
Dead-band self-triggered PI control for processes
with dead-time

U. Tiberi ∗, C.F. Lindberg ∗∗, A.J. Isaksson ∗∗

∗ ACCESS Linnaeus Center, KTH Royal Institute of Technology, Stockholm,
Sweden (e-mail:ubaldot@ee.kth.se)

∗∗ ABB Corporate Research, Västerås, Sweden
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Abstract: Current implementations of digital controllers assume that sensing, control and actuation
are performed in a periodic fashion. In classic control schemes, where sensors and controllers are
directly connected, periodicity does not provide particular drawbacks, but, in the case of wireless sensor
networks, such a choice may be questionable. One of the driving constraints in the design of wireless
sensor networks is represented by its energy efficiency, and it has been shown that the main cause of
energy consumption is due to the radio activities of the sensor nodes. By using periodic implementations,
the sensor nodes are enforced to keep on transmitting measurements to the controller even if it is not
really needed, thus wasting energy. To cope with these problems, self-triggered control was recently
introduced. This technique aims at reducing the conservativeness of periodic implementations providing
an adaption of the inter-sampling intervals based on the current output of the system. Existing work
on self-triggered control considers linear systems controlled by state feedback controllers under the
assumption of small time-delays. In this paper the problem of designing a self-triggered control scheme
that applies to first-order processes with large dead-times controlled by PI controllers is addressed.
Moreover, the proposed self-triggered scheme is robust with respect to set-point changes and external
disturbances, which are typical in process industry. The results are validated by simulations.
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1. INTRODUCTION

The emergence of wireless sensor networks (WSNs) is enabling
the development of new applications in various engineering
fields, including environmental monitoring, smart grids, pro-
cess industry, health care applications etc. Willig [2008], Plo-
plys et al. [2004]. The main benefits offered by such networks
rely on their configuration flexibility, low cost and on their fa-
cility of deployment and maintenance. The introduction of such
technology in process industry is promising substantial im-
provements of the existing applications, in addition to a strong
reduction of both installation and maintenance costs. Neverthe-
less, despite the benefits provided by WSNs, new problems re-
lated to reliability, time delays and energy efficiency arise, Park
[2011]. While reliability and time delay problems are present
in any networked control system, Hespanha et al. [2007], in
the case of WSN there is the additional problem of energy
consumption, being the nodes usually battery powered. Since
the main cause of energy consumption is due to the radio activ-
ities of the nodes, Texas-Instruments [2007], an energy efficient
control strategy should reduce as much as possible the amount
of communication among the nodes, while achieving a desired
behavior of the closed-loop system.

To cope with these problems, in the last years event-triggered
control has been introduced Årzen [1999], Tabuada [2007],
Dimarogonas and Johansson [2009], Åström and Bernhards-
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son [2002], Velasco et al. [2003], Mazo et al. [2010], Anta
and Tabuada [2010], Wang and Lemmon [2009]. In event-
triggered control schemes, the sensor nodes continuously mea-
sure the process output and they send a new measurement
to the controller only when a function of the output crossed
a certain threshold. Hence, event-based control is a reactive
control paradigm, since the controller is updated after an event
is detected. Alternatively to event-triggered control, in the last
years, self-triggered control has been also introduced. Instead
of reacting to the detection of an event, self-triggered control
predicts the occurrence of such an event based on the current
measurement and on a model of the process, it is then a predic-
tive control paradigm.

Both the methods present benefits and drawbacks, and the uti-
lization of event or self-triggered control schemes in a WSN
context shows relevant differences. For instance, event-based
control provides a natural robustness with respect to external
disturbances and set-point changes, since the system output
is constantly monitored. Moreover, event-based schemes, in
general, do not require the knowledge of the process model,
but are based only on the output measurements. However, if
there are packet dropouts the controller is not able to detect it.
On the other side, self-triggered control provides a deadline by
which the next measurement should be transmitted and received
at every transmission time. Thus packet dropouts can be easily
identified. Nevertheless, since self-triggered strategies may al-
low the system to run in open loop for long time, if there is a
set-point change or if a disturbance suddenly enters the system,
such problems can be handled only in the next transmission
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time. In addition, since the next transmission time is predicted,
self-triggered schemes require a model of the controlled process
as well. Finally, while event-based control implicitly suggests
the utilization of contention based communication protocols,
another advantage with self-triggered control is that more de-
terministic time-slotted protocols may be applied.

However, in both cases of event and self-triggered control,
it has been shown that it is possible to save over 90% of
communication between the controller node and the sensor
node still ensuring acceptable performance of the closed loop
system. See Norgren and Styrud [2011], where a first version of
our self-triggered scheme was tested at a Swedish paper mill.

Focusing on a process industry perspective, most industrial
processes are well represented with first-order models with
dead-time (KLT processes) and typically the controllers are
PI, Bialowskii [1992]. The study of event-based PI controller
provided fertile ground of research in the recent years, Årzen
[1999], Song et al. [2006], but to the best of our knowledge,
self-triggered strategies that target the specific case of first-
order processes and PI controllers is not yet addressed.

In this paper we address the specific case of designing a self-
triggered strategy based on the dead-band sampling, Otanez
et al. [2002], that applies for first-order processes (with and
without dead-time) controlled by PI controllers. The proposed
self-triggered strategy has the task of scheduling the trans-
missions from the sensor to the controller, and it must be
capable of handling set-point changes as well as unmeasured
external disturbances, typical in process industry. We design a
self-triggered sampler by assuming that the controller updates
are performed only at the transmissions instants. The results
presented in this paper are inspired by Tiberi et al. [2010].
However Tiberi et al. [2010] considered only static controllers,
assumed time-delays were shorter than the inter-sampling times
and that the external disturbance was constant. Here PI con-
trollers are considered with time-delays that are possibly larger
than the inter-sampling times and the sampling scheme is im-
proved by a disturbance observer.

The paper is organized as follows: the next section introduces
some preliminaries and the problem is formulated. In Section 3
the considered system architecture is described. In Section 4
a self-triggered sampler for KLT processes is presented, and
integrating processes are treated as a special case. In Section 6
the proposed self-triggered strategy is validated by simulation,
and, finally, a discussion in Section 7 concludes the paper.

2. PRELIMINARIES AND PROBLEM STATEMENT

Nowadays control architectures usually consider continuous-
time processes controlled by PI controllers implemented on
digital devices. Between two consecutive controller update, the
control signal is generally kept constant. In process industry a
common mathematical model used to represent several differ-
ent processes is the KLT model given by

P (s) =
K

1 + Ts
e−Ls, (1)

where K ∈ R is the static gain, T ∈ R is the time constant and
L ∈ R is the process time delay.

Another common process is the integrating processes described
by

P (s) =
Kv

s
e−Ls, (2)
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Fig. 1. The proposed system architecture presents a WSN,
disturbance observer and a self-triggered sampler. The
next transmission time is decided by the controller and
it is communicated to the sensor, which between two
consecutive transmission times can turn the radio off to
save energy.

where Kv ∈ R is the integration speed.

Rewriting (1) into state-space form and adding an external
disturbance gives

ẋp(t) = axp(t) + bu(t− L) + d(t) ,

y(t) = xp(t) , (3)
where xp ∈ R is the state of the process, u(t) ∈ R is the process
input, y(t) ∈ R is the output, d(t) ∈ R is a non-measurable
bounded external disturbance, a = −1/T , and b = K/T .
A state-space representation of the integrating process (2) is
obtained by setting a = 0 and b = Kv in (3).

PI-controllers are usually implemented on digital devices, here
the following implementation is used

xc(tk) =xc(tk−1) + Ts(r(tk)− y(tk)),

u(tk) =Kp

(
(r(tk)− y(tk)) +

1

Ti
xc(tk)

)
, (4)

where xc(tk) ∈ R is the integrator state, Ts = tk − tk−1 is the
sampling period, r ∈ R is the set-point signal, Kp ∈ R is the
proportional gain and Ti ∈ R is the integral time. With a slight
abuse of notation, in the rest of the paper we also indicate with
zk the sampled value of a signal z(t) at time tk, i.e. zk = z(tk).

A natural way to employ a WSN in the feedback channel in
the control architecture described so far, is to perform peri-
odic transmissions of the output measurements to the controller
every Ts units of time. As previously discussed, such an im-
plementation may require a large amount of communication
between the sensor and the controller if Ts is small, result-
ing in a large energy consumption of the nodes of the WSN.
Clearly, the number of transmissions can be reduced by using
larger inter-transmission periods. However, the utilization of
large inter-transmission periods could lead to instability, to bad
performance if external disturbances suddenly enter the system,
or long delays in case there are set-point changes.

In this paper we address the problem of designing a self-
triggered sampler that applies to KLT and integrating processes
controlled by PI controllers. The self-triggered sampler imple-
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ments the deadband sampling, namely, given a measurement of
the output yk at time t = tk, the self-triggered sampler should
predict the time by which the triggering condition

|e(t)| := |yk − y(t)| ≥ δ (5)
is fulfilled, where δ > 0 is a design parameter. Moreover, the
self-triggered scheme should be capable to accommodate set-
point changes and non-measurable external disturbances.

3. PROPOSED SYSTEM ARCHITECTURE

The proposed system architecture is depicted in Fig 1. Such
architecture comprises a process that can be either KLT or
integrating process, a PI controller and a WSN used for the
exchange of information between the controller and the sensor
node. The wireless communication is performed in an aperiodic
fashion, and the control signal is updated using (4) when a new
measurement is available with Ts as the actually elapsed inter-
sampling time. On the controller is further implemented a self-
triggered sampler and a disturbance observer. We assume that
all the computations to determine the next transmission time are
implemented at the controller, but it is possible to distribute the
computations between the sensor node and the controller as will
be discussed later on in the paper. At every transmission instant
t = tk, the sensor node sends a fresh measurement yk to the
controller, and after the reception of yk, the controller performs
the following actions

(1) it computes a new control input uk based on the received
measurement yk;

(2) it estimates the disturbance d̂k;
(3) it computes the next transmission time tk+1;
(4) it sends back the value of tk+1 to the sensor node;

Once the sensor node has received the value tk+1, it goes to
sleep to save energy until the time t = tk+1. That is, both the
controller and the sensor know the time tk+1 at which the next
transmission will be performed.

4. SELF-TRIGGERED TRANSMISSIONS POLICY

In this section we describe how to design a self-triggered
sampler that implements the triggering rule implicitly defined
by (5). We consider the cases of KT, KLT process and integrat-
ing processes as a special case. For the sake of clarity, we first
assume that the controller updates and the transmissions are
synchronized, namely the controller is updated only and exactly
at the time when receiving a new measurement from the sensor
node. However, in practice the communication network and
controller typically are not synchronized. To compensate for
the lack of synchronization the controller code is then executed
using a fixed (relatively short) period but with updates of the
control signal only if a new measurement is available, while the
transmissions are still performed according to the self-triggered
sampler.

4.1 Processes without time-delay

As preamble consider the state-space representation (3) with
L = 0, the dynamics of e(t) satisfy ė(t) = −ẏ(t) and at
the sampling instants t = tk it holds e(tk) = 0. Hence, to
design the self-triggered sampler we consider the dynamics, for
t ∈ [tk, tk+1)

ė(t) = −ay(t)− buk − d̂k = −ayk + ae(t)− buk − d̂k , (6)
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Fig. 2. Example of output response of process with dead-time.
Between two consecutive inter-transmission times, there
could be input signal changes. For example, the sequence
of input acting for t ∈ [t4, t5) are u1, u2, u3.

where d̂k is the estimate of the disturbance. Such estimate can
be computed as described in Section 5. It follows

e(t) = − (ayk + buk + d̂k)

a
(ea(t−tk) − 1) , (7)

for all t ∈ [tk, tk+1) from which, by setting e(tk+1) = ±δ, one
derives for stable systems i.e. a < 0

tk+1 = tk +
1

a
ln

(
1 +

aδ

|ayk + buk + d̂k|

)
, (8)

that looks similar to the self-triggered sampler proposed
in Tiberi et al. [2010]. However, in Tiberi et al. [2010] the self-
triggered sampler is designed by considering only proportional
state feedback, while within this new scheme, we explicitly
use the control input uk that may come from any dynamic
controller, and we use the output yk instead of the state xk. In
addition, here we do not consider the worst case of the external
disturbance, but we use an estimate d̂k of it to provide a certain
degree of robustness to model changes.

When the process is stable, it may happen that the logarithm
in (8) does not give a real valued result, which corresponds
to limt→∞ |e(t)| < δ. Then a maximum sampling interval
Tmax has to be introduced. It should be chosen such that for
a given tuning Kp,Ki the closed-loop system is still stable for
a periodic Ts = Tmax. Note that asymptotic stability of the
discretized closed-loop system prevents steady-state oscillatory
behavior of the output around the set-point.

4.2 KLT Processes with time delay

Because of process time delays and the aperiodic sampling
policy, the effective input acting on the process after a certain
time instant t = tk is not constant, but is piecewise constant,
see Fig. 2. This is due because of the process dynamics, in
which there is present a dead-time, and because of the adopted
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sampling scheme, i.e. the dead-band sampling. To predict the
next time by which the triggering condition (5) is violated, it
is then useful to consider the control changes during the time
interval [tk, tk+1). For instance, the sequence of inputs that
will take effect for t ∈ [tk, tk+1) are um(k), um(k)+1, . . . un(k),
where

m(k) := max
0≤i≤k

{i : ti + L ≤ tk} , (9)

n(k) := max
m(k)≤i≤k

{i : ti + L ≤ tk+1} . (10)

For the sake of clarity, in the sequel we simply indicate m =
m(k) and n = n(k). The design of the self-triggered sampler
is performed by splitting the process dynamics as




ẏ(t) = ay(t) + bum + d̂k for tk ≤ t < tm+1 + L ,

ẏ(t) = ay(t) + bum+1 + d̂k for tm+1 + L ≤ t < tm+2 + L ,
...

...
ẏ(t) = ay(t) + bun + d̂k for tn + L ≤ t < tk+1 .

(11)
To predict the next time by which the triggering condition (5) is
violated, we exploit the dynamics of e(t). Such dynamics, for
the time interval tk ≤ t ≤ tm+1 + L, are given by

ė(t) = −ay(t)− bum − d̂k = −ayk + ae(t)− bum − d̂k .
By taking into account that by definition at the sampling times
e(tk) = 0, we have, for t ∈ [tk, tm+1 + L)

e(t) = − (ayk + bum + d̂k)

a
(ea(t−tk) − 1) . (12)

For a generic time interval tm+i+L ≤ t ≤ tm+i+1+L, i > 0,
the dynamics of the e(t) error satisfy

ė(t) = −ay(t)− bum+i − d̂k = −ayk + ae(t)− bum+i − d̂k ,
and e(t) is given by

e(t) =ea(t−tm+i−L) · e(tm+i + L)

− (ayk + bum+i + d̂k)

a
(ea(t−tm+i−L) − 1) , (13)

where e(tm+i + L) is the value of e(t) at time t = tm+i + L.
Given the equation (13), we define the discrete version of e(t),
as

{
e0 = 0 ,

ej+1 = α(j)ej + β(j),
(14)

where

α(j) =





ea(tm+1+L−tk) for j = 0 ,

ea(tm+j+1−tm+j) for 0 < j < n−m,

ea(tk+1−tm+j−L) for j = n−m,

(15)

β(j)=




− (ayk + bum + d̂k)

a
(α(j)− 1) for j = 0 ,

− (ayk + bum+j + d̂k)

a
(α(j)− 1) for 0 < j ≤ n−m,

(16)
and where j ∈ {0, 1, . . . , n−m} is a relative index that is reset
to zero at every t = tk. To derive the next sampling time tk+1,
we consider both the continuous-time dynamics (13), and the
discrete-time dynamics (14) of e. By doing that, it is easy to see
that the time tk+1− tk needed to e to go from 0 to δ is given by

tk tk+1 t

δ

tm + L tm+1 + L tm+2 + L tm+3 + L

e(t)

e0

e1

e2
e3

e(t)

tm+1 + L− tk 2∑

i=1

(tm+i+1 − tm+i)

1

a
ln

(
1 +

a(δ − e3)

|ayk + bun + d̂k|

)

Fig. 3. Example the proposed self-triggered sampler. To deter-
mine the next sampling time we use both the discrete and
the continuous dynamic of e(t). In this example we have
n−m = 3.

tk+1 − tk =(tm+1 + L− tk) +
n−m−1∑

i=1

(tm+i+1 − tm+i)

+
1

a
ln

(
1 +

a(δ − en−m)

|ayk + buk + d̂k|

)
. (17)

The working principle of the self-triggered sampler (17) is
depicted in Fig. 3. Notice how the next transmission time tk+1

depends on the previous n − m computed input and trans-
mission times. This means that the self-triggered implemen-
tation requires a memory to store the values of the previous
transmission times performed during the time interval (tk −
L, tk]. Notice also how the next transmission time tk+1 can
be computed at time t = tk, according to the predictive na-
ture of the self-triggered control. Even here it can happen that
limj→+∞ ej < δ, but such a drawback can be easily avoided
by using a Tmax as described in the previous section.

4.3 Integrating Processes

For integrating processes we can proceed as in the case of KLT
process. In this case (14), becomes

{
e0 = 0 ,

ej+1 = ej + β(j) ,
(18)

where β(r) is defined as

β(j)=

{
−(bum + d̂k)(tm + L− tk) for j = 0

−(bum+j + d̂k)(tm+j+1 − tm+j) for 0 < j ≤ n−m
(19)

The self-triggered sampler (17) becomes

tk+1 − tk =(tm+1 + L− tk) +
n−m−1∑

i=1

(tm+i+1 − tm+i)

+
δ − en−m
|bun + d̂k|

. (20)

The computations needed to determine the next transmission
times are described next. Based on the dynamics (14), the
controller computes the value of en−m, it picks the last stored
n −m inter-transmission times and, based on the output mea-
surement yk and the disturbance estimate d̂k, computes the
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next transmission time. The value of en−m is computed by
using the discrete time dynamics (14), using an estimate of the
disturbance discussed in the next section.
Remark 4.1. Despite we assumed that all the computation are
performed by the controller, we may actually distribute such
computations between the sensor node and the controller. For
example, a more accurate disturbance observer may be imple-
mented at the sensor, which at every transmission time will send
to the controller the values of yk and d̂k, and the controller will
reply with the next transmission time tk+1. /

Remark 4.2. If the model used by the self-triggered sampler
is different from the real process, the methodology still holds.
If the sampling rule (5) is implemented, but the model is not
exact, what happens in reality is that we are sampling when a
triggering condition |∆y(t)| ≤ δ+µ, is violated, where µ takes
into account model mismatch. Clearly, if the model is exact,
then µ = 0. Hence, model mismatch is included in the real
threshold δ+µ, but the value of the threshold modifies only the
trade-off between the number of transmissions and the closed-
loop performance. However, the optimal selection of δ is an
open problem, currently under investigation. /

5. DISTURBANCE OBSERVER

5.1 A Dead-beat Observer

As noticed above the derived self-triggered sampler assumes
that the process disturbance is estimated. To do so, we have to
introduce some assumption about the disturbance. Simplest is
of course to assume a constant disturbance, and the simplest
observer just solves for d̂ using two consecutive measurements
(which corresponds to a deadbeat observer)

d̂k =
1

g(tk, tk−1)

(
yk − f(tk, tk−1)yk−1

− b
n−m−1∑

i=0

g(tm+i+1, tm+i)um+i

− bg(tm+1 + L, tk−1)um − bg(tk, tn + L)un

)
. (21)

where the functions f(·, ·) and g(·, ·) are defined as

f(p, q) := ea(p−q), g(p, q) :=
1

a
(ea(p−q) − 1)

In the case of a process without delay, i.e. L = 0, this observer
becomes

d̂k =
yk − f(tk, tk−1)yk−1 − b g(tk, tk−1)uk−1

g(tk, tk−1)
. (22)

This way, we are able to accommodate variations in the external
disturbances.

The disturbance observer for an integrating process is the same
as in (21) but the functions f(p, q) and g(p, q) are replaced with
f(p, q) = 1 and g(p, q) = (p− q).

5.2 A Kalman filter based Observer

For noisy situations it may be better to deploy a Kalman filter
with d as an extra state with zero derivative. Performing the
time update of the Kalman filter becomes almost trivial (at least
when Tmax is not activated), since by construction the predicted
next value of the output is yk ± δ. A measurement update is
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Fig. 4. Simulation results with self-triggered PI-control.

then carried out at the next sampling instant using the above
defined f(tk+1, tk) and g(tk+1, tk) for the update of the Riccati
equation.

6. SIMULATIONS

Some simulation examples have been done for a two different
processes. In the first example a KLT process with dead-time
has been simulated and controlled.
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G(s) =
1

100s+ 1
e−20s

There is a change in the set-point after 50s and the disturbance
d changes from zero at t = 500s. The process is controlled
by a self-triggered PI-controller with gain Kc = 1.43 and
integral time Ti = 100. The disturbance has been estimated
by a dead-beat observer in the self-triggered algorithm. The
result of the simulation is presented in Fig. 4(a). Maximum
sampling time has been set to 70 s and minimum to 1 s. The
simulation summed up to 36 samples, and most samples are
as expected taken when y is changing. Compared to the fast
periodic controller sampled by 5s, this strategy saves 85% of the
number of samples. The fast periodic controller has however a
better disturbance rejection for load disturbances.

In next example an integrating process with no dead-time has
been controlled.

G(s) =
1

s
e−10s

The set-point is changed at t = 10 s and the disturbance d
changes from zero at t = 400s. The process is controlled
by a self-triggered PI-controller with gain Kc = 0.0437, and
integral time Ti = 70. The result of the simulation is presented
in Fig. 4(b). The maximum sampling time has been set to 30
s and minimum to 1 s. The simulation summed up in total
44 samples. Compared to the fast periodic controller that is
sampled by 1 s, this strategy saves more than 94% of the
samples. As before, the fast periodic controller has a better
disturbance rejection for load disturbances.

7. CONCLUSIONS

In this paper we presented a self-triggered implementation of
the dead-band sampling that applies to KLT and integrating
processes controlled by PI controller, extending existing works
that deals with static controllers and small time-delays. The
presented self-triggered scheme further allows us to handle set-
point changes and varying external disturbances. Although in
the paper we considered only PI controllers, the proposed self-
triggered scheme can be adapted to any type of controller, since
it requires only the value of the control signal and hence does
not depend on the particular controller structure.

Future work includes the joint utilization of self and event-
triggered scheme to further improve the robustness of the self-
triggered scheme.
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