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Abstract: In this paper, we provide a new method of the PID parameter tuning for time-delay
systems by utilizing the fictitious reference iterative tuning (FRIT), which is a controller tuning
method enabling us to obtain the desired parameter with only one-shot experimental data. Here,
by relating the conventional PID controller to the internal model controller (IMC), we show that
PID parameters obtained as the result of the FRIT yield not only a desired controller but also
a mathematical model of the controlled time delay system. In order to show the validity of the
proposed method, we give an illustrative example.
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1. INTRODUCTION

It is no doubt that PID controllers are widely used in many
industrial applications (Astrom and Hagglind (1995), Suda
(1992)). One of the reasons for this is that each component
in a PID controller is intuitively understandable. Another
reason is that a PID controller is with only three tunable
parameters which leads to the enhancement of ease in
handling. However, the latter reason does not necessarily
reflect preferable features of PID controllers. One of the
most bothersome drawbacks is that there is no guideline
in quantitative form that is effective for the tuning of
the parameters. In order to overcome this problem, it is
rational to construct a mathematical model of a plant
based on system identification techniques. Once we can
have an appropriate mathematical model, it is possible
to obtain desired parameters that reflect the dynamics of
a plant and a design specification. On the other hand,
there are many cases in which it is difficult to take
a time and cost for some experiments required in the
modeling from the view points of the management of
a plant and the scheduling of a production process. As
another background, there are also many cases in which
it is impossible to apply high persistently excited signals
to a plant for the identification of the plant from the view
point of a safe operation. In these possible cases, one can
not perform an ideal experiment for obtaining a model of
a plant.

Thus, if the desired PID parameters can be directly ob-
tained from the data which measured under the normal
operation, then the time and cost can be reduced. Thus,
an approach that directly utilizes the data for controller
1 This work was partially supported by JSPS Grant in Aid for
Scientific Research (B) 23360183.

parameter tuning is useful and effective from the practical
points of view. In this point, Iterative Feedback Tun-
ing (IFT, Hjalmarsson et al. (1998)), Virtual Reference
Feedback Tuning (VRFT, Campi et al. (2002)), Fictitious
Reference Iterative Tuning (FRIT, Souma et al. (2004)
and Kaneko et al. (2005)) were provided. The IFT is the
most rational approaches in the sense the cost function
to be minimized is directly evaluated. However, the IFT
requires many experiments in order to perform the non-
linear optimization. This is a crucial problem in the case
where we can not take the time and the cost. The VRFT
and the FRIT use only one-shot experimental data for
obtaining the desired parameters. The FRIT focuses on
the output while the VRFT focuses on the input, so the
FRIT is intuitively understandable in the case where the
objective is to achieve the desired output. From this, we
also focuses on the FRIT for the direct data-driven tuning
of the PID parameters.

On another front, a mathematical model is also important.
The reason for this is that a mathematical model can be
utilized for the estimation of the aging change, fault de-
tection, diagnosis of malfunction, and so on. Particularly,
it is usual that the dynamics of a plant is approximated
as a facile mathematical model like a first-order system
with a time-delay, because such a model enables us to
capture the main characteristics of the plant by using only
a gain, a time constant, and a time delay, which yields the
ease of analysis of the plant. From this, we see that the
simultaneous attainment of not only a desired controller
but also a facile mathematical model is useful with respect
to the practical applications. In addition, in the case where
the objective of a control system is to track a given desired
output, it is impossible to give the reference model of the
closed loop that exceed the limit of the performance of
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a plant, like a time-delay, an initial undershoot and so
on. Under the situation in which the actual dynamics
of a plant is unknown, it is also impossible to give an
appropriate reference model as a specification. Thus, it
is meaningful to obtain the information of the plant from
the data in the sense that we can also give an appropriate
reference model.

Actually, the authors studied the simultaneous attainment
of a desired parameter and a mathematical model of a
plant by using the FRIT in Kaneko et al. (2010). Par-
ticularly, we focused on linear systems with time-delay in
Kaneko et al. (2011b) and Kaneko et al. (2011a) as one
of the representative systems which are used as typical
mathematical model many applications. As for related
studies on the parameter tuning for time-delay systems,
the application of the IFT(Hjalmarsson et al. (1998)) to
the IMC for the Smith compensator was studied in Bruyne
(2003). The IFT requires many experiments in order to
update the parameter of a controller so as to achieve the
minimization of the performance index. Thus, the method
in Bruyne (2003) spends considerable expense and time.
Moreover, Bruyne (2003) did not take into account obtain-
ing a mathematical model. As another related approach,
Formentin et al. (2010) proposed application of the VRFT
Campi et al. (2002) for time-delay system in the IMC.
The VRFT enables us to obtain a desirable parameter
with only one-shot experiment. In this sense, the method
in Formentin et al. (2010) is effective from the practical
points of view. However, the simultaneous attainment of a
controller and a parameter can not be performed. As for
the simultaneous attainment of a controller and a model
for time-delay systems, Abe and Ichihara (1999) studied
the application of wind-surfer approach (Lee et al. (1995),
Lee (1999) and so on) to Internal Model Controller (IMC,
Morari et al. (1984) and Morari and Zafiriou (1989)).
Although the aim of Abe and Ichihara (1999) was to obtain
both of a mathematical model of a plant and a desirable
controller for time-delay systems, many iterative experi-
ments are also required. Compared with these related stud-
ies, the authors developed the simultaneous attainment of
a controller and a mathematical model for linear time-
delay systems in Kaneko et al. (2011b) and Kaneko et al.
(2011a) by using the FRIT in the IMC framework. Since
the FRIT requires only one-shot experiment, the approach
by the authors has a great advantage with respect to
practical points of view in the sense that only one-shot
experiment data yields not only a desired parameter and
but also a mathematical model.

From these backgrounds, we provide a new method of the
PID parameter tuning for time-delay systems by utilizing
the FRIT as one of the extensions of the studies by the
authors (Kaneko et al. (2011b) and Kaneko et al. (2011a)).
Here, we relate the conventional PID controller and the
IMC (or the Smith compensator). And then, by using such
a relation, we show that the PID parameters which are
obtained as the result of the FRIT yields not only a desired
controller but also a mathematical model of a plant.

[Notation] For a rational transfer function G(s), we denotes
the output signal of G with respect to the input signal u
as y = Gu for the enhancement of the readability. For a
time signal w, we denote the value of w at the time t as
w(t). For a time signal w, we denote the delayed signal as

e−Lsw(t) := w(t − L). Under the sampling period ∆, we
prepare the norm defined by

∥w∥(N,∆) :=

√√√√ 1

N + 1

N∑
i=0

(w(∆i))
2

for the sampled time series of w from t = 0 to t = N∆.

2. PRELIMINARIES

In this paper, we assume that a plant is a linear and time-
invariant system with time-delay described by

P = Ple
−Ls (1)

where Pl and L denote the lumped part and the time delay
of P , respectively. We also assume that Pl is stable. We
suppose that Pl and L are unknown. A control system
we treat here is illustrated in Fig. 1. CPID denotes a
conventional PID controller described by

CPID = KP +
KI

s
+

KDs

γs+ 1
(2)

whereKP ,KI , andKD are a proportional, an integral, and
a differential gain, respectively. All of these three param-
eters are tunable. We denote them as ρ := [KP ,KI ,KD]
and also denote as CPID(ρ). The constant γ determines
the frequency range over which the element KDs/(γs+1)
can be approximated as a differentiator. Let Gry(ρ) be
a closed loop transfer function with CPID(ρ) from the
reference signal r to the output y. The input and the
output of P are also regarded as functions of ρ, so they
are denoted with u(ρ) and y(ρ), respectively.

3. PROBLEM FORMULATION

3.1 Reference models

In this paper, the objective of tuning of the PID controller
is to achieve a desired output. In general, it is impossible
to achieve the desired output of the reference model whose
relative degree is less than that of a plant. Similarly,
it is also impossible for a linear time delay system to
track the desired output whose delay is shorter that of a
plant. Since these limitations of performances are related
to the inherent characteristics which can not be improved
by controllers, a reference model should not excess these
limitations. However, our setting is that the dynamics of
a plant is unknown, so we can not give an appropriate
reference model that does not contradicts to the actual
dynamics of a plant. This means that we should obtain
the information of the plant to be included in the reference
model from the actual data. From these reasons, we give
a reference model as

Td(λ, L̃) =
1

λs+ 1
.
1− L̃s/2

1 + L̃s/2
. (3)

Fig. 1. A closed loop with the PID controller
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In (3), λ corresponds to the time constant of the lumped
part of P under the assumption that it is possible to

approximate P as the series of the time-delay e−L̃s and
the first order dynamical system as

PM (K,T, L̃) =
K

Ts+ 1

1− L̃s/2

1 + L̃s/2,
(4)

where the time-delay part is also described by the Pade
approximation with an unknown time-delay L̃. Thus, it
should be noted that both of λ and L̃ are also tunable
parameters.

In Masuda et al. (2010), the idea that the unknown time-
delay is included in the reference model in the framework
on the tuning of a controller 2 has already been proposed.
This paper proposes that not only the delay but also the
lumped part are included in the reference model, which
is different from Masuda et al. (2010). Moreover, the
reference model with an unknown parameter is used for
tuning of IMC, which is discussed in the later, which is
another different point from the work of Masuda et al.
(2010).

3.2 Problem formulation

In order to obtain the PID parameters that achieve the
desired output, we introduce the following cost function

J(ρ, L̃, λ) := ∥y(ρ)− Td(λ, L̃)r∥2(N,∆). (5)

The objective is to find the parameters ρ, L̃, and λ such
that J(ρ, L̃, λ) is minimized. Of course, the use of the IFT
yields the optimal parameters of J . However, as stated
in Section 1, it is preferred that the optimal parameters
can be obtained as less experiment as possible. From this
requirement, we investigate whether the optimal parame-
ter can be obtained with only one-shot experimental data.
In addition, we also investigate whether it is possible to
obtain the parameters K, T , and L̃ such that PM (K,T, L̃)
is close to the actual plant P by using the PID parameters.

Problem 3.1. Set the initial parameter ρ0 and assume that
the output of Gry(ρ

0) is at least bounded with respect
to the reference signal r in order to obtain the initial
data. Perform one-shot experiment and obtain the data
u0 := u(ρ0) and y0 := y(ρ0), respectively. Then, the
problem is to find the optimal PID parameters with λ∗

and L̃∗ such that minimize J(ρ, L̃, λ) and simultaneously

the parameters K∗ and T ∗ such that PM (K∗, T ∗, L̃∗)
approximate P as closely as possible based on the direct
use of y0 and u0. 2

Problem 3.1 requires the optimal parameters that yield
both of the desired tracking property and the model
reflecting the dynamics of the actual plant.

In Abe (2003), it was shown that the PID parameters
are related to the parameters of the mathematical model
described by (4) by rewriting the PID controller as the
IMC controller (Morari and Zafiriou (1989)). The result
of this paper is also based on this idea, which will be
given in the following section. However, their idea is that
2 Masuda et al. (2010) also treats the application of FRIT to tuning
of a controller for linear time-delay system

the parameters for the facile mathematical model can be
utilized for the desired controller parameter. Compared
with this, our approach also uses not only this idea but
also the converse direction, that is, we focus on that the
desired PID parameter can also be utilized for attaining
the parameters of the mathematical model.

4. FICTITIOUS REFERENCE ITERATIVE TUNING
(FRIT)

In this section, we give a brief review of the fictitious
reference iterative tuning (FRIT) based on the references
(Kaneko et al. (2005), Souma et al. (2004)) which is a main
tool for solving Problem 3.1.

Fig.2 illustrates a conventional feedback control system
that consists of a plant and a controller C(ρ) with a
tunable parameter ρ. Consider the problem on finding the
parameter ρ∗ minimizing J(ρ) = ∥y(ρ)−Tdr∥(N,∆) with Td

which is a desired transfer function from r to y. First, by
using the initial parameter ρ0, perform the first experiment
on the closed loop system with C(ρ0) and obtain the initial
data u0 := u(ρ0) and y0 := y(ρ0). Here we also assume
that C(ρ0) tentatively stabilize the closed loop so as to
yield the bounded input and output. By using them, we
compute the fictitious reference signal r̃(ρ) (which was
introduced by Safonov and Tsao (1997) in the unfalsified
control framework) described by

r̃(ρ) = C(ρ)−1u0 + y0. (6)

Next, we introduce the cost function described by

JF (ρ) = ∥y0 − Tdr̃(ρ)∥(N,∆). (7)

Then we minimize JF (ρ) and implement ρ̃∗ := argminρ JF (ρ)
to the controller. Note that (7) with the fictitious reference
r̃(ρ) in (6) requires only u0 and y0. This means that the
minimization of (7) can be performed off-line by using
only one-shot experimental data. As for the relationship
between the minimization of J(ρ) and that of JF (ρ), it
was shown in Theorem 3.1 in Souma et al. (2004) that
J(ρ̃∗) = 0 is equivalent to JF (ρ̃

∗) = 0. Although it is
difficult to ideally minimize the cost function JF (ρ) to be
zero, this relation implicitly means that the minimization
of JF (ρ) is deeply related to that of J(ρ).

5. MAIN RESULT

5.1 Simultaneous attainment and the IMCs

First, in addition to the closed loop in Fig. 1, we con-
sider the IMC structure illustrated in Fig. 3 (Morari and
Zafiriou (1989)). In Fig. 3, CFB is a feedback controller.
From the preceding result by the authors in Kaneko et al.

PC(ρ)

r u(ρ) y(ρ)

−+

Fig. 2. A conventional feedback control system
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(2010) and Kaneko et al. (2011b), if the feedback controller
is constructed as

CFB =
Td

PM
(8)

then Gry = Td is (generically) equivalent to P = PM . That
is, the desired reference transfer function by using IMC
with (8) if and only if the internal model PM identifies the
plant P 3 . If a plant is with unstable zeros and/or a time-
delay, PM is described by P = PMmPMn where PMm and
PMn are the minimum phase and the non-minimum phase
parts of PM , respectively. Then, by setting Td = TdmPMn

where Tdm is a given reference model which is minimum
phase,

CFB =
Tdm

PMm
(9)

yields the property that Gry = TdmPMn is generically
equivalent to P = PM .

In this paper, these relevant transfer functions are given
as follows;

PMm =
K

Ts+ 1
(10)

PMn =
1− Ls/2

1 + Ls/2
(11)

Tdm =
1

λs+ 1
. (12)

The feedback controller described by (8) or (9) is a key for
the simultaneous attainment of models and controllers.

5.2 PID controllers and IMC

By using (8) or (9), we can rewrite Fig. 3 as Fig.4.
Moreover, since PM and Td are parameterized as (4) and
(3), respectively, the controller C in Fig.4 is described by

C(K,T, L̃, λ) =
TdmP−1

Mm

1− TdmPMn

Fig. 3. The IMC structure

Fig. 4. The IMC structure with CFB by (8)

3 As shown in Morari and Zafiriou (1989) and so on, it is very well-
known fact that PM = P implies Td = Gry under CFB = Td/PM .
However, the converse direction is provided by the authors in Kaneko
et al. (2010)

=
TL̃
2 s2 + (T + L̃

2 )s+ 1

K
(

λL̃
2 s2 + (λ+ L̃)s

) (13)

with unknown parameters K,T, L̃ and λ. Here, by equal-
izing the PID controller CPID of (2) and C of (13), we can
obtain the relationships between the PID gains and the
parameters of the internal model can be described by

K =
1

KI(λ+ L̃)
(14)

T =
KP

KI
+ γ − L̃

2
(15)

T =
2

L̃KI

(KD +KP γ) (16)

λ=
−2γL̃

2γ − L̃
. (17)

These relations are used for obtaining of the parameters
of the mathematical model.

5.3 FRIT for the tuning of PID gains and the parameters
of the model

We apply the FRIT to tuning of the PID gains. The cost
function to be minimized in this case is

JF (ρ) = ∥y0 − Td(λ, L̃)r̃(ρ)∥2(N,∆) (18)

where the fictitious reference is described by

r̃(ρ) = CPID(ρ)−1u0 + y0. (19)

It should be noted that λ and L̃ are also updated in the
nonlinear optimization of (18) . At this point, it is natural
to consider that λ of the reference model depends on the
the time delay L̃. From this observation, we determine λ by
using (17) with the obtained L̃ at each step of the iterative
computation in the nonlinear optimization.

After the optimization, we can obtain the optimal param-
eters that minimizes JF , say ρ∗ =: [K∗

P , K
∗
I , K

∗
D], L̃∗ and

λ∗. By using K∗
I , L̃

∗ and λ∗, (14) yields the parameter K.
Moreover, by solving two algebraic equations (15) and (16)
with respect to one unknown parameter, we can obtain
the approximated value of T . As a result, by utilizing the
FRIT, we obtain not only the desired PID gain but also
the parameters of the mathematical model.

5.4 Algorithms

We summarize the proposed algorithm as follows.

0 Set the initial PID parameter ρ0 and the initial
reference model with λ0 and L̃0.

1 Perform one shot experiment and obtain u0 and y0.
2 Execute the non-linear optimization off-line:

Set i = 0.
While JF (ρ

i, L̃i, λi) > ϵ;

Compute the gradients ∂JF

∂ρ

∣∣∣
ρi

and ∂JF

∂L̃

∣∣∣
L̃i
.

Compute ρi+1 and L̃i+1 by using
the update computation with the gradients.

Compute λi+1 with L̃i+1 by using (17)
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Fig. 5. The initial output y(ρ0) (the solid line), the desired

output with tunable parameters Td(λ
0, L̃0)r (the dot-

and-dash line), and the reference signal r (the dotted
line)
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Fig. 6. The initial input u(ρ0)

i=i+1;
End

3 Obtain K∗ and T ∗ by applying ρ∗, L̃, and λ∗, to (14),
(15), and (16).

4 Implement ρ∗ and perform the experiment .

6. EXAMPLE

In order to show the validity of the result of this paper,
we give a numerical example. An unknown pant we treat
is

Ple
−Ls =

12s+ 8

20s4 + 113s3 + 147s2 + 62s+ 8
e−5s

=
12s+ 8

20(s+ 4)(s+ 1)(s+ 0.4)(s+ 0.25)
e−5s (20)

where the lumped part is given as the benchmark problem
in Suda (1992). A reference model is given as

Td(λ, L̃) =
1

λs+ 1

1− L̃s/2

1 + L̃s/2
(21)

where L̃ and λ are also unknown. Under these settings, we
perform the initial experiment with the initial parameters
K0

P = K0
I = K0

D = 0.1 with γ = 1.8. The initial
output and input data are illustrated in Fig. 5 and Fig. 6,
respectively.

In Fig. 5, the dotted line, the slid line and the dot-and-dash
line describe the reference signal, the initial output y(ρ0),

0 20 40 60 80 100

0

0.5

1

Time[sec]

O
ut

pu
t

Fig. 7. The output with the optimal PID parameter y(ρ∗)
(the solid line), the desired output with the optimal

parameters Td(λ
∗, L̃∗)r (the dot-and-dash line), and

the reference signal r (the dotted line)

and the initial desired output Td(λ
0, L̃0)r with λ0 = 5.3514

and L̃0 = 11, respectively.

By using y0 and u0, we perform the proposed method. The
optimal PID parameters are obtained as K∗

P = 0.4282,
K∗

I = 0.0664, K∗
D = 0.782. As for the reference model, the

optimal time delay and the time constant are obtained as
L̃∗ = 5.8225 and λ∗ = 9.4313, respectively. In order to see
whether ρ∗ = [K∗

P K∗
I K∗

D] satisfies the desired output of
the optimal reference model, we implement ρ∗ and perform
the closed loop experiment. In Fig. 7, the output y(ρ∗) and

Td(λ
∗, L̃∗)r are illustrated.

The reference model with L̃∗ and λ∗ yields the initial
under shoot due to the unstable zeros which are obtained
by the Pade approximation of the time delay. However,
we see that the delay can be approximated by the initial
undershoot. Moreover, we also see that the output can
tracks the desired response of the reference model . Thus,
we see that the optimal parameter are desired with respect
to the control.

Next, we focus on how the obtained model PM (K∗, T ∗, L̃∗)
approximates the actual plant. The obtained model is

PM (K∗, T ∗, L̃∗) =
0.9879

(5.2484s+ 1)

(1− 2.911s)

(1 + 2.911s)
. (22)

We validate the gain and the phase characteristics in Fig. 8
and Fig. 9, respectively. From Fig. 8, we see that the gain
characteristics can be identified. As for Fig. 9, we see that
the phase characteristics can be identified under the cut-off
frequency 1/9.4313 of Td(λ

∗, L̃∗) over which the accurate
identification is required for the desired specification.

7. CONCLUSION

In this paper, we have provided a new method of the
PID parameter tuning for time-delay systems with the
FRIT, which is a parameter tuning method with only
one-shot experimental data. Here, we have related the
conventional PID controller and a controller with some
specific structure. By using such a relation, we have shown
that the PID parameters which are obtained as the result
of the FRIT yields not only a desired controller but also a
facile mathematical model of a plant.
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Fig. 8. The frequency characteristics(Gain): Ple
−Ls (the

solid line), PM (K∗, T ∗, L̃∗) (The dot-and-dash line)
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Fig. 9. The frequency characteristics(phase): Ple
−Ls (the

solid line), PM (K∗, T ∗, L̃∗) (The dot-and-dash line)

Future direction of this study is to apply the proposed
method here to many various applications in order to
show that the result is useful and effective for the actual
problem. In addition, the effect of noise and the stability
of the obtained parameters should be clarified so as to be
utilized for industrial applications.
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