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Abstract: This paper deals with stage motion control system for scene manipulation during
theater performance. Particular task of rope drum control is presented and solved. The system
exhibits an oscillatory dynamics due to the elasticity of the rope with a hanging load. The
goal was to find a simple control strategy based on a common cascade PID structure which is
available in most of the industrial AC drives. Formerly developed method of parametric Jordan
form assignment was used to solve the problem and obtain simple tuning rules.
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1. INTRODUCTION

Stage motion control system is an essential part of a
modern theater. It consist of several technical devices
including rope drums, moving walls, turntables and drop
curtains which allow to create and change a shape of the
stage during a break or ”on the fly” within a running
performance. Rope drums serve for manipulation with
various loads in form of scenes performing variety of
motions ranging from simple rest-to-rest manoeuvres in
one direction to complicated multidimensional trajectories
with multiple synchronized ropes. Typical structure of
the control system is shown on Fig. 1. The rope drum
is driven by an electrical drive, usually an AC induction
motor with corresponding frequency inverter. The axis
controller is responsible for desired trajectory tracking
and serves as position controller. The setpoint values for
desired position, velocity and acceleration of each axis are
received from motion planning level ensuring trajectory
generation and proper synchronization during multi-axes
motions. The system is parameterized and supervised by
an operator using a human-machine-interface.

The increasing complexity of live performance in theaters
and a call for advanced special effects on the stage results
in higher desired bandwidth at the motion control level.
Due to the fast movements, serious problems with un-
wanted oscillations caused by a flexible coupling may arise.
This is especially true for the rope drum systems, which
often exhibit an oscillatory dynamics due to the elasticity
of the rope. This leads to difficulties with parameter tuning
of the drive controllers and prolongs the commissioning
of the technology. There are several methods for motion
controller synthesis ranging from classical PID, predictive,
sliding mode, robust or adaptive control [Vukosavić (2007);
Kwon and Chung (2004); Ohnishi et al. (1996); Šabanovic
(2011)] which work well for rigid mechanisms. However,
their use is very limited in case of flexible systems. Several
special methods for vibration damping have been devel-

Fig. 1. Typical structure of stage motion control system

oped. One way is to employ an additional instrumenta-
tion in form of position, speed, acceleration or driving
torque sensors which are attached to the load side. The
mechanical resonance can then be suppressed in an active
way by closing the state feedback. In case of inaccessible
state variables, a state observer may be used to acquire
the information about the motion on both sides of the
elastic coupling [Ji and Sul (1995)]. Such methods are
known to be sensitive to modelling errors and nonlinear
effects occurring in the mechanical subsystem. Moreover,
it may be difficult to extract the required information
from noise corrupted signals, especially when the noise
frequency coincides with those of resonant modes of the
system. Passive vibration damping can be used when the
state variables can be neither measured nor reconstructed
[Vukosavić (2007)]. In this case a series antiresonant com-
pensator in form of IIR or FIR filter is placed inside the
velocity control loop ensuring that the oscilatory modes
cannot be excited by the driving torque in the vicinity
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Fig. 2. Simplified model of the rope drum system

of the resonant frequency. Alternatively, proper filter can
shape the setpoint values for the motion controller in the
feedforward path [Goubej and Schlegel (2010)]. The main
disadvantage of passive damping approach is that the res-
onant mode remains uncontrollable after the cancelation
with the series compensator and any outer disturbance will
cause the undesirable oscillations.

Many modern methods for optimal controller synthesis
(LQG, H2, H∞) generally produce high-order compen-
sators which are difficult to implement due to their sen-
sitivity to rounding and modelling errors. Only a numer-
ical solution to the problem is often available and set of
complex mathematical routines is needed to obtain some
results. The parameter tuning is achieved by modifying
some weighting functions without a clear physical meaning
and several iterations may be needed to get a suitable
design. There is a gap between the academic research
and industrial practice where the PID controller is still
prevailing. Therefore, our goal was to find a simple method
based on partial pole placement technique for low-order
compensator synthesis which may be used in most stan-
dard industrial drives equipped with common cascaded
PID control structure.

2. MATHEMATICAL MODEL OF THE ROPE DRUM
SYSTEM

The system consists of rotational drum, flexible rope and
a hanging load (Fig. 2). To obtain a finite-order model
suitable for control law design, some simplifications have
to be made. We assume that the elastic rope with load can
be modelled as an mass-spring-damper system. The values
of spring constant k and viscous damping coefficient b are
generally time varying and they depend on the length of
the rope according to Hooke’s law:

k =
k0

l
, b =

b0
l

(1)

where k0 corresponds to the stiffness of the unit length of
the rope and l is the actual length in dependence on drum
position ϕ

l = l0 − ϕr (2)

The equations of motion can be derived using the Newton-
Euler method.

From the total torque Tt acting on the drum we get:

Tt = T − k(x− l)r − br(ẋ− l̇) = Iϕ̈ (3)

Sum of forces acting Ft on the load:

Ft = mg − k(x− l)− b(ẋ− l̇) = mẍ (4)

Substituting from (1,2) we can write:

T − k0

l0 − ϕr
(x− l0 + ϕr)r − br(ẋ+ rϕ̇) = Iϕ̈ (5)

mg − k0

l0 − ϕr
(x− l0 + ϕr)− b(ẋ+ rϕ̇) = mẍ (6)

By introducing state variables x = [x1 x2 x3 x4]T =
[x ϕ ẋ ϕ̇]T we get nonlinear state space representation
in form:

ẋ1 = x3

ẋ2 = x4

ẋ3 =− 1
m

k0

l0 − rx2
(x1 − l0 + rx2)− b

m
(x3 + rx4) + g

ẋ4 =−1
I

k0

l0 − rx2
(x1 − l0 + rx2)r − br

I
(x3 + rx4) +

1
I
T

b=
b0

l0 − rx2
(7)

The only outputs available for measurement are motor
speed and position. The system can be linearized around
any chosen equilibrium point corresponding to a fixed rope
length l. The obtained LTI model matrices:

A =


0 0 1 0
0 0 0 1

− k0

ml
−r(k0 + gm)

ml
− b0
ml

−b0r
ml

−k0r

Il
−r

2(k0 + gm)
Il

−b0r
Il
−b0r

2

Il

 (8)

B =


0
0
0
1
I

 (9)

C =
[
0 1 0 0
0 0 0 1

]
(10)

The transfer function from motor torque to motor speed:

P (s) =
mls2 + b0s+ k0

s(Jlms2 + (b0r2m+ Jb0)s+ (r2k0m+ r2gm2))

=
K

s

s2 + 2ξzωnzs+ ω2
nz

s2 + 2ξpωnps+ ω2
np

(11)

We can see that the linearized model has the structure
of well known two-mass system which is usually used
to describe the dynamics of two rotating inertial loads
connected by flexible shaft. Typical resonance and antires-
onance phenomenon can be observed in case of weakly
damped complex poles and zeros in (11).
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Fig. 3. Motion controller in industrial servo drive

3. CONTROL LAW DESIGN

Typical control structure which is used in most of the
industrial electrical drives consists of three cascaded feed-
back loops. Current loop controls the mechanical torque
generated by the drive. Usually the Field oriented control
scheme along with PI(D) algorithm and space vector mod-
ulation or Direct torque control method is used for driving
the voltage source three-phase frequency inverter. On the
next level, PI or PID velocity controller is employed. The
last layer is formed by position controller which most
frequently runs in proportional mode. Lowpass filters are
commonly used to attenuate the measurement noise in
feedback signals, notch filter, lowpass or lead-leg compen-
sator may be present to deal with an oscillatory dynam-
ics.Setpoint values are acquired from trajectory generator
(interpolator) which computes desired motion for the given
axis of the machine.

The most difficult part of drive commissioning in case
of flexible mechanisms is the velocity controller setting
because of the oscillatory dynamics, time varying parame-
ters and various nonlinear effects occurring in the system.
Therefore, our goal was to develop simple tuning rules
which may be used for design of active antiresonant PID
velocity controller. To accomplish that, partial Jordan
form assignment method was used which is briefly ex-
plained in the next section.

3.1 Parametric Jordan form assignment

We consider a linear time invariant system defined by state
space representation:

ẋ(t) =Ax(t) +Bu(t) (12)

y(t) =Cx(t) (13)
where x(t) ∈ Rn is state vector, u(t) ∈ Rm is input
vector, y(t) ∈ Rp is measurement output vector, A,B,C
are constant real matrices with corresponding dimensions
and the pair (A,B) is controllable.

Our first goal is to find all state feedbacks F ∈ Rm×n in
form

u(t) = Fx(t) (14)
which assign a chosen Jordan form L ∈ Rs×s and therefore
fulfill condition A+BF ∼ L. Such feedback matrices form
a set Fs

Fs(A,B,L) ,

{
F ∈ Rm×n : (A+BF ) ∼

[
L ∗
0 ∗

]}
(15)

where ∗ denotes an arbitrary real matrix of proper dimen-
sion. If s < n we call it partial Jordan form assignment.
From definition of similar matrices it follows:

A+BF = TMT−1

⇒ AT − TM +BFT = 0 (16)
where

M =
[
L R
0 S

]
and R,S are matrices of proper dimensions. Next we
consider T = [X,V ], X ∈ Rn×s , V ∈ Rn×(n−s).

From (16) we get
AX −XL+BH = 0 (17)

where H , FX ∈ Rm×s. It clearly holds that for F ∈
Fs(A,B,L) there exist the matrices H and X which fulfill
the equation (17). Now the process can be reversed to
derive an algorithm for computation of state feedback F .
If we choose the matrix H we can solve the Sylvester
equation (17). Supposing that the eigenvalues of matrices
A and L are different, general solution exists in form

F = H
[
XT (H)X(H)

]−1
XT (H) + F0 (18)

where F0 is an arbitrary matrix fulfilling condition
F0X(H) = 0. It can be shown that the solution (18) holds
for almost any chosen H. In case of a multi-input system
(m > 1), there is an infinite number of state feedbacks
which assign a specified Jordan form. Thus, there is a
freedom in choice of H, which may be used to fulfill some
additional design specification e.g. robustness in stability
or control effort. Moreover, the number of free parameters
in H can be reduced by replacing it by so called parametric
matrix Q(α) where the parametric vector α contains a
minimum set of design parameters.

Now the problem of Jordan form assignment using static
output feedback is to find a set of all the matrices Ks
fulfilling

Ks(A,B,C, L) ,

{
K ∈ Rm×p : (A+BKC) ∼

[
L ∗
0 ∗

]}
(19)

Again, if s < n we call it partial Jordan form assign-
ment. From previous section it follows that for any K ∈
Ks(A,B,C, L) there has to be F ∈ Fs(A,B,L) such that
F = KC. Thus, there exists H ∈ Rm×s and F0 and
relation

H
[
XT (H)X(H)

]−1
XT (H) + F0 = KC, (20)

where X(H) is solution of Sylvester equation (17). By
multiplying (20) with X(H) from the right we get

H = KCX(H). (21)

Again, we can replace H by a parametric matrix Q(α)
with minimum set of free parameters and obtain a bilinear
system of equations

Q(α) = KCX(α) (22)
for the unknown α and K. An analytical method which
can solve a set of polynomial equations is needed in
order to find all the real solutions. To accomplish that,
Gröbner basis method was used. Freely available toolbox
for Maple software was developed. More details about the
above mentioned method can be found in [Schlegel and
Königsmarková (2011)].
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3.2 Two-mass system control

The method of partial Jordan form assignment is espe-
cially useful for many practical control problems where
a low-order fixed structure compensator needs to be de-
signed. The method provides all the solutions in a symbolic
form parameterized by a minimum set of free parameters,
which may be used to meet any additional design require-
ments.

Active antiresonant PI(D) controller

Our first goal is to design PI velocity controller with
transfer function

C(s) = Kp +
Ki

s
(23)

The problem can be easily formulated by means of static
output feedback design. By choosing the output matrix
(10) we get a controller

T (t) = KCx(t) = Kiϕ+Kpω (24)
where T is torque setpoint for the lower current loop,
ω = ϕ̇ is actual motor velocity. The coefficients of the
feedback matrix K directly correspond to the proportional
and integral gain of the PI controller. The dynamics of
the inner current loop is omitted because of significantly
smaller time constants with respect to those of the me-
chanical subsystem.

The controlled system is of fourth order and only the
motor feedback providing two parameters Ki,Kp is avail-
able. Therefore, only two closed loop poles can be freely
assigned. A suitable choice is to assign a pair of complex
poles

s1,2 = −ξωc±ωn
√

(1− ξ2)i = −p±qpi; ξ ∈< 0, 1 > (25)
In case that those poles are assigned to be dominant, the
resulting dynamics of the closed loop is directly deter-
mined by the setting of natural frequency wc and damping
ξ. The corresponding real Jordan form for the choice (25)
is

L=
[
−p qp
−qp −p

]
(26)

By solving the set of polynomial equations (22) we get
analytical solution for controller parameters in form of
rational functions

K=
[
Ki

Kp

]
=


ni (p, q)
di(p, q)
np (p, q)
dd(p, q)

 (27)

where numerator and denominator functions n(p, q), d(p, q)
are two dimensional polynomial functions of fourth order
with coefficients depending on parameters of the system
(8,9) and design parameters p, q. The exact print-out of
the complete solution is omitted due to the limited space.
Numerical example is given in the next section of the
paper.

Similar procedure can be used for PID controller design.
The compensator transfer function has the form

C(s) = Kp +
Ki

s
+

Kds

τs+ 1
(28)

The system model needs to be extended to include a next
state variable x5(s) = ε̂ = ϕ̈

τs+1 representing the derivative
action of the controller. The state space representation for
the extended model is

A =



0 0 1 0 0
0 0 0 1 0

− k0

ml
−r(k0 + gm)

ml
− b0
ml

−b0r
ml

0

−k0r

Il
−r

2(k0 + gm)
Il

−b0r
Il
−b0r

2

Il
0

−k0r

Ilτ
−r

2(k0 + gm)
Ilτ

− b0r
Ilτ
−b0r

2

Ilτ
−1
τ


(29)

B =



0
0
0
1
I
1
Iτ

 , C =

[0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

]
(30)

Now the static output feedback has the form
T (t) = KCx(t) = Kiϕ+Kpω +Kdε̂ (31)

In this case, three closed loop poles can be freely assigned.
There are numerous options for the choice of their location.
A suitable method is selection of Butterworth pattern for
third order polynomial which minimizes the number of free
parameters to desired closed loop bandwidth ωc

s1,2 =
−ωc ±

√
3ωci

2
= −p±

√
3pi

s3 =−ωc = −2p (32)
The corresponding real Jordan form is

L=

 −p
√

3p 0
−
√

3p −p 0
0 0 −2p

 (33)

The solution leads to scalar rational functions for each of
the controller gains:

K=

[
Ki

Kp

Kd

]
=


ni (p)
di(p)
np (p)
dp(p)
nd (p)
dd(p)

 (34)

We get numerator and denominator polynomials of eighth
or ninth order.

The obtained controllers are able to actively damp the
oscillatory dynamics of the system which may be excited
due to external disturbance or setpoint change. The overall
desired closed-loop bandwidth wc is limited due to the
fixed order of the compensator. When approaching the
values of the antiresonant frequency wnz (11), the rest of
the poles which are not assigned are moving towards the
right half-plane and cause a degradation of performance or
even instability of the closed loop. However, the obtained
symbolic expressions for the controller parameters can
be very useful for precise manual tuning in practical
applications, because they give a systematic guide for
adjustment of the PID gains.
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Fig. 4. Root locus for closed loop system

4. NUMERICAL EXAMPLE & SIMULATION

We consider following parameter values for the rope drum
system:

I = 0.4 kg.m2, b0 = 10, k0 = 10000,

m = 100 kg, r = 0.2 m, g = 10
m

s2
(35)

The linearized model for the equilibrium in l = 20m is

A =


0 0 1 0
0 0 0 1

−5 −11
10
− 1

200
− 1

1000
−250 −55 −1

4
− 1

20



B =


0
0
0
5
2

 , C =
[
0 1 0 0
0 0 0 1

]
(36)

Resulting transfer function from motor torque to load
velocity

P (s) =
K

s

s2 + 2ξzωnzs+ ω2
nz

s2 + 2ξpωnps+ ω2
np

=
2.5
s

s2 + 0.005s+ 5
s2 + 0.055s+ 60

ωnz = 2.24
rad

s
, ξz = 0.001, ωnp = 7.75

rad

s
, ξp = 0.004

By computing the output feedback for the PI controller
with parameterization of the closed loop poles given by
(25), we get the equations for proportional and integral
gain:
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Fig. 5. Load speed control and disturbance rejection

Ki = (2/5)(40000p4 + 120000q4p4 + 120000q2p4 +

+40000q6p4 − 400q4p3 − 800q2p3 − 400p3 −
−2599989q4p2 − 4399978q2p2 − 1799989p2 − 22000q2p−
−22000p+ 12000000q2 + 12000000)p2/(40000q4p4 +

+400001p2 − 2000p+ 80000q2p4 + 1000000 +

+40000p4 − 400p3 − 400q2p3 − 399999q2p2)

Kp = (4/5)p(−2400q2p3 + 12000000− 22500p− 500q2p−
+1000q4p3 − 1400p3 + 400011p2 + 40000p4 +

+80000q2p4 − 399989q2p2 + 40000q4p4)/

/(40000q4p4 + 400001p2 − 2000p+ 80000q2p4 +

+1000000 + 40000p4 − 400p3 − 400q2p3 − 399999q2p2)

Functionality of the resulting design may be viewed in
terms of location of the closed loop poles for varying
choice of closed loop bandwidth ωc. Figure (4) shows the
root locus for the closed system and ωc ∈< 0..5 > rad

s .
The value of desired damping was fixed to ξ = 0.8 for
sake of clear interpretation. As we can see in the figure,
the pair of assigned poles (p3,4 - solid green plot) tracks
the the line with a constant slope which corresponds to
chosen damping and parameterization (25). The second
pair of weakly damped open loop poles (p1,2 - blue and red
dashed plot) are moving in complex plane from their initial
open loop position (red squares) towards the imaginary
axis and their damping increases. Once they reach the
imaginary axis, they split and move to the left and right
side. As the ωc is further increasing, one of the poles is
becoming dominant and the bandwidth of the closed loop
is decreasing. For large values of ωc > ωz, the pole enters
right half-plane and the closed loop becomes unstable.
Optimal setting of ωc ≈ 1.5 rads gives the dominant pair
of well damped poles and couple of faster real poles.

Figure (5) shows the simulation results obtained with
proposed PI controller and linear model (36). Setpoint
change and disturbance rejection test was performed. The
first disturbance in form of load torque in time t = 8s
is acting on the rope drum, the second one occurring in
t = 15s is a force applied on the load. The compensator
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actively damps the oscillations even in the presence of
disturbances. This is the main advantage compared to
common method of passive notch-filter control. Similar
results can be obtained with the proposed PID controller.
The introduction of derivative action does not bring any
special improvement for this particular case, because the
achievable bandwidth is still limited by the value of wz.
However, it serves as an example of how a fixed-structure
compensator can be designed.

Two degrees of freedom PI(D) controller can be used to
reduce the initial overshoot which is caused by stable real
closed loop zero. With the control law in the form

T (s) = Kp(bω∗(s)− ω(s)) +
Ki

s
(ω∗(s)− ω(s)), (37)

where b is setpoint weghting coefficient, the location of the
closed loop zero can be changed to reduce the overshoot
while the disturbance response remains unaltered. Motor
torque and speed for the same experiment is shown in
figure 6.

The obtained controller is designed for the linearized
model of the rope drum system. Significant change in
rope length or load mass may lead to a shift in resonance
and antiresonance frequencies and detuning of the com-
pensator. In such case, gain-scheduling technique can be
employed. Common proportional controller can be used
in the position loop, once the velocity controller is prop-
erly tuned. Figure 7 shows an experiment with nonlinear
system (7). The load tracks desired jerk-limited position
profile during a rest-to-rest movement. Combination of
gain-scheduling and input shaping method was used to
damp any unwanted oscillations.

5. CONCLUSION

The paper deals with problem of rope drum control for
stage motion control systems. Oscillatory dynamics is ob-
served due to the elasticity of the rope with hanging load.
Derivation of mathematical model leads to time varying
two mass flexible system. Active antiresonant PI(D) veloc-
ity controller is designed for the linearized model using par-
tial Jordan form assignment method. Simple tuning rules
are derived in a symbolic form for systematic adjustment
of the PID gains and rapid commissioning of the drive.

0 5 10 15 20 25 30
50

100

150
Load position

[m
]

 

 

0 5 10 15 20 25 30

−5

0

5

Load acceleration

time[s]

[m
.s

−
2 ]

 

 

0 5 10 15 20 25 30

0

1

2

3

4

Load speed

[m
.s

−
1 ]

 

 

x[m]
x*[m]

v[m/s]
v*[m/s]

a[m/s2]

a*[m/s2]

Fig. 7. Position tracking of nonlinear system

The results can be applied to a problem of motion control
of any mechanical system with flexible coupling and one
dominant resonance mode. The proposed algorithm for
output feedback Jordan form assignment can be very use-
ful for many practical control problems where a low order
fixed structure compensator needs to be designed. The true
potential of this method reveals itself in case of MIMO
systems. Here the non-redundant parameterization with
minimum number of free parameters offers a large degree
of freedom for fulfilment of various design requirements
while guaranteeing that all solutions have been found.
The only limitation is computational burden which grows
exponentially with the number of free parameters.
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