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Abstract: This paper deals with issues of actuator fault tolerant PID controllers. It is studied,
how residual generation based on a linear model is affected by the robust properties of a PID
used in feedback. To get the sensitivity of the residual with respect to faults and to keep the
robustness of the controller, a scheme is proposed with a non linear residual generator and a
family of PIDs interconnected in such a way that the stability is held even with actuator faults.
The conditions reported by Bhattacharyya for a family of stabilizing PID controllers are used to
select the fault tolerant PID parameters considering actuator faults. Using the benchmark of the
three tank system with two pumps, simulations and experimental results show the advantages
of the fault tolerant PID scheme.
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1. INTRODUCTION

Automated processes are vulnerable to faults and the
consequences of this fact may be a complete failure, or
a disaster. Actuator faults, erroneous sensor readings, and
faulty components affect the performance of the automatic
system. For such reasons Fault Tolerant Control (FTC),
as it has been described by Blanke et al. (2006) is a
crucial developing area in automatic control where several
disciplines and system theoretic issues are combined to
obtain a unique functionality.

Active FTC can be considered as a feedback system in
which the diagnostic system and the controller are coupled
with antagonistic properties; the first one designed to be
as sensitive as possible and the latest is designed to be
as insensitive as possible. Since, the integral action with
a PID is active, as long as the steady state error is not
zero, it hides the most types of actuator faults. Then,
the fault detectability could be changed depending on the
exogenous signals. A standard PID does not distinguish
between disturbances and faults and any deviation in the
operation point changes the properties of the residual if
the diagnostic system is designed on the base of a linear
analytical model (Ding, 2008) or a statistical method (Qin,
2003). The robustness properties of a PID makes difficult
the diagnosis issue. As consequence, as it is known, it is
difficult to decide if large deviations in closed loops are
caused by uncertainties or by faults (Isermann, 2006).
Then, the model based residual must be designed on the
base of non linear behavior.

On the other hand the PID’s have recently been reemerg-
ing and the stabilizing family for a given plant can be
obtained if its relative degree and the number of poles and

zeros in the right half plane are known (Bhattacharyya
et al., 2000).

The above facts motivated this work in which it is sug-
gested a scheme with two PIDs to manage the actuator
fault issue. Each PID is designed in such a way that if
both are working or one of them is turned off, the feedback
system is stable and moreover holds zero steady state
error. The deactivation function of the PID’s is managed
by non linear residual designed using two observers.

The paper is organized as follows. Section 2 discusses
the behavior of two sets of residuals for actuator faults;
one designed on the base on the linear model and the
other with the non linear version for a three tank system.
The discussion considers the open and closed loop with
a PID controller. Section 3 introduces the fault tolerant
control scheme integrated by the fault diagnostic system
and two PIDs. Section 4 shows the results by simulation
and experimental data. Finally, in Section 5 some remarks
and conclusions are given.

2. RESIDUAL GENERATOR

The capacity to detect faults and the isolation issue of
each possible fault in a dynamic system when uncertainties
and disturbances exist is a main topic in the automatic
operation of complex process. The feasibility of a solution
for a specific set of faults is a system structural property
which leads to the search for system invariant under some
given transformations. Diverse tools have been proposed
to study the detectability and isolability of faults: the
Geometric Theory (Massoumnia et al., 1989) and the
Structural Analysis (Blanke et al., 2006). To design the
residual generator, the functional observers with unknown
inputs are used with the linear and non linear version. To
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make robust an observer in the presence of a perturbation,
it can be taken advantage of the structure of the model
and transform it with an output vector injection, so that
the state space is divided into two subspaces, one sensitive
and another insensitive to the unknown inputs. This last
one is the base to estimate the state or part of it. In the
diagnostic case, the objective is to determine the subspaces
that are insensitive to perturbations and sensitive to faults
with the property of observability using measurements,
this formulation makes that the perturbations or uninter-
ested faults do not take effect in the residual.

To design the residual most of the methods assume a
plant in open loop. However, this assumption together
with the linearity can modify the pattern of the symptoms,
as shown in the following subsection. This fact is not
frequently pointed out.

2.1 Linear Residual Generator

Assuming a linear model with additive faults given by

ẋ(t) =Ax(t) +Bu(t) + E1f(t) + F1f(t) (1)

y(t) =Cx(t) +Du(t) + E2f(t) + F2f(t) (2)

with Ei the vector associated to uninterested faults and
Fi corresponds to the vector associated to the faults of in-
terest, the starting point to design the residual insensitive
to f is the structure of the observer

ż(t) = Fz(t) + TBu(t) + Ly(t) (3)

x̂(t) = z(t) +Hy(t) (4)

The necessary and sufficient conditions of the existence of
this observer are reduced to

(1) The rank(CE1) = rank(E1);
(2) The pair (C,A1) is detectable with

A1 = A− E1((CE1)′(CE1))−1(CE1)′CA

or equivalently, the transmission zeros of the input f to
the measurement vector y(t) must be stable (Chen, 1984)

For the observer design (3,4) there are some degrees of
freedom in the matrix (F, T, L,H) which are adjusted with
the purpose to have a stable dynamic system and a residual

R(t) = (I − CH)y(t)− Cz(t) (5)

which deviates from zero if the fault vector f(t) 6= 0.

For actuator faults the condition

TF1 6= 0 (6)

must be satisfied. This condition could be more specific, if
simultaneous faults are not allowed.

To analyze the behavior of the residual generator given by
(3) and (4) a benchmark is used. The non linear model
of a three tank system with two pumps is considered
(Appendix A).

Linearizing the non linear model of the hydraulic system
(Appendix A), around an operation point (x∗, u∗) the set
of matrices (A,B,C,D) are taken to design two residuals
using linear observers. One has to be sensitive to the fault
in the pump 1 and insensitive to pump 2. On the contrary

the other residual is insensitive to fault in pump 1 and
sensitive to 2.

Following the steps reported in (Hou and Mueller, 1994)
for the set

(A,B,C,D,E1, F1), E1 = F2

one gets the subsystem

ẋ1 =−0.0118x1 + 64.97u1 + 0.0118y3 (7)

y1 = x1 (8)

with output injection y3 which is free of faults in actuator
u2. This subsystem allows to design an observer sensitive
to faults in actuator 1 with the output estimation error

R1(t) = y1(t)− ŷ1(t) (9)

as residual. To detect faults in actuator 2 the residual has
to be insensitive to faults of actuator 1. Thus, similarly to
the above case, one obtains the subsystem

ẋ2 =−0.0239x2 + 64.97u2 + 0.0123y3 (10)

y2 = x2 (11)

with output injection y3 which is not affected by the signal
u1. Then, one observer can be designed and the output
estimation

R2(t) = y2(t)− ŷ2(t) (12)

plays the role of a residual for pump 2.

Experiments. a) Open Loop. To validate the above
residuals, the system in open loop with faults in pump
1 and 2 is simulated. Fig. 1 (a) shows the evolution of the
residual R1 when a bias is emulated in actuator 1. One
can see that R1 alerts a fault in actuator 1 and R2 stays
in zero. The results with a fault in the pump 2 are given
in Fig. 1 (b); the evolution of R2(t) detects the fault in
actuator 2 while residual R1(t) stays in zero.

An advantage of the linear model to obtain the residual is
the simplicity to generate the submodels and the observer
design even for high order systems. However, since linearity
is assumed, the residual behavior does not hold for any
operation point. Large deviations of it modify the residual.

The following subsection analyzes the behavior of the
residual given by eqs (9) and (12) for the three tank system
with a PID controller.

b) Closed Loop. To control the water level of tank 3 the
variable y3 = x3 is considered as the output of a feedback
scheme with a PID controller. The input flow u1 is selected
as an action variable. The laboratory prototype allows to
emulate bias faults in the actuators. A fault in actuator 2
is considered and the behavior of both residuals is given
in Fig. 1 (c). Since both residuals deviate from zero, one
concludes that both actuators are faulty; this fact is false.
The deviation of the residual R1 is produced by a change
in an operating point of the plant. This is justified because
the PID increases the control action to get an asymptotic
zero error.

From the above results, it is concluded that the residual
generators based on a linearized model work only when the
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(a) Residual with a fault in actuator 1 for the system in
open loop

(b) Residual of a fault in actuator 2 for the system in
open loop

(c) Residual of a fault in actuator 2 for the system in
closed loop

Fig. 1. Residual evolution with faults in actuators

system is operating around an specific operating point.
Having the system working in closed loop, the presence
of a fault in any of the actuators makes that the control
law changes the operating point to another point; this
deteriorates the residual response. This fact leads us to
implement a residual generator based on a nonlinear
model.

2.2 Non linear Residual Generator

To design the non linear residual generators, the redun-
dant relations are obtained using structural analysis tools.
Following the proposition to get redundant relations from
bipartite graphs (Verde and Sánchez-Parra, 2010), one ob-
tains the graph shown in Fig. 2 from the set of constraints
(t1-t9) for the three tank system (Appendix A). From the
structure, two redundant graphs for the actuator faults
{fu1, fu2} can be obtained. The first one given by

GR1(t1, t4, t7, t9, u1, y1, y3) (13)

assumes u(1) and y(3) as input and y1 as output and
involves the set of constraints (t1, t4, t7, t9). One can see
that GR1 is sensitive to the presence of a fault in actuator
1. It means that one can get a subsystem that only requires
u1 and y3 as inputs and obtains y1 as an output. Any non
linear observer for this subsystem allows to generate the
residual 1. The second graph by symmetry is given by

GR2(t2, t5, t8, t9, u2, y2, y3) (14)

with u2 and y3 as input and y2 as output. From the
variables and constraints involved in GR2, one can see that
exists a subsystem considering u2 and y3 as inputs and y2

Fig. 2. bipartite graph for the three tank system

as an output. An observer for this subsystem allows the
generation of the residual 2. The derivation of all graphs
for all faults in the system are reported in (Mina, 2008).

Then, the signature matrix is reduced to Table 1.

Table 1. Signature matrix

fu1 fu2
GR1 •
GR2 •

Because the redundant relations obtained from the GRs
does not assume linearity, non linear residuals are directly
obtained. Moreover, because dynamic systems (13) and
(14) have the generic form(

ξ̇
u̇

)
= f

(
ξ
u

)
, y(t) = h(ξ, u) (15)

their respective residuals can be generated, estimating the
state with an approximated observer of the form

ż(t) = f(z(t), u(t)) +H[y(t)− ŷ(t)] (16)

ŷ(t) = h(z(t)) (17)

where H has to be designed such that has an asymptot-
ically stable error in normal operation. To analyze the
behavior of residuals in closed loop, the same scheme and
PID used in section 2.1 is considered. The results are given
in Fig.3 and Fig. 4.

The residue constructed with this observer is sufficiently
sensible to faults as it is required. Both residues are
generated using the output estimation, exactly as it was
done in (9) and (12). It has to be stated that when a fault
occurs, the observer output can not reach the behavior of
the real plant. This fact allows us to know when the fault
takes place.

Fig. 3 shows the residual evolution R2 and one can see
the correct presence of a fault in the actuator 2 while the
residual R1 remains in zero. In Fig. 4 the response of the
residual to a fault in the actuator 1 is shown, here the
residual detects the fault of the pump 1 while the residual
2 remains in zero.

The above analysis confirms that the PID controller and
the residual generator has to be designed as a whole system
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Fig. 3. Nonlinear residual evolution with a fault in actuator
2 and PID controller for level x3

Fig. 4. Nonlinear residual evolution with a fault in actuator
1 and PID controller for level x3

such that the robustness of the PID controller does not
diminish the effect of the faults in the residuals. This is an
open problem in the field of fault tolerant control.

3. FAULT TOLERANT PID CONTROLLER

Diverse schemes have been proposed to tackle the fault tol-
erant controller issues. Adaptive and learning techniques
are proposed by Zhang and Jiang (2008) including the
auto-tuning PID controller reported in (Ding-Li et al.,
2005). Other option is the switching scheme with a set of
faulty models for specific PID controllers (Sánchez-Parra
et al., 2010).

If more than one actuator is available, an idea in the
framework of switching scheme is the design of a control
law in such a way that in normal conditions, all the control
signals ui work together to achieve a good performance and
in fault conditions the control signal associated to the fault
is deactivated. This requires the stability of subsets of feed-
back loops which can be tested off line in a straightforward
manner using the software application reported in (Mora,
2011) for PID controllers. The algorithm is designed on the
base of the stabilizing family of PIDs for a given plant, if
the relative degree of the plant and the number of poles
and zeros in the right half plane are known (Bhattacharyya
et al., 2000).

The novel switching scheme for the three tanks with the
output variable, the level x3, is shown in Fig. 5. Thus,
one PID controller generates the action u1 and the second
control signal is applied to actuator 2. The deactivation
function corresponds to the evaluation of each residual.

To adjust the PIDs such that all configurations have good
performance, the nominal transfer matrix

G(s) = [ 0 1 0 ] (sI −A)−1B = [G1(s) G2(s) ]

is considered with the matrices given in Appendix A and
the structure of each controller

Cm(s) =
KDms

2 +KPm +KIm

s
for m = 1, 2

This scheme is equivalent to the block diagram given in
Fig. 6 with the constraint Ref1 = Ref2. Two loops are

Fig. 5. Two controllers scheme with deactivation function
produced by the residual evaluation

Fig. 6. Control scheme for the three tanks system

Fig. 7. Reduced control block diagram for the three tanks
system

identified: the blue one with direct trajectory C2(s)G2(s);
and the green one with direct trajectory C1(s)G1(s). This
diagram is also equivalent to Fig. 7.

As first step, a controller C2(s) is selected which stabilizes
the transfer function

C2(s)G2(s)

1 + C2(s)G2(s)

This controller ensures the stability of the system if
actuator 1 is faulty and C1(s) is disconnected. By the
symmetry of the channels, similarly one can select a
stabilizing controller C1(s). This ensures the stability of
the transfer function

C1(s)G1(s)

1 + C1(s)G1(s)

Thus, the occurrence of a fault in actuator 2 and the
disconnection of C2(s) does not affect the stability of the
closed loop.

Finally, assuming known the two controllers C1(s) and
C2(s), one can verify the stability of the whole transfer
function

C1(s)G1(s) + C2(s)G2(s)

1 + C1(s)G1(s) + C2(s)G2(s)

which is associated with the nominal closed loop system
without faults.

In this study the controllers C1(s) and C2(s) are designed
using a software that implements the stability conditions
shown in (Bhattacharyya et al., 2000) which establishes
that for a given plant of order n it is possible to reduce
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the problem of determining all PID stabilizing controllers
to the problem of solving a set of linear inequalities in
terms of the constants KP , KI and KD of the controller.
The set of inequalities is solved using linear programming
(Mora, 2011)

The stabilizing regions for C1, forming a volume, are shown
in Fig. 8 where the stabilizing values are the points of
the shaded region. Similar regions KP , KI and KD are

Fig. 8. Stabilizing regions of controller C1

obtained for C2. According to the considered plant and
using the SISOTOOL of Matlab, the selected constants
for C1 are

KP1 = 1.5× 10−4, KI1 = 2.5× 10−6, KD1 = 5× 10−4

and for C2

KP2 = 9× 10−5, KI2 = 1.1× 10−6, KD2 = 5× 10−4

Fig. 9 shows that the transient response of the standard
feedback with one PID and with the novel scheme; the
response of the system considering two actions has a better
performance that the system with only one PID. In fault
conditions, the evolution of the output is shown in Figs
13 and 14; as it is expected in fault conditions the effect
of the faults are canceled out by the PID which is actived
during the fault conditions.

Considering the two adjusted PID controllers, the residual
responses are evaluated. Fig. 12 shows the behavior when
a fault is emulated in the pump 2 of the pilot plant and
the residual detects the fault which is presented in u2
while the residual generator reports that actuator 1 is
working correctly. Fig. 13 shows the residual when a fault
is emulated in pump 1 and it allows to locate the bias,
in this case the residual R2 stays nearby zero. In a real
process the residues do not exactly stay in zero because of
modeling errors or uncertainties in the parameters of the
system. However a proposed solution is to use Adaptive
thresholds (Isermann, 2006) which, correctly designed,
make the fault tolerant system robust to any of this
troubles. The adaptive thresholds use a low pass filter and
a proportional enlargement added by a constant. In Fig. 11
is shown a nonlinear residue, which construction was based
on a model with uncertainties. Under this condition the
deactivation function stops the failing pump when the
residue is bigger than the threshold. It only happens when
a fault in actuator is presented.

Fig. 9. Evolution of the output y3 working with one PID
controller and with two PID controllers

Fig. 10. Behavior of the output y3 with a fault in actuator
2 and 1, working with one PID

4. CONCLUSION

This paper discusses the limitation of a linear residual
generator in the framework of a fault tolerant control. It
is clearly stated that when a fault changes the operation
point of the model, the residue generator induces false
alarms even when the error of the feedback with a PID
controller is zero. The study is made considering the
linear and non linear model of the three tank benchmark.
Moreover, one suggests to include for the control task, two
PIDs interconnected in such a way that the occurrence of
a fault does not change the robust properties of a PID.
The PIDs are adjusted off line using a software based on
the stabilizing PID controller. It is seen that the matching
of a PID controller and the non linear residual generators
achieve a good performance. Future research is dedicated
to design a robust residue generator that does not need
the control inputs of the plant. This characteristic would
be so useful in the case when they are not measurable.
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Appendix A. THREE TANK SYSTEM

The model of the three tank system is taken from (GmbH,
1994)

Aẋ1 = u1 +R13ρ(x1, x3) + ∆Q1 (A.1)

Aẋ2 = u2 +R2ρ(x2, 0) +R32ρ(x3, x2) + ∆Q2 (A.2)

Aẋ3 =R13ρ(x1, x3) +R32ρ(x3, x2) (A.3)

where xi = hi are the water levels, ui = Qi the in-flows,
the function ρ(xi, xj) = sgn(xi−xj)sqrt(2g(xi−xj)) and
the coefficients R13, R2 and R32 are function of the valves
between tanks V1, V2 and V3 respectively. The measurable
states correspond to the three levels (x1, x2, x3). The faults
considered are constant deviations in the pumps flows and
are defined in the model as ∆Q1 and ∆Q2.

The structural model of system (A.1) can be written by

ẋ1 = f1(x1, x3, u1, R13,∆Q1) (t1)
ẋ2 = f2(x3, x2, u2, R20, R32,∆Q2) (t2)
ẋ3 = f3(x1, x2, x3, R13, R32) (t3)
x4 = dx1/dt (t4)
x5 = dx2/dt (t5)
x6 = dx3/dt (t6)
y1 = x1 (t7)
y2 = x2 (t8)
y3 = x3 (t9)

where the parameters Rij are constant parameters which
depends on the pipe between tanks i and j. Considering
the operating point

u∗1 = 2.764× 10−5[m3/s] u∗2 = 2.487× 10−5[m3/s]
x∗1 = 0.2964[m] x∗2 = 0.1471[m]
x∗3 = 0.22[m]

and the values R13 = 2.2576 × 10−5, R2 = 3.091 × 10−5

and R32 = 2.3111× 10−5. Without faults, the matrices of
the linearized model are given by

A =

[−0.0118 0 0.0118
0 −0.0239 0.0123

0.0118 0.0123 −0.0241

]
, B =

[
64.97 0

0 64.97
0 0

]

C =

[
1 0 0
0 1 0
0 0 1

]

and the vectors associated with the actuator faults 1 and
2 are respectively

F1 =

[
1
0
0

]
, F2 =

[
0
1
0

]
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