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Abstract: A closed-loop balanced truncation technique has been applied to an integral-type optimal 
servomechanism (IOS) expressed in graph-operator form of normalized right coprime factorization to 
produce a reduced-size state-feedback gain matrix, which is then converted into proportional-derivative 
(PD) gain matrices. On the other hand, the states of the integral of control error in the IOS are not 
truncated, so that the feedback gain matrix of the IOS for the states becomes the integral (I) gain matrix. 
All the design procedure is completed with the state-space approach, which is convenient especially in 
dealing with multiple-input multiple-output (MIMO) systems. Application of the proposed method to the 
boiler system of the PID ’12 benchmark problem demonstrates the effectiveness of the design method. 
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1. INTRODUCTION 

Model-based proportional-integral-derivative (PID) control 
synthesis is a typical low-order controller design problem. As 
well known, there are three approaches to design of a low-
order controller: 1) first reduce a given plant, and then design 
a controller using the reduced plant, 2) first design a high-
order controller using a given plant, and then reduce the 
controller to a lower-order controller, 3) directly find a low-
order controller using the original plant. Conventionally, the 
second approach has often been taken, since it is considered 
that the model error due to plant reduction results in 
degrading performance of the low-order controller (Anderson 
and Liu, 1989). Although this is true in general, it depends on 
the reduction method employed. In fact, the first approach is 
useful, when the plant is appropriately reduced. Particularly 
for the controller design purpose, closed-loop model 
reduction provides a more desirable plant model than open-
loop model reduction (Codrons, 2005). 

The present author proposed a simple and effective design 
method of a single-input single-output (SISO) PID controller 
using the first approach, where the -gap (Vinnicombe, 1993) 
is taken as a criterion representing the plant-model reduction 
error in the closed-loop sense (Ochi and Kondo, 2010). A 
problem with the method is that it is difficult to extend to 
MIMO systems because of the increase of the number of 
plant parameters. In practice of PID control, MIMO systems 
are usually modelled as a set of SISO systems and a 
decentralized control system is constructed with the 
controllers designed for each SISO system, where cross-
coupling among plant variables are ignored and design 
procedure tends to be complicated, often accompanying 
decoupling control or numerical optimization (Åström and 
Hägglund, 2006; Johnson and Moradi, 2005; Silva and Erraz, 

2006). On the other hand, centralized controller synthesis was 
considered using the state-space design approaches such as 
pole placement, linear quadratic regulator (LQR), or H 
control (Seraji, 1980; Zheng, Wang, and Lee, 2002). 
However, those methods are not necessarily simple or 
efficient, accompanying calculation with the Laplace operator 
or using an iterative algorithm. In contrast, the design method 
recently proposed by the present author is simple and 
efficient (Kondo, Ochi, and Sasano, 2011). The method 
employs fractional balanced reduction (FBR) (Mayer, 1990), 
a closed-loop model reduction method, for plant reduction, 
followed by state transformation and design of an integral-
type optimal servomechanism (IOS) (Smith and Davison, 
1972). Note that both FBR and IOS are state-space based 
methods, which significantly facilitates MIMO control 
synthesis. Although Suh and Yang (2005) also applied IOS to 
PID controller design, the plant considered was a SISO 
second-order system. 

The present paper proposes another design method base on 
IOS and FBR, in which an IOS designed for a given plant is 
reduced, instead of the plant. More specifically, balanced 
truncation (BT) (Moore, 1981) has been applied to the IOS to 
produce a reduced-size state-feedback gain matrix, which is 
then converted into proportional-derivative (PD) gain 
matrices, whereas the states for the integral of control error in 
the IOS are not truncated, so that the corresponding feedback 
gain matrix of the IOS itself becomes the integral (I) gain 
matrix. The design method also requires neither iterative 
algorithm nor numerical optimization. The difference from 
the method by plant reduction is that FBR is used for 
controller (feedback gain matrix) reduction, although a 
reduced-order plant is also obtained simultaneously and used 
in the design. Numerical simulation and stability analysis 
have been conducted using the plant model of the benchmark 
problem (Benchmark PID 2012) (Morilla, 2011a, b). 
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2. CONTROLLER DESIGN 

2.1 Integral-Type Optimal Servomechanism 

Consider a linear plant model given by 
BuAxx  , (1) 

y = [yI
T yP

T yPD
T]T =   [CI

T CP
T CPD

T]Tx = Cx (2) 
where xn, um, and yp are the state vector, the input 
vector, and the output vector, respectively.  The outputs to 
which P, I, or D action is applied are defined in Table 1.  

Pp
P y  and Dp

D y  are the outputs for P action only and 

PD action, respectively. P action is applied to all the outputs. 

Table 1 Definition of the output vectors 
Action P I D 
Outputs y p  yI

Ip  yD
Dp  

   
yI Ip  

   
yP

Pp     

yPD
PI ppp      

The matrices, A, B, and C are constant matrices of 
appropriate size, and it is assumed that this system is 
controllable, C is of row full rank, and (A, C) is observable. 

Define the control error, e = ryI, and its integral,  
 = d e , (3) 

where r Ip  is a constant reference-output vector. Then, 
define the following augmented system: 

a a a a r  x A x B u B r , (4) 

where xa = [xT T]T, 

0

0a
I

 
   

A
A

C
, 

0a

 
  
 

B
B , 0

I

r
p

 
  
 

B
I

,  

and Ip is a pp identity matrix. Also, define the cost function: 

0
( )T T T

xJ dt 


   x Q x Q u Ru , (5) 

where T
x yQ C Q C  and R = Im. Further, The weighting 

matrices given as Qy = diag(qy1
2, …, qyp

2), Q = diag(q1, …, 

Ipq
) are positive-definite, where diag() denotes a diagonal 

matrix. The LQR theory gives the optimal control law that 
minimizes the cost function, i.e., 
u = Kaxa, (6) 
where Ka = [Kx  K] is given by 
Ka = Ba

TXa. (7) 
In (7), Xa is the positive-definite solution of the algebraic 
Riccati equation: 
XaAa + Aa

TXa  XaBaBa
TXa + Qa = 0, (8) 

where Qa is a block-diagonal matrix comprsing Qx and Q. 
The closed-loop system is then expressed as 

a acl a r x A x B r , (9) 

where 

0
x

acl a a a
I

 
     

A BK BK
A A B K

C
. (10) 

The output equation can be written as 
y = [C  0] [xT T]T. (11) 

2.2 Reduction of IOS by BT 

The IOS designed above is reduced to an integral-preceded-
by-proportional-derivative (I-PD) controller by applying BT 
to a subsystem of the IOS as follows. 
First, define the weighted output vector: 

1/2

0
: : :

0
w w

aw aw a
w  

     
       

    

y C x
y C x

Q
, (12) 

where Cw = Qy
1/2C. Then, consider the system described by 

(4) and (12), and represent in the normalized right coprime 
factorization (NRCF) form as 
yaw(s) = N(s)M(s)1u(s), (13) 
where N(s) and M(s) are given by 

  1 0( )
: 0

( )

acl a
aw

n p acl a aw
m

m

s
s

s





 
                       

A B
N C

I A B C
IM K

K I

. (14) 

Balancing the system requires positive-definite solutions of 
the following Lyapunov equations:  
XAacl + Aacl

TX + [Caw
T KT][Caw

T KT]T= 0, (15) 
YAacl

T + AaclY + BaBa
T = 0. (16) 

Equation (15) is a Lyapunov equation with respect to X, 
which is observability Gramian, and (16) is a Lyapunov 
equation with respect to Y, which is controllability Gramian. 
The solutions, X and Y, are positive definite matrices, 
because Aacl is a stable matrix. Note that (15) is equivalent to 
(8), which is proved by substituting (7) into (8) and using the 
definition of Qa. Hence, Xa =X and Ka = K hold. 

In FBR, the balanced system is truncated by removing the 
subsystem for the state variables corresponding to smaller 
Hankel singular values. In the I-PD controller design, 
however, only the subsystem of (14) corresponding to the 
state vector x is balanced and truncated as follows 
(Schelfhout and Moor, 1996), since the state vector  should 
appear for integral action in the resulting control law. 

Let the state transformation matrix for balancing the 
subsystem be Tx and define the entire transformation matrix: 

0

0
I

x

p

 
  
 

T
T

I
, (17) 

Let the balanced state vector for the subsystem be xbl, which 
is defined as xbl = Tx

1x. The following procedure gives Tx. 

1) Solve (15) and (16) for X and Y, respectively, and 
partition the solutions as 

x x
T
x



 

 
  
 

X X
X

X X
 and x x

T
x



 

 
  
 

Y Y
Y

Y Y
,  

where Xx and Yx are nn positive-definite matrices and 
X and Y are pIpI positive-definite matrices. 

2) Diagonalize Xx and Yx, i.e., find the orthogonal matrices, 
VX and VY, and the diagonal matrices, X and Y, 
satisfying Xx = VXXVX

T and Yx = VYYVY
T. 

3) Define Hx = Y
1/2VY

TVXX
1/2. 

4) Decompose Hx into its singular value decomposition as 
Hx =UxxWx

T, where Ux and Wx are nn orthogonal 
matrices and x = diag(i), where i > j for i < j. 

5) Compute Tx = VXX
1/2Uxx

1/2. 
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Substituting Tx into (17) and transforming the state variables 
yields the following balanced system: 

1 1 1

1 1

1/2

0 0
( )

0 00
( )

0 0

x xcl x x x

xacl a

w xaw

a m

x x m

s

s







  

 

 
                     
 
 

T A T T BK T B

CTT A T T B
N

C TC T
M

QK T I

K T K I

 

(18) 
where Axcl = A +BKx. Partition the transformed state vector as 
xbl= Tx

1x =:[xblL
T xblS

T]T, and let the dimension of xblL be nr 
(<n). Removing the subsystem regarding the state vector, xblS, 
from the system, (18), gives the reduced system: 

1/2

0 0
( )

0 0:
( )

0 0

xclr xr xr

xr
r

wr
r

xr m

s

s







 
   
  
  
 
 
 

A B K B

C
N

C
M

Q

K K I

 (19) 

Thus, the feedback gain matrix with the reduced size, m(nr 
+ pI), is obtained, i.e., 
Kr = [Kxr K]. (20) 
A reduced plant model of the original plant is also given by 
(Axr, Bxr, Cxr), where Axr =Axclr  BxrKxr. 

Remark: A notable feature of the above BT is that the output 
of the system to be reduced is chosen not to be y but to be yaw, 
which makes the Lyapunov equation, (15), identical to the 
Riccati equation, (8). This feature is the same as that of FBR. 
In FBR, the augmented plant given by (4) and (12), where the 
external input r is disregarded, is represented as (14) in the 
form of NRCF. This NRCF representation called graph-
operator form (Meyer, 1990) utilizes the LQR gain, Ka, given 
by (7) that minimizes the cost function, (5), or 

0
( )T T

aw awJ dt


  y y u u . (21) 

The cost function implies that the system described by (14) 
produces the amount of the output similar to that of the input 
in the sense of H2 norm. This property is desirable for 
determining which state variables are influential not only on 
the outputs but also on the inputs given by the LQR or IOS 
control law. Hence, applying BT to the system given by (14) 
probably yields a good feedback gain matrix with a reduced 
size that approximately preserves the closed-loop properties 
of the original IOS. The performance degradation, which 
corresponds to the variation of the IOS due to the reduction, 
can be measured as the model error in BT, whose norm 
bounds are clearly given  (Meyer, 1990; Vinnicombe, 1993). 

2.3 Conversion into I-PD Control Law 

Set the order of the reduced model to nr = p+pD, in order to 
define the state vector composed of the outputs and their 
derivative, i.e., 

TT T
D   z y y . (22) 

where yD = CxrDxblL, and CxrD is a matrix comprising the rows 
of Cxr corresponding to yD. Equation (22) can be rewritten as 
z = MsxblL + Nsu, (23) 

where 

( )
TT T

s xr xrD xr   M C C A , (24) 

0 ( )
TT T

s xrD xr   N C B . (25) 

Under the assumption that Ms is non-singular, from (23), the 
state vector, xlbL, is given by 
xblL = Ms

1(zNsu). (26) 
Define uxr := KxrxblL and u := K, and the IOS control law 
can approximately be written with the reduced state vector as 
u = uxr + u. (27) 
From the definition of uxr and (26), the following equation 
holds: 
uxr = KxrMs

1{zNs(uxr+u)}. (28) 
Solving (28) for uxr and substituting the solution into (27) 
yields the I-PD control law: 

z r P D D I      u K z K K y K y K , (29) 

where 
Kz = EKxrMs

1=: [KP KD], (30) 
Kr = EK =: KI, (31) 
E := (Im + KxrMs

1Ns)
1. (32) 

The design procedure is summarized as follows: 
1) Design an IOS using a given plant model, i.e., compute 

Ka in (7). 
2) Solve the Lyapunov equations, (15) and (16). 
3) Compute the transformation matrix, Tx, to obtain T. 
4) Apply the state transformation to (14) to obtain (18). 
5) Truncate the subsystem corresponding to the state vector, 

xblS, to obtain the nr (= p+pD)-th-order system of (19). 
6) Extract the state feedback gain matrix, Kr in (20), and the 

coefficient matrices of the reduced plant, Axr, Bxr, and Cxr 
from (19). 

7) Compute the PID gain matrices given by (30) and (31). 
The I-PD control law can further be converted into 
proportional-integral-preceded-by-derivative (PI-D) and PID 
control laws (y=yD), respectively, as 

P D D I   u K e K y K , (33) 

P D I   u K e K e K , (34) 

Note that this conversion does not affect the internal stability 
of the closed-loop system. 

2.4 Design of I-P/PD Control Law 

Set the order of the reduced model to nr = p, and Cxr becomes 
a square matrix. Under the assumption that Cxr is non-
singular, the state vector of the reduced plant is given by 
xblL = Cxr

1y. (35) 
The integral-preceded-by-proportional (I-P) control law is 
then given by 

P I u K y K , (36) 

where KP = KxrCxr
1 and KI = K. The I-P control law can also 

be converted into the PI control law: 

P I  u K e K . (37) 

Designing an optimal servomechanism for (1) and (2), and 
following the design procedure provides the PD control law: 

P D D u K e K y  or 
P D D  u K e K e  (38) 

Some remarks on the design method here may be in order: 
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1) The resulting controller preserves, if not perfectly, 
properties of the LQR, since IOS is a type of the LQR; 
namely, the controller provides the closed-loop system 
with adequate stability margins and good time responses. 

2) Stability margins and control performance are easily 
traded off through selection of the weighting matrices of 
the quadratic cost function of the LQR. 

3) As (29) suggests, the outputs used for P, I, and D actions 
do not need to be the same, although P action is applied 
to all the outputs. Therefore, if the outputs that can be 
measured but are not required to track reference outputs 
are available, those outputs should be used for P or PD-
action, which makes the control system approximate to 
the ‘state-feedback’ one and consequently will improve 
stability. 

3.  APPLICATION TO PID’12 BENCHMARK PROBLEM 

3.1 Linear Plant Model 

The nonlinear state-space model of the boiler system 
considered in the benchmark problem is based on the 
following model given by Pellegrinetti and Bentsman (1996): 

1433131112
8/9

14111 )()()()()( ctuctuctxtxctx   , (39) 

)],()(/[)]()(

)()([)()(

1126222521124

112322222212







tuctuctxtuc

tuctuctxctx
 (40) 

)()()()()( 333314321313  tuctxtxctxctx , (41) 

)()()()( 4311424414 twctuctxctx d  , (42) 

)()( 41511  txcty , (43) 

)()( 52612  txcty , (44) 

,}])(){(/[)](1[

])([)(

)()()(

)()()(

797861636377

76617561174

63373616472

637161703

cctxtxtxc

ctxctuc

tuctxtxc

txctxcty













 (45) 

where x1 is the drum pressure (kgf/cm2), y1 is the measured 
drum pressure (PSI), y2 and x2 are the measured excess 
oxygen level (%) and its state (%), respectively,  x3 is the 
system fluid density (kg/m3), y3 is the drum water level (in), 
x4 is the exogenous variable related to the load disturbance 
intensity which takes value between 0 and 1, u1, u2, and u3 are, 
respectively, the fuel, air, and feed water flow rate inputs 
which are scaled to take values between 0 and 1, wd is the 
load level, cij are constants, and i (i = 1, …, 6) are delay 
times. Let the input and output vectors be up0=[u1 u2 u3]

T and 
yp0 = [y1 y2 y3]

T, respectively. The inputs, outputs, and load 
level are scaled and biased to take values between 0% and 
100%. Let the converted input vector be up =[uf(t1) uf(t2) 
uw(t3)]

T, where uf and uw are scaled fuel and water flow rate. 
Note that the air flow rate is assumed to be regulated by the 
air control subsystem, which allows u2 to be modelled as an 
affine function of uf. Let the converted output vectors be yp 
and the scaled load level be wl. 

The time delay is modelled as a first-order system by 
applying the first-order Padé approximation. Let the state 
vector of the above nonlinear model be xp and the state 
vectors representing the time delay for the inputs and outputs 

be xd1 and xd2, respectively. The total state vector is then 
given by xnl = [xp

T xd1
T xd2

T]T.  

Assuming that the nonlinear model represents the plant, the 
present authors have identified the plant parameters by 
applying the least-squares method to input-output data of the 
implemented Simulink model (Morilla, 2011b). Equilibrium 
states, xnl

*, and inputs, [uf
* uw

*]T, are calculated on the basis 
of the identified model and the following values specified in 
Morilla (2011b): yp

* =[60 50 50]T% and wl
*=46.36%. 

Linearizing the nonlinear model around the equilibrium point 
and using the states for the time delays yields the following 
10th-order linear model: 

*( ) ( ) ( ) [ ( ) ]p l lt t t w t w   x Ax Bu E , (46) 

)()()( ttt DuCxy  , (47) 

where x(t) = xnl(t) xnl
*, u(t) = [uf(t) uw(t)]T [uf

* uw
*]T, y(t) = 

yp(t) yp
*, and the coefficient matrices are defined as 

4 4 3

3 4 1 3 4 2

4 4 4 4 3

2 0

0 0 ,

2

p p p

 

   
        
       

A B B T

A T B T

T C T D T T DT

,  

C = [Cp 2D 2I3], and D =DpT3. 
In the above matrices, 0pq denotes a pq zero-matrix and 
other sub-matrices are given as follows: 

310

000.40000

41.58800548.20

0062.2280

98.324001693.4





















pA
,  

410

007027.2

148.7800

060.72661.726

3487.10235.25
























pB
, 


















01.1094478.1086013.0

00000.200

0000000.5

pC , 




















020808.0011464.0

000

000

pD , Ep=[0 0 0 7.9958105]T, 

T1 = diag(2/1, 2/2, 2/3), T4 = diag(2/4, 2/5, 2/6), 
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

















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/20

0/2

0/2

3

3

2

1

2 TT





, 

where the delay times are 1=2=2, 3=4=3, 5=4, and 6=2. 

3.2 Controller Design and Simulation 

Since the model has dc-elements as shown in (47), the first-
order dynamics, 1/(0.1s+1), is added in series at the inputs. 
The filter, however, is used only in controller design, and not 
used in robust stability analysis and nonlinear simulation. 
The resulting model becomes of the 12th order. Although y2 
is measured, the outputs to be controlled are y1 and y3 only. 
The output vector is then redefined as y=[y1 y3]

T. Accordingly, 
the second rows of C and D are removed in the plant model 
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for controller design. In the following the I-P controller of 
(36) is designed, and then converted into the PI-type of (37), 
in which y =yI; hence, yP, yPD, and yD are null. In order to 
avoid a problem with numerical computation, the model is 
reduced to the ninth order by truncating the states 
corresponding to the Hankel singular values smaller than 
1015 with FBR. 

An IOS is synthesized for the ninth-order model with the 
weighting matrices: Qy = I2 and Q = diag(0.12, 0.06), which 
are selected by trial-and-error, as is the case with LQR design. 
Applying BT to the IOS and reducing the dimension of x to 
two yields the PI gain matrices: 













4574.2957.10

2606.16495.1
PK , 











047577.0073116.0

036558.0095153.0
IK  

Let this controller be Controller A. For comparison, 
simulation was also conducted using the two controllers 
shown in Morilla (2011a). One controller, which is used for 
reference, has the PI gains, KP = diag (2.5, 1.25) and KI = 
KP/50 and the other PI controller for evaluation has the gains, 
KP = diag (5.0, 2.5) and KI = KP/25. Let the latter controller 
be Controller B. These controllers are the decentralized type. 

Tables 2, 3 and 4, in which c denotes the gain crossover 
frequency, summarize the stability margins of the controllers. 
Although part of the stability margins of the proposed PI 
controller are smaller than those of the decentralized 
controllers, the phase margin of the proposed PI controller for 
the open-loop system broken at u2 or y3 is considerably larger, 
which makes the time responses of y3 less oscillatory. The 
generalized stability margin (Vinnicombe, 2001), which is a 
criterion of robust stability for MIMO systems, is also 
computed to be 0.06472 for Controller A, 0.05519 for 
Controller B, and 0.1467 for the reference controller. Hence, 
Controller A is probably more robust than Controller B in the 
MIMO environment. 

Table 2 Stability Margins (Evaluated PI controller A) 
Breaking the loop at Gain Margin Phase Margin c (rad/s)

u1 10.68 dB 68.83 deg 0.06442
u2 10.39 dB 52.55 deg 0.04394
y1 21.40 dB 57.64 deg 0.04186
y3 12.62 dB 63.44 deg 0.06615

Table 3 Stability Margins (Reference PI controller) 
Breaking the loop at Gain Margin Phase Margin c (rad/s)

u1 (y1) 20.97 92.45 deg 0.02377
u2 (y3) 27.69 39.33 deg 0.02122

Table 4 Stability Margins (Evaluated PI controller B) 
Breaking the loop at Gain Margin Phase Margin c (rad/s)

u1 (y1) 14.68 64.02 deg 0.06220
u2 (y3) 20.48 31.59 deg 0.04298

Nonlinear simulation results for step and ramp changes of the 
load level, and step change of the set point of the steam 
pressure are shown in Figs. 1, 2, and 3, respectively. The 
evaluation indexes of control performance of the controllers 
relative to that of the reference controller, such as the ratio of 
integrated absolute error (RIAE), are summarized in Tables 5, 
6, and 7. Each index is defined in Morilla (2011a). The 
sampling period is set to 5s for Controllers A and B and 10s 
for the reference controller. Although the control error in the 

response of y3 to the ramp change is larger as shown in Fig. 2, 
which results in the increase of the combined index, JM, as a 
whole the control performance of Controller A is better than 
that of Controller B. 

Table 5 Evaluation indexes corresponding to the test of Fig. 1 
Controller RIAE1 RIAE2 RIAE3 RIAVU1 RIAVU2 JM  

A 0.1661 1.001 0.4622 1.340 2.791 0.7604
B 0.2682 0.9993 0.4954 1.614 2.651 0.8083

Table 6 Evaluation indexes corresponding to the test of Fig. 2 
Controller RIAE1 RIAE2 RIAE3 RIAVU1 RIAVU2 JM  

A 0.1560 1.025 0.5445 1.197 2.706 0.7718
B 0.2630 0.9996 0.3101 1.498 1.654 0.6745

Table 7 Evaluation indexes corresponding to the test of Fig. 3 
C RIAE1 RIAE2 RIAE3 RITAE1 RIAVU1 RIAVU2 JM  
A 0.4405 1.068 0.1807 0.2743 1.732 2.666 0.6805
B 0.5250 1.154 1.130 0.3696 2.626 4.449 1.099

4. CONCLUSIONS 

The proposed method is basically composed of two steps: 
design and truncation of an IOS, i.e., design and reduction of 
a higher-order controller. The simple method makes design 
of a centralized PID controller highly efficient, allowing gain 
adjustment through selection of the weighting matrices of the 
IOS. A notable feature of the method is that part of the 
outputs that are not required to track reference outputs can be 
used for P action only, although this feature was not taken 
advantage of in the design example, since the excess oxygen 
level is a noisy measurement and does not affect other states. 
This feature is also true of the design method based on plant 
reduction by FBR (Kondo, Ochi, and Sasano, 2010). A future 
work is to make a comparative study about merits and 
demerits of each design method. 

REFERENCES 

Anderson, B. and Liu, Y. (1989). Controller reduction: concepts and 
approach. IEEE Trans. Automatic Control. vol. 34, pp. 802-
812. 

Åström, K. and Hägglund, T. (2006). Advanced PID Control, ISA, 
Research Triangle Park. 

Codrons, B. (2005). Process modelling for control. Springer, 
London. 

Johnson, M. and Moradi, H. (ed.) (2005). PID Control –New 
Identification and Design Methods, Ch. 11. Springer, London. 

Kondo, H., Ochi, Y., and Sasano, S. (2011), PID controller design 
using fractional balanced reduction. Proc. of SICE Annual 
Conference 2011, Tokyo, pp. 1791-1796. 

Meyer, D. (1990). Fractional balanced reduction: model reduction 
via fractional representation. IEEE Trans. Automatic Control, 
vol. 35, pp. 1341-1345. 

Moore, B. (1981). Principal component analysis in linear systems: 
controllability, observability, and model reduction. IEEE 
Trans. Automatic Control, vol. 26, pp. 17-32. 

Morilla, F. (2011a). Benchmark for PID control based on the boiler 
control problem. URL: http://www.dia.uned.es/~fmorilla/ 
benchmarkPID2012/BenchmarkPID2012.pdf 

Morilla, F. (2011b). The Matlab & Simulink files to approach the 
boiler control problem. URL: http://www.dia.uned.es/ 
~fmorilla/benchmarkPID2012/BenchmarkPID2012 files.pdf 

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 ThA2.4



 
 

     

 

Ochi, Y. and Kondo, H. (2010). PID controller design based on 
optimal servo and -gap metric. Proc. of the 2010 American 
Control Conference, Baltimore, pp. 1091-1096. 

Seraji, H. (1980). Design of multivariable PID controllers for pole 
placement, International J. Control, vol. 32, pp. 661-668. 

Silva, E. and Erraz, D. (2006). An LQR based MIMO PID controller 
synthesis method for unconstrained Lagrangian mechanical 
systems. Proc. of the 45th IEEE Conference on Decision and 
Control, San Diego, pp. 6593-6598. 

Smith, H. and Davison, E. (1972). Design of industrial regulators. 
Proceedings of IEE, vol. 119, pp. 1210- 1216, August. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
56

58

60

62
Steam pressure and setpoint (%)

Time (s)

 

 

Reference output

Reference Case
Controller A

Controller B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
49.5

50

50.5
Oxygen level (%)

Time (s)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
40

45

50

55
Drum water level and setpoint (%)

Time (s)

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
40

50

60

70
Load level (%)

Time (s)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100
Fuel flow (%)

Time (s)

 

 

Reference Case

Controller A
Controller B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100
Water flow (%)

Time (s)

 
 Fig. 1 Time responses to 20% step change of load level 
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Fig. 2 Time responses to the ramp change of load level 
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Fig. 3 Time responses to 5% step change of steam pressure 
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