
A PI-based control structure
as an operating system scheduler

Martina Maggio, Federico Terraneo, Alessandro V. Papadopoulos, Alberto Leva

Politecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza Leonardo Da Vinci, 32 - 20133 Milano, Italy
{maggio,terraneo,papadopoulos,leva}@elet.polimi.it

Abstract: Many functions of operating systems are keen to be realised as feedback controllers. Doing
so has a non negligible design impact, but also a significant payoff in terms of simplicity and generality.
This paper presents a complete operating system scheduler, at present implemented in a microcontroller
kernel, entirely composed of a PI-based control structure. The proposed scheduler is experimented with
in several load conditions. In all of them, it performs in a comparable manner with respect to the classical
(i.e., not control-based) policy optimised for that condition, as long as design assumptions such as
schedulability are met. In addition, if some off-design situation is encountered, the proposed control-
based scheduler definitely outperforms those not conceived as controllers.

Keywords: PI-based control structures; scheduling; operating systems.

1. INTRODUCTION

The complexity of operating systems is nowadays abruptly in-
creasing, and even the architecture of some core functionalities
are being affected. To give just one example, consider the Linux
scheduler. In the Kernel version 2.4.37.10 (September 2010)
all of its code was contained in a single file of 1397 lines. In
version 2.6.39.4 (August 2011) the scheduler code is spread
among 13 files for a total of 17598 lines. Other examples could
be given, but are omitted for space limitations. Indeed, when
such “explosions” are experienced, it is at least advisable to
somehow reconsider the overall design approach.

Observing the matter from a system- and control-theoretical
standpoint, and by the way not necessarily limiting the scope
to the scheduler case treated herein, it can be noticed that
hardly any operating system functionality has been conceived
and developed based on a dynamic model of some physical
phenomenon to be controlled. In the scheduler case, the phe-
nomenon is how the CPU is distributed among the running
tasks, depending on control actions (the allotted timeslices) and
exogenous disturbances (task blockings, resource contentions,
and so on); see Pinedo (2008); Brucker (2007) for details. The
situation just sketched has quite clear historical reasons. Suffice
to say that, while in any other context controlled objects can
be modelled based on physical (first) principles, this is not
the case for computing systems, because there the “physics”
is created by the system designer him/herself. In the absence of
a modelling framework, system design is carried out directly in
an algorithmic setting, leaving the engineer without any means
to assess its behaviour in the sense that term is given in the
system and control theory domain.

While such a scenario could to date be tolerated, given the
mentioned complexity rate increase, it cannot be assured that
said tolerability will carry over to the future. In fact, as “more
physics” is created, the absence of a rigorous dynamic descrip-
tion of it may sooner or later pose intractable problems as
for its governance. As a consequence, rigorous – and possibly

simple – modelling frameworks to ground system design upon
are needed. The main message this paper wants to convey,
is that if one accepts to re-design part of said system, such
a framework can be found by (usefully) limiting the model
scope to describing the real physical phenomenon on which
the addressed aspects of the system behaviour depend. If this
is done, surprisingly simple formalisms can be used—a notice-
able example indeed of process/control co-design.

This paper shows that, by adopting the attitude just sketched,
the scheduling problem can be handled with a single, PI-
based control structure – named I+PI –, unifying in a single
framework the treatment of cases that are generally addressed
by devising ad hoc individual solutions. In this paper the
focus is set on a single problem, albeit very relevant and
emerging with various flavours, as such a specialisation allows
to describe the entire design process, from control synthesis
through formal assessment and simulation, up to real code
for a kernel targeted to microcontrollers, named Miosix, and
released as free software 1 . However, in the authors’ opinion,
many other computing system problems can be addressed in a
way similar to this, revealing further effective applications for
simple controllers such as PIDs.

2. THE CONTROL SCHEME

In this work a “scheduler” is realised as a feedback controller.
This implies a perspective shift from the idea of complementing
the original scheduler with a control mechanism able to tune
its parameters, which is the classical adaptation approach, for
example seen in Batcher and Walker (2008); Lu et al. (2002);
Xu et al. (2006); Palopoli and Abeni (2009); Cucinotta et al.
(2010); Abeni et al. (2002); Xia et al. (2007).

1 The code for Miosix and all the experiments reported here is available
at http://home.dei.polimi.it/leva/Miosix.html. At the same
URL the reader can find full kernel licence details, and the entire result datasets
of which only a part is here reported.

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 ThA1.4



Fig. 1. The proposed “scheduler as controller” scheme.

2.1 Synthesis

The starting point for this work is Leva and Maggio (2010),
where a single-processor multitasking system with a preemp-
tive scheduler is considered, and the N processes to be sched-
uled are activated circularly, assigning them a certain amount
(possibly zero) of CPU time. Feedback is introduced in that said
CPU time amounts come from the computation performed by a
controller. To briefly review the matter, define the “scheduling
round” as the time between two subsequent scheduler interven-
tions, and let τp(k) ∈ ℜN , τr(k) ∈ ℜ, b(k) ∈ ℜN , δb(k) ∈ ℜN

represent, respectively,

• the CPU times actually allocated to the processes in the
k-th scheduling round,
• the actual duration of the k-th round,
• the CPU times or bursts assigned to the processes at the

k-th round,
• the disturbances possibly acting on the scheduling action

during the k-th round, that appear as a difference between
the burst and the CPU time actually consumed by the
process,

Denoting by t the total time actually elapsed from the sys-
tem initialisation, the scheduling problem can be addressed by
describing the controlled system (the process pool) with the
simple model {

τp(k) = b(k−1)
τr(k) = r1τp(k−1)
t(k) = t(k−1)+ r1τp(k−1)

(1)

where r1 is an all-ones row vector of length N. The scheduler is
then synthesised as a cascade controller, where the internal loop
manages the CPU time distribution among the processes within
the round, and the external one controls the time between two
subsequent scheduler interventions (i.e., the desired “round du-
ration”). In the cascade structure, the internal loop is controlled
by a diagonal I regulator, while a PI SISO one is used in the
external loop; this motivates the name I+PI.

Indicating with τ◦r the required round scheduling duration, and
with

α ∈ℜ
N , αi ≥ 0,

N

∑
i=1

αi = 1 (2)

the vector containing the required CPU time fractions to be
allocated to each process, it is quite intuitive to see that virtually
any specification on fairness, tardiness, and so forth, can be
expressed in terms of the two references τ◦r and α above. The
“scheduler as controller” scheme is thus represented by Figure
1, where an appropriate choice of the Rr and Rp regulators
allows to attain the round duration set point, and the desired
CPU percentages.

For details on the synthesis the reader can refer to Leva and
Maggio (2010). Suffice to say here that the single-input, single-

output system with input bc and output τr seen by Rr in figure
1 has the transfer function

Tr(z)
Bc(z)

=
kpi

z(z−1)
(3)

while the closed-loop transfer function from τ◦r to τr is
Tr(z)
T ◦r (z)

=
kpikrr(z− zrr)

z3−2z2 +(1+ kpikrr)z− kpikrrzrr
(4)

and the choice of the parameters kpi, krr, and zrr is easily related
to the desired closed-loop behaviour thanks to the simplicity of
(1). In the example, kpi = 0.5, krr = 0.9, and zrr = 0.88.

The availability of the round duration and CPU distribution set
points allows to formulate a variety of scheduling objectives,
since the former is related to responsiveness and the latter
to possibly weighted fairness Maggio and Leva (2010). Also,
the extreme simplicity of (1) allows for an almost model-free
synthesis of Rr and Rp regulators, and to efficiently simulate
the control system so as to verify that the requirement specifi-
cations are met prior to implementation.

2.2 Implementation

The full scheduler implementation is outlined in Figure 2. The
scheduler can be divided in two parts:

• The I+PI controller algorithm, described in Leva and
Maggio (2010) and summarised in Algorithm 1, which
computes the bursts values. It should be stressed that I+PI
runs once per round, not once per task. At the beginning
of each round I+PI computes the values for all the units
present in the task pool. Tasks can be then run one after the
other without any further scheduler intervention, except
than very simple context switches.

• The set point generator, that needs running only when
changes occur in the task pool, the required CPU distri-
bution, the required round duration or any combination
thereof. Its aim is to compute the reference signals for the
I+PI algorithm. Set point generation can be further divided
into “overload detection and rescaling” and “reinitialisa-
tion and feedforward”.

It is worth evidencing that the correct behaviour of the sched-
uler in terms of stability and performance can be checked for-
mally. This is very important to streamline the design process,
as once the core algorithm is written, parametrised and checked,
all the rest of the code structurally cannot have unexpected or
disruptive impacts on the system. Needless to say, also the code
structuring and modularisation takes profit from the concepts
just recalled.

Since I+PI is a closed-loop scheduler, it requires measurements
of the actual CPU times consumed by the individual tasks in
the previous scheduling period. To achieve that, the Miosix
implementation makes use of a hardware timer that can also

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 ThA1.4



Fig. 2. Implementation scheme, containing the I+PI regulator
and the set point generator.

be configured for scheduling preemption. The timer is started
at the end of the context switch code and its value is read at the
beginning of the next switch. This allows to measure execution
time with a fine-grained resolution.

Set point generation is ruled by two input parameters. One
is an estimate of the CPU percentage that each task requires,
for example not to miss deadlines. The second is the relative
importance of each task, which is used to handle CPU overload
situations. These parameters can be set by the task itself through
an API provided by the Miosix kernel, and can be dynamically
changed during the lifetime of the task to reflect changes in its
behaviour. In addition, the scheduler needs to know which tasks
are blocked, for example sleeping or waiting for I/O operations.

Algorithm 1 I+PI algorithm (the complete C implementation is
about 40 lines long)

Initialize the I and the PI state variables
for each scheduling round k do

Read the measured CPU times used by the Nt tasks in the previous round
into vector τt(k−1)
Compute the measured duration of the last round as τr(k − 1) =

∑
Nt
i=1 τt,i(k−1)

Read the required round duration τ◦r (k−1)
if the task pool cardinality or parameters have changed then

Reinitialize bi(k) to the default values
else

Compute the burst correction bc(k) for this round by the PI algorithm:
bc(k) = bc(k−1)+krr(τ

◦
r (k−1)−τr(k−1))−krrzrr(τ

◦
r (k−2)−

τr(k−2))
Apply saturations to bc(k)
Compute the vector α(k) of required CPU time fractions
for each task i do

// Compute the burst vector b(k) for this round the by the I
algorithm:

τ◦t,i(k) = αi(k)τ◦r (k)
bi(k) = bi(k−1)+ kit(τ

◦
t,i(k)− τt,i(k−1))

Apply saturations to bi(k)
end for

end if
Activate the Nt tasks in sequence, preempting each of them when its burst
is elapsed

end for

2.3 Overload detection and rescaling

From time to time, especially in soft real-time systems, the
CPU utilisation may exceed the unity. This means that the sum
of the required CPU percentages (for all nonblocked tasks)
exceeds one. This situation is used in the proposed solution to
detect a CPU overload situation, signalling that the task pool
is not schedulable. This overload indicator is used to select the
rescaling policy to be used.

If the task pool is schedulable the “rescale to one” policy
is used to produce vector α , by rescaling the required CPU
percentage vector so that its sum equal one. For example,
consider a task pool with four tasks, of which three require a
20% CPU share, and the fourth one is blocked and therefore
requires zero CPU share. The policy will result in an α array of
{0.33,0.33,0.33,0}. This policy will, by design, give a CPU
share greater or equal than the one requested by the tasks,
ensuring that the tasks have enough CPU to carry out their job
successfully. It is particularly significant that this policy ensures
good real-time performance – the following benchmarks should
evidence it – even without the scheduler having any knowledge
of deadlines whatsoever. In other words deadlines are implicitly
enforced by ensuring that the involved tasks receive enough
CPU share on time.

In the presence of CPU overload, conversely, this policy is not
adequate. Consider an example with three tasks, all of which
require a 50% CPU share. The rescaling would give a CPU
share of 33% to all three tasks, so if deadlines are present all of
them will eventually start missing. In this case the “rescale with
relative importance” policy is thus used. This policy first weighs
the CPU share using the relative importance parameter and then
rescales the resulting α vector to have unitary sum as before. As
a result, two tasks that require the same CPU share will receive
a burst proportional to their relative importance parameter. This
significantly differs from classical approaches to tackle similar
issues, that are typically based on task priorities, in that the
proposed policy allows to predict the CPU share that will
be received by all tasks even in the case of overload. Also,
and again differing from priority-based techniques, the relative
importance parameter is only taken into account when CPU
overload occurs, therefore having no influence when the pool
is schedulable.

2.4 Reinitialisation and feedforward

Regulator reinitialisation and feedforward have been intro-
duced to improve the scheduling dynamic performance in the
presence of task blockings. A task is said to block if it stops
being able to accept the CPU for a period of time. Blocking
causes include voluntarily sleeping, waiting on a locked mutex
or other synchronization primitives, or waiting for an I/O oper-
ation to complete.

The I+PI algorithm is intrinsically capable of responding to task
blockings due to its closed loop nature, without any external
intervention. However, reinitialisation and feedforward control
were introduced to improve its dynamic performance. To show
the advantages of using these two features, a simple example of
what happens if reinitialisation and feedforward are not present
is presented. Consider a case with two tasks, of which one
repeatedly blocks. In this case the external PI regulator is able
to quickly regain control of the round time duration, but in the
meantime the integral regulator of the blocked task is subject

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 ThA1.4



to a constant error and, as such, diverges till saturation occurs.
When the blocked task becomes ready again, the scheduler as-
signs to it a very long burst, equal to the saturation value. While
this situation is recovered after a short number of rounds, these
spikes in the round duration may cause deadline misses. An
experiment showing how this can actually happen is depicted
in Figure 3.

Fig. 3. Effects of task blockings on the round duration control
(data from hardware implementation).

3. RESULTS

The I+PI algorithm, together with the classical RR (Round
Robin) and EDF (Earliest Deadline First) scheduling policies,
has been implemented in Miosix. All the tests were made
with a stm3210e-eval board, equipped with a 72 MHz
ARM microcontroller and a 1 MB external RAM, from which
the code executes. Two test sets are presented. The first one
compares I+PI to RR and EDF with a benchmark conceived for
periodic tasks, limiting the scope to feasible CPU utilisations,
and shows that I+PI closely approaches the EDF (optimal)
results although not being tied to the concept of deadlines. The
second one considers the apparently off-design condition of a
task pool not schedulable owing to CPU over-utilisation, where
the approach behind I+PI makes it inherently superior to non
control-theoretic ones.

3.1 Test set 1 (Hartstone benchmark)

The Hartstone benchmark Weiderman and Kamenoff (1992)
is used here to compare I+PI to EDF and RR. Hartstone is
composed of several series of tests; each consists of starting
from a baseline task system, verifying its correct behaviour, and
then iteratively adding stress to that system and re-assessing
its behaviour until said assessment fails. The amount of added
(affordable) stress allows to measure the system capabilities.
This work concentrates on the Hartstone PH (Periodic tasks,
Harmonic frequencies) series, that refers to periodic tasks, and
stresses the system by adding tasks and/or modifying their pe-
riod and/or workload. The baseline system is composed of five
periodic tasks, that execute a specific number of Wheatstones
Weiderman and Kamenoff (1992) within a period; the workload
rate is thus expressed in Kilo-Whets Instruction Per Second
[KWIPS]. A Kilo-Wheatstone corresponds in our architecture
to a CPU occupation of 1.25ms, maintained constant through all
the tests. As per the benchmark, all the tasks are independent:
their execution does not involve synchronisation, they do not
communicate with one another, and are all scheduled to start
at the same time. The deadline for the workload completion of
each task is the beginning of its next period.

Table 1. The Hartstone baseline task set.

task frequency workload workload rate (workload/period)

1 2 Hertz 32 Kilo-Whets 64 KWIPS

2 4 Hertz 16 Kilo-Whets 64 KWIPS

3 8 Hertz 8 Kilo-Whets 64 KWIPS

4 16 Hertz 4 Kilo-Whets 64 KWIPS

5 32 Hertz 2 Kilo-Whets 64 KWIPS

Table 1 gives details on the baseline system. In the first test, the
highest-frequency task (number 5) has the frequency increased
by 8 Hertz at each iteration, until a deadline is missed. This tests
the system ability to switch rapidly between tasks. In the second
test, all the frequencies are scaled by 1.1, 1.2, . . . at each itera-
tion, until a deadline is missed. This means testing the system’s
ability to handle an increased but still balanced workload. The
third test starts from the baseline set and increases the workload
of each task by 1, 2, . . . Kilo-Whets at each iteration. This
increases the system overhead in a non balanced way. In the
last test, at each iteration a new task is added, with a workload
of 8 Kilo-Whets and a frequency of 8 Hertz (as the third task of
the baseline set). This test stresses the system’s ability to handle
a large number of tasks.

Figure 4 graphically shows the results for the four tests, present-
ing both the number of successful iterations (higher is better)
and the number of context switches per second in the last
successful iteration (lower is better). In most cases the number
of successful iterations and context switches per second of I+PI
are similar to those of EDF, which is notoriously optimal for
a schedulable set of periodic tasks. In fact, EDF significantly
outperforms I+PI only in the first test, which is apparently the
most extreme as for asymmetry in the task periods. This is
not to diminish the relevance of the fact but, for example, if
in an embedded device a critical task needs to be executed at
so higher a rate than the others, one would probably consider
hooking it to a timer interrupt. On the other hand, I+PI is
definitely superior to RR in any sense.

3.2 Test set 2 (extended Hartstone benchmark)

Benchmarks like Hartstone are useful to provide a simple and
clear comparison test bed, but do not aim at representing “real
life” workloads. For example, any scheduler regularly encoun-
ters pools of tasks where each task has its own characteristics.
Also, a scheduler may be requested to recover correct operation
of (soft) real time tasks after a transient CPU over-utilisation, or
even to withstand a long-lasting over-utilisation by maintaining
the timely operation of certain tasks. Intuitively, the general
approach behind I+PI is well suited to address such issues. In a
view to witness that, I+PI is here compared to EDF and RR
in an extension of the Hartstone benchmark. In the reported
tests of Figure 5 the way of increasing the system load is the
same of the corresponding tests of Figure 4. However, the load
is not increased gradually but set so as to result in a 48% CPU
utilisation from 0 to 30 seconds, then a 120% utilisation from
30 to 45 seconds and 48% again till the end of the test at 120
seconds. Figures 5(a), 5(b), 5(c) and 5(d) report respectively
the total number of misses and of context switches per second
in the four tests (lower is better for both). As can be seen,
I+PI invariantly achieves the least miss rate, with a moderately
higher number of context switches per second with respect to
EDF; RR performances are definitely inferior.

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 ThA1.4



(a) Hartstone test 1 (b) Hartstone test 2

(c) Hartstone test 3 (d) Hartstone test 4

Fig. 4. Results for the Hartstone benchmark Weiderman and Kamenoff (1992).

(a) Extended Hartstone test 1 (b) Extended Hartstone test 2

(c) Extended Hartstone test 3 (d) Extended Hartstone test 4

Fig. 5. Results for the extended Hartstone benchmark.

4. DISCUSSION

From all the reported tests, it can be concluded that I+PI may
in some cases be not optimal, but normally approaches optimal
performance and above all does not require any assumption on
the nature of the tasks (e.g., periodic or not). It is also worth

noticing that the I+PI implementation shown here was realised
with floating point computations with an architecture that has
no hardware support for them. This was done for convenience
reasons inessential to explain here, but could be safely replaced
by a sufficiently precise fixed point arithmetic version. Needless

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 ThA1.4



to say, this would move the experimental evaluation balance
further toward I+PI.

Although from a control-theoretical point of view the proposal
reported herein is extremely simple, it is definitely an inno-
vation if compared to how operating system schedulers are
typically designed. In fact, in that design process one typically
starts with some objective expressed in common language, such
as “the CPU must be distributed evenly” or “no deadlines must
be missed if the pool is schedulable”. From said objectives,
most frequently the designer attempts to figure out an algorithm
that solves the problem, implements it, performs the convenient
checks, and if something does not go as expected, thinks and
figures out another algorithm. In the process just sketched, in
the authors’ opinion, there are some relevant flaws. First, it is
sometimes unclear how to formally represent the requirements
and the designed system so that the former can be assessed prior
to realising the latter. There are some analysis tools, but hardly
anything capable of dealing with the online system behaviour.
Second, and somehow a consequence, there is no guidance for
the designer except experience and intuition. Third, interven-
tions are made on the code directly: coupled with a certain
overemphasis on the quest for reuse, this too frequently results
in extremely cumbersome implementations (recall the Linux
scheduler blast). In fact, all the above can be summarised in
a single statement. A control problem is being solved, but in
the classical procedure there is no evidence of the fundamental
elements of a formalised control problem. All in all, this is how
“unnecessary physics” is brought into the system, making it
difficult to control unless said useless physics is preliminarily
removed.

Coming to more implementation-related facts, it must be ac-
knowledged that adopting the design paradigm shift here en-
visaged may not be cost-free at all. The “non formal” prac-
tices classically adopted have led to system (think again of the
Linux kernel) that are extremely unsuited to being modelled in
control-theoretical terms. In a control system correctly speci-
fied, replacing a control strategy with another (simplifying for
brevity) is basically a matter of modifying blocks and lines in
a block diagram. Interacting with modern kernels is definitely
not that easy: many functions are used in many different context
for different purposes, for example, so that too often a local
intervention has undesired and unforeseen effects. This is why
the Miosix kernel was selected, and is progressively becoming
a test bed to show how control-grounded engineering can help
at virtually any design level.

5. CONCLUSIONS

In this paper a control-theoretical approach to task scheduling
was presented, leading to a novel design process. With the tradi-
tional modus operandi of the computing system community, in
fact, one starts from desires expressed informally, and figures
out an algorithm capable of attaining said desires. Modifica-
tions and refinements are then cyclically introduced by testing
the algorithm in a supposedly wide enough variety of situations,
and to decide which modification to introduce, experience and
intuition play a crucial role. This frequently results in complex
code, where the real effect to a certain modification is hard to
predict and can only be appreciated after a long programming
work.

With the proposed control-centric design perspective, the de-
sign cycle involves only models, thereby resulting faster and

generally leading to simpler algorithms. Also, it was shown
that a model-driven choice of inputs and outputs, combined
with a properly designed feedback structure, allowed to treat
off-design situations at runtime in an effective and formally
verifiable manner.

In this work, the I+PI scheduler was implemented on real
hardware within the Miosix kernel. Its behaviour was tested
through the Hartstone benchmark and compared with other
commonly used scheduling algorithms. An extension of the
Hartstone benchmark was also proposed, to evaluate some
cases that are not considered by the standard set of tests. The
I+PI implementation is outperformed by some other algorithm
only in cases for which that algorithm is specifically tailored,
and that strictly do not violate the nominal hypotheses under
which that algorithm is designed. On the other hand, I+PI is
more complex than the sole pure round robin, and treats all
cases and their mixtures.

REFERENCES

Abeni, L., Palopoli, L., Lipari, G., and Walpole, J. (2002).
Analysis of a reservation-based feedback scheduler. In Pro-
ceedings of the 23rd IEEE Real-Time Systems Symposium,
71–80.

Batcher, K.W. and Walker, R.A. (2008). Dynamic round-robin
task scheduling to reduce cache misses for embedded sys-
tems. In Proceedings of the conference on Design, automa-
tion and test in Europe, DATE ’08, 260–263. ACM, New
York, NY, USA. doi:http://doi.acm.org/10.1145/1403375.
1403438.

Brucker, P. (2007). Scheduling algorithms. Springer.
Cucinotta, T., Palopoli, L., Abeni, L., Faggioli, D., and Lipari,

G. (2010). On the integration of application level and
resource level qos control for real-time applications. IEEE
Transactions on Industrial Informatics, 6(4), 479–491. doi:
10.1109/TII.2010.2072962.

Leva, A. and Maggio, M. (2010). Feedback process scheduling
with simple discrete-time control structures. IET Control
Theory & Applications, 4(11), 2331–2342.

Lu, C., Stankovic, J.A., Son, S.H., and Tao, G. (2002). Feed-
back control real-time scheduling: Framework, modeling,
and algorithms. Real-Time Systems, 23, 85–126. doi:http://
dx.doi.org/10.1023/A:1015398403337.

Maggio, M. and Leva, A. (2010). A new perspective proposal
for preemptive feedback scheduling. International Journal
of Innovative Computing, Information and Control, 6(10),
4363–4377.

Palopoli, L. and Abeni, L. (2009). Legacy real-time applica-
tions in a reservation-based system. IEEE Transactions on
Industrial Informatics, 5(3), 220–228. doi:10.1109/TII.2009.
2026272.

Pinedo, M. (2008). Scheduling Theory, Algorithms, and Sys-
tems. Springer, third edition.

Weiderman, N. and Kamenoff, N. (1992). Hartstone unipro-
cessor benchmark: definitions and experiments for real-time
systems. Real-Time Syst., 4(4), 353–382.

Xia, F., Tian, G., and Sun, Y. (2007). Feedback scheduling:
an event-driven paradigm. SIGPLAN Notice, 42(12), 7–14.
doi:http://doi.acm.org/10.1145/1341752.1341753.

Xu, W., Zhu, X., Singhal, S., and Wang, Z. (2006). Predictive
control for dynamic resource allocation in enterprise data
centers. In Proceedings of the 10th IEEE Network Opera-
tions and Management Symposium, 115–126.

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 ThA1.4




