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Abstract: This paper considers PI controller tuning for Integral Plus Dead Time plant (IPDT)
by new Matlab/Simulink tool based on the performance portrait method. It enables to guarantee
transient responses with specified deviations from ideal shapes at the plant output and input
and to fulfill additional optimality specification, defined in terms of the minimal IAE (Integral
of Absolute Error) values weighted for the setpoint and disturbance steps. As the ideal step
responses at the plant output monotonic transients are considered, whereas at the plant input
one-pulse responses consisting of two monotonic intervals are required. As an introduction to
new generation of robust tuning approaches, optimal nominal tuning is firstly treated.
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1. INTRODUCTION

Tuning of the PI controller for IPDT plant with the gain
Ks and dead time Td

F (s) =
Ks

s
e−Tds (1)

is frequently treated in all control areas. In connection
with appropriate model reduction techniques it enables
to approximate broad range of processes Åström and
Hägglund (2005), Skogestad (2003). Consequently, high
number of different ”optimal” tuning rules based on this
model may be found in the literature O’Dwyer (2009).

When considering tuning rules appropriate for education
& practice, it is to agree with Skogestad (2003) that they
should be 1. well motivated, 2. preferably model-based, 3.
analytically derived, 4. simple and easy to memorize and 5.
work well on a wide range of processes. When continuing
with requirements of Skogestad (2006), controller tuning
should enable trade-off between: fast speed of response,
good disturbance rejection, stability & robustness, less
input usage and less sensitivity to measurement noise.

The analytical methods for controller tuning (see e.g.
Oldenbourg and Sartorius (1944,1951)) were used from the
early beginning of the PID control. But, simultaneously
with them, also the experimental controller tuning played
always an important role, what may be demonstrated
by high popularity of the early tuning by Ziegler and
Nichols (1942) that still gives inspiration for many new
approaches Åström and Hägglund (2004), Hägglund and
Aström (2002). Of course, except of the analytical design,
main requirements on such tuning remain mostly the same.

In this paper we are going to show how the trade-off
between high speed of the setpoint tracking and good dis-
turbance rejection may be balanced under requirements of
robust control with performance specified by the minimal

IAE values and by tolerable deviations from ideal shapes
at the plant input and output for any loop parameters in
(1). This is enabled by the new method of the Performance
Portrait (PP) Huba (2010), Huba (2011) that is based
on carrying out series of simulation experiments on some
sample of representative processes. The method gives very
promising results especially when dealing with dead time
systems, for which there is free space for improving the up
to now existing methods already in nominal control. It will
be shown that the design based exclusively on the setpoint
response may lead to useless results and when wishing to
solve the problem as simply as possible, the disturbance
response represents the more useful alternative. However,
as the best solution, a balanced controller tuning consider-
ing simultaneously both responses taken with appropriate
weights is shown.

The paper is structured as follows. In Chapter 2 several
traditional tuning methods are discussed to characterize
their basic properties and to enable their comparison with
the newly proposed method. In Chapter 3, basic require-
ments on robust controller tuning are summarized and
performance measures for robust controller tuning in the
time domain are introduced. In Chapter 4 the perfor-
mance portrait for plant (1) is described and then used
in Chapter 5 for optimal tuning based on minimization
of weighted IAE values of setpoint and disturbance step
responses subject to shape related constraints for the plant
input and output. The achieved results are compared with
those corresponding to the first-generation robust tuning
methods. Basic conclusions are summarized in Chapter 6.

2. FIRST GENERATION OF ROBUST
CONTROLLER TUNING METHODS

Next we will briefly introduce several analytical and nu-
merical robust tuning methods that may be used in a
comparative analysis for the IPDT plant.
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2.1 Analytical controller design - TRDP

Based on generalization of the double real dominant closed
loop pole Oldenbourg and Sartorius (1944,1951) to triple
real dominant pole (TRDP), whereby the PI controller is
extended by the setpoint weighting b according to

U(s) = Kc [bW (s)− Y (s)] +
Kc

sTi
[W (s)− Y (s)] (2)

with Ti being the integral time constant, or by the equiv-
alent prefilter

Fp(s) =
bTis+ 1

Tis+ 1
(3)

an interesting nominal tuning was analytically derived
both for regulatory as well as tracking control tasks in
Vı́tečková and Vı́teček (2008). Existence of a triple closed
loop pole s0 requires to fulfill

A(s0) = 0 ; Ȧ(s0) = 0 ; Ä(s0) = 0 (4)

A(s) = s2Tie
Tds +KrKs(Tis+ 1)

Ȧ(s) = 2sTie
Tds + s2TdTie

Tds +KrKsTi
Ä(s) = 2Tie

Tds + 4sTdTie
Tds + s2T 2

dTie
Tds

(5)

Solution of Ä(s0) = 0 yields root

s0 = −(2−
√

2)/Td (6)

From the first two equations in (4) one gets stable tuning

Kc = 2(
√

2− 1)e
√
2−2/(KsTd) ≈ 0.461/(KsTd)

Ti = (2
√

2 + 3)Td ≈ 5.828Td
(7)

Zero of the closed loop transfer function

Fwy =
KsKc(Tis+ 1)

Tis2eTds +KsKc(Tis+ 1)
(8)

can be canceled by the prefilter denominator in (3) that re-
moves overshooting typical for the one-degree-of-freedom
PI controllers. Simultaneously, by canceling one of the
triple pole (6) by the prefilter numerator (3) to accelerate
transient responses, one gets setpoint weighting

b =
1/ |s0|
Ti

=
2−
√

2

2
≈ 0.293 (9)

The corresponding maximal sensitivity and the comple-
mentary sensitivity peaks are Ms = 1.70;Mt = 1.44.
Achieved transients compared with other tuning ap-
proaches are given in Figs. 2-3. Basic advantage of this
tuning is given by compactness and elegance of its deriva-
tion: it gives fast and smooth responses both in regulatory
as well as tracking control.

2.2 SIMC PI Controller

As the 2nd example, the analytical controller tuning
known as the SIMC PI-rule (abbreviation from Sim-
ple/Skogestad Internal Model Control) for fast response
with good robustness Skogestad (2003) will be mentioned.

Firstly, by considering direct controller synthesis Rivera
et al. (1986), Skogestad (2003) leading for a general first
order plus dead time (FOPDT) plant

Fs =
Kse

−Tds

s+ 1/T1
(10)

to a simple first-order setpoint-to-output closed loop trans-
fer function with time constant τc

Fwy =
R(s)F (s)

1 +R(s)F (s)
=

R(s)Ks

(s+ 1/T1)eTds +R(s)Ks
(11)

Fwy
!
=

1

1 + τcs
e−Tds (12)

the PI controller

R(s) =
s+ 1/T1

Ks(τc + Td)s
(13)

is derived, whereby the exponential term may be elimi-
nated by using its first-order Taylor series approximation

e−Tds ≈ 1− Tds (14)

what requires to use τc ≥ Td . For stable 1st order systems
usually Ti = T1 and Kc = 1/(KsT1(τc +Td)). However, for
integral systems, when T1 → ∞, solution (13) is actually
approaching the proportional controller, what leads to
poor rejection of input (load) disturbances. Of course, it
is still possible to choose PI controller and to look for its
appropriate tuning by other means, but then it is no more
the above mentioned direct controller synthesis of the IMC
control. So, the question arises if the abbreviation SIMC
is still appropriate for integral plants. In Skogestad (2003)
tuning for such systems is derived by analyzing conditions
of the critically damped closed loop system with the PI
controller and integral delay-free plant (Td = 0), when the
double real dominant pole may be achieved by choosing

Ti = 4/(KsKc) (15)

Finally, to consider dead time, the closed loop time con-
stant in (12) was chosen as τc = Td what yields

Kc = 1/(2KsTd) ; Ti = 8Td (16)

This tuning may be considered as simplification of the
above method (double real dominant pole instead of the
triple one). It is simple, easy to remember and in compar-
ing with the traditional IMC tuning rules and other tested
methods (see Figs. 2-3) it brings a reasonable improvement
of the input-disturbance response with moderate input us-
age and good robustness margins both in regulatory as well
as tracking control. The analytical controller derivation is
no more as compact as in the above case. Tuning of the
integral part was made for delay-free system what leads
to a question, in which range of the dead-time values it
will keep the expected performance. On the other hand,
together with the ”half-rule” enabling to deal effectively
with more complex plants by possibly simple means.

When comparing integral loops with controller (16) with
the IMC control of stable plants, it is also to note that
for the integral plant the output setpoint step responses
typically have overshooting, whereas in controlling stable
1st order plants (10) the closed loop step responses (12)
are monotonic both at the plant input and output. In con-
trolling integral plants, monotonic setpoint step responses
at the plant output are possible just with the setpoint
weighting (2-3). However, since the method does not give
information about the dominant closed loop poles, a set-
point weighting guaranteeing purely monotonic output can
be determined just experimentally as

b = 0.592 (17)
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By using specifications in the frequency domain, it was
shown that for integrating processes tuning (16) it gives
the gain margin GM = 2.96, the phase margin PM =
46.9◦, the maximal and the complementary sensitivity
peaks Ms = 1.70;Mt = 1.30, and the maximum allowed
time delay error with respect to stability is 1.59Td.

2.3 Optimization Based PI Control with max{Ki}

As the 3rd approach to be compared with the new tuning
the numerical non-convex optimization method Åström
et al. (1998) is mentioned. Based on the frequency-domain
loop specifications by the maximum and complementary
sensitivity peaks Ms = 1.40 and Mt = 1.45 it gives

b = 0.66;Kc = 0.282/(KsTd)

Ki =
Kc

Ti
=

0.0418

KsT 2
d

⇒ Ti = 6.746Td
(18)

The optimization problem was specified as follows: find
controller parameters that maximize the integral gain
Ki = Kc/Ti subject to the constraints that the closed-loop
system is stable, the Nyquist curve of the loop transfer
function satisfies the encirclement condition and that it is
outside a circle that has the Ms and Mt circles in its inte-
riors. Although it might seem that standard optimization
routines are sufficient to solve this problem, it was shown
that ”the optimization problem is nontrivial, the parameter
space is not convex”. The found tuning yields IAE values
(Figs. 2-3) that are much larger than those corresponding
to other tested approaches: they do not allow achieving
monotonic output setpoint step response even for b = 0.

Obviously being aware of too conservative tuning (18), in
Hägglund and Aström (2002) new tuning rules were pub-
lished based on Approximative Ms-constrained Integral
Gain Optimization (AMIGO). These results corresponds
to the maximum and complementary sensitivity peaks
Ms = 1.48 and Mt = 1.39. Extended by the choice b = 0

b = 0 ; Kc = 0.35/(KsTd) ; Ti = 7Td (19)

they will be used to achieve nearly monotonic setpoint and
disturbance step responses (Figs. 2-3).

2.4 Tuning by Mataušek and Šekara (2011) with max{Kc}

The last considered controller tuning with parameters

b = 0 ; Kc = 0.9037/(KsTd) ; Ti = 5.0122Td (20)

Ms = 1.73 and Mt = 1.54 was calculated by transforma-
tions of a small amount of measured process character-
istics (ultimate frequency and gain, angle of the tangent
to the Nyquist curve at the ultimate frequency and the
static gain). Practically the same performance/robustness
tradeoff was obtained by applying controller optimization
requiring maximal Kc gain. In comparing with the non-
convex optimization it reasonably improves IAE values for
the disturbance response, whereas it guarantees critically
damped load disturbance and setpoint step responses for
a large class of stable, integrating and unstable processes.

3. SHAPE RELATED PERFORMANCE MEASURES

All tested methods are working with Ms values from a
relatively narrow range 1.4-1.73, but despite to this their

robustness and performance reasonably differ. So, flexibil-
ity of the non-convex optimization in Åström et al. (1998)
based on the choice of the maximal sensitivity Ms is far
from the originally proclaimed aims ”. . . to have a design
parameter to change the properties of the closed-loop sys-
tem. Ideally, the parameter should be directly related to
the performance of the system, it should not be process
oriented. There should be good default values so a user
is not forced to select some value. . . The design parameter
should also have a good physical interpretation and natural
limits to simplify its adjustment.” Furthermore, all above
methods do not really include a free parameter for balanc-
ing dynamics of the setpoint and disturbance responses.
Therefore, next we are going to look for more appropriate
method enabling to fulfill aims of robust performance
without leading to unnecessarily conservative tuning.

From the performance point of view, at the plant output
the expected dynamics is frequently specified in form of
monotonic (MO) setpoint step responses. Ideal continuous
signal at the plant input giving after integration by the
plant dynamics MO output will be denoted as the one-
pulse (1P) control. It may be characterized as a pulse with
one extreme point, or saturating interval separating two
MO increasing and decreasing (or vice versa) intervals.

Having in mind these two shape related performance re-
quirements, it is to note that they are not sufficiently
captured by traditional performance measures like gain
margin, phase margin, maximum sensitivity, H∞ norm,
etc. MO control together with a performance index for its
evaluation was e.g. mentioned in Åström and Hägglund
(2004), Hägglund and Aström (2002). One of recent re-
views on PID control Keel et al. (2008) is mentioning just
output non-overshooting control. Application of the cor-
responding performance design in the frequency domain
is extremely complicated, especially when speaking about
dead time systems. For evaluating control effort needed
to achieve required output behavior, Total Variance (TV)
was proposed Skogestad (2003) as

TV =

∞∫
0

∣∣∣∣dudt
∣∣∣∣ dt ≈∑

i

|ui+1 − ui| (21)

Typically, its values are computed after discretization with
sampling period as small as possible, what in Matlab may
be simply computed by the command sum(abs(diff(u)).

Based on TV, new measures for deviations from MO and
1P shapes will be preferred Huba (2010 2011) that may
be easily tested numerically by evaluating simulated or
experimentally measured setpoint and disturbance step
responses and are also appropriate for constrained control.
For evaluating deviations from strictly MO plant output
y(t) with the initial value y0 and the final value y∞ the
TV0(y) measure is proposed as

TV0(y) =
∑
i

|yi+1 − yi| − |y∞ − y0| (22)

TV0(y) = 0 just for strictly MO response, else TV0(y) > 0.

In controlling unstable and integral plants the number
of significant control pulses cannot decrease below the
number of unstable poles Huba (2009), Huba (2010).
To stress contribution of the superimposed oscillation in
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systems with 1P dominant control it is then appropriate to
work with the TV1 criterion defined for um = max{u(t)}
as

TV1(u) =
∑
i

|ui+1 − ui| − |2um − u∞ − u0| (23)

TV1(u) = 0 just for strictly 1P response, else for control
signals with superimposed higher harmonics TV1(u) > 0.

4. CLOSED LOOP PERFORMANCE PORTRAIT (PP)

Because of lacking analytical tools, the controller will
be robustly tuned by using numerically derived areas of
parameters corresponding to the above mentioned shape-
related properties. The aim is to expand nice dynamics of
the nominal case given e.g. by the tuning (7-9) fulfilling
requirements on ideal shapes both at the plant input and
output to plant with parameters known over uncertainty
intervals Huba (2009), Huba (2010), Huba (2011).

The closed loop PP represents information about the loop
performance corresponding to the setpoint and the distur-
bance step responses evaluated over a grid of (possibly
normalized) loop parameters. This information may be
visualized and used both for optimally choosing nominal
controller for a completely known plant, or for robust
controller tuning of a plant with interval parameters. This
new approach may be understood as generalization of the
parameter space method Ackermann (2002). For a loop
represented by a parameter vector

P = {p1, p2, . . . pS , pS+1, pS+I} (24)

with the dimension

D = S + I (25)

each entry pi; i = 1, . . . , S of the first subset of parameters
represents a value that has to be fixed during the controller
tuning. Possibly uncertain (plant) parameters

pi ∈ 〈pimin, pimax〉 ; i = S + 1, . . . , S + I (26)

that vary over some (known) intervals may be represented
by discrete ni + 1 working points

pi,j = pimin + (pimax − pimin)j/ni;
j = 1, 2, . . . , ni;ni > 1; i = S + 1, . . . , S + I

(27)

The controller tuning has to be specified in such a way
that for a set P an optimal mean value of the chosen
performance measure is achieved, whereby the shape-
related performance specifications are kept. When working
with the plant (1), the controller (2-3) is specified by three
parameters b,Kc, Ti. The task may be formulated as:

a) to find controller parameters b,Kc, Ti guaranteeing for
given Ks, Td optimal performance min{mean{IAEw}}, or

b) for controllers defined e.g. by formulas of Chapter 2 to
find an appropriate operating point Ks0, Td0.

The necessary amount of computation and the achieved
precision depend on the level of quantization and on
the choice of the possible preliminary limits of the free
parameters that have to be determined. Thereby, one has
to balance precision of achieved results (quantization level
in considered grid) with the total number of evaluated
points and the corresponding computation time.

5. COMPARATIVE ANALYSIS OF PI TUNINGS
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Fig. 1. One layer of the PP (b = 0.3) calculated for
the setpoint step responses over 50x50x21 points and
containing the optimal nominal tuning corresponding
to min IAEw with ws = 0.5 - note similarities between
both TV1(u) and TV0(ys)− TV1(yd) portraits for the
setpoint and disturbance responses; ε = 0.011

For quantitative evaluation of the speed of responses the
IAE (Integral of Absolute Error) will be used defined as

IAE =

∞∫
0

|e(t)| dt ; e = w − y (28)

Tuning guaranteeing under shape related constraints the
minimal possible IAEs values for the setpoint step re-
sponse was analyzed in Huba (2011). It leads to controller
with Ki = Kc/Ti → 0 that is not able to eliminate
disturbances. One possibility to avoid this handicap is to
look for tuning satisfying max{Ki} Åström et al. (1998),
or max{Kc} Mataušek and Šekara (2011). A more direct
strategy is to find controller parameters b,Kc, Ti guaran-
teeing for given plant parameters Ks and Td min{IAEw}
IAEw = wsIAEs/IAEs,min + wdIAEd/IAEd,min

ws + wd = 1 ; ws ∈ 〈0, 1〉 (29)

whereby ws and wd are the weighting coefficients and
IAEs,min, or IAEd,min represent IAEs and IAEd values
achieved by separate optimization of setpoint and distur-
bance responses under chosen shape related constraints.

Fig. 1 shows several windows of one layer of the 3D
PP calculated for the setpoint and disturbance steps
over 50x50x21 points with normalized parameters K =
KcKsTd ∈ 〈0.1, 1.4〉 ; τi = Ti/Td ∈ 〈3.5, 15.5〉 ; b ∈ 〈0, 1〉
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Fig. 2. Setpoint step responses at the plant output and
input corresponding to the optimal tuning according
to Fig. 1 (red) compared with TRDP (7-9), SIMC (16)
and non-convex optimization (18-19); Ks = 1; Td = 1

for ε = εy = εu = 0.011. Once having PP generated
for normalized parameters, it may be repeatedly used for
different tasks with different loop parameters. For ws = 0.5
the optimal operating point gives the minimal IAEw value
with tolerable integral deviations from MO/1P output
(setpoint/disturbance responses) and 1P input

TV0(ys) ≤ εys ; TV1(ys) ≤ εyd
TV1(us) ≤ εus ; TV1(ud) ≤ εud (30)

These conditions mean that the potential overshooting of
the nearly MO setpoint response, or the second possible
pulse of nearly 1P control have amplitudes less than given
by the particular value of ε/2.

Although the setpoint and disturbance responses in Fig. 2
and Fig. 3 corresponding to the controller parameters

Kc = 0.5776/(KsTd) ; Ti = 4.4796Td ; b = 0.3 (31)

do not necessarily represent an absolute optimum, achieved
IAE values are reasonably better than those corresponding
to all above mentioned controllers. The setpoint response
characterized by IAEs = 3.14T 2

d is by nearly 4% better
than the best setpoint response proposed by modifica-
tion of Skogestad (2003), but the disturbance response
value IAEd = 7.76T 2

d is already by 106% better than
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Fig. 3. Load-disturbance step responses at the plant out-
put and input corresponding to the optimal tuning
according to Fig. 1 (red) compared with TRDP (7-9),
SIMC (16) and non-convex optimization (18-19).

the solution by Skogestad (2003) and by 63% better
than the solution by Vı́tečková and Vı́teček (2008). By
increasing εy and εu, or by decreasing the quantization
step the identified solutions might yet be improved. E.g.
PP generated for 51x51x65 points over a narrower range
K ∈ 〈0.55, 0.65〉 ; τi ∈ 〈4.3, 6.8〉 ; b ∈ 〈0, 0.64〉, ws = 0.5
width εy = εu = 0.033 corresponding to TV0(y) of the

controller by Mataušek and Šekara (2011) yields

Kc = 0.6140/(KsTd) ; Ti = 4.3000Td ; b = 0.31 (32)

IAEs = 2.972T 2
d , TV0(ys) = 0.028Td, TV1(us) = 0.032

and IAEd = 7.003T 2
d , TV1(yd) = 0.008Td, TV1(ud) =

0.031. This possibility to reasonably improve loop proper-
ties gives the best explanation for inflation of optimal so-
lutions documented by O’Dwyer (2009). The new method
finally satisfies needs on reliable controller tuning enabling
to match practical requirements by choice of four param-
eters εys , εyd , εus , εud with clear control interpretation.

Fig.4 shows dependences of optimal IAEs values normed
by the IAEs,min and IAEd normed by the IAEd,min on
ws. For ws → 1 IAEd values rapidly increase, what ex-
plains, why controller tuning based on the disturbance re-
sponses is usually considered. Since near ws = 0 also IAEs

values increase, choice ws = 0.5 may be recommended
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Fig. 4. Normalized IAEs and IAEd values versus ws

calculated from PP generated for 51x51x65 points;
K ∈ 〈0.55, 0.65〉 ; τi ∈ 〈4.3, 6.8〉 ; b ∈ 〈0, 0.64〉; εy =
εu = 0.033 corresponding to TV0(ys) of the controller
by Mataušek and Šekara (2011) denoted by ”MaShe”

for practical use. Whereas IAEd values increase, IAEs

values decrease and vice-versa, i.e. good PI controller has
slower setpoint response than the P one. This may be
avoided by using disturbance observer based PI controllers
enabling moreover to freely enhance filtering properties
and to exclude windup in constrained control Huba (2012).

Fig.4 allows also comparison with the controller by
Mataušek and Šekara (2011). Its normed IAEs and IAEd

values that do not depend on ws are given by horizontal
lines lying more than 2, or 1.6 times over the minimal IAE
values of the performance portrait based tuning.

6. CONCLUSIONS

New performance portrait based method was illustrated by
the frequently treated task of the PI controller tuning for
the IPDT plant. For the first time, different requirements
on the setpoint and disturbance response may flexibly be
taken into account by specifying weights ws and wd = 1−
ws of both responses, as well as by specifying four shape
related tolerable deviations from ideal monotonic and one-
pulse transients at the plant output and input.

The carried out comparative analysis including several
types of the first-generation robust tuning approaches
for the IPDT plant has shown their typical features:
in some context they may give excellent properties, but
they are not flexible enough to cope with variety of
practical requirements. In this sense the new approach
showed to be much more effective and efficient. The
traditional methods are typical by a preprogrammed and
so possibly unnecessarily high reserve of the nominal
tuning and they do not really allow to balance dynamics
of both considered responses. The new method directly
gives solution optimally fitting the specified performance
measures without any redundant precaution. Analysis of
the nominal tuning is aimed as introduction to design with
plant specified over uncertainty intervals Huba (2011).
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Huba, M. (2010). Designing robust controller tuning for
dead time systems. IFAC Int. Conf. System Structure
and Control, Ancona, Italy.

Huba, M. (2011). Robust Tuning of PI Controller for
IPDT Plant. In M. Fikar and M. Kvasnica (eds.), 18th
Int. Conf. Process Control, 513–523. STU Bratislava,
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Mataušek, M.R. and Šekara, T.B. (2011). PID controller
frequency-domain tuning for stable, integrating and
unstable processes, including dead-time. Journal of
Process Control, 21(1), 17 – 27.

O’Dwyer, A. (2009). Handbook of PI and PID controller
tuning rules. 3rd Ed. World Scientific.

Oldenbourg, R.C. and Sartorius, H. (1944,1951). Dynamik
selbsttätiger Regelungen. R.Oldenbourg, München.

Rivera, D.E., Morari, M., and Skogestad, S. (1986). Inter-
nal model control. 4. PID controller design. Ind Eng.
Chem. Res., 25,1, 252–265.

Skogestad, S. (2003). Simple analytic rules for model
reduction and PID controller tuning. Journal of Process
Control 13, 291–309.

Skogestad, S. (2006). Tuning for Smooth PID Control with
Acceptable Disturbance Rejection. Ind. Eng. Chem.
Res., 45, 7817–7822.
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