental results are
provided as illustrative examples.

1. INTRODUCTION

It is well known that in some processes a small steady-state
control error of the process output around the set-point
does not constitute a hard design constraint but, however,
the reduction of the information exchanged between the
agents that take part in the control loop (sensors, con-
trollers, actuators) is one of the tightest requirements.
Indeed, the reduction of the information flow is a relevant
issue especially in the presence of wireless sensors, as there
are constraints on the communication rate [Otanez et al.,
2002, Miskowicz, 2006]. In these situations, cutting down
the traffic load is a key point because the more traffic, the
higher possibility of lost data and stochastic time delays.
This prevents the occurrence of large latencies and delay
jitters.
In this context, one of the most convenient strategies is
the use of event-based sampling and control approaches.
Indeed, during last years event-based sampling and con-
trol techniques have been addressed by a large number
of researchers (see, for example, [Åström, 2008, Heemels
et al., 2008]) also in the context of Proportional-Integral-
Derivative (PID) controllers [Årzèn, 1999, Rabi and Jo-
hansson, 2008, Sánchez et al., 2011], as these kind of
controllers are the most employed controllers in industry
owing to their advantageous cost\benefit ratio. Among the
different event-based sampling strategies, one of the most
common is the so called send-on-delta (SOD) sampling
(also known as deadband sampling [Vasyutynskyy and
Kabitzsh, 2007] or level crossing sampling [Kofman and
Braslavsky, 2006]) where the measured value of the process
variable is sent to the controller when the process variable
(or some function of it) crosses predefined quantization
levels [Sánchez et al., 2009].
However, it has to be recognized that the great success of
(time-based) PID controllers is motivated by the fact that
they are capable to provide a satisfactory performance for
many processes with a relatively easy design, also because
of the large number of tuning rules that are available

[O’Dwyer, 2006]. Conversely, in event-based control the
events occur asynchronously and therefore the tuning of
the PID controller parameters is in general more chal-
lenging, as the timing of the events influences the system
performance and limit cycles may arise [Vasyutynskyy,
2008] (note that the presence of limit cycles is a typical
problem in general event-based control systems [Cervin
and Åström, 2007]). Further, in addition to the PID gains,
there are other parameters (threshold values) employed in
the control algorithm that have to be tuned, thus making
the overall control design more complex. Indeed, the tun-
ing of a PID controller with deadband sampling has not
been explicitly addressed in the literature until now, at
least to the authors’ knowledge.
In this paper we consider an event-based PI (EB-PI) con-
trol scheme in which a particular SOD sampling is applied
to the control. This approach is particularly effective when
it is necessary to reduce the number of transmissions from
the controller to the actuator.
In this context, we find necessary conditions on system
instability and necessary and sufficient conditions on the
controller parameters for the existence of equilibrium
points without limit cycles when the process can be mod-
elled as a first-order-plus-dead-time (FOPDT) transfer
function. Note that, although this can be considered as a
special case, it is significant from a practical point of view
as many industrial processes can be modelled effectively in
this way. The cases of event-based P, I, and PI controllers
are considered. It is believed that these conditions can be
usefully employed for the tuning of the overall controller.
It is worth stressing that, with respect to the results pre-
sented in [Beschi et al., 2011], here we consider a different
EB-PI control strategy and we are interested in providing
conditions for the absence of limit cycles and exploring a
new type of architecture for EB-PI controllers with the
aim of reducing the number of parameters.
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Fig. 1. Control architecture. SU: Sensor Unit, CU: Control
Unit, AU: Actuator Unit.

2. CONTROL ARCHITECTURE

The architecture of controller can be divided into three
main parts: the sensor unit, which samples the process
variable, calculates the error and conveys its value to the
control unit, which elaborates the new value of the control
action. Finally, the new value of the control action is
conveyed from the control unit to the actuator unit, which
changes appropriately the actuator value.
In an event-based strategy these three tasks can run sep-
arately, and in some cases the three parts can be im-
plemented by hardware located in different places of the
plant. In order to reduce the communications between the
different units, typically the signal values are not sent at
constant intervals (notice that this operation requires time
synchronization of the hardware) but only when the signal
changes significantly with respect to the last sent value and
without the necessity of synchronization.
It is important to notice that the different units can also
be implemented in the same hardware, and clearly in this
case the communications between these parts can be done
at each interval. In this work, we consider the control archi-
tecture where the information between the sensor unit and
the actuator unit can be exchanged at constant intervals
and the new value of the control action is sent only when
an event occurs . This architecture is shown in Figure 1. As
said before, the communication between the control unit
and the actuator unit is done only if there is an event. The
event generator rules used in this work is a special case of
the send-on-delta sampling method (see [Miskowicz, 2006])
which can be considered as a generalization of a relay with
hysteresis where there are an infinite number of thresholds
[Kofman and Braslavsky, 2006]. We call this technique
symmetric send-on-delta (SSOD) sampling
Denote as u(t) the control action before the SSOD sam-
pling block and as u∗(t) the sampled control action, which
can assume only values multiple of a predefined threshold
∆, namely u∗(t) = j∆ with j ∈ Z. The sampled signal
changes its value to the upper quantization level when the
control action u(t) increases more than ∆, or to the lower
quantization level when u(t) decreases more than ∆.
The mechanism can also be analyzed by means of a state-
machine representation, where j is the state number,
u(t) ≥ (j + 1)∆ is the condition to jump to the upper
state j + 1 and u(t) ≤ (j − 1)∆ is the condition to jump
to the lower state j − 1. Also in the standard send-on-
delta (SOD) technique, it is possible to define a state
machine representation, but in this case the value assumed
by u∗ in the state j is equal to j∆+ q (see [Beschi et al.,
2011]), where q ∈ [0,∆] is an unquantizable quantity
which depends on the initial value. The control action is
calculated with the standard PI controller, namely:

C(s) = Kp +
Ki

s
(1)

where Kp ≥ 0 is the proportional gain and Ki ≥ 0 is the
integral gain.
It is worth stressing that the main differences between the
presented technique (for short PI-SSOD, to indicate that
the SSOD sampling is done on the control action) and the
SOD-PI controller (see [Beschi et al., 2011]) are:
1) In the SOD-PI controller, the sensor unit has to calcu-
late the integral error each time, and sends, with SOD
sampling rules, the error and integral error signals to
the control and actuator unit, which elaborates the new
control action. In this technique, the control action is
quantized in the SOD-PI because both e∗ and IE∗ are
quantized. This makes impossible to compensate exactly
a generic constant load disturbance of amplitude d, and
if the controlled process has a pole at the origin then
there are surely limit cycles (see [Beschi et al., 2011]).
Moreover, there are three parameters that describe the
SOD sampling in a SOD-PI controller. In addition, ∆i has
not a clear physical meaning, therefore it is complicated
to tune it. Finally, another important disadvantage is that
in this technique it is very complicated to implement the
anti-windup methods used in time-based PI control theory,
because they require transmissions between the two units.
2) In the PI-SSOD controller, the sensor and control unit
has to execute standard time-driven controller, the SSOD
algorithm and to send the SSOD sampling control action
to the actuator unit, which acts as a zero-order-hold block.
Also with this technique, the control action is quantized,
but and therefore it is not possible to prevent the occur-
rence of limit cycles when the controlled process has a pole
at the origin. To eliminate this disadvantage. a load distur-
bance estimator, described in Section 3, is implemented.
Further, in this control strategy, only a parameter is neces-
sary to describe the communication between the two parts,
namely ∆, and this parameter has a clear physical meaning
and it is easy to tune. Finally, the standard anti-windup
methods can be easily applied because the computation
of the integral error and the control action is done in the
same hardware.

3. STABILITY AND LIMIT CYCLES ANALYSIS FOR
A FOPDT PROCESS

This section addresses the stability properties of the con-
trolled system, where the considered process is a FOPDT
system, described by the following transfer function:

P (s) = K
τs+1e

−Ls (2)

where K is the process gain (which is assumed to be
positive without loss of generality), τ > 0 is the time
constant and L ≥ 0 is the apparent dead time. Then, we
can write:

Y (s) = K
τs+1e

−Ls
(

U(s) + d
s

)

(3)

where Y (s) is the Laplace transform of the process output
y(t), U(s) is the Laplace transform of the control action
u(t) and d is the amplitude of a constant load disturbance.
It is important to notice that, because the PI-SSOD tech-
nique presents a nonlinearity, the system can reach an
equilibrium point, or can present a limit cycle around
an equilibrium point or can be unstable. In general, the
behavior of each equilibrium point can be different. In
this section, we demonstrate that it is possible to find a
region of the parameter space Kp −Ki where the system
is certainly marginally or asymptotically stable for all
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the equilibrium points. This region can then be divided
into two other regions: one where the system can present
certainly a limit cycle, (and therefore the trajectory can
tend to it for certain values of reference signal r, load
disturbance d and the system initial conditions) and one
where the system surely does not present a limit cycle.
We prove that if the PI-SSOD control system is unstable
then also the continuous time-driven PI-controlled system
with the same proportional and integral gains is unstable,
therefore the instability region of PI-SSOD controller is
included in time-based PI controller one.
To prove this necessary condition, we have first to demon-
strate that if the control action diverges, then also the
control action derivative diverges for all the positive pro-
portional and integral gains (which are the only ones with
a physical meaning).

Proposition 1. For all the positive proportional and inte-
gral gains, if the absolute value of the control action tends
to infinity then also the absolute value of control action
derivative tends to infinity.

Proof. To proof the proposition, we have to demonstrate
the following implication:

lim
t→∞

|u(t)| = ∞ =⇒ lim
t→∞

|u̇(t)| = ∞

By contradiction, we suppose that:

lim
t→∞

|u(t)| = ∞ and u̇(t) ∈ [a, b], with a < b, a, b ∈ R,

and therefore:

lim
t→∞

∣

∣

∣

u̇(t)
u(t)

∣

∣

∣
= 0, almost everywhere. (4)

Consider first the proportional controller case (namely
Ki = 0 and Kp > 0), we can write the following equations:

u(t) = Kpe(t) = Kp (r(t) − y(t)) , (5)

u∗(t) = SSOD(u(t),∆) = u(t) + l1(t), (6)

τ ẏ(t) = −y(t)+Ku∗(t−L) = −y(t)+Ku∗(t)+Kl2(t), (7)
where: e(t) = r(t) − y(t) is the error signal, the reference
signal r(t) is a bounded signal, l1(t) is a signal bounded in
[−∆,∆] and l2(t) is a bounded signal because the control
action derivative is bounded. Using (4) and (5) it is trivial
to obtain:

lim
t→∞

∣

∣

∣

τ ẏ(t)
y(t)

∣

∣

∣
= 0.

Using (5)-(7) it is possible to obtain:

ẏ(t) = −(1 +KKp)y(t) +KKpr(t) +K(l1(t) + l2(t))

Finally, using the last two equations, we can write:

lim
t→∞

∣

∣

∣
−(1 +KKp) +

KKpr(t)+Kl1(t)+Kl2(t)
y(t)

∣

∣

∣
= 0

and
lim
t→∞

|−(1 +KKp)| = 0

which implies Kp = − 1
K

< 0 which is absurd.
Consider now the case of PI or I controller (namely,Ki > 0
and Kp ≥ 0). It is possible to rewrite the series of the
process and the sensor and control unit in a state space
form as:

{

ẋ1(t) = (
Kp

τ
−Ki)x2(t)−

KKp

τ
u∗(t− L)

ẋ2(t) = − 1
τ
x2(t) +

K
τ
u∗(t− L)

y(t) = x2(t),

u∗(t) = SSOD(u(t),∆).

(8)

It is important to notice that x1(t) is the control action
before the delay and, as the first case, u∗(t − L) =

x1(t) + l(t), where l(t) = l1(t) + l2(t). Another important
consideration is that the limit (4) becomes:

lim
t→∞

∣

∣

∣

ẋ1(t)
x1(t)

∣

∣

∣
= 0

Thus, we can describe the control system as:
{

ẋ1(t) =
(

Kp

τ
−Ki

)

x2(t)−
KKp

τ
x1(t)−

KKp

τ
l(t)

ẋ2(t) = − 1
τ
x2(t) +

K
τ
x1(t) +

K
τ
l(t)

(9)

We can then divide the first equation by x1(t), excluding
the time instant when x1(t) = 0, and determine the limit
for x1(t) → ∞. By taking into account that ẋ1(t) is
bounded, we obtain:

lim
|x1|→∞

∣

∣

∣

ẋ1(t)
x1(t)

∣

∣

∣
=

∣

∣

∣
−

KKp

τ
+
(

Kp

τ
−Ki

)

x2(t)
x1(t)

∣

∣

∣
= 0, (10)

where the parts which tend to zero are neglected. If K2

is equal to K1τ , we obtain K1 = K2 = 0, but this is
a trivial case. Conversely, the limit is true only when the
ratio between x1(t) and x2(t) is a bounded quantity. Thus,
we can state that x1(t) has an infinity order smaller or
equal than x2(t), and therefore:

lim
t→∞

∣

∣

∣

ẋ2(t)
x1(t)

∣

∣

∣
= lim

t→∞

∣

∣

∣
− 1

τ

x2(t)
x1(t)

+ K
τ

∣

∣

∣
= 0

where the parts which tend to zero are neglected. Thus
x2(t)
x1(t)

→ K and (10) becomes:

lim
|x1|→∞

∣

∣

∣

ẋ1(t)
x1(t)

∣

∣

∣
= |−KKi| = 0,

which is an absurd because Ki > 0. 2

Using Proposition 1 it is possible to state the following
necessary condition.

Proposition 2. If the closed-loop system of Figure 1 is
unstable then the same system controlled by a time-driven
PI controller with the same value of Kp and Ki is also
unstable.

Proof. The time interval ∆t between two events can be
calculated as the ratio between ∆ and the mean value of
the control action derivative, called ˙̄u, in the interval, in
fact:

∆ =

∣

∣

∣

∣

∣

∫ τ+∆t

τ

u̇(t)dt

∣

∣

∣

∣

∣

= | ˙̄u|∆t.

From Proposition 1 we know that if the absolute value of
the output tends to infinity also the absolute value of its
derivative diverges to infinity. Thus, ∆t decreases to zero
and the PI-SSOD algorithm becomes a continuous-time
controller, which proves the proposition. 2

The parameters region for which there are not surely limit
cycles and the system converges to the equilibrium state
can be found with the following propositions, where we
prove that if the system is in the state j = jeq ± n, where
jeq is the equilibrium state and n > 0, then it cannot
evolve to the state j = jeq ∓n and therefore it has to tend
to the equilibrium state. It is possible to derive a detailed
analysis of the equilibrium points of a P-SSOD controlled
system from [Beschi et al., 2011], while it is clear that for
I-SSOD and PI-SSOD controlled system the only possible
steady state is j = 0.

Proposition 3. In a P-SSOD controlled system, if KKp <
1 then limit cycles cannot occur.

Proof. Denoting as jeq the equilibrium state, we have to
prove that if the system is in an initial state j = jeq ± n,
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with n > 0, the state machine cannot evolve to the state
j = jeq ∓ (n+1), and at least one of the states j = jeq +n
and j = jeq − n cannot evolve to the state j = jeq − n
and j = jeq +n, respectively. In this way the limit cycle is
surely avoided.
For the proof it is important to notice that if jeq is the
equilibrium state then the steady-state control action is
uss,jeq = jeq∆ + α∆, with α ∈ [−1, 1] and that the
steady-state control action for a generic state j = jeq +
m, with m ∈ Z, is uss,jeq+m = jeq∆ + α∆ − mKKp∆.
Another important property of the FOPDT system is that
if the steady-state control actions of each state, which are
involved in the limit cycle, are bounded in a interval [a, b],
with a, b ∈ R, then for all time instants the control action
before the SSOD sampling is bounded in the same interval.
Now we demonstrate that if the initial state is j = jeq+n,
with n > 0, and KKp < 1 then the system cannot reach
the state j = jeq − n − 1, and if α ≥ 0 then the system
cannot reach the state j = jeq−n. In other words, we have
to prove that:

uss,jeq+n
= jeq∆+ α∆− nKKp∆ > (jeq − n− 1)∆,

∀n > 0, ∀α ∈ [−1, 1]

or equivalently:
n(1−KKp) > −(1 + α), ∀n > 0, ∀α ∈ [−1, 1]

which is always true.
Moreover if α ≥ 0, we can state that:

uss,jeq+n
= jeq∆+ α∆− nKKp∆ > (jeq − n)∆,

∀n > 0, ∀α ∈ [0, 1]

or equivalently:
n(1−KKp) > −α, ∀n > 0, ∀α ∈ [0, 1]

which is always true.
In the same way we can prove that if the initial state is
j = jeq − n, with n > 0, and KKp < 1 then the system
cannot reach the state j = jeq + n+ 1, and if α ≤ 0 then
the system cannot reach the state j = jeq + n. 2

It is worth noting that the PI-SSOD control action is
quantized, therefore it is not possible to guarantee a null
steady-steady error for all the possible value of the load
disturbance. Thus therefore PI-SSOD strategy (because
of the presence of the integral part) is not enough to avoid
the presence of limit cycles and it is necessary to add addi-
tional features to the controller. In this work we propose a
solution where an algorithm estimates the “unquantized”
part of the load disturbance and compensates it, allowing
the controlled system to have a null steady-state error.
For this reason, we present necessary and sufficient con-
ditions on the presence of limit cycles when the load
disturbance is zero, finding the region of PI parameters
where there are not limit cycles. Afterwards, we present
the load disturbance compensation algorithm. The next
proposition addresses the cases of I and PI controllers.

Proposition 4. In a PI-SSOD controlled system, with
Kp ≥ 0, Ki > 0 and r = d = 0 limit cycles cannot occur
if the following conditions are satisfied: if KKp ≥ KKiτ ,
the parameters K1 and K2 are inside the portion of the
first quadrant delimited by the following curve:

K1(t̃1) =
t̃1 − 2 l + 2 el − el+t̃1

(

2 l − t̃1 + 2
)

+ 4 el sinh(l)

2 l el − 2 l el+t̃1 + 2 t̃1 el sinh(l)

K2(t̃1) = −
2
(

e2 l − el+t̃1 + el − 1
)

t̃1 − t̃1 e2 l + 2 l el+t̃1 − 2 l el

(11)

where K1 = KKp, K2 = KKiτ , a = K1 −K2, l =
L
τ
and

t̃1 ∈ [l,∞[;
if KKp < KKiτ the parameters K1 and a are inside the
portion of the first quadrant delimited by the curve defined
by the follow equation:

K1 = K2 −
K2l−1

1−e
l−2K

−1

2

.

Proof. To prove the proposition, we find the locus of the
parameters Kp−Ki which allow the smaller limit cycle to
arise. This locus delimits a part of the first quadrant where
the PI parameters guarantee the absence of limit cycles.
The system is described using equations (8), which can be
normalized in:

{

˙̃x1(t) = ax̃2(t)−K1ũ
∗(t− l)

˙̃x2(t) = −x̃2(t) + ũ∗(t− L)

ũ∗(t) = SSOD(x̃1(t), 1).

(12)

by choosing t̃ = t
τ
, l = L

τ
, x̃2 = x2

∆ , x̃1 = Kx1

∆ , ỹ = y
∆ ,

ũ = Ku
∆ = j, K1 = KKp, K2 = KKiτ and a = K1 −K2.

The control variable ũ∗ assumes the values:
1) 1 for a time interval equal to t̃1; at the beginning of this
interval the state of the system assume the value x̃0 and
at the end the state is equal to x̃1; l instants before the
beginning, the state assumes the value x̃d with x̃d

1 = 1;
2) 0 for a time interval t̃2; at the end of this interval the
state is equal to x̃2; l instants before the beginning the
state assumes the value x̃a with x̃a

1 = 0;
3) -1 for a time interval t̃3; at the end of this interval the
state is equal to x̃3; l instants before the beginning the
state assumes the value x̃b with x̃b

1 = −1;
4) 0 for a time interval t̃4; at the end of this interval the
state is equal to x̃0; l instants before the beginning the
state assumes the value x̃c with x̃c

1 = 0.
Because of the symmetric nature of the nonlinearity, we
study symmetric limit cycles (see [Åström, 1995]), namely
t̃1 = t̃3, t̃2 = t̃4, x

2 = −x0 and x3 = −x1. Experimental
and simulation tests confirm this hypothesis.
During an interval, the system (12) evolves as a linear
system with constant input and the evolution of the state
can be written as the sum of the free movement and
the forced movement which is the unitary step response
multiplied by the amplitude of the input. Thus, we can
write:

x̃(t̃− t̃0) = R(t̃− t̃0; a,K1)x̃(t0) + T (t̃− t̃0; a,K1)ũ
∗(t̃0)

where t̃0 is the initial time,

R(t̃; a,K1) =

[

1 −ae−t̃

0 e−t̃

]

and

T (t̃; a,K1) =
[

K1t̃+ a
(

t̃+ e−t̃ − 1
)

, 1− e−t̃
]T

.

Because the trajectory is periodic we can write the follow-
ing equations:

x̃1 = R(t̃1; a,K1)x̃
0 + T (t̃1; a,K1)

x̃2 = −x0 = R(t̃2; a,K1)x̃
1 (13)

and obtain:

x̃0 = −(I +R2R1)
−1R2T1, x̃1 = (I +R2R1)

−1T1 (14)

where: R1 = R(t̃1; a,K1), R2 = R(t̃2; a,K1) and T1 =
T (t̃1; a,K1).
It is interesting to note that, when the input is zero
(namely, in the time intervals t̃2 and t̃4.) the trajectory
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Fig. 2. Example of limit cycle trajectory with a ≥ 0 where
the arc arrows represent the time intervals.
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Fig. 3. Example of limit cycle trajectory with a < 0 where
the arc arrows represent the time intervals.

is a straight line with an angular coefficient equal to −a

(obtained by the ratio
˙̃x1

˙̃x2

). Thus, the maximum value

assumed by x̃1 is x̃3 when a ≥ 0 (see Figure 2), and x̃0

when a < 0 (see Figure 3). It is important to note that in
the limit cycle shown in Figure 2, for small amplitudes, we
have t̃2 ≤ l ≤ t̃1. Conversely, in the case of Figure 3, for
small amplitudes, we have l ≤ t̃2 ≤ t̃1. Consider now the
case a ≥ 0 and apply the condition of the smallest limit
cycle (namely max x̃1(t) = 1, therefore x̃3

1 = 1). In this
way we obtain that x̃b = x̃1, therefore t̃2 = l. We can find
x̃a from the equation:

x̃1 = R(l; a,K1)x̃
a + T (l; a,K1).

By the imposition of x̃1
1 = −1 and x̃a

1 = 0 we can find the
parametrization (11) of the locus K1−K2 with respect to
t1 presented in the proposition.
Consider now the case a < 0 and apply the condition of
max x̃1(t) = 1, therefore x̃0

1 = 1. In this way we obtain
that x̃b = −x̃0. We can find x̃a from the equation:

x̃1 = R(l; a,K1)x̃
a + T (l; a,K1).

By the imposition of x̃0
1 = −1 and x̃a

2 = 0 we can find that
t̃2 → ∞, t̃1 = 2

K1−a
and the representation (4) of the locus

K1 −K2. 2

Note also that Propositions 3-4 are necessary and sufficient
conditions to avoid the presence of limit cycles. In other
words, in the region of the planeKp−Ki delimited by these
conditions there are surely no limit cycles, whereas out of
this region there is surely at least a possible limit cycle.
Actually, for some values of initial conditions, reference
signal and load disturbance it is possible that the system
state does not reach the limit cycle trajectory but tends
to the equilibrium point.

Another important consideration is that the parameter
∆ does not have influence on the stability analysis and
therefore it can be chosen using only considerations about
the desired precision. It is worth to remember that the
number of events increases with the decreasing of ∆.
As already mentioned, because of its quantized nature,
the presented control strategy cannot compensate the
unquantized part of the load disturbance, therefore a
bimodal limit cycle surely arises. This limit cycle with
period T involves two consecutive states jl + 1 and jl,
where t∗ is the interval time where j = jl + 1. Thus, the
control action assumes only the values jl∆ and (jl + 1)∆.
By applying the definition of limit cycle, the trends of the
process and the controller quantities during a cycle are
periodic. Considering now the integrated error Ie(t) and
its Laplace transform IE(s), which can be calculated as

IE(s) =R(s)
s

− K
s(τs+1) (U(s) + d)

which corresponds to the following differential equation:

τ Ïe(t) + İe(t) = r(t) −K(u(t) + d+ τ ṙ(t)).

By integrating over a period and remembering that, for
hypothesis, r and d are constant and Ie(t) is periodic, we
obtain:

rT −KTd−K

∫ T

0

u(t)dt = 0

and finally:
ū = jl∆+∆ t∗

T
= r

K
− d

where ū is the mean value of u(t) during a period and

d̂ := ∆ t∗

T
is the “unquantized” part of the control action

necessary to compensate the load disturbance.
In the real plants, the trajectory tends to the limit cycles
but does not reach it. Hence, the hypothesis of periodicity
is only an approximation, therefore it is impossible an
exact compensation of the disturbances. For this reason,
a small deadband is introduced, the width of this band
is upper-limited by ∆ and it can be set by taking into
account the numerical errors in the calculus of t∗ and T
and the presence of noise.

4. PRACTICAL ISSUES

The control technique can be implemented easily in very
simple industrial controllers, because it does not require
a great computational effort or complex routines. The
algorithm for the sensor and the control unit with the
load disturbance compensator, can be outlined using the
following pseudocode (for sake of brevity the initialization
is not shown), where h is the control unit sampling period.
Note that the actuator unit task has to only keep the last
received value until the next event.

Sensor and Control Unit Task
1) calculate e; 2) calculate uk = uk−1 +Kpe+Kieh;
3) set uk−1 = uk; 4) if |u− u∗| ≤ ∆ then go to 4;
5) set u∗,2 = u∗,1, t∗,2 = t∗,1, u∗,1 = u∗ and t∗,1 = t∗

6) save in t∗ the time interval between the last and the
current event.
7) if u > u∗ then u∗ = ∆⌊ u

∆⌋ else u∗ = ∆⌈ u
∆⌉;

8) if u∗,2 = u∗ then go to 4 else go to 4;

9) if u∗ > u∗,1 then D̂ = ∆ t∗

t∗,1+t∗
else D̂ = ∆ t∗,1

t∗,1+t∗
;

10) send u∗ + D̂ to the actuator unit; 11) end.
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Fig. 4. Simulation results for PI-SSOD controller with
the first set of parameters. First plot (from the top):
process variable for the PI-SSOD controller (solid
line). Second plot: PI-SSOD control variable before
the SSOD sampling (solid line) and after the SSOD
sampling (dashed line). Third plot: control error for
the PI-SSOD controller (solid line).
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Fig. 5. Simulation results for PI-SSOD controller with the
second set of parameters. First plot (from the top):
process variable for the PI-SSOD controller (solid
line). Second plot: PI-SSOD control variable before
the SSOD sampling (solid line) and after the SSOD
sampling (dashed line). Third plot: control error for
the PI-SSOD controller (solid line).

5. SIMULATION RESULTS
In this section simulation results are presented with the
aim to illustrate the validity of the propositions stated in
Section 3. The considered FOPDT process is:

P (s) = 1
s+1e

−1.5s.

Two sets of PI-SSOD parameters have been chosen: the
first set (Kp = 0.333 and Ki = 0.537), which respects
the conditions stated in Proposition 4; the second set
(Kp = 0.333 and Ki = 0.569) which does not respect
the conditions. The threshold parameter ∆ is chosen as
∆ = 0.1. A step set-point signal of amplitude r = 1 is
applied at time t = 0.
Figure 4 shows the simulation results when the first set
is selected. The number of events is 24. Conversely, by
selecting the second set, even if the response is faster, a
limit cycle occurs, as shown in Figure 5. In this case the
number of events is 27.

6. CONCLUSIONS
In this paper, we have addressed the stability issue and
the presence of limit cycles for an EB-PI control system.
The main advantages of this technique with respect to
other formulations of EB-PI control algorithm have been

outlined. Then, we presented necessary conditions on the
system instability and necessary and sufficient conditions
to avoid the limit cycles. These conditions are an impor-
tant aid to tune the controller. Practical issues on the
implementation of the algorithm have been also discussed.
Simulation and experimental results have confirmed the
significance of the work which can represent a valuable
step in the development of easy-to-use tuning rules for this
kind of controllers.
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