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Abstract: Some design schemes of model-free controllers which do not require any system
models have been considered in the last decade. FRIT(Fictitious Reference Iterative Tuning)
method that directly computes the control parameters from the operating data have been
proposed as the one of model-free controllers. FRIT has some useful practical features. One
is that it does not require system identification. Another is that the control parameters can be
directly computed using only a set of closed loop input/output data and the desired output
signal. The calculations of the control parameters needs the optimization of the cost functions.
The ordinary approach is the gradient method. However, this calculations derives only linear
parameters. Therefore, the applications of FRIT are limited for linear systems. In this paper, a
new approach to the discrete FRIT-based nonlinear PID control is proposed. The neural network
is utilized for the optimization of FRIT. PID parameters are adequately adjusted corresponding
to the nonlinear properties. The conventional schemes by using the neural networks require the
information of system Jacobian to update weighting factors. This proposed method can calculate
the control parameters without the information of system Jacobian or system parameters except
for the information about the time-delay.
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1. INTRODUCTION

PID control schemes based on the classical control the-
ory, have been widely used for various industrial control
systems for a long time[Ziegler and Nichols(1942)],[Chien,
Hrons and Reswick(1972)]. The reasons are that PID con-
trollers have simple control structures, and simple main-
tain and tune. However, since such processes have non-
linear properties and uncertainties caused by modeling
errors and process fluctuation, it is difficult to determine
’optimal’ PID parameters. Some PID control schemes have
been proposed based on the self-tuning control algorithm
for the uncertain systems. However, as many self-tuning
PID control algorithm calculate their PID parameters
based on the estimates by least squares method, it is
difficult to employ for the systems which can be used
the least squares method. In the real industrial control
systems, the linear mathematical model is used to calcu-
late the PID parameters. The parameters of mathemat-
ical model are made variable, and these are assigned by
using the reference table generated by the priori infor-
mation. This procedure can clear on the system prop-
erties, and can employ the linear control theory for the
nonlinear systems. However, it is very difficult to gen-
erate the reference table. The generation of this table
is required cat-and-try for each processes. Some control
schemes for nonlinear systems by using the neural net-
work have been proposed[Haykin(1994)],[Narendra and

Parthasarathy(1990)],[Chen and Chang(1996)]. The con-
ventional neural-net based control schemes can be classi-
fied into the two groups. The one is that control input is
directly calculated by the neural network. As the control
input is given by the output of the neural network, it is
easy to employ for the controlled object. However, it is
difficult to express the structure of the controller as the
transfer function. The other is that control parameters are
calculated by the neural network, and this control input
can be calculated by these control parameters. Although
this scheme makes easy to grasp the physical meanings
of control parameters, the properties of controlled ob-
ject cannot be directly understood. Furthermore, these
schemes require the information of system Jacobian to up-
date weighting factors of neural networks. It is difficult to
obtain the system Jacobian of such the nonlinear systems.

On the other hand, some design schemes of model-free
controllers which do not require any system models have
been considered in the last decade. FRIT(Fictitious Ref-
erence Iterative Tuning) method that directly computes
the control parameters from the operating data have been
proposed as the one of model-free controllers[Kaneko, et
al(2005)],[Soma, et al(2004)], [Suehiro, et al(2009)]. In par-
ticular, the FRIT method is attractive to industry because
it is possible to obtain the optimal controller parameters
without any system identification. The calculations of the
control parameters needs the optimization of the cost
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functions. The ordinary approach is the gradient method.
However, this calculations derives only linear parameters.
Therefore, the applications of FRIT are limited for linear
systems.

In this paper, a new approach to the discrete FRIT-based
nonlinear PID control is proposed. The neural network is
utilized for the optimization of FRIT. According to the
proposed FRIT, PID parameters are adequately adjusted
corresponding to the nonlinear properties. This paper is
organized as follows. The design scheme of PID controller
is explained. Next, the FRIT method is considered. This
optimization of PID parameters are calculated by neural
networks.

2. CONTROLLER DESIGN

2.1 Problem description

The controlled object to be considered in this paper is
following equation:

y(k) = z−(d+1)G(z−1)u(k), (1)
where, u(t) and y(t) denote the control input signal and
the corresponding output signal. G(z−1) denotes the trans-
fer function of the controlled object, which is nonlinear,
time-invariant. d is the time-delay which is known.

The following velocity-type PID controller is employed for
the controlled object given by eqn.(1):

Δu(t) = kc{Δ +
Ts

TI
+

TD

Ts
Δ2}e(t), (2)

where kc, TI and TD are the proportional gain, the reset
time and the derivative time, respectively. And, Ts denotes
the sampling interval. e(t) denotes the control error signal
given by

e(t) := r(t) − y(t) (3)

where, r(k) is the reference signal given as the piecewise
constants. These PID parameters in eqn.(2) are strongly
depend on the control performance. The design method
is considered based on the FRIT method by following
procedure.

Next, (2) is rewritten as:

C(z−1)y(t) + Δu(t) − C(z−1)r(t) = 0 (4)

where

C(z−1) = c0 + c1z
−1 + c2z

−2

= kc(1 +
Ts

TI
+

TD

Ts
) − kc(1 +

2TD

Ts
)z−1

+
kcTD

Ts
z−2 (5)

In addition, r(k) is the reference signal with piecewise
constants. Here, as the PID control has done by using
C0(z−1) which is given by the initial PID gains, the
following input/output operating data can be obtained:

Δu0(k) = C0(z−1){r(k) − y0(k)} = 0 (6)

y0(k) = z−d+1G(z−1)u0(k), (7)

where

C0(z−1) = c00 + c01z
−1 + c02z

−2

= kc0(1 +
Ts

TI0
+

TD0

Ts
) − kc0(1 +

2TD0

Ts
)z−1

+
kc0TD0

Ts
z−2 (8)

Next, the desired reference output is given by the following
equation:

ym(k) = Gm(z−1)r(k), (9)

where,

Gm(z−1) =
z−(d+1)P (1)

P (z−1)
, (10)

It is important to design of the user-specified polynomial
P (z−1), because P (z−1) mean the ideal characteristic
polynomial of the closed-loop system.

So, the design of P (z−1) is based on the following two
criteria, when the reference signal is given by piecewise
constant.

• Rise-time.
• Damping oscillation performance.

Here, P (z−1) is defined second-order as follows:

P (z−1) = 1 + p1z
−1 + p2z

−2 (11)

where coefficients of P (z−1) are calculated by following
equations:

p1 =−2e−
ρ
2μ cos(

√
4μ − 1
2μ

ρ) (12)

p2 = e−
ρ
μ (13)

ρ =
Ts

σ
(14)

μ = 0.25(1 − δ) + 0.51δ (15)

In these equations, σ is the parameter which is equivalent
to the rise-time, and it is desirable to design σ as about
1/3 thru 1/2 times of the time constant based on priori
information of controlled object. And, δ is the coefficient
that is related the damping oscillation performance. Prac-
tically, it is desirable to set 0.0 ≤ δ ≤ 2.0.

The optimal controller C∗(z−1) is designed so that the out-
put signal y(k) tracks the desired reference model output
ym(k). It is then necessary that the system parameters are
identified by using the least squares method. However, in
order to obtain true system parameters input excitation
is required. In other words, the desired system parameters
cannot be computed by using the closed-loop data. Due
to this problem, the FRIT method is becoming increas-
ingly attractive, because the control parameters can be
directly computed using the operating data. The discrete-
time FRIT is discussed in the following section in which
a genetic algorithm is introduced in optimizing the cost
function.
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Fig. 1. Schematic figure of a neural network.

2.2 FRIT

So that the output signal tracks the desired reference
model output, let the optimal controller be C∗(z−1). In
addition, the fictitious reference r̃(k) is given by

r̃(k) = C∗−1(z−1)u0(k) + y0(k). (16)

Then, the FRIT based on optimizing the following cost
function:

En =
1
2
{y0(k) − ỹ(k)}2 (17)

ỹ(k) is given by

ỹ(k) = Gm(z−1)r̃(k), (18)
The discrete FRIT is summarized as follows:

• The initial controller C0(z−1) is designed.

• Desired reference model Gm(z−1) is also designed.

• Only one-shot experiment data using the controller
C0(z−1) is gathered.

• The fictitious reference signal r̃(k) is generated.
• PID gains are computed so that the cost function En

is minimized.

2.3 Optimization by neural network

In this paper, the neural network as shown in Fig.1 is
constructed for the parameter estimation. Note that every
unit included in the output layer of the neural network
corresponds to the estimated parameter.

In Fig.1, circle at the hidden and the output layers mean
the neuron shown in Fig.2.

In Fig.2, Wji, netj and Oj mean the weighing factor
between the neuron i and the neuron j, the summation of
the input to the neuron j and the output from the neuron
j, respectively. And f(·) is the sigmoidal function used by

f(x) :=
1

1 + e−ax
. (19)

Since it is assumed that the absolute values of the system
parameters are under 1.0, the sigmoidal function described
as eqn.(19) can be adopted. The output range of the
sigmoidal function (19) should be tuned in proportion to
the absolute value in the case where the absolute value in
order 1.0.

The weighting factors included in the neural network are
updated based on the back-propagation method. The cost
function of the learning is cost function of FRIT (17).
whose cost function En is given by:

The update rule of Wkj can be derived by the following
procedure. First, differentiating En with Wkj yields

∂En

∂Wkj
=

∂En

∂ỹ

∂ỹ

∂r̃

∂r̃

∂Ok

∂Ok

∂netk

∂netk
∂Wkj

= −δkOj . (20)

Fig. 2. Mathematical model of a neuron.

Furthermore, δk is given by

δk := − ∂En

∂netk
. (21)

The each terms are obtained as:

∂En

∂ỹ
= y0 − ỹ (22)

∂ỹ

∂r̃
= (1 + p1 + p2) (23)

∂Ok

∂netk
= Ok(1 − Ok) (24)

∂netk
∂Wkj

= Oj (25)

Moreover,

∂r̃

∂Ok(1)
=

1
c02

0

{c01y0(k − 1) + c02y0(k − 2)

−c01r̃(k − 1) − c02r̃(k − 2) − u0(k) − u0(k − 1)}
(26)

∂r̃

∂Ok(2)
=

1
c00

{y0(k − 1) − r̃(k − 1)} (27)

∂r̃

∂Ok(3)
=

1
c00

{y0(k − 2) − r̃(k − 2)} (28)

On the other hand, the update rule of Wji can be derived
as follows. Differentiating En with Wji yields

∂En

∂Wji
=

∂En

∂netj

∂netj
∂Wji

= −δjOi, (29)

where

δj := − ∂En

∂netj
=

∑

k

δkWkjOj(1 − Oj). (30)

Thus, update rules of Wkj and Wji are given by
Wkj(t + 1) = Wkj(t) + ηδkOk + αΔWkj(t) (31)
Wji(t + 1) = Wji(t) + ηδjOj + αΔWji(t) (32)

Furthermore, η and α denote the learning rate and the
momentum rate, respectively.

The optimization of the FRIT can be realized via the above
procedure. Note that according to the proposed scheme,
a priori information about the system Jacobean is not
necessary.

This algorithm of proposed scheme is summarized below.

[Proposed PID control algorithm]

1. Design the initial controller C0(z−1).
2. Obtain the input-output data from the initial controller

C0(z−1).
3. Design the desired model Gm(z−1).
4. Generate the fictitious reference signal r̃.
5. Minimize the cost function by using the neural network.
6. Obtain the PID parameters as the output of the neural

network.
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Fig. 3. The block diagram of the closed loop system
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Fig. 4. Initial and learned data.

7. Calculate u(t) from eqn.(2).
8. Update and return to 6..

The block diagram of the closed loop system is shown as
Fig.3. The neural network of Fig.3 is used as the off-line
manner.

3. SIMULATION EXAMPLE

This section demonstrates the effectiveness of the proposed
scheme by a simulation example.

The following system was used as the controlled object:

y(k) = 0.6y(k − 1) − 0.1y(k − 2)

+1.2x(k − 1) + 0.1x(k − 2) +
ξ(k)
Δ

x(k) = 1.5u(k) − 1.5u2(k) − 0.5u3(k) (33)

The initial PID parameters are set as kc = 0.8, TI =
10.0, Td = 0.1. The initial input and output data were
obtained by this parameters. Fig. 4 shows the initial
output and learned data by neural network. The solid
line and the dotted line mean the initial data y0 and ỹ,
respectively.

Next, Fig.4 shows the control result of the proposed
scheme. And, The trajectries of PID parameters are shown
as Fig.5. The good results can be obtained because the PID
parameters are tuned corresponding to the nonlinearity of
the controlled object.
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Fig. 5. Control results by proposed method.
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Fig. 6. Trajectories of PID patrameters.

4. CONCLUSION

This paper proposes a new approach to the discrete
FRIT-based nonlinear PID control. The neural network
is utilized for the optimization of FRIT. The conventional
schemes by using the neural networks require the informa-
tion of system Jacobian to update weighting factors. This
proposed method can calculate the control parameters
without the information of system Jacobian or system
parameters except for the informations about the time-
delay.
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