
Tracking Simulation Based on PI Controllers and Autotuning

Mats Friman and Pasi Airikka

Metso, Automation Business Segment, Tampere, Finland (e-mail:
firstname.lastname@metso.com)

Abstract: A mechanism for automatic update of tracking simulator parameters is suggested. A tracking
simulator is a simulator, which runs in real time, and which corrects its own behavior (models) by
comparing real process measurements to simulator outputs. Typically, a process simulator, no matter if
static or dynamic, cannot adapt its behavior to reality, but the tracking simulator has this ability due to its
integrated update mechanism. A tracking simulator is commonly used for state estimation of non-linear
process models (simulation models). The suggested invention utilizes standard PI controllers, which
enables fast update of parameters. A major advantage with the PI controllers is that autotuning can be
applied and, hence, no tuning parameters need to be plucked out of the air. With the proposed innovation,
it will be easy to extend an ordinary process simulator to a tracking simulator, which can be used for
many purposes, including predictive and fault tolerant control, soft sensors, prediction of future plant
behavior, parameter estimation, and plant optimization.

Keywords: Dynamic Simulation, Tracking Simulation, PI control, Autotuning

1. INTRODUCTION

There are many reasons for using dynamic simulation. The
threshold for using simulation tools is basically a question of
enthusiasm and motivation since there is a very large
selection of high-quality solvers, modelling tools, and
libraries available for free. Many of these are open source
(Fritzson, 2003, Åkesson et al. 2009).

Traditionally, it has been time-consuming and expensive to
build and maintain simulation models, and this has efficiently
hindered their industrial use in daily operation. This problem
is gradually disappearing. More and more engineering
platforms utilize dynamic simulation already at process
design phase, and those models could be re-used during
operation, without any additional cost. Process &
Instrumentation diagrams that previously have been used to
document process design are already replaced with dynamic
simulations models. With such systems, simulation models
can easily be generated from a menu, for free.

Despite the long history of using dynamic simulation, it is
mostly used off-line. However, there are really huge
opportunities for using dynamic process models on-line, for
example in monitoring, control, and optimization tasks.

Examples of on-line usage of dynamic models include MPC
controllers (Richalet et al., 1978) and Kalman Filters
(Kalman, 1960). These applications, however, traditionally
employ linear models. Even though several nonlinear MPC
applications have been reported (Rawlings et al., 1994), the
advantage of non-linear models is not justified with the added
complexity in the optimization phase.

Simulation models are seldom re-used as such, e.g. from
training simulators. Sometimes a plant may use linear models

for MPC control and nonlinear simulations models for
operator training for the same unit process. In that case, the
same unit process model must be modelled twice.

Process models are built with a wide degree of complexity
and accuracy. In order to clarify this aspect, standards have
been developed. For example fossil fuel power plants have
been divided into three levels according to their complexity
and accuracy (ANSI/ISA, 1993).

A difficulty with simulation models is that the state of the
process cannot, as such, be copied into the simulator. If we,
for example, want to simulate an industrial process from the
current state, e.g. to show what will happen in the near future,
we should first initialize the state of the dynamic model to
match the state of the process. This task is far from trivial.
Even though some measurements are available on-line, the
state of the dynamic model may depend on some actions that
were implemented long ago.

One way of estimating the state of the process is to run the
simulator in parallel with the process with the inputs of the
process connected to the simulator, see Fig. 1a. With this
connection, the outputs of the process and simulator will,
however, usually diverge due to unknown or varying
parameters. To overcome this difficulty, a tracking simulator
is used (Fig. 1b).

IFAC Conference on Advances in PID Control
PID'12
Brescia (Italy), March 28-30, 2012 FrA1.4

mailto:firstname.lastname@metso.com)

Fig. 1a. A process simulator may be connected to a real process and
run in real-time. However, outputs from real process and simulator
will usually diverge if no update mechanism is used.

Fig. 1b. A tracking simulator is a process simulator with an update
mechanism, which tries to match simulator outputs with real process
outputs.

A tracking simulator is a simulator that is run in real-time, in
parallel to the process. It utilizes process measurements to
update its states and parameters, so that simulator outputs and
process measurements converge.

A problem with tracking simulators is that the adapting
mechanism may be slow due to the primitive update
mechanism used. It is common to use a mechanism that
updates parameters with an amount proportional to the
deviation between simulator and process measurement.
Although being simple, this mechanism is sometimes very
slow. Another problem is the selection of the numerical
values for the update, since they are usually tuned with trial
and error.

In this paper we present an innovative solution, which
overcomes the problems discussed above. We use PI
controller for speeding up the estimation of simulation model
parameters, and we use autotuning (Åström and Hägglund,
1984) techniques to make the parameter selection elegant and
systematic. We believe that the solution suggested here will
be useful when the use of dynamic simulation in daily
operation will grow.

2. PROPOSED STRUCTURE

Before describing the proposed solution we justify out
approach with a very simple motivating example. Despite
being simple, it well demonstrates the drawbacks with current
tracking simulators.

2.1 Motivating Example: Cooling Coffee

We use a simplified example to justify our idea and to
demonstrate the problems with known technology. The
example simulates cooling of coffee (Fig. 2), with an initial
temperature of 60 °C and the surrounding room temperature
alternating around 20 °C with the amplitude of 5 °C, and
period of 600 s. The dynamics is a quite typical first-order
system with the coffee temperature being the state variable.

Fig. 2. Cooling Coffee example. The purpose is to estimate room
temperature (TR) by comparing real (TC,mes)and simulated coffee
temperatures (TC,sim). The simulation block ("Model") updates
coffee temperature based on estimation of room temperature, which
is estimated in the update block ("Update").

The dynamics of the system is described with the equation

CR
C TT

dt
dT (1)

where variable T denotes temperature, with subscripts R for
room and C for coffee. is a time constant, which is assumed
to be known (= 120 s).

Next we will show how we estimate (update) room
temperature (TR) by comparing real and simulated coffee
temperatures. According to known technology (see e.g.
Nakaya et.al, 2008) a parameter may be updated according to

)()1()(kKekpkp (2)

where e(k) is the deviation (difference) between simulated
and measured value (at time instant k) and K is an update
constant. The parameter p(k) updates its value based on its
previous value p(k-1). The approach suggested in this paper
uses decentralized PI control, i.e.

))(())1()(()1()(ke
T
K

kekeKkpkp
i

p
p

(3)

IFAC Conference on Advances in PID Control
PID'12
Brescia (Italy), March 28-30, 2012 FrA1.4

where Kp and Ti are PI controller parameters.

The results of a Cooling Coffee simulation experiment, where
the two alternative update mechanisms (Eq. 2 and Eq.3) have
been used, are shown in Fig.3-4. The update constants where
K = -0.1667 for the conventional (Eq. 2) and Kp = -4; Ti = 10
for the method suggested in this paper (Eq. 3). The sampling
time was 15 s, and the measurement was delayed with one
sample in order not to favour gain selection close to infinity.

From Fig. 3 and 4 we conclude that we get a faster estimation
of room temperature by using the update mechanism inspired
by a PI controller (Eq. 3) compared to the single-parameter
update mechanism according to Eq. 2.

0 200 400 600 800 1000 1200 1400 1600 1800
15

20

25

30

35

40

45

50

55

60

Time

T C

Measured
Simulated (Conventional)
Simulated (Suggested)

Fig. 3. Simulations of coffee temperature, where the room
temperature has been updated with Eq.(2) (dashed-line) and Eq.(3)
(solid line). The real measured temperature (dotted line) is included
for reference.

0 200 400 600 800 1000 1200 1400 1600 1800
14

16

18

20

22

24

26

Time

T R

Real Value
Estimated(Conventional)
Estimated (Suggested)

Fig. 4. Estimation of room temperature in the Cooling Coffee
example, where the room temperature has been updated with Eq.(2)
(dashed-line) and Eq.(3) (solid line). The unknown room
temperature (dotted line) is included for reference.

2.2 General Structure

The motivating example introduced some benefits (most
notably the speed of update) of using PI controllers for
tracking simulation. A block diagram of the suggested
tracking simulator is shown in Fig.5.

Fig. 5. A tracking simulator update mechanism applied with PI
controllers. The connections to PI controller terminals are the
following: process measurement is connected to PI setpoint;
simulator output is connected to PI measurement; estimated
parameter is PI control signal. An autotuner is used to tune the PI
controller parameters.

IFAC Conference on Advances in PID Control
PID'12
Brescia (Italy), March 28-30, 2012 FrA1.4

As seen from Fig. 5, there is a simulator running in parallel
with the process. The inputs to the process are connected to
the simulator. The PI controllers are connected as follows:

outputs of the process, usually process
measurements (controlled and uncontrolled) are
connected to PI controllers setpoints

outputs of the simulator (corresponding process
measurements) are connected to PI controllers
measurements

the output (control value) of the PI controller is the
unknown parameter, which will be used by the
simulator

Above we already discussed that a (momentary) drawback of
the suggested update mechanism is that we need two
parameters instead of one. However, since we have described
the tracking simulation problem as a control problem, which
can be solved with decentralized PI control, we can use
autotuning, which eliminates the need of manual parameter
selection.

2.3 Summary of Implementation

Next we will shortly summarize the implementation from a
practical point of view. We use the 3-input-2-output process
shown in Fig. 6. as an example process. Two inputs are
known (solid lines) and one is unknown (dashed line).
Moreover, there are unknown process parameters, but since
there are only two measured outputs, we can only estimate
one parameter in addition to the unknown input.

Fig. 6. An example 3-input-2-output process. One unknown input
(dashed line) and one unknown parameter are identified with two PI
controllers.

The implementation of the tracking simulator is done as
follows. We assume that a simulator that matches the real
process is available.

1. Known process inputs (controls) are connected to
simulator.

2. Selected unknown inputs/parameters are connected
to PI controllers. All PI controllers are in manual
mode with output equal to an educated guess of the
particular input/parameter.

3. Ad hoc values are used for all other
inputs/parameters.

4. Each PI controller measurement is connected to a
simulator output and PI controller setpoint is
connected to corresponding process measurement.

5. Each PI controller is autotuned and connected to
automatic.

6. Some PI controllers may need retuning because of
interactions between control loops.

In practice, input flows of industrial processes are usually
known (e.g. valve positions), but properties of input flows,
e.g. temperature, concentrations, pressure, are often
unknown.

2.4 Alternatives to PI control: The Nelder-Mead and the MIT
Methods

It is well known that PI controllers can only be used when the
sign of process gain is known and does not change with time.
In the Cooling Coffee example, where we tried to estimate
the room temperature, it was clear that a higher room
temperature implies a higher coffee temperature (ie. it has a
positive process gain). Modest changes in the magnitude are
tolerated, but constant sign of the gain is a prerequisite for
successful PI control. However, this is not always guaranteed
in the parameter estimation task, and hence other solutions
must be on hand for the tricky cases. One possible solution is
to apply the well known Nelder-Mead algorithm (Nelder and
Mead, 1965).

Another alternative is to apply the MIT rule, which is well
known from adaptive control theory (see e.g. Åström and
Wittenmark, 1989). Here the idea is to multiply the error seen
by the PI controller with the "sensitivity derivative". In that
case, gains and time constants may successfully be estimated
with PI controllers.

3. INDUSTRIAL EXAMPLE

We will use an economizer from a biomass fired power plant
as an example. The economizer is a heat exchanger that
utilizes hot flue gases in order to warm up the feed water.

The model has 13 inputs (parameters are also counted as
inputs): temperature before economizer (feed water and flue
gas), pressure drop over heat exchanger (feed water and flue
gas), specific heat capacity (feed water and flue gas), heat

IFAC Conference on Advances in PID Control
PID'12
Brescia (Italy), March 28-30, 2012 FrA1.4

transfer coefficient, density (feed water and flue gas), total
heat exchanger volume (feed water and flue gas), capacity
value (i.e. volumetric flow obtained by a pressure drop of 1
bar) (feed water and flue gas). There are two outputs, i.e.
output temperatures (feed water and flue gas).

Real industrial data, collected from a biomass powered boiler
was used in the examples.

With two outputs in the model, and corresponding process
measurements, we can update two unknown parameters. We
chose to update the following two parameters: 1) the heat
transfer coefficient, because it is useful to know from
maintenance and economic perspective and 2) the specific
heat capacity of flue gas because it has a large impact on the
model and large variations in the data due to variation of
moisture content in the biomass fuel.

The variables of interest are shown in Fig. 7. We use variable
T for temperature with indices "F" for flue gas, "W" for feed
water, "in" for measurement before, and "out" for
measurement after economizer. Cp,F is the specific heat
capacity of flue gas and hA is the heat transfer coefficient in
the economizer.

Fig. 7. Schematic diagram of the economizer example. Flue gases
with input temperature TF,in is used to warm up water with input
temperature TW,in. Water temperature after economizer (TW,out) is
used to estimate hA, i.e. the heat transfer coefficient. The flue gas
temperature after economizer (TF,out) is used to estimate the specific
heat capacity of flue gas.

In addition, the connection of two PI controllers, used to
estimate the two unknown parameters hA and Cp,F, are
illustrated in Fig. 7. The setpoints of the PI controllers are the
temperatures, which are measured from the real plant, i.e.
water and flue gas temperatures after the economizer (TW,out,m
and TF,out,m).

An example autotuning experiment is shown in Fig. 8-9.
During time t = 10-20 min the feed water loop was identified
and during t = 25-35 min the flue gas loop was identified. We
used standard relay autotuning, with relay amplitudes d = 20
kW/ C for heat transfer coefficient and d = 0.4 kJ/(kg/K) for
the specific heat capacity value. We employed the
"integrator-plus-deadtime" model as described by Friman and
Waller (1994) for process identification. The model

parameters were k = 036; L = 0.29 for the feed water loop and
k = 153; L = 0.25 for the flue gas loop.

For PI controller tuning we used the IMC tuning guidelines
suggested by Chien and Freuhauf (1990), and selected the
target speed TCL, i.e. the closed-loop time constant as TCL =
5L. The PI parameters where then KC = 2.94; Ti = 3.21 for the
feed water loop and KC = 0.0080; Ti = 2.75 for the flue gas
loop with these selections.

In Fig. 8-9 is furthered shown that the autotuning experiment
in successful, since the simulated temperatures in Fig.8.
nicely follow their setpoint values, which have been recorded
from an industrial plant, when the controllers are connected
to automatic model for t> 35 min. The unknown parameters
settle quite well (Fig.9, from about 40 min forward).

0 10 20 30 40 50 60 70 80 90 100
285

290

295

300

305

Fe
ed

 W
at

er
 [°

C
]

Measured
Simulated

0 10 20 30 40 50 60 70 80 90 100
350

360

370

380

390

400

Fl
ue

 g
as

 [°
C

]

Time [min]

Measured
Simulated

Fig. 8. Simulated values of feed water (top) and flue gas (bottom)
temperatures during autotuning experiments. The feed water loop is
autotuned at t = 10-20 min, and the flue gas loop is autotuned at t =
25-35 min. At t = 35 min both loops are connected in automatic
mode.

0 10 20 30 40 50 60 70 80 90 100
60

80

100

120

140

160

180

200

220

240

260

Time [min]

P
ar

am
et

er

Heat Transf.coeff.
Flue Gas Cp*100

Fig. 9. Process parameters (PI control outputs) during the autotuning
experiments in Fig. 8.

IFAC Conference on Advances in PID Control
PID'12
Brescia (Italy), March 28-30, 2012 FrA1.4

4. CONCLUSIONS

In this paper we have suggested and tested the idea of using
PI controllers for tracking simulation, instead of the well
known simple update mechanism in Eq. 2. We have
successfully tested the idea with a decentralized 2x2 control
system. However, results not shown here have demonstrated
that the idea can be applied also on larger systems. In fact,
since the idea is similar to ordinary decentralized control, we
see no limitations in the number of parameters that can be
updated according to the ideas presented here.

The parameter identification is, however, not as easy as
decentralized control. In many cases there are parameters that
do not have a clear direction. For example, in the Cooling
Coffee example it was clear that the room temperature has a
positive impact on coffee temperature. However, if our task
had been to estimate the time constant, it would not be
possible to apply PI control (Eq. 3) nor known technology
(Eq. 2). However, we can use the MIT rule, which is well
known from adaptive control, or a slower but more general
solution, such as the Nelder-Mead algorithm.

Moreover, there are no structural requirements on the
simulation models. The presented idea may be used on
ODE/PDE/DAE models regardless of properties, such as
model size, complexity, accuracy, and solver.

There are some open questions related to decentralized
control, including variable pairing, decoupling, stability,
closed-loop performance, and control structures (e.g. ratio
and cascade controllers). However, since those challenges are
basically identical to those of decentralized process control,
we have not discussed these issues in detail. We basically
notice two main differences between our approach and
traditional decentralized process control. 1) Since processes
are never designed with parameter estimation in mind, it is
expected that the process, as seen by the controllers used for
tracking simulation, may be very nonlinear. This problem is
best handled by using modest target speed during controller
tuning for the loops that enclose nonlinear behaviour. 2) It is
important to understand the characteristics of each parameter
during tuning and select the control speed accordingly. For
example, if we are estimating a parameter that changes
slowly (e.g. a heat transfer coefficient), we can favourable
select a very sluggish target speed for the controller, and
when we are updating some rapidly changing phenomena
(usually some unknown property of input flows) we should
use more aggressive controller tuning.

REFERENCES

Åkesson J., Gäfvert, M., Tummescheit, T. (2009). JModelica
- an Open Source Platform for Optimization of Modelica
Models. Proceedings of MATHMOD 2009 - 6th Vienna
International Conference on Mathematical Modelling,
Vienna, Austria.

ANSI/ISA-77.20-1993 (1993), Fossil Fuel Power Plant
Simulators - Functional Requirements, Approved 1993,
43 p., North Carolina, Instrument Society of America.

Åström, K. J. and Hägglund, T. (1984). Automatic Tuning of
Simple Regulators with Specifications on Phase and
Amplitude Margins. Automatica, 20, 645-651.

Åström, K. J. and Wittenmark, B. (1989). Adaptive Control.
Addison Wesley.

Chien, I. L. and Freuhauf, P. S. (1990). Consider IMC
Tuning to Improve Performance. Chem. Eng. Progr.
1990 Oct., 33-41

Friman, M. and Waller K.V. (1994). Autotuning of Multiloop
Control Systems. Ind.Eng.Chem.Res, Vol. 33, No. 7.

Fritzson, P. (2003). Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1, Wiley-IEEE Press,
ISBN 0-471-471631.

Nakaya, M., Seki, T., Kawaguchi, K., Onoe, Y., Ootani, T.
(2008). Model Parameter Estimation by Tracking
Simulator for the Innovation of Plant Operation.
Proceedings of the 17th IFAC World Congress, p. 2168-
2173, Seoul, Korea.

Nelder, J. A. and Mead, R. (1965). A simplex method for
function minimization. Computer Journal 7: 308–313.

Kalman, R. E. (1960) A New Approach to Linear Filtering
and Prediction Problems. Transaction of the ASME—
Journal of Basic Engineering, pp. 35-45.

Rawlings, J. B., E. S. Meadows, and K. R. Muske, (1994).
Nonlinear Model Predictive Control: A Tutorial and
Survey ,Proceedings of ADCHEM ’94, 203-214, Kyoto,
Japan

Richalet, J. A., A Rault, J. D. Testud, and J. Papon, (1978).
Model Predictive Heuristic Control: Application to
Industrial Processes, Automatica, 13, 413

IFAC Conference on Advances in PID Control
PID'12
Brescia (Italy), March 28-30, 2012 FrA1.4

