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Abstract:
In this paper a methodology is presented to assess the performance of PI controllers from
closed-loop response data for pulse setpoint signal. Here a previously published technique is
extended to evaluate and redesign single-input single-output (SISO) control loops for single and
double pulses. The paper describes a system identification procedure for continuous-time transfer
function models and demonstrates how it can be used for control performance assessment and
controller redesign.
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1. INTRODUCTION

The industrial importance of individual controller bench-
marking is sustained by the fact that there are often
thousands of loops in a typical process plant and many
of these will not have been tuned adequately.

The Proportional-Integral-Derivative (PID) controllers are
the most widely used in industrial process industries owing
to their simplicity and robustness to the modeling error.
Due to changes in the process and its operation, and
mostly to the lack of skill of the operator, many control
loops are found to perform poorly. Given the importance
of the problem, there has been increasing interest in
the control loop performance assessment and automatic
tuning fields. The problem of determining the controller
parameters, then, is of great importance in the professional
control domain.

When the loop assessment and the controller tuning is
performed, the control loop should behave well. It is there-
fore important to supervise the control loops. Since there
are hundreds of controllers in most complex processes,
it is virtually impossible to monitor their performance
manually. This has motivated a significant research effort
in automatic supervision for process control.

Many different approaches have been proposed in the
literature to assess performance of control loops. The
minimum-variance (MV) concept originally proposed by
Harris (1989) has been widely used as a reference bench-
mark for performance assessment. Therefore, methodolo-
gies for the performance assessment have been reported in
a variety of control applications. Desborough and Harris
(1992) considered the assessment of control loop perfor-
mance for both feedback and feedforward control using
minimum variance as the benchmark cost measure. Re-

views of related work can be found in Qin (1998), Huang
and Shah (1999), Harris et al. (1999), and Jelali (2006).

Recently, Veronesi and Visioli (2009) proposed a procedure
for the setpoint-following performance assessment of a PID
controller and for the retuning of the parameters, based
on the SIMC tuning rules and evaluating a setpoint step
response. However, the setpoint step change response for
some processes may be too long and the procedure is
limited to the closed loop time constant equal to the dead
time.

In this paper pulse excitations were considered in addition
to the traditional closed-loop step response, and the choice
of the desired closed loop time constant was generalized.

The approach adopted in this paper uses setpoint changes
for plant identification and then makes use of the identified
model for performance assessment. The paper is organized
as follows. In section 2, the PI performance assessment
problem is formulated. Then in section 3, the performance
assessment methodology is explained. In section 4 the
procedure for the process identification is presented. In
section 5 the retuning methodology is explained. Simula-
tions results are presented in section 6. Conclusions are
drawn in section 7.

2. PROBLEM FORMULATION

Consider the unity-feedback control system shown in Fi-
gure 1 where C(s) is a PI controller described by the
following transfer function:

C(s) = Kc

(
Tis+ 1

Tis

)
(1)

where Kc is the proportional gain and Ti is the integral
time.
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The process P (s) is assumed to be a first-order-plus-dead-
time (FOPDT) transfer function:

P (s) =
µ

τs+ 1
e−θs (2)

where µ 6= 0 is the process gain, θ ≥ 0 is the time-delay
and τ > 0 is the time constant.

The method of Direct Synthesis aims at achieving a
closed-loop transfer function on the form

T (s) :=
C(s)P (s)

1 + C(s)P (s)
=

1

τcs+ 1
e−θs (3)

where τc is the desired closed-loop time constant. The
value of τc can be chosen freely, and depends on the control
objective (see Swanda and Seborg (1999)). It should be
larger than the time delay θ. Choosing small values of τc,
close to θ, leads to fast closed-loop responses and good
disturbance rejection. On the other hand, large values of
τc favor stability and robustness and reduces the control
efforts. The choice of an appropriate value of τc should be
guided by a trade-off between these factors.

Fig. 1. The control scheme considered.

Considering the standard first-order-plus-time-delay model
in (2), one can derive the following PI controller parame-
ters:

Kc =
τ

µ(θ + τc)

Ti = τ (4)

The aim of the proposed methodology is to verify if the
tuning of the PI controller is satisfactory and, in the case
that performance can be improved, to determine the new
appropriate values of controller parameters.

3. PERFORMANCE ASSESSMENT

In order to quantify how far a PI controller is from the
best achievable performance, it is therefore necessary to
determine a suitable performance index. This section will
focus on the use of the integrated absolute error (IAE) as
a benchmark.

3.1 Integrated Absolute Error - IAE

To evaluate the output control performance often it is
important to characterize the entire response curve. One
such characterization is the integral of the absolute value
of the control error (IAE) e(t) := r(t)− y(t).

Proposition 1. The IAE for a step reference signal for the
closed-loop in (3) is

IAEStep =

∞∫
0

|e(t)|dt = A (θ + τc) (5)

where A is the amplitude of the step change.

Proof.

IAEStep =

∞∫
0

|e(t)|dt

=

θ∫
0

|A|dt+

∞∫
θ

|Ae−(t−θ)/τc |dt

=Aθ +Aτc

[
1− e−(T−θ)/τc

]
(6)

then for T → +∞
IAEStep = A (θ + τc) . (7)

The IAE for a step reference presented in (5) was already
proposed in Yu et al. (2011).

Although the step is the most frequently type of excitation
used to analyze the response of the closed-loop, for some
processes it’s application often demands a considerable
long time. In the following case will be analyzed the
application of a pulse reference signal.

Proposition 2. The IAE for a pulse reference signal for the
closed-loop in (3) is

IAEPulse = 2A
[
θ + τc − τce−(T−θ)/τc

]
(8)

where T is the pulse width.

Proof.

The setpoint is a pulse signal given by

r(t) =

{
A, 0 ≤ t < T,
0, T ≤ t <∞. (9)

The IAE resulting for a pulse reference signal can be
decomposed into four parts, i.e.,

IAEPulse = IAE(0≤t<θ) + IAE(θ≤t<T ) + IAE(T≤t<T+θ)

+ IAE(T+θ≤t<∞) (10)

The closed-loop response y(t) for each part is,

y(t) =


0, 0 ≤ t < θ,

A[1− e−(t−θ)/τc ], θ ≤ t < T,

A[1− e−(t−θ)/τc ], T ≤ t < θ + T,

A[1− e−T/τc ]e−(t−T−θ)/τc, θ + T ≤ t <∞.

(11)

Thus the error signal e(t) for each part can be obtained as
follows.

e(t) =


A, 0 ≤ t < θ,

Ae−(t−θ)/τc , θ ≤ t < T,

−A[1− e−(t−θ)/τc ], T ≤ t < θ + T,

−A[1− e−T/τc ]e−(t−T−θ)/τc, θ + T ≤ t <∞.

(12)

Then, the corresponding IAE for a pulse reference signal
is given by

IAEPulse =

∞∫
0

| e(t) | dt
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=

θ∫
0

Adt+

T∫
θ

Ae−(t−θ)/τcdt+

+

T+θ∫
T

A[1− e−(t−θ)/τc ]dt (13)

+

∞∫
T+θ

A[1− e−T/τc ]e−(t−T−θ)/τcdt

= Aθ +Aτc(1− e−(T−θ)/τc) +Aθ +

+Aτc[e
−T/τc − e−(T−θ)/τc ] +

+Aτc[1− e−T/τc ]

= 2Aθ + 2Aτc − 2Aτce
−(T−θ)/τc

= 2A
[
θ + τc − τce−(T−θ)/τc

]
.

Despite the application of a faster setpoint change, the
need to wait for the response of the closed loop to stabilize
yet causes the experiment to be very slow. If the experi-
ment is stopped after a certain time, before the response
of the closed loop stabilizes, one obtains the following
situation.

Consider the pulse transitions to occur at times ti (i =
0, 1, ...) with t0 the initial pulse transition. Assume also
that the experiments stops at time tn. Consider also the
time interval Tij = ti − tj , with i > j.

Proposition 3. For the case with a limited experiment
time, the IAE for a pulse reference signal (n = 2), and
step transitions at t0 and t1, for the closed-loop in (3) is

IAE1 = 2Aθ + 2Aτc − 2Aτce
−(T10−θ)/τc − (14)

−Aτce−(T21−θ) +Aτce
−(T20−θ)/τc

Proof. The setpoint is a pulse signal given by

r(t) =

{
A, 0 ≤ t < t1,
0, t1 ≤ t < t2.

(15)

The IAE resulting for a pulse reference signal can be
decomposed into four parts, i.e.,

IAE1 = IAE(0≤t<θ) + IAE(θ≤t<t1) + (16)

+ IAE(t1≤t<t1+θ) + IAE(t1+θ≤t<t2)

The closed-loop response y(t) for each part is,

y(t) =

{
0, 0 ≤ t < θ,

A[1− e−(t−θ)/τc ], θ ≤ t < t1 + θ,

A[1− e−T10/τc ]e−(t−T10−θ)/τc, t1 + θ ≤ t < t2.

(17)

Thus the error signal e(t) for each part can be obtained as follows.

e(t) =


A, 0 ≤ t < θ,

Ae−(t−θ)/τc , θ ≤ t < t1,

−A[1− e−(t−θ)/τc ], t1 ≤ t < t1 + θ,

−A[1− e−T10/τc ]e−(t−T10−θ)/τc, t1 + θ ≤ t < t2.

(18)

Then, the corresponding IAE for a pulse reference signal is given by

IAE1 =

t2∫
0

| e(t) | dt

=

θ∫
0

Adt+

t1∫
θ

Ae−(t−θ)/τcdt+

t1+θ∫
t1

A[1− e−(t−θ)/τc ]dt

+

t2∫
t1+θ

A[1− e−T10/τc ]e−(t−T10−θ)/τcdt

= Aθ +Aτc
[
1− e−(T10−θ)/τc

]
+Aθ

+Aτc
[
e−T10/τc − e−(T10−θ)/τc

]
+

+Aτc
[
1− e−T10/τc

] [
1− e−(T21−θ)/τc

]
(19)

IAE1 = 2Aθ + 2Aτc − 2Aτce
−(T10−θ)/τc −Aτce−(T21−θ) +

+Aτce
−(T20−θ)/τc (20)

Proposition 4. The IAE for a double pulse reference signal
for the closed-loop in (3) is

IAE = 4Aθ + 3Aτc +Aτc
[
1− e−T10/τc

]
− 2Aτc

[
e−(T10−θ)/τc

]
−

− 2Aτc
[
1− e−T10/τc

] [
e−(T21−θ)/τc

]
− (21)

− 2Aτc
[
e−(T32−θ)/τc

]
+Aτc

[
e−T32/τc

]
+

+Aτc
[
1− e−T10/τc

] [
e−T31/τc − e−(T31+T41−θ)/τc

]
+

+Aτc
[
1− e−T32/τc

] [
e−T31/τc − e−(T41−θ)/τc

]
.

Proof. The proof follows as in the case of a single pulse
considering the setpoint is a pulse signal given by

r(t) =


A, 0 ≤ t < t1,
0, t1 ≤ t < t2,
A, t2 ≤ t < t3,
0, t3 ≤ t < t4.

(22)

and the IAE resulting for a double pulse reference signal
can be decomposed into eight parts, i.e.,

IAE2 =
8∑
i=1

IAEi (23)

4. PROCESS IDENTIFICATION

In order to tune the IMC controller it is necessary to have a
process model. The excitation signal, the pulse, is applied
at the setpoint and the manipulated variable u(t) and the
process variable y(t) are recorded (see Acioli et al. (2009))

The model to be identified is a First-Order-Plus-Time-
Delay (FOPTD) characterized by Equation (2).

4.1 Process Gain µ

The process gain is computed as the ratio between the
integral of the deviations of the process variable and the
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manipulated variable. This is equivalent to compute the
Fourier Transform at the zero frequency of the signals:

µ =

t∫
0

y(s)ds/

t∫
0

u(s)ds (24)

4.2 Time Delay θ

The time delay θ is estimated by a search. The search is
based on the fact that the (no noise) process variable is
zero up to the time delay θ so that:

tf≥T∫
0

y(s)ds =

tf≥T∫
θ

y(s)ds.

where tf is the upper time limit for the search procedure.

The procedure is to compute the left term of the equation
and perform a backward-in-time search to obtain the
largest value of time for which the integral falls below
a user defined relative threshold α. For instance, make

θ̂ = T , where T is the pulse width and decrease θ̂ until
tf=T∫
0

y(s)ds−
tf=T∫
θ̂

y(s)ds < α

tf=T∫
0

y(s)ds. (25)

Threshold α is chosen, for instance, observing the standard
deviation of the output signal around a fixed operating
point.

4.3 Time Constant τ

As the identified model is a FOPTD model, the model is
represented in the time domain as the differential equation

τ ẏ(t) + y(t) = µu(t− θ). (26)

Integrating both sides and considering zero initial condi-
tions

τy(t) +

t∫
0

y(s)ds = µ

t∫
0

u(s− θ)ds, (27)

Changing the variable and using the fact that u(t) = 0 for
t < 0

τy(t) +

t∫
0

y(s)ds = µ

t−θ∫
0

u(s)ds, (28)

the only unknown is the time constant T .

Rearranging Equation (28) as

t∫
0

y(s)ds− µ
t−θ∫
0

u(s)ds = −τy(t). (29)

This problem can be solved using the least square and the
solution is

Θ̂ =
(
ΦTΦ

)−1
ΦTY (30)

where

Φ = [φ(0) φ(1) ... φ((N − 1)h)]
T

(31)

Y = [z(0) z(1) ... z((N − 1)h)]
T

(32)

Θ = τ (33)

with h the sampling period. and

φ(t) =−y(t) (34)

z(t) =

t∫
0

y(s)ds− µ̂
t−θ̂∫
0

u(s)ds (35)

where µ̂ and θ̂ are the estimated values for the process
gain and process time delay, respectively.

5. RETUNING

If the performance provided by the controller turns out
to be unsatisfactory, the PI controller has to be retuned.
This can be done easily by considering the tuning rule (4)
and the parameters that have been estimated, namely, by

setting τ = τ̂ , µ = µ̂ and θ = θ̂.

6. SIMULATIONS EXAMPLES

In all the following simulation examples different setpoint
changes were adopted as reference signal for the identifi-
cation process. Initial values of the PID parameters were
selected arbitrarily in order to present different situations.

This section uses a ε2 index to assess the performance
of the different setpoint changes presented. The ε2 index
compares the response of the closed-loop with the desired
IMC response, and is defined by

ε2 =

∫
(y − yIMC)2dt (36)

6.1 Example 1:

As a first example, consider the process

P1(s) =
1.5

1.05s+ 1
e−0.15s (37)

Initially the PI controller parameters were set as follows:
Kc = 3 and Ti = 0.7.

According to (3) and considering τc = θ, a IMC desired
model for this example would be given by

T1(s) =
1

τcs+ 1
e−θs =

1

0.15s+ 1
e−0.15s (38)

and the IMC tuning parameters for the PI controller are
Kc = 2.33 and Ti = 1.05. A setpoint step change for the
IMC controller is shown in Figure 2.

For a setpoint step change given by

r(t) =

{
0, 0 ≤ t < 1,
1, 1 ≤ t <∞. (39)

the response with the initial values of the PI controller
parameters is shown in Figure 2.

By applying the identification algorithm the following
values of the process parameters were estimated: µ̂ = 1.5,
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τ̂ = 1 and θ̂ = 0.2. Then, using the IMC tuning rule in
(4), the new values of the PI controller parameters were
determined: Kc = 1.67 and Ti = 1. The response with
the new values of the PI controller parameters is shown in
Figure 2.

Fig. 2. Set-point step response for initial and retuned PI
controller by step excitation of Example 1

For a setpoint pulse change given by

r(t) =

{
0, 0 ≤ t < 1,
1, 1 ≤ t < 1.29,
0, 1.29 ≤ t < 4.

(40)

In this case the following process parameters were esti-

mated: µ̂ = 1.34, τ̂ = 0.86 and θ̂ = 0.17. Again, using the
IMC tuning rule in (4), the new values of the PI controller
parameters were determined: Kc = 1.89 and Ti = 0.86.
The response with the new values of the PI controller
parameters is shown in Figure 3.

For a setpoint double pulse change given by

r(t) =


0, 0 ≤ t < 1,
1, 1 ≤ t < 1.29,
0, 1.29 ≤ t < 1.58,
1, 1.58 ≤ t < 1.93,
0, 1.93 ≤ t < 4.

(41)

For the double pulse setpoint change the following values of
the process parameters were estimated: µ̂ = 1.5, τ̂ = 1 and

θ̂ = 0.17. The values of the IMC PI controller parameters
were determined as in (4): Kc = 1.96 and Ti = 1.
The response with the new values of the PI controller
parameters is shown in Figure 3.

The IAE values for the different setpoint signals are
presented in Table 1. The IAETheoretical values were
obtained by considering the equations (5), (14) e (21).

Table 1. IAE values for example 1.

Reference IAEExp IAERetuned IAETheoretical

Step 0.372 0.418 0.3
Pulse 0.631 0.554 0.6
Double Pulse 1.131 0.956 1.019

Fig. 3. Set-point step response for initial and retuned PI
controller by different excitations of Example 1

The resulting ε2 indices for the different tunings are
presented in Table 2.

Table 2. Indexes values for example 1.

Reference ε2

Initial Controller 0.0265
Step 0.01769
Pulse 0.00584
Double Pulse 0.00462

6.2 Example 2:

As a second example, the following process has been
considered:

P2(s) =
1

(1.5s+ 1)
e−2.5s (42)

The initial PI controller parameters adopted were Kc =
0.6 and Ti = 1.8.

For a setpoint step change given by

r(t) =

{
0, 0 ≤ t < 1,
1, 1 ≤ t <∞. (43)

the response with the initial values of the PI controller
parameters is shown in Figure 4.

By applying the identification algorithm the following
values of the process parameters were estimated: µ̂ = 0.99,

τ̂ = 1.07 and θ̂ = 2.83.

The response with the new values of the PI controller
parameters is shown in Figure 4.

For a setpoint pulse change given by

r(t) =

{
0, 0 ≤ t < 1,
1, 1 ≤ t < 5.5
0, 5.5 ≤ t < 50.

(44)

The values of the process parameters were estimated:

µ̂ = 1, τ̂ = 1.41 and θ̂ = 2.57, and the response with

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 FrA1.6



Fig. 4. Set-point step response for initial and retuned PI
controller by step excitation of Example 2

the new values of the PI controller parameters is shown in
Figure 5.

And for a setpoint double pulse change given by

r(t) =


0, 0 ≤ t < 1,
1, 1 ≤ t < 5.5,
0, 5.5 ≤ t < 9.05,
1, 9.05 ≤ t < 13.7,
0, 13.7 ≤ t < 50.

(45)

The following values of the process parameters were esti-

mated: µ̂ = 1, τ̂ = 1.42 and θ̂ = 2.57. The response with
the new values of the PI controller parameters is shown in
Figure 5.

Fig. 5. Set-point step response for initial and retuned PI
controller by different excitations of Example 2

The IAE values for the different setpoint signals are
presented in Table 1.

The resulting ε2 indices for the different tunings are
presented in Table 4.

Table 3. IAE values for example 2.

Reference IAEExp IAERetuned IAETheoretical

Step 4.011 5.981 5
Pulse 11.44 7.937 7.926
Double Pulse 22.01 12.66 13.262

Table 4. Indexes values for example 2.

Reference ε2

Initial Controller 1.001
Step 0.08768
Pulse 0.00838
Double Pulse 0.002021

7. CONCLUSION

This paper presented a methodology to assess the perfor-
mance of PI controllers from closed-loop responses data for
pulse setpoint signal. The tuning procedure was realized
by following the IMC tuning principle, and a performance
index was presented to validate the results.
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