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Abstract: In this paper a methodology for tuning decentralised PID is proposed, which is based
on the AMIGO method for SISO systems. The study addresses MIMO systems with transfer
matrix made up of first-order with time delay models that describe a large number of industrial
processes. The proposed approach is evaluated by means of simulation studies that show the
results of its application to several systems.
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1. INTRODUCTION

The purpose of many control loops in industry is mainly to
reject possible disturbances that tend to lead system out-
puts away from their reference values. The tuning of PID
controllers in order to minimise the effect of disturbances
in SISO systems has been widely addressed in the liter-
ature, Panagopoulos et al. (2002); Åström and Hägglund
(2004); Åström et al. (1998); Sanchis et al. (2010); Romero
et al. (2011). Many industrial processes, however, are of a
multivariable nature in which the disturbances are trans-
mitted to several outputs with the subsequent adverse
affects from the point of view of their operation.

In this paper a new methodology for tuning decentralised
PID controllers is proposed to minimise the effect of distur-
bances in MIMO systems. The methodology is based on ex-
tending the well known AMIGO method (Approximate M-
constrained Integral Gain Optimisation) for tuning SISO
PID control loops to the MIMO case. AMIGO method,
Åström and Hägglund (2004), consists in applying a set of
equations to calculate the parameters of the controller,
thus their application is very simple. Furthermore, the
method is applicable to systems whose behaviour can be
approximated by a first-order plus time delay (FOPTD)
model or integrator plus time delay, thereby covering
a large number of applications in the process industry.
Therefore the extension of AMIGO method to be applied
in MIMO systems could be of interest in many industrial
control applications.

The paper is structured as follows. In section 2 the prob-
lem of rejecting disturbances in TITO systems is stated
formally. In section 3 the concept of Effective Transfer
Function (ETF) is addressed, which is fundamental to
be able to understand the methodology proposed here. In
section 4 the general characteristics of the AMIGO method
for minimising the effect of disturbances in SISO systems
are discussed. The methodology for adjusting decentralised
? This paper has been supported by the Universitat Jaume I and
Fundación Bancaja-Castellón throught the research project P1-
1A2010-16.

PID controllers is described in section 5. The results of
applying the methodology in two multivariable systems are
presented in section 6. Finally, in section 7 the conclusions
from the study are discussed.

2. STATEMENT OF THE PROBLEM

Let us consider the TITO system with decentralised con-
trol shown in Figure 1. C1(s) and C2(s) are PID controllers
with transfer functions

Cn(s) = Kpn

1 +
Tdn
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 , n = 1, 2 (1)
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Fig. 1. TITO system with decentralised controllers

The aim is to adjust the controllers C1(s) and C2(s) in
order to achieve a good degree of disturbance rejection.
More specifically, the IAE index of the outputs Y1(s) and
Y2(s) (IAE1 and IAE2) as a response to step-like inputs
at D1(s) and D2(s), defined as

IAEn =

∫ t

0

|rn(ν)− yn(ν)|dν, n = 1, 2 (2)

must be kept as small as possible. At the same time, the
system must have a robust behaviour when faced with
errors in models Gij(s).
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3. EFFECTIVE TRANSFER FUNCTIONS

A key concept in the methodology proposed in this paper
is that of effective transfer function, which is the transfer
function between an output and an input in a MIMO
system when the other input/output pairs are in a closed
loop through their corresponding controllers.

Let us consider the TITO system with decentralised con-
trollers shown in Figure 1. The ETF between output Y1(s)
and input U1(s) is:

Ge
11(s) =

Y1(s)

U1(s)
= G11(s)− C2(s)G12(s)G21(s)

1 + C2(s)G22(s)
(3)

where, for the sake of simplicity, the complex variable s
has been omitted. Likewise, the ETF between output Y2
and input U2 is:

Ge
22(s) =

Y2(s)

U2(s)
= G22(s)− C1(s)G12(s)G21(s)

1 + C1(s)G11(s)
(4)

As can be seen in equations (3) and (4), the ETF between
an input/output pair depends on the controllers of the
other input/output pairs.

3.1 Simplification of the ETF

The dependence of ETF on the controllers of the other
control loops in a MIMO system, which are initially
unknown, restricts their use for designing controllers.
Under some considerations, however, this dependence can
be removed. Following on with the TITO case in the
previous section, if it is supposed that controllers C1(s)
and C2(s) are ideal, that is to say, that the closed loop
transfer functions satisfy the following condition:

Y1(s)

R1(s)
=

C1(s)G11(s)

1 + C1(s)G11(s)
= 1 (5)

Y2(s)

R2(s)
=

C2(s)G22(s)

1 + C2(s)G22(s)
= 1 (6)

then the ETF can be simplified as follows:

Ger
11(s) = G11(s)− G12(s)G21(s)

G22(s)
(7)

Ger
22(s) = G22(s)− G12(s)G21(s)

G11(s)
(8)

depending only on the transfer functions of the system.
Equations (7) and (8) are known as reduced effective
transfer functions (RETF).

4. AMIGO METHOD FOR TUNING PID
CONTROLLERS

The problem of adjusting PID controllers in order to
minimise the effect of disturbances in SISO systems has
been addressed in a number of different studies. In Åström
and Hägglund (2004) an approximate method is proposed
that accomplishes this goal in a simple way. The method,
which is known as AMIGO (Approximate M-constrained
Integral Gain Optimisation), consists in applying a set of
equations to calculate the parameters of the controller,

in a similar way to the procedure used in the Ziegler-
Nichols method. The robustness of the design can be
specified by means of the maximum value of the sensitivity
function (Msd) within a range between 1.1 and 2. The
method is applicable to systems whose behaviour can be
approximated by a FOPTD model or integrator plus time
delay, thereby covering a large number of applications in
the process industry. For a system with a transfer function
G(s) = KeT /(τs+ 1), the tuning rules are:

Kp =
α1T + α2τ

KT
, Ti =

α3T + α4τ

T + α5τ
, Td =

α6Tτ

T + α7τ
(9)

where the parameters αi depend on the value of Msd that
is sought for the design.

5. EFFECT OF THE DISTURBANCES

The problem of tuning the controllers in order to minimise
the effect of the disturbances present in a SISO system
can be approached as one of maximising the integral gain
(Ki = Kp/Ti) of the PID controller, thereby satisfying cer-
tain conditions regarding robustness that are considered
to be restraints to the problem of maximising Ki, Åström
et al. (1998); Panagopoulos et al. (2002). This approach is
based on the fact that under a set of conditions offering an
acceptable level of robustness (that is to say, with a low-
oscillation response), the IAE can be approximated by the
error integral (EI), which, as is well known, is inversely
proportional to Ki. More specifically, for a SISO system,
IE = 1/Ki is satisfied. This section looks at whether it
is possible to apply a similar strategy to minimise distur-
bances in MIMO systems.

By applying the ETF concept, the decentralised control
system in Figure 1 can be broken down into two systems
like those shown in Figure 2. Ge

12 and Ge
21 are the ETF

between output Y1 and disturbance D2 and output Y2 and
disturbance D1, respectively, which are given by equations
(10) and (11).

Ge
12 =

G12

1 + C2G22
(10)

Ge
21 =

G21

1 + C1G11
(11)
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Fig. 2. Breakdown of the TITO system using ETF

Errors E1 and E2 in Figure 2, in terms of the ETF, can
be expressed by the following equations:

E1 = D1
Ge

11

1 + C1Ge
11

+D2
Ge

12

1 + C1Ge
11

(12)

E2 = D2
Ge

22

1 + C2Ge
22

+D1
Ge

21

1 + C2Ge
22

(13)
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If En,m is defined as the error in loop n due to disturbance
Dm, then En(s) = En,1(s) + En,2(s) and consequently:

IEn = lim
t→∞

∫ t

0

en(τ)dτ = lim
s→0

En(s)

= lim
s→0

En,1(s) + lim
s→0

En,2(s)

= IEn,1 + IEn,2

(14)

By applying this equation to the errors in equations (12)
and (13), after substituting Ge

11, Ge
22, Ge

12, Ge
21 and Cn

with their corresponding expressions, we have that:

IE1,1 =
Ti1
Kp1

=
1

K i1
(15a)

IE1,2 = 0 (15b)

IE2,2 =
Ti2
Kp2

=
1

Ki2

(15c)

IE2,1 = 0 (15d)

and therefore

IE1 = IE1,1 =
1

K i1
, IE2 = IE2,2 =

1

Ki2

(16)

As an example, Figure 3 shows the graphs of En,m and
IEn,m for a TITO system with decentralised PID con-
trollers. The behaviour of E1,2 and E2,1 is such that the
value of their integral in the steady state is null (IE1,2 = 0
and IE2,1 = 0) and therefore in the steady state IE1 =
IE1,1 and IE2 = IE2,2. Yet, during the transient, these
equalities are not fulfilled because the integrals of errors
E1,2 and E2,1 are not null.
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Fig. 3. Effect of disturbances on a TITO system with
decentralised PID controllers

Remark 1. From equations (15a) and (15c) it is obvious
that minimising IEn,n is equivalent to maximising the
integral gain (Ki) of the controller Cn. If, in addition, the
response to disturbance Dn has a low degree of oscillation,
which is accomplished by a sufficiently robust adjustment
of Cn, then IEn,n = 1/Kin ≈ IAEn,n, which would mean
that maximising Kin would be equivalent to minimising
the index IAEn,n.

Remark 2. Equations (15b) and (15d) do not imply that
the disturbance Dn has no effect on the error Em,m 6= n.
As shown in Figure 3, errors E1,2 and E2,1 are not null,
but their integrals in the steady state are: IE1,2 = 0 and
IE2,1 = 0.

Taking remark 1 into account, the design of controllers
C1 and C2 will focus on minimising IE1,1 and IE2,2 in

the SISO systems shown in Figure 2, which result from
applying the concept of ETF to the TITO system.

6. DESIGNING DECENTRALISED CONTROLLERS

The tuning of decentralised PID controllers using the
ETF concept has recently been addressed in Nguyen and
Lee (2010), more particularly for the case of IMC-PID
Lee et al. (1998). The proposal is based on obtaining an
approximate model of the RETF and applying the design
methodology from the IMC-PID to that model. The draw-
back of this method is that the ideal controllers hypothesis
that forms the basis of the process of obtaining the RETF
may not be true, thus giving rise to discrepancies between
the real ETF and the RETF used in the design. Moreover,
in Vázquez et al. (1999) the authors proposed the iterative
design of decentralised controllers for MIMO systems using
ETF. The method basically consists in alternating the
calculation of the ETF and the tuning of controllers, taking
arbitrary controllers as the starting point for the design. In
that work, it is also suggested that non-parametric models
should be used, given the complexity of the ETF.

The iterative design methodology that is proposed in this
work uses RETF as the initial model to carry out the
tuning of decentralised controllers by means of the AMIGO
method. Moreover, since this method of tuning requires
FOPTD models, the ETF must be adjusted by this type
of models. The method can be summarised in the following
steps:

(1) Define the robustness specifications sought for each
loop: Msd1 and Msd2 .

(2) Calculate a preliminary approximation to the RETF
using equations (7) and (8).

(3) Approximate the RETF (Ger
1,1 and Ger

2,2) by means
of FOPTD models (Gea

1,1 and Gea
2,2) and calculate

controllers C1 and C2 using equation (9).
(4) Calculate the ETF using equations (3) and (4), taking

into account the controllers designed in the previous
step.

(5) Approximate the ETF (Ge
1,1 and Ge

2,2) by means of
FOPTD models (Gea

1,1 and Gea
2,2). Recalculate the con-

trollers C1 and C2 using those models and equations
(9).

(6) Repeat steps 4 and 5 until the values of the param-
eters of the controllers converge to the final values,
which indicates that no improvements are produced
in the identification of the ETF used in the designs.

The previous methodology can be applied to systems in
which the ETF can be adjusted by FOPTD models. This
is generally possible in systems in which the inputs of the
transfer matrix are models of this type, as illustrated in
the examples given in the next section.

7. EXAMPLES

The algorithm above was applied to two models of TITO
systems with the aim of evaluating its behaviour. The
systems have the following transfer matrices:
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G1(s) =

 −2.2e−s

7s+ 1

1.3e−0.3s

7s+ 1
−2.8e−1.8s

9.5s+ 1

4.3e−0.35s

9.2s+ 1

 (17a)

G2(s) =

 4.3e−40s

383s+ 1

1.8e−140s

383s+ 1
1.2e−80s

281s+ 1

2.5e−40s

281s+ 1

 (17b)

ModelG1 corresponds to a distillation column Vinante and
Luyben (1972) and model G2 describes the behaviour of
a hydraulic system made up of four interconnected tanks
Ho et al. (1996).

In designing the controllers it was considered that Msd1 =
Msd2 = Msd = 1.4. Figures 4 and 5 show the results
obtained over 10 iterations. They show the values of the
IAE when faced with unit step inputs in disturbances D1

and D2 and the real value of Ms that is achieved in each
loop, which is calculated by using the ETF instead of the
FOPTD models used in the design. In the two cases, it
can be seen how convergence of the iterative design is
accomplished after four or five iterations.
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Fig. 4. Results of the iterative design for model G1: IAE
and the real Ms of each loop
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Fig. 5. Results of the iterative design for model G2: IAE
and the real Ms of each loop

The difference that is observed in the figures between the
design and the real Ms is due to the error that is made on
approximating the ETF by means of an FOPTD model,
as can be observed in Figures 6 and 7. This difference,
however, is not significant and the values of Ms that are
obtained with it in the design are good enough to ensure
the robustness of the control loops.
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Fig. 6. Magnitude diagram of the ETF and their approxi-
mation by means of FOPTD models for the model G1

and PID designed with Msd = 1.4

10
−4

10
−3

10
−2

10
−1

−20

−10

0

10

20

M
ag

nit
ud

e 
(d

B)

 

 

Bode Diagram

Frequency  (rad/sec)

G
e

1,1

G
ea

1,1

10
−4

10
−3

10
−2

10
−1

−30

−20

−10

0

10

M
ag

nit
ud

e 
(d

B)

 

 

Bode Diagram

Frequency  (rad/sec)

G
e

2,2

G
ea

2,2

Fig. 7. Magnitude diagram of the ETF and their approxi-
mation by means of FOPTD models for the model G2

and PID designed with Msd = 1.4

The time response to changes in the references and in the
disturbances for the two systems are shown in Figures
8 and 9. In both cases, responses with low degrees of
oscillation were obtained, which is a result that was to be
expected owing to the robustness achieved in the designs.
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Fig. 8. Response to unit step-like inputs in the references
(upper) and in the disturbances (lower) for the model
G1
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Figures 10 and 11 show the control actions of controllers
C1 and C2 to unit step-like input in the disturbances for
the model G1 and G2 respectively. As can be noted, the
PIDs produce smooth control actions which are enough to
fix the disturbances effect.
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Fig. 10. Control actions to unit step-like input in the
disturbances for the model G1
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Fig. 11. Control actions to unit step-like input in the
disturbances for the model G2

7.1 Effect of Msd on the design

As discussed in section 4, the AMIGO method makes it
possible to adjust PID controllers for values of Ms ∈ [1, 2],
thereby giving rise to different degrees of robustness in the
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Fig. 12. Values of the IAE of the disturbances and Ms
depending on Msd for the process G1(s)

design. The greater the value of Ms is, the less robust the
design and the more active the controller will be.

To be able to study the effect of Ms on the methodology
proposed in section 6, designs for controllers were carried
out for different values of Ms ∈ [1, 2]. The results can be
seen in Figures 12 and 13 for systems (17a) and (17b)
respectively. They show the behaviour of the IAE of the
disturbance for each output and the values of Ms that are
achieved for each loop.

In the IAE graphs it can be observed that for small values
of Msd there is an increase in IAE. This is due to the
fact that the designs thus obtained have a high degree of
robustness, therefore controllers are not very active and
take time to correct the effect of the disturbances.

The figures also offer the values of Msr , which is the real
Ms that is obtained with the design and is calculated using
the ETF rather than its approximation by means of an
FOPTD model. It can be seen that when the value of Msd
is increased, the difference between this value and that of
Msr also increases, that is, the results that are obtained
diverge away from the design specifications.

The difference between Msd and Msr is due to the error
that is made in approximating the ETF, equations (3) and
(4), by means of an FOPTD model. The approximations
of the ETF by FOPTD models for designs with Msd = 2
can be seen in Figures 14 and 15. It can be observed
that the discrepancy between the models is much greater
in this case than for designs with Msd = 1.4, which
are represented in Figures 6 and 7. This gives rise to
considerable errors in the value of Ms that is really
achieved with the design (Msr ).

Therefore, the proposed tuning methodology is valid for
the range of values of Msd in which the ETF can be
properly approximated by FOPTD models. The selection
of Msd for the design can be performed from graphs like
those shown in Figures 12 and 13. A suitable value for
examples G1(s) and G2(s) is Msd = 1.4, since Msd = Msr
while at the same time the IAE is kept to a minimum.
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depending on Msd for the process G2(s)

Fig. 14. Magnitude diagram of the ETF and their approxi-
mation by FOPTD models for the model G1 and PID
designed with Msd = 2

Fig. 15. Magnitude diagram of the ETF and their approxi-
mation by FOPTD models for the model G2 and PID
designed with Msd = 2

8. CONCLUSIONS

In this paper a methodology for tuning decentralised PID
controllers has been presented, which is based on extending
the well known AMIGO method to MIMO systems. The
proposal consists in an iterative identification and design
approach, where the estimation of FOPTD models to
approximate the effective transfer functions and the PID
tuning by AMIGO method are combined.

The feasibility of the methodology has been demonstrated
by simulation study. It has been probed that the robust-
ness specification, given by the maximum magnitude of
the sensitivity function (Ms), has an important effect on
the design results because of the errors introduced when
approximating the effective transfer function by FOPTD
models. These errors increased asMsd increased and conse-
quently the design specifications are not fulfilled for large
values of Msd . On the other hand, for small values of
Msd the FOPTD models properly fit the effective transfer
functions and the design requirement are accomplished.

Future work should be aimed at analysing the error made
in the approximation of the effective transfer function by
means of FOPTD models in order to improve the degree
to which the design specifications are accomplished.
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