
Object-oriented modelling
of industrial PID controllers

Alberto Levaa, Marco Bonvinib, Martina Maggiob

aPolitecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza Leonardo Da Vinci, 32 - 20133 Milano, Italy

aPhD student at the Dipartimento di Elettronica e Informazione
{leva,bonvini,maggio}@elet.polimi.it

Abstract: This paper presents a library of (PID) controller models adopting the object-oriented ap-
proach, and written in Modelica. Peculiar to this work is that controllers are represented both as dynamic
continuous-time and digital models, achieving consistence between the two and accounting for the
functionalities of typical industrial implementations. This allows the designer to use realistic controllers,
maintaining the possibility of choosing the continuous-time or digital (event based) representation. The
former allows for example for variable-step simulation, to the advantage of efficiency, while the latter
represents very realistically the actual control system’s operation, clearly at the cost of more simulation
time. Beside standard PI and PID controls, in this work also autotuning is (initially) considered, and some
application examples are reported to show how the presented library can ease system studies involving
(PID) controls.

Keywords: Object-oriented modelling and simulation, PID control, continuous-time control, digital
control.

1. INTRODUCTION

Object-oriented modelling and simulation is nowadays a major
tool to assess the behaviour of complex controlled systems. The
reasons for that are numerous and impossible to discuss here;
the interested reader can refer to Mattsson et al. (1998), Casella
and Leva (2006), and many other works. Object-oriented lan-
guages and tools are widely used to assist engineering and
control synthesis in a number of domains, ranging from process
to automotive applications and more. In this work we refer to
the Modelica language, however it is worth saying that the men-
tioned concepts are completely general and could in principle
apply to any other object-oriented language.

Quite intuitively, in a large number of cases the object to be
simulated contains some control, most frequently containing
PID blocks. Curiously enough, however, at least in the authors’
opinion and to the best of their knowledge, most of the available
libraries for the simulation of controllers – in the addressed
context of overall object-oriented control system models – do
not focus on some relevant aspects of industrial controllers,
thereby posing to the designer some nontrivial issues, that can
be briefly summarised by looking at two extreme cases.

If the simulation study aims at devising a control strategy, the
most natural way to go when constructing controller models
is to adopt an equation-based approach in the continuous time
domain, relegating events to really event-based control parts,
so as to allow variable-step solvers to unleash their power in
a view to maximise simulation efficiency. If this is the case,
the standard blocks offered by the Modelica Standard Library,
or some extensions like the LinearSystems library, are
perfectly adequate. However, the resulting control descriptions
will be adequate too for the analyst, but definitely too high-

level for the people who need to turn them into functional
specifications suitable for coding.

The opposite case is when one has to model an already existing
controlled plant. In such a case, control-related information
is normally provided in the form of programming diagrams
(e.g., in an IEC61131.3-compliant language) from which the
extraction of Modelica schemes is often not easy at all. One
issue is certainly that programming diagrams normally contain
a number of signals that are totally ancillary for any system-
level simulation study and thus just need omitting, but there
is another more relevant problem, as some core blocks of
most controls (think for example to two controllers switched
in and out alternatively with the inactive one tracking the
active one) simply do not have a representation in the typical
Modelica libraries. In such a case, ensuring that the controller
in the model “is the same” as the controller in the plant may
sometimes be tricky indeed.

A third case can be imagined as a combination of the two,
if for example one thinks of a control strategy specified as a
model, and an available realisation of it that needs checking
for correctness against the model. Many other combinations
of the above cases or of similar ones can be figured out, and
the conclusion is that there must be some modelling aid “in
between”, the extrema being continuous-time models on one
side, and controller code on the other.

Projecting this scenario on object-oriented modelling tools, and
starting specialising to Modelica, one immediately observes a
still incomplete exploitation, as far as the research addressed
herein is concerned, of a very relevant peculiarity of the object-
oriented modelling paradigm, namely the possibility of mixing
equation- and algorithm-based modelling. Such a peculiarity
allows for very detailed control system representations, in prin-
ciple up to a full code replica, and if correctly exploited in

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WeB2.4



coordination with equation-based modelling, can provide an
efficient solution to the issues sketched out above.

Following this idea, this paper presents a model library where
controllers are represented both as continuous-time models, for
efficient simulation, and as full-fledged industrial algorithmic
implementation, to realistically assess the system operation:
consistency is ensured between any couple of representations
for the same object, concerning both interfaces and internal
behaviour (apart from the differences inherently introduced
by the digital realisation of course), so as to allow for easy
replacement of all or part of the control system with one or
the other representation, thereby tailoring simulation accuracy
and efficiency in principle to any specific study. The presented
library is meant to be the nucleus for a larger one.

At present the main focus is on standard PI and PID controls
– that significantly contribute to form the backbone of indus-
trial controls Dorf and Bishop (1995); Åström and Hägglund
(2006) –, although autotuning is initially considered. The idea
is to have a set of representations for each block, in principle
down to individual implementations of it in a particular control
engineering and/or configuration and programming tool.

The paper is organised as follows. Section 2 illustrates the
library structure, while section 3 deals with the main issue of
the work – i.e., having consistent continuous-time and digital
models – and shows, with reference to a simple PI controller,
that things need sometimes more attention than one may expect.
Section 4 briefly describes some application examples, to show
how the presented library can ease system studies involving
(PID) controls, and section 5 deals with possible extensions.
Finally, in section 6 some conclusions are drawn and future
research is sketched out.

2. THE LIBRARY STRUCTURE

The structure of the ControlLibrary Modelica package is
illustrated in figure 1.

For brevity only the “Continuous” subtree is expanded, thus
hiding the “Discrete” counterpart of its component, and the
“Logical” part is shown to illustrate how the library is designed
in a view to represent realistic schemes. As anticipated the
present version of the library is just something more than a
nucleus, nonetheless it is already usable.

The library will very soon be released as free software within
the terms of the Modelica license, at the URL modelica.org.

3. REPRESENTATION CONSISTENCY

3.1 Continuous and discrete time as interchangeable

The antiwindup PI controller with bias implemented in the
library is here shown as an example of interchangeable
continuous- and discrete-time blocks.

Both representations of the controller share the input/output
structure and the parameter set. The controller is implemented
in the continuous time domain with the block diagram of figure
2, which corresponds to the Modelica code of listing 1.

Note that in the library a more “industry-like” notation was
deliberately used: the set point (y◦ in typical control textbooks)
is termed SP, the controlled (or “process”) variable (y) is
denoted by PV, and the control signal (u) by CS.

Fig. 1. Structure of the ControlLibraryModelica package.

K

1
1+ sTi

e + + u
+

bias

+

Fig. 2. Block diagram of the antiwindup PI controller.

Listing 1: continuous-time PI.

model PI
"Continuous-time Proportional+Integral controller
with AntiWindup, Tracking mode and Bias input"

extends ControlLibrary.Interfaces.Controller;
parameter Real K = 1

"Proportional gain";
parameter Real Ti = 1

"Integral time";
parameter Real CS_start = 0

"Initial value of the control signal";
parameter Real CSmin = 0

"minimum value of the control signal";
parameter Real CSmax = 1

"maximum value of the control signal";
parameter Boolean AntiWindup = true

"Antiwindup presence flag ";
protected
parameter Real eps = Ti/1e3;

"Small time constant for auto/track switching";
Real FBout

"output (and state) of block 1/(1+sTi)";
Real satin

"input of the saturation block";
equation
satin = FBout+K*(SP-PV) + bias;
CS = if AntiWindup

then max(CSmin,
min(CSmax,(if ts then tr

else satin)))
else satin;

FBout = - Ti*der(FBout) + CS
- (if AntiWindup then max(CSmin,

min(CSmax,bias))
else bias);

initial equation
FBout = if AntiWindup then max(CSmin,

min(CSmax,CS_start))
else CS_start

- bias - K*(SP-PV);
end PI;

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WeB2.4



The same controller implemented in the discrete time, con-
versely, corresponds to the Modelica code of listing 2.

Listing 2: digital (event-based) PI.

model PI
"Digital Proportional+Integral controller
with AntiWindup, Tracking mode and Bias input"

extends ControlLibrary.Interfaces.Controller;
parameter Real K = 1

"Proportional gain";
parameter Real Ti = 1
"Integral time";

parameter Real CS_start = 0
"Initial value of the control signal";

parameter Real CSmin = 0
"minimum value of the control signal";

parameter Real CSmax = 1
"maximum value of the control signal";

parameter Boolean AntiWindup = true
"Antiwindup presence flag ";

protected
discrete Real satin;
discrete Real FBout;
discrete Real cs;

algorithm
when sample(0,Ts) then

satin := pre(FBout)+K*(SP-PV)+bias;
cs := if AntiWindup

then max(CSmin,min(CSmax,satin))
else if ts then tr else satin;

FBout := (Ti*pre(FBout)+Ts*cs)/(Ti+Ts);
end when;

equation
CS = cs;

initial equation
pre(FBout) = if AntiWindup

then max(CSmin,
min(CSmax,CS_start))

else CS_start
- bias - K*(SP-PV);

end PI;

3.2 Continuous and discrete time co-existing

The basic principle of relay-based autotuning was introduced
in Åström and Hägglund (1984), and then developed in Åström
and Hägglund (1991); Leva (1993); Besançon-Voda and Roux-
Buisson (1997); Luyben (2001); Leva (2005) and many other
papers. In a nutshell, the idea is to force the controlled variable
to enter a permanent oscillation condition via relay feedback,
employ said oscillation’s characteristics to estimate one point
of the process frequency response, and finally compute the reg-
ulator parameters so that one point of the open-loop frequency
response be suitably assigned; a survey on the matter, for the
interested reader, can be found in Yu (1999).

The autotuning PI block is used to show continuous- and
discrete-time models of the same controllers that co-exist, the
simulation switching from one representation to the other. The
reason to do so is that autotuners are typically expressed as
procedures and hardly realisable as dynamic system only, if not
at the price of much complexity. It is then advisable to model
an autotuner as a digital block only.

On the other hand, when no autotuning is in progress, there is
no reason why the digital nature of the block should hamper
efficiency by preventing e.g. the use of variable step solvers.

The way to go is then to have both descriptions of the block (the
tuned regulator) in place, and activate the digital one only when
autotuning is in progress. This is illustrated by the PI autotuner
of listing 3.

The tuning procedure is relay-based, using the scheme of figure
3: the process frequency response point with phase −90◦ is
found with relay plus integrator feedback, and then the PI is

1
s

R(s)

P(s)
y◦ +

PI mode

AT mode

u y

−

Fig. 3. Basic scheme for relay-based (PI) autotuning.

tuned for a specified phase margin. Since the used autotuning
method is very well known, no further details on that are given.

Listing 3: autotuning PI.

model ATPIrelayNCmixedMode
// ... declarations omitted for brevity ...

equation
// Continuous-time antiwindup PI
satIn = K*(SP-PV)+linFBout;
CSpi = Ti*der(linFBout)+linFBout;
CSpi = noEvent(max(CSmin,min(CSmax,satIn)));
// Output selection
if iMode==0 or iMode==1 then // 0, PI or 1, AT init

CS = CSpi;
else // 2, AT run

CS = CSat;
end if;

algorithm
// Autotuning procedure
when initial() then

K := K0;
Ti := Ti0;
AT := false;

end when;
// Turn on AT when required
when ATreq and sample(0,Ts) then

if not AT then
AT := true; // set AT flag on
iMode := 1; // set next mode to AT init

end if;
end when;
// AT init mode, set next mode to AT run
when AT and iMode==1 and sample(0,Ts) then

CSat := pre(CSpi);
UP := false;
period := 0;
wox := 0;
Pox := 0;
rPVmax := pre(PV);
rPVmin := pre(PV);
rCSmax := CSat;
rCSmin := CSat;
lastToggleUp := time;
nOx := 0;

end when;
// AT shutdown;
when (iMode==1 or iMode==2) and not AT

and sample(0,Ts) then
// re-initialise the continuos-time PI
iMode := 0;
reinit(linFBout,CSat);

end when;
// AT run mode
when AT and iMode==2 and sample(0,Ts) then

// Manage relay
if UP==false and PV<=SP then

UP := true;
end if;
if UP==true and PV>SP then

UP := false;
end if;
if UP==true then

CSat := CSat + slope*Ts;
else

CSat := CSat - slope*Ts;
end if;
// record relay id max and min for PV and CS
if PV>rPVmax then

rPVmax := PV;
end if;
if PV<rPVmin then

rPVmin := PV;
end if;
if CSat>rCSmax then

rCSmax := CSat;
end if;
if CSat<rCSmin then

rCSmin := CSat;

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WeB2.4



end if;
// tune if perm ox
if UP==true and pre(UP)==false then

period := time-lastToggleUp;
lastToggleUp := time;
if period>0 and nOx>=nOxMin

and abs(period-pre(period))/period
< permOxPeriodPerc/100 then

AT := false;
wox := 2*pi/period;
Pox := piˆ2*(rPVmax-rPVmin)/8

/(rCSmax-rCSmin);
Ti := tan(pm/180*pi)/wox;
K := tan(pm/180*pi)/(Pox

*sqrt(1+(tan(pm/180*pi))ˆ2));
end if;
rPVmax := PV;
rPVmin := PV;
rCSmax := CSat;
rCSmin := CSat;
nOx := nOx+1;

end if;
end when;

end ATPIrelayNCmixedMode;

For reference, the library also contains a fully digital version of
the same autotuner, where no continuous-time PI is used. The
code is omitted for brevity.

3.3 Some overall remarks

As can be seen, when turning the continuous-time controller
into the discrete-time one, not only its linear behaviour but
also nonlinear features like antiwindup need considering. For
example, should listing 2 be realised by integral term recompu-
tation or actuation error feedback, both legitimate and widely
used antiwindup techniques in the discrete time domain. Its
behaviour would not replicate correctly that of listing 1. As a
rule of thumb,

• when starting from a continuous-time block the best pol-
icy is to start from its block diagram, including possible
nonlinear parts, and to discretise each (linear) component
– as 1/(1+ sTi) in the example – individually,
• while if one starts from a discrete-time block – e.g., to

include a specific product also as continuous-time model
– it is advisable to express its diagrams so as to have only
one-step delay terms, and then convert to continuous-time
by back-applying the discretisation method of choice.

Note also that functionalities easy to express in the discrete
time – e.g., automatic/tracking bumpless switch – actually re-
quire the corresponding continuous-time model to be switch-
ing stricto sensu, which is hard to manage for virtually any
object-oriented model translator. Experience has shown that
the problem can be practically worked around by introducing
some additional “very fast” dynamics, exhausting its effect
in far less than a sampling period. The only warning in this
respect is to adopt solvers that are implicit or at least account
for the possibly introduced spurious stiffness, so as to avoid
numerical problems. Such features are offered by all the major
tools, however. Finally, observe how initialisation is handled.
The example should be self-explanatory also concerning its
generalisation, but this is another quite critical issue. The same
considerations apply to re-initialisation when employing both
descriptions in the same simulation, as advised for autotuning.

By applying the simple practices just sketched, one can thus
model any controller (PID and not only) both as a continuous-
time and a digital one, no matter what type of information
– the extrema being a formal specification only, or a product
operation description – is available for the design.

4. APPLICATION EXAMPLES

4.1 Block consistency

Fig. 4. Modelica diagram for the “block consistency” example.

This example shows whet is meant for “block consistency”. A
simple loop with the process

P(s) =
1

1+5s
(1)

and a PI having Kp = 6, Ti = 3 is simulated both entirely in
the continuous time, and with a digital PI with a sampling time
of 0.5 seconds (definitely not quite short). The used Modelica
scheme is shown in figure 4.

The outcome of a 60-seconds simulation are shown in figure 5,
the applied stimuli being a set point and a load disturbance step,
the former driving the control signal transiently into saturation.

It can be seen that the correspondence between the two rep-
resentation is good, which would not be true if the practices
sketched above were not adopted. As for efficiency, the entirely
continuous-time realisation requires 128 computation steps for
the entire run, versus the 1643 of the realisation with the digital
PI.

Apparently, having consistent descriptions of controllers in the
two domains does allow the analyst to manage the trade-off
between simulation speed and detailed representation of the
relevant signals and dynamics.

4.2 Autotuning

This example refers to the autotuning PI of Section 3.2; the
process under control is described by the transfer function

P1(s) =
1

(1+ s)3 (2)

and the autotuning PI, in both the fully digital (here omitted)
and the hybrid versions, is employed with a sampling time
Ts of 0.1s, first leading the loop to steady state with a low-
performance initial PI, then performing the autotuning opera-
tion with a required phase margin of 45◦, and finally testing the
so obtained PI with a set point and a load disturbance step.

Figure 6 shows the used Modelica diagram, while figure 7
reports the results, proving that the two realisations are de facto
identical as for their outcome (in both cases, for example, the
tuned PI has K = 1.078 and Ti = 1.751).

On the other hand, however, the number of simulation steps
required by the system with the hybrid autotuner in the 240-
seconds presented run is 3908, versus the 24007 of the system

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WeB2.4



Fig. 5. Simulation results of the “block consistency” example.

with the fully digital one. With so simple a process this does
not turn into a significant reduction of the simulation time, but
with more realistic (thus computation-intensive) a model of the
controlled object, said advantage would – again – be evident.

Fig. 6. Modelica diagram for the autotuning example.

5. EXTENSIONS

At present, the library just contains some basic blocks, and its
modulating part – the only one shown here – is apparently quite
PI(D)-centric.

Of course several extensions are envisaged and some are al-
ready underway. Focusing on this point, some specific words
on the “extensions” subject are in order, to better clarify how
the authors envision this project from an overall standpoint—
which of course is just an opinion as the code is being released
within the terms of an open license, thus not only derivate works
substantiating different points of view are possible, but their
creation would be considered a success for the initiative.

Coming back to the main point of this section, apart from the
specific subject of this work – that focuses on the consistent
co-existence of continuous-time and event-based representation
for the same control block – in simulation environments there
is undoubtedly a strong need for controller representations that
are accurate enough a replica of what will then be installed on
the real plant. The question, in a view to designing future library
extensions, is therefore how far such an idea needs pushing.

In this respect, at least the opinion of the authors is that two
main cases can be broadly distinguished.

• The goal is to have an exact representation of what hap-
pens with a given control architecture—e.g., a given DCS
and/or SCADA by a given manufacturer, or any combi-
nation thereof. This requires to develop huge libraries, as
rich as the typical menu of industrial control configura-
tions is, replicating exactly the choices of the considered
manufacturer(s). No doubt this has a practical relevance,
but no doubt either this is outside the scope of the project
presented here. Users willing to undertake a work like
that just described, however, can find the continuous-time
models ready, and get inspiration from their event-based
counterparts as for the way to go when replicating the
particular algorithms they need to consider.

• The goal is to determine which characteristics a control
architecture and/or algorithm should possess in order to
properly realise a given control strategy described in the
continuous-time domain. This may happen for example
when a custom controller has to be designed, which is
not infrequent e.g. in the embedded systems’ domain, and
one has to choose the processor, size the converters’ res-
olution, write and test the digital algorithm, and so forth.
Here too, interested users can take profit of the presented
work in more or less the same way as in the previous
case, with the only difference that a small number of
specific blocks need developing instead of a vast library
of general-purpose ones.

Quite intuitively other situations can be envisaged, but the two
just mentioned appear to be the most interesting ones. In a view
to facilitate both library uses without requiring too much time to
sufficiently master the library itself, the decision was thus taken
to expand the existing nucleus including other basic control
blocks such as the lead-lag, the fixed time delay or similar ones,
but not to include a large set of pre-assembled control structures
like e.g. the cascade one. Such structures can be in fact realised
with the set of basic blocks that will be present in the library
after the present developments are complete.

On the other hand, plans are to expand the set of autotuning
methods and procedure. According to the authors’ experience,
in fact, in the majority of cases where the introduction and

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WeB2.4



Fig. 7. Simulation results of the autotuning example with both the hybrid version presented and the fully digital one.

use of autotuning were not successful, a significant part of that
undesired outcome is to be blamed on an incorrect choice of the
tuning procedure. Such a choice is however sometimes tricky,
as it consists not only of choosing a “good” tuning method and
an “informative” way of providing control specifications, but
also of accounting for the process stimulations that will then
be used to gather the required data, considering issues such as
actuator limits, noise, possible outliers and so forth.

Having the possibility of experimenting not only with auto-
tuning methods in control analysis environments, but also with
autotuning procedures coupled to accurate process simulators,
is in the authors’ opinion an effective way to foster a correct use
of the autotuning technology, let alone a deeper comprehension
of it and its application for users who may also need to set up,
and not just to select and use, autotuning controllers.

Finally, in the light of the development line just sketched, effort
will be spent to expand the library section devoted to logic
control – not treated here given the scope of this particular work
– and its integration with the modulating one.

6. CONCLUSIONS

In this paper a library of controller models was presented. The
main peculiarity of the library is that controllers are represented
both as continuous-time models and as digital ones. The two
representations are kept consistent and the user can simulate
the behaviour of the controllers with both of them.

This allows, for example, to design a controller based on its
continuous time representation and to assess its event based im-
plementation behaviour, using in each case (or any combination
thereof if the system comprises more than one controller) an
overall model the complexity of which is tailored to the study
at hand.

A key role in the library is to be played by autotuning, which
was here initially considered, and for which the co-existence
of the mentioned two representation is particularly beneficial
from the standpoint of simulation efficiency. Some tests were
reported, both to show that the two representations are kept con-
sistent, and to present an autotuning PI exploiting the proposed
modelling approach.

The presented library will be in the future extended to form
a larger one, since at present it is mainly focused – as far as
modulating control is considered – on standard PI and PID
regulators.

Guidelines for such extensions were provided, but the authors
also hope that this project may encourage and stimulate coop-
eration, so that different points of view can be explored.

REFERENCES

Åström, K. and Hägglund, T. (1984). Automatic tuning of
simple regulators with specifications on phase and amplitude
margins. Automatica, 20(5), 645–651.

Åström, K. and Hägglund, T. (1991). Industrial adaptive con-
trollers based on frequency response techniques. Automatica,
27(4), 599–609.

Åström, K. and Hägglund, T. (2006). Advanced PID control.
Instrument Society of America, Research Triangle Park, NY.

Besançon-Voda, A. and Roux-Buisson, H. (1997). Another
version of the relay feedback experiment. Journal of Process
Control, 7(4), 303–308.

Casella, F. and Leva, A. (2006). Modelling of thermo-hydraulic
power generation processes using Modelica. Mathematical
and Computer Modelling of Dynamical Systems, 12, 19–37.

Dorf, R. and Bishop, H. (1995). Modern control systems.
Addison-Wesley, Reading, UK.

Leva, A. (1993). PID autotuning algorithm based on relay
feedback. IEE Proceedings-D, 140(5), 328–338.

Leva, A. (2005). Model-based proportional-integral-derivative
autotuning improved with relay feedback identification. IEE
Proceedings - Control Theory and Applications, 152(2),
247–256.

Luyben, W. (2001). Getting more information from relay
feedback tests. Ind. Eng. Chem. Res., 40(20), 4391–4402.

Mattsson, S., Elmqvist, H., and Otter, M. (1998). Physical sys-
tem modeling with Modelica. Control Engineering Practice,
6, 501–510.

Yu, C. (1999). Autotuning of PID controllers: relay feedback
approach. Springer-Verlag, London.

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WeB2.4




