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Abstract: The aim of the paper is to present the Delta 20 Fragility-Rings plot and its use for
robustness-fragility analysis of proportional integral (PI) and proportional integral derivative
(PID) controllers. Using the Delta 20 Fragility Index and the Nyquist plot it shows the areas
on the L(jω) plane corresponding to robustness-fragile, robustness-non-fragile and robustness-
resilient controllers providing a visual aid for evaluation of the controller robustness-fragility
when its parameters are perturbed.
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1. INTRODUCTION

Since Ziegler and Nichols (1942) presented their tuning
rules, a great number of other tuning procedures have
been developed for proportional integral (PI) and propor-
tional integral derivative (PID) controllers, as revealed in
O’Dwyer (2006) handbook.

At the beginning, only the control system performance
was taken into account in the controller design, consid-
ering a step change either in the set-point, servo-control
operation, or in the load-disturbance, regulatory control
operation, as in the classic tuning rules of Cohen and Coon
(1953), López et al. (1967), and Rovira et al. (1969), among
others (Chien and Fruehauf, 1990; Rivera et al., 1986), for
one-degree-of-freedom (1DoF) PI and PID controllers.

Later, the consideration of the control system relative
stability, its robustness to the changes in the controlled
process characteristics, was introduced into the controller
design. Initially, considering the control-loop gain and
phase margins (Am, φm) as in Åström and Hägglund
(1984); Fung et al. (1998) and Ho et al. (1995) . More
recently, these classic robustness indicators have been
replaced by a single value given by the maximum of the
magnitude of the sensitivity function, denoted by MS . This
approach has been used in Alfaro et al. (2010); Åström
and Hägglund (1995); Hägglund and Åström (2002) and
Tavakoli et al. (2005).

There is, however, another consideration that must be
taken into account when facing the design of control sys-
tems: the effect of the variation of the controller param-
eters over the control system stability and performance,
known as the controller fragility. If the control system
robustness is an indication of the margin of variation of
the process characteristics with a fixed controller, then the
controller fragility has a similar meaning but in terms of

the variation of the controller parameters considering a
fixed controlled process.

The fragility of certain controllers was documented by Keel
and Battacharyya (1997). They found that many modern
design techniques for optimum and robust controllers
under the H2, H∞ and l1 norms would produce extremely
fragile, high-order controllers. They observed that in some
cases, minimum variations of the parameters of these
controllers would make the system unstable. A fragility
analysis was included in the PID controller design by Datta
et al. (2000), Ho (2000) and Silva et al. (2005).

Although, in control system designs, the assumption is
often made that the controller can be implemented ex-
actly, a certain degree of uncertainty inevitably exists in
the controller implementation. The controller fragility is
affected by the tolerances of its analog components. In
its digital version, there are inaccuracies because of the
use of fixed-length words and rounded errors of numerical
calculations (Whidborne, 2000). In addition, the controller
must allow variations of its parameters around their design
values, making it easy to fine-tune the controller when the
control loop is placed in service. The latter is the most
probable cause of major variations in the controller pa-
rameters from their design, or nominal, values. Effectively,
most of the tuning approaches, either based on tuning
rules or on optimization methods, provide accurate values
for the controller parameters, but due to the inaccuracies
associated with the controlled process model used as part
of the tuning procedure, normally these parameters should
be taken only as a first approximation, and such final fine-
tuning of the controller is normally required.

Considering the above, modern tuning rules for PI and
PID controllers must take into account issues such as, the
closed-loop servo and regulatory control performance, the
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Figure 1. Closed-Loop Control System

control effort requirements, the control system robustness,
and the controller fragility.

If the PID controller design takes into account the closed-
loop performance to changes in its inputs, set-point and
load-disturbance, and its robustness to changes in the con-
trolled process characteristics, then it is evident that from
the designer point of view, it is very important that these
characteristics should be preserved regarding this fine-
tuning of the controller. In addition, if this is not possible,
then there should be at least some sort of information on
how such changes in the controller parameters affect the
control system robustness and performance.

The fragility-rings plot presented in this publication is
based on the PID controller fragility definition introduced
by Alfaro (2007) and Alfaro et al. (2009). It provides a
graphical interpretation of the Delta 20 robustness-fragility
index that is a measure of the control system loss of
robustness when the controller parameters change.

The rest of the paper is organized as follows: in Section
2 the problem is formulated and the control system ro-
bustness and controller fragility indices are presented; the
fragility-rings plot is described in Section 3 and its use to
analyze the robustness-fragility of PI and PID controllers
tuned with several tuning rules is shown in Section 4. The
paper end with some conclusions.

2. PROBLEM FORMULATION

Consider the closed-loop control system of Fig. 1, where
P (s) and C(s) are the controlled process model and the
controller transfer function respectively. In this system
r(s) is the set-point, u(s) is the controller output signal,
d(s) is the load-disturbance and y(s) is the controlled
process variable.

Without the loss of generality, it is supposed that the
controller is a Standard PID controller (Visioli, 2006)
whose transfer function is as follows:

C(s) = Kp

(

1 +
1

Tis
+

Tds

αTds+ 1

)

, (1)

where Kp is the controller proportional gain, Ti is the
integral time constant, Td is the derivative time constant.
In (1), α is the derivative filter constant, usually α = 0.10
(Corripio, 2001).

The closed-loop characteristic equation is as follows:
1 + L(s) = 1 + C(s)P (s) = 0. (2)

The control system stability depends on the controlled pro-
cess model P (s), with parameters θ̄p, and on the controller
C(s), with parameters θ̄c = {Kp, Ti, Td}. The parameters
of the controlled process model transfer function will be
considered constant for the fragility analysis.
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Figure 2. Definition of the Control System Relative Sta-
bility Margins

2.1 Control System Robustness Evaluation

There are several quantitative measures of the control
system relative stability that may be used for the robust-
ness fragility definition, such as the classical Gain Margin
and Phase Margin (Am, φm) (Goodwin et al., 2001), that
provide an indication of the distance from the open-loop
transfer function, L(jω), frequency response, or Nyquist
curve, to the critical point (-1,0) on the open-loop polar
graph.

Another way to express the system robustness is by
using the Stability Margin, which is the shortest distance
from the Nyquist curve to the critical point (Åström
and Murray, 2008). This distance is the reciprocal of the
maximum peak of the sensitivity function, or Maximum
Sensitivity (MS) (Åström and Hägglund, 1995), defined
as follows:

MS
.
= max

ω
|S(jω)| = max

ω

∣

∣

∣

∣

1

1 + C(jω)P (jω)

∣

∣

∣

∣

. (3)

The use of the maximum sensitivity as a robustness
measure has the advantage that lower bounds to the
gain and phase margins can be assured according to the
following (Åström and Hägglund, 1995):

Am >
MS

MS − 1
, φm > 2 sin−1

(

1

2MS

)

. (4)

The relations in (4) can be obtained from Fig. 2.

For the controller robustness fragility definitions, we use
the maximum sensitivity, MS , as a measure of the closed-
loop control system robustness.

2.2 Delta Epsilon Fragility Indices

The concept of PID controllers fragility, the Delta-Epsilon-
Fragility Index FI∆ǫ and their application to define when
a controller is considered fragile, non-fragile or resilient,
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were introduced by Alfaro (2007). In our context, the PID
controller fragility is an indication of the reduction of the
closed-loop control system robustness and/or performance
when the controller parameters are perturbed.

For the fragility analysis, the controlled process is repre-
sented by a nominal model of the fixed parameters θ̄op,
obtained at the control system normal operation point.
This model is used for tuning the controller; then, the con-
troller nominal parameters are θ̄oc and their delta epsilon
perturbations δǫ. In the following, δǫ denotes the variation
of each individual controller parameter and ∆ǫ will be used
when all controller parameters are perturbed.

The controller Delta-Epsilon-Robustness-Fragility Index
relates the control system loss of robustness to its nominal
robustness and is given by the following:

RFI∆ǫ
.
=

Mm
S∆ǫ

Mo
S

− 1 =
max{MS((1± δǫ)θ̄oc)}

MS(θ̄oc)
− 1, (5)

where Mm
S∆ǫ and Mo

S are the control system extreme and
the nominal maximum sensitivity, respectively.

The extreme maximum sensitivity, Mm
S∆ǫ, represents the

highest loss of robustness of the control system when all
the parameters of the controller, θ̄c, have been perturbed
by the same δǫ amount from their nominal values, θ̄oc ,
considering all the possible combinations of the perturbed
parameters.

In the ideal case, for a completely delta epsilon robustness-
resilient (or absolutely robustness-non-fragile) controller,
RFI∆ǫ = 0, the controller would not lose robustness when
its nominal parameters, θ̄oc , are perturbed by δǫ.

The relative influence of a δǫ change in the controller
parameter pi over its robustness fragility can be obtained
with the Parametric-Delta-Epsilon-Robustness-Fragility In-
dex given by the following:

RFI
pi

δǫ

.
=

M
pi

Sδǫ

Mo
S

− 1 =
max{MS((1± δǫ)pi, θ̄

o
c)}

MS(θ̄oc)
− 1. (6)

The final fine-tuning of the control-loop is considered the
most probable cause of major variations in the controller
parameters, for example, in practice, it is possible to see
commissioning changes up to 10% or 20% in their values.
Considering this, the Delta 20 Robustness-Fragility Index
can be defined to measure the maximum loss of the control
system robustness when a change of up to 20% occurs in
one or more of the nominal controller parameters values
and is given by the following:

RFI∆20

.
=

Mm
S∆20

Mo
S

− 1. (7)

A controller is considered robustness-fragile if the control
system loses more than 50% of its robustness when all its
parameters change up to 20%; otherwise, it is robustness-
non-fragile. In addition, a controller is robustness-resilient
if the control system does not lose more than 10% of
its robustness when its parameters change up to 20%. A
controller with a low robustness-fragility will allow final
fine-tuning without a significant reduction in the control
system robustness. Therefore, based on the RFI∆20, the
controller robustness fragility degree is defined as follows:

• Robustness Fragile PID controller : a PID controller
is robustness-fragile if its delta 20 robustness fragility
index is higher than 0.50, RFI∆20 > 0.50.

• Robustness Non-Fragile PID controller : a PID con-
troller is robustness-non-fragile if its delta 20 robust-
ness fragility index is less than or equal to 0.50,
RFI∆20 ≤ 0.50.

• Robustness Resilient PID controller : a PID con-
troller is robustness-resilient if its delta 20 robustness
fragility index is less than or equal to 0.10, RFI∆20 ≤
0.10.

The selection of a ±20% (∆20) change in the controller
parameters for the robustness fragility definition above
considers a 10% reduction in the control system robustness
as marginal and a 50% reduction as the maximum allowed
limit. Such maximum variation will turn a highly robust
system, with MS lower than 1.4, into one with a minimally
acceptable robustness, MS of approximately 2.0. However,
using (5) and (6) it is possible to evaluate the effect of any
other particular δǫ perturbation in one or more controller
parameters.

3. ROBUSTNESS-FRAGILITY RINGS PLOT

We will present here the Delta 20 Robustness-Fragility
Rings Plot, which is a simple tool that uses the open-loop
transfer function, L(jω), Nyquist curve of the nominal and
Delta 20 perturbed controllers to provide an indication
of the control system robustness-fragility. It shows the
areas in the L(jω) plane that define when the controller
is a robustness-resilient controller (RRC), a robustness-
non-fragile controller (RNFC), or a robustness-fragile con-
troller (RFC) as shown in Figure 3.

The plot includes the Nyquist curve of the nominal open-
loop transfer function that defines the control system
nominal robustness level, Mo

S , and states the robustness-
fragility rings as follows:

• RRC Ring: Mo
S ≤ MS ≤ 1.1Mo

S ,

• RNFC Ring: 1.1Mo
S < MS ≤ 1.5Mo

S ,

• RFC Area: 1.5Mo
S < MS .

It also includes the Nyquist curve corresponding to the
extreme maximum sensitivity, Mm

S , that gives the delta 20
robustness-fragility index, RFI∆20.

For example, the requirement for a robustness-non-fragile
controller demands that the control system Nyquist curve
does not enter the RFC area when all controller parame-
ters are changed up to ±20%.

4. PI AND PID CONTROLLERS TUNING
ROBUSTNESS-FRAGILITY EVALUATION

In the following the robustness-fragility of PI and PID
controllers tuned with several well-know tuning rules will
be analyzed using the fragility-rings plot.

Consider the following normalized first- and second-order
plus dead-time controlled process models:

P1(s) =
e−0.3s

s+ 1
, τo = 0.3 (8)
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Figure 3. Controller Delta 20 Robustness-Fragility Rings
Plot

Table 1. Controllers Parameters

Method Model Kp Ti Td

SIMC P1 1.667 1 0
SIMC P2 0.313 1 0

POS P3 2.430 1.800 0.444
POT P3 3.450 1.800 0.444

PI2Ms (MS = 2.0) P1 2.279 0.905 0
PI2Ms (MS = 1.6) P1 1.707 0.982 0
PI2Ms (MS = 1.4) P1 1.270 1.054 0
PI2Ms (MS = 2.0) P2 0.665 1.748 0
PI2Ms (MS = 1.6) P2 0.467 1.591 0
PI2Ms (MS = 1.4) P2 0.308 1.312 0

P2(s) =
e−1.6s

s+ 1
, τo = 1.6 (9)

P3(s) =
e−0,3s

(s+ 1)(0.8s+ 1)
, a = 0.8, τo = 0.3 (10)

where a and τo are the model time constants ratio and
normalized dead-time, respectively.

Tuning rules to analyze include: Simple Control (SIMC)
(Skogestad, 2003), Percent Overshoot (PO) (Ali and Ma-
jhi, 2009) and Maximum Sensitivity-Based Robust Tuning
(PI2Ms) (Alfaro et al., 2010). The controllers parameters
obtained with these rules are listed in Table 1.

4.1 Simple Control (SIMC)

The PI SIMC tuning for FOPDT models produces control
systems with a robustness MS = 1.59 for all model
normalized dead-times as shown in Figs. 4 and 5. The
fragility rings plots show that both SIMC controllers are
robustness non-fragile and that their robustness-fragility
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Mo
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=1.59
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Figure 4. P1 SIMC PI Robustness-Fragility
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RRC
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=0.363

Figure 5. P2 SIMC PI Robustness-Fragility

is affected by τo. For the P1 model (τo = 0.3) RFI∆20 =
0.172 while for the P2 model (τo = 1.6) RFI∆20 = 0.363.
The controllers turn to more robustness-fragile as the
model normalized dead-time increases requiring a more
careful final fine-tuning.

4.2 Percent Overshoot (PO)

The PO method includes two design criteria for PI
(FOPDT) and PID (SOPDT) controllers. A smooth con-
trol design (POS) for 0% OS (MS = 1.38) and a tight
control (POT ) design for 10% OS (MS = 1.71). As shown
in Figs. 6 and 7 the target robustness are not obtained
with the PID controllers. The main reason for this is that
the PO method was obtained using an "ideal" non-proper
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Figure 6. P3 POS PID Robustness-Fragility
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Figure 7. P3 POT PID Robustness-Fragility

PID controller while we tested it using a "real" Standard
PID controllers (with derivative filter). Both controllers
are robustness-non-fragile but the POT controller is less
robust and more fragile.

4.3 Maximum Sensitivity-Based Robust Tuning (PI2Ms)

The PI2Ms uses a closed-loop model-reference design with
a robustness constraint, MS ∈ {1.4, 1.6, 1.8, 2.0}. In Figs.
8 and 9 two extreme cases are shown: a high robustness
design (MS = 1.4) for a process with low normalized dead-
time (P1) and a minimum robustness design (MS = 2.0)
for a process with high normalized dead-time (P2).

In the first case Mo
S = 1.4 and the controller is nearly

robustness-resilient with RFI∆20 = 0.116. The control

−1

M
S
=2.0

ℜ  L(jω)

ℑ  L(jω)

Mo
S
=1.4

RFC

RNFC

RRC

RFI∆20
=0.116

Figure 8. P1 M t
S = 1.4 PI2Ms PI Robustness-Fragility
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Figure 9. P2 M t
S = 2.0 PI2Ms PI Robustness-Fragility

system is robust (MS < 2) even in case of a change of up
to ±20% in the controller parameters. In the second Mo

S =
2.04 and the controller is at the border of the robustness-
fragile controllers area (RFI∆20 = 0.5). The control
system may turn non-robust if the controller parameters
are perturbed.

5. CONCLUSIONS

Based on the Robustness-Fragility Indices the Delta 20
Fragility-Rings plot provides information of the controller
robustness-fragility in case its parameters are changed as
in the controller final fine-tuning. It is a valuable tool
for control system design, which allows anticipating and
quantifying the possible loss of robustness.
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The delta 20 fragility-rings plot shows that even a tuning
rule may provide control systems with same robustness for
models with a wide range of normalized dead-times, τo, the
controller robustness-fragility depends on τo turning more
fragile as the model normalized dead-time increases.

The controller robustness-fragility depends not only on the
model dead-time but also on the control system nominal
robustness. Then, the selection of the design robustness
level must consider, in addition to the expected changes in
the controlled process dynamics, the controller robustness-
fragility for the tuning rule used.

The PI and PID controller design should take into account
not only the existing performance/robustness trade-off but
also the controller robustness-fragility.

As an extension of the robustness-fragility-rings an analy-
sis of the controller fragility in the frequency domain will
provide an in-depth knowledge of its implication on the
control system performance and robustness.

ACKNOWLEDGMENTS

This work has received financial support from the Spanish
CICYT program under grant DPI2010-15230.

Also, the financial support from the University of Costa
Rica is greatly appreciated.

REFERENCES

Alfaro, V.M. (2007). PID controllers’ fragility. ISA
Transactions, 46, 555–559.

Alfaro, V.M., Vilanova, R., and Arrieta, O. (2009).
Fragility Analysis of PID Controllers. In 18th IEEE
Conference on Control Applications. Saint Petersburg,
Russia, July 8-10.

Alfaro, V.M., Vilanova, R., and Arrieta, O. (2010). Max-
imum Sensivity Based Robust Tuning for Two-Degree-
of-Freedom Proportional-Integral Controllers. Ind. Eng.
Chem. Res., 49, 5415–5423.

Ali, A. and Majhi, S. (2009). PI/PID controller design
based on IMC and percentage overshoot specification to
controller setpoint change. ISA Transactions, 48, 10–15.

Åström, K.J. and Hägglund, T. (1984). Automatic Tuning
of Simple Regulators with Specification on Phase and
Amplitude Margins. Automatica, 20(5), 645–651.

Åström, K.J. and Hägglund, T. (1995). PID Controllers:
Theory, Design and Tuning. Instrument Society of
America, Research Triangle Park, NC, USA.

Åström, K.J. and Murray, R. (2008). Feedback Systems:
An Introduction for Scientists and Engineers. Princeton
University Press, Princeton, New Jersey 08540, USA.

Chien, I.L. and Fruehauf, P.S. (1990). Consider IMC
Tuning to Improve Controller Performance. Chemical
Engineering Progress, October, 22–41.

Cohen, G.H. and Coon, G.A. (1953). Theoretical Consid-
erations of Retarded Control. ASME Transactions, 75,
Jul.

Corripio, A.B. (2001). Tuning of Industrial Control Sys-
tems. ISA - The Instrumentation, Systems, and Au-
tomation Society, Research Triangle Park, NC, USA.,
2nd. edition.

Datta, A., Ho, M.T., and Bhattacharyya, S.P. (2000).
Structure and Synthesis of PID Controllers. Springer-
Verlag London Limited, London, UK.

Fung, H.W., Wang, Q.G., and Lee, T.H. (1998). PI Tuning
in Terms of Gain and Phase Margin. Automatica, 34(9),
1145–1149.

Goodwin, G.C., Graebe, S.F., and Salgado, M.E. (2001).
Control System Design. Prentice Hall, Inc., Upper
Saddle River, NJ, USA.

Hägglund, T. and Åström, K.J. (2002). Revisiting the
Ziegler-Nichols tuning rules for PI control. Asian Jour-
nal of Control, 4, 354–380.

Ho, M.T. (2000). Non-Fragile PID Controller Design. In
39th IEEE Conference on Decision and Control. Sydney,
Australia, December.

Ho, W.K., Hang, C.C., and Cao, L.S. (1995). Tuning
of PID Controllers Based on Gain and Phase Margin
Specifications. Automatica, 31(3), 497–502.

Keel, L.H. and Battacharyya, S.P. (1997). Robust, fragil
or optimal? IEEE Transactions on Automatic Control,
42, 1098–1105.

López, A.M., Miller, J.A., Smith, C.L., and Murrill, P.W.
(1967). Tuning Controllers with Error-Integral Criteria.
Instrumentation Technology, 14, 57–62.

O’Dwyer, A. (2006). Handbook of PI and PID Controller
Tuning Rules. Imperial College Press, London, UK, 2nd
edition.

Rivera, D.E., Morari, M., and Skogestad, S. (1986). Inter-
nal Model Control. 4. PID Controller Desing. Ind. Eng.
Chem. Des. Dev., 25, 252–265.

Rovira, A., Murrill, P.W., and Smith, C.L. (1969). Tuning
Controllers for Setpoint Changes. Instrumentation &
Control Systems, 42, 67–69.

Silva, G.J., Datta, A., and Bhattacharyya, S.P. (2005).
PID Controllers for Time-Delay Systems. Birkhäuser
Boston, Ney York, NY, USA.

Skogestad, S. (2003). Simple analytic rules for model
reduction and PID controller tuning. Journal of Process
Control, 13, 291–309.

Tavakoli, S., Griffin, I., and Fleming, P.J. (2005). Ro-
bust PI Controller for Load Disturbance Rejection and
Setpoint Regulation. In IEEE comference on Control
Applications. Toronto, Canada, August 28-31.

Visioli, A. (2006). Practical PID Control. Springer Verlag
London Limited, London, UK.

Whidborne, J.F. (2000). Controller Fragility. In 25th
Nathiagali Summer School on Physics and Contempo-
rary Needs. Nathiagali, Pakistan, July.

Ziegler, J.G. and Nichols, N.B. (1942). Optimum Settings
for Automatic Controllers. ASME Transactions, 64,
759–768.

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WeC1.4




