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Abstract: The presented method allows achieving maximum overshoot and specified settling time of the 
closed-loop step response. It provides a simple way to control linear stable SISO systems even if the 
mathematical model is unknown. Tuning rule parameters are based on one suitably chosen point of the plant 
frequency response obtained by sine-wave signal with specified excitation frequency, and the required 
phase margin. The main result provided is construction of empirical charts used to convert time-domain 
performance specifications (maximum overshoot and settling time) into frequency domain performance 
measure (phase margin). The method is applicable for systematic shaping of the closed-loop response of the 
plant. The new approach has been verified on a set of benchmark examples and on a real plant as well. 
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1. INTRODUCTION 

Tuning methods are typically two-stage procedures consisting 
of identification of certain characteristic data of the plant with 
unknown mathematical model, followed by controller design. 
Controller tuning rules that directly include identified plant 
data have been developed experimentally by technological 
process specialists (Veselý, 2003). The widespread use of their 
modern versions is due to their simple implementation and 
possibility to directly integrate performance specifications into 
controller design algorithms. Although there are about 408 
various sources of PID controller tuning methods (Åström and 
Hägglund, 2000), 30% of implemented controllers permanently 
operate in manual mode, and 25% of them use factory-tuning 
without any up-date with respect to the specific plant. Hence, 
there is natural need for effective PID controller design 
algorithms that enable not only modifying the controlled 
variable but also achieving specified performance (Kozáková 
et al., 2010), (Osuský et al., 2010). 

Main advantage of the proposed PID tuning method is a fast 
design procedure for performance specified in terms of 
maximum overshoot ηmax and settling time ts, with no need for 
exact mathematical model of the plant. Identification of 
characteristic data of the black-box type plant is carried out 
using sinusoidal excitation signal. The sine-wave engineering 
method enables to achieve  
 

• ηmax∈〈0%, 90%〉 and ts∈〈6,5/ωc, 45/ωc〉 for plants with no 
integration behaviour, 

• ηmax∈〈9.5%, 90%〉 and ts∈〈11,5/ωc, 45/ωc〉 for integrating 
plants (ωc denotes critical frequency of the plant). 

The paper is organized as follows: sine-wave identification 
technique is presented in Section 2, Section 3 describes the 
derived PID controller tuning rules based on guaranteed 
phase margin at a suitably chosen excitation frequency; 

achieved closed-loop performance is discussed in Section 4. 
The proposed method has been verified via simulation on 
benchmark examples, and on a real plant - a DC motor; the 
results are in Sections 5 and 6, respectively.  

2. PLANT IDENTIFICATION BY A SINUSOIDAL 
EXCITATION INPUT 

A setup for the proposed sine-wave method is in Fig.1, where 
G(s) is the transfer function of the plant with unknown 
mathematical model, and SW is a switch. 
 
 
 
 
 
 
 
Fig.1. Multipurpose loop for the proposed sine-wave method 
 
When the switch SW is in position „2“, a sinusoidal excitation 
signal with magnitude Un and frequency ωn (Fig.2a) is injected 
into the plant G(s), i.e.  

 ( )tUtu nn ωsin)( =  (1) 

The plant output y(t) is also sinusoidal with the same 
frequency ωn, magnitude Yn and is the phase lag ϕ with 
respect to the excitation signal u(t) (Fig. 2b), i.e.   

 ( )ϕω += tYty nn sin)(  (2) 

After reading the values Yn a ϕ from the recorded values of u(t) 
and y(t), a particular point of the plant frequency characteristics 

 [ ] )(j
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nn eUYe)j(G)j(G ωϕωωω ==  (3) 

corresponding to the excitation frequency ωn can be plotted 
in the complex plane (Fig.2c). 
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Fig.2. Time responses a) u(t); b) y(t); c) location of G(jωn) 
in the complex plane 
 
The output sinusoid amplitude Yn is affected by the excitation 
sinusoid amplitude Un generated by the sine wave generator; 
it is recommended to choose Un=(3÷7)%umax. Thus, 
identified plant parameters are represented by a triple 
{ωn,Yn(jωn)/Un(jωn),φ(ωn)}. With the SW in position „2“, the 
identification is performed in open-loop, hence this approach 
is applicable for stable plants only. Excitation frequency ωn is 
taken from empirically specified interval, and adjusted prior to 
identification (Bucz and Kozáková, 2012). 

3. SINE-WAVE METHOD TUNING RULES 

Consider the SW in Fig. 1 in position „1“ and adjust the PID 
controller in manual mode (GR(s) is now a PID controller 
transfer function). The closed-loop characteristic equation 
A(jω)=1+L(jω)=1+G(jω)GR(jω)=0 can be easily broken 
down into the magnitude and phase conditions 

 1=)j(G)j(G nRn ωω  (4) 

 MnRn )(Garg)(Garg φωω +°−=+ 180  (5) 

where φM is required phase margin, L(jω) is the open-loop 
transfer function. Graphical interpretation of (4), (5) is in 
Fig.3. Denote ϕ=argG(ωn.), Θ=argGR(ωn.), and consider the 
ideal PID controller in the form  

 







++= sT

sT
K)s(G d

i
R

11  (6) 

where K is the proportional gain, and Ti, Td are integral and 
derivative time constants, respectively. In the frequency-
domain, comparison of the right-hand side of (6) 
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with the right-hand side of the PID controller in polar form 
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yields a complex equality 
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The PID controller parameters can be obtained from (8) and 
(9) using the substitution |GR(jωn)|=1/|G(jωn)| resulting from 
the magnitude condition (4). The complex equation (9) 
is then solved as a set of two real equations 
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where (10a) is a general rule for calculating the controller 
gain K; substituting (10a) and the ratio β=Ti/Td into (10b), a 
quadratic equation in Td is obtained after some manipulations  

 0122 =−Θ−
β

ωω tgTT ndnd . (11) 

Expression for calculating Td is the positive solution of (11) 
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Hence, PID controller parameters are calculated using the 
expressions (10a), Ti=βTd and (12), where Θ is obtained from 
the phase condition (5) 

 ϕφωφ −+°−=−+°−=Θ MnM G 180)(arg180  (13) 

Hence, using the designed PID controller, the identified point 
G of the plant frequency response G(jω) with co-ordinates (3) 
is moved into the open-loop frequency response point L 
located on the unit circle M1. Hence, the identified point G of 
the plant frequency response G(jω) determines the gain 
crossover point L of the open-loop L(jω)  

 [ ] [ ]Mnnn LjLjLL φωωω ,1)(arg,)()( ==≡  (14) 

for which the designed PID controller guarantees the required 
phase margin φM. Therefore for the excitation frequency ωn 
|L(jωn)|=1. Mutual situation of the points G(jωn) and L(jωn) is 
shown in Fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Graphical representation of the PID controller design 
in the complex plane 
 
It is recommended to derive the frequency ωn of the sinusoid 
from the plant ultimate frequency ωc using the well-known 
relay experiment (Rotach, 1984), i.e. by switching SW in 
Fig.1 into „3“. The excitation frequency is adjusted according 
to the empirical relation (Bucz and Kozáková, 2012) 

 ccn .,. ωωω 95020∈  (15) 
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parameters (ωn,φM) needed for identification and PID controller 
coefficients tuning is described in the following subsection. 

4. CLOSED-LOOP PERFORMANCE UNDER THE 
SINE-WAVE TYPE PID CONTROLLER 

Looking for appropriate transformation ℜ:(ηmax,ts)→(ωn,φM), 
consider typical phase margins φM given by the set (j=1...8) 

 { }°°°°°°°°= 90,80,70,60,50,40,30,20Mjφ  (16) 

split into 5 equidistant sections ∆ωn=0,15ωc, and generate the 
set of excitation frequencies (k=1,…,6) 

 ( ){ } { }ckcnk 95.0,8.0,65.0,5.0,35.0,2.0 ωσωω ==  (17) 

Each element in (17) represents a different identification level 
ωnk. Fig.6 and Fig.7 show closed-loop step responses for plants 
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under PID controllers designed for three values of phase 
margin φM=40°,60°,80° on four different excitation levels 
σ1=ωn1/ωc=0,2; σ2=ωn2/ωc=0,35; σ3=ωn3/ωc=0,5; and 
σ5=ωn5/ωc=0,8, demonstrating qualitative effect of ωnk and 
φMj on closed-loop step response. 

Achieving ts and ηmax was tested by designing PID controller 
for a vast set of benchmark examples (Åström and Hägglund, 
2000) for excitation frequencies and phase margins expressed 
by Cartesian product φMj×ωnk of the sets (16) and (17) for 
j=1,...,8, k=1,...,6. Obtained dependences ηmax=f(φM,ωn) and 
ts=(φM,ωn) are plotted in Fig.4 (for non-integrating plants) and 
in Fig.5 (for integrating plants), where the relative settling 
time τs is ts weighted by the plant ultimate frequency ωc. 
 

 

 

 

 

 

 
Fig.4. Dependences:  a) ηmax=f(φM,ωn), b) τs=ωcts=f(φM,ωn) 
for controlled plants without integral behaviour, β=Ti/Td=4 
 

 

 

 
 
 
 

Fig.5. Dependences:  a) ηmax=f(φM,ωn), b) τs=ωcts=f(φM,ωn) 
for controlled plants with integral behaviour, β=Ti/Td=12 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.6. Closed-loop step responses of the plant G1(s) under 
PID controllers designed for various φM and ωn 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. Closed-loop step responses of the plant G2(s) under 
PID controllers designed for various φM and ωn 
 
It is a well-known fact that the maximum overshoot ηmax can 
be estimated from the desired phase margin φM, and similarly 
the settling time ts can be estimated from the open-loop gain 
crossover frequency ωa

*. According to Reinisch, analytical 
dependences ηmax=f(φM) and ts=f(ωa

*) derived for second order 
closed-loop transfer functions are (Bucz and Kozáková, 2012) 

 55.6491.0max +−= Mφη for °°∈ 71,38Mφ  (19) 

 46.8853.1max +−= Mφη for °°∈ 38,12Mφ  (20) 
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The above Reinisch formulae are useful to express desired 
closed-loop dynamics in classical analytical design procedures. 
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However, with increased order of the closed-loop transfer 
function they fail to be valid, and are not applicable in tuning 
methods if the mathematical model of the plant is unknown. 
Let us express the closed-loop settling time ts similarly as 
in (21)  

 
n

st
ω
γπ

=  (22) 

where γ represents the shape factor of the closed-loop step 
response. In the Reinisch relation for a 2nd order closed-loop 
system its value usually ranges from 1 to 4, depending on 
damping coefficient specifications (Bucz and Kozáková, 
2012). In the proposed sine-wave method, γ changes more 
considerably within the interval (0.5;16) strongly depending 
on the phase margin φM at the given excitation frequency ωn.  

To explore settling times of closed-loops with different 
dynamics it is useful to define a new performance measure, the 
so-called relative settling time 

 )( Mnst φπγω =  (23) 

Substituting for ωn=σωc into (23) we can define the relative 
settling time τs=tsωc as follows 

 )( Mcst φγ
σ
πω =  (24) 

The relative settling time (24) relates the settling time ts with 
the plant ultimate frequency ωc, whereby the left-hand side of 
(24) is independent from the excitation frequency ωn. This 
empirical dependence is plotted in Fig.4b (for non-integrating 
plants) and Fig.5b (for integrating plants) for different 
identification levels ωnk, showing that with increasing the 
desired phase margin φM, the relative settling time first drops 
and after achieving its optimal value τs_opt grows again 
quadratically.  

Empirical dependences in Fig.4 and Fig.5 have been 
approximated by quadratic regression curves and are called 
B-parabolas (Bucz and Kozáková, 2012). B-parabolas are a 
useful tool to carry out the transformation ℜ:(ηmax,ts)→(ωn,φM) 
that enables to choose appropriate values of phase margin and 
excitation frequency φM and ωn, respectively, to guarantee the 
performance specified in terms of maximum overshoot ηmax 
and settling time ts. 

Note that pairs of B-parabolas at the same level are always 
to be used. 

The sine-wave type PID controller design procedure 

1. Set the PID control into manual mode. Find the critical 
frequency ωc of the plant using the multipurpose loop in 
Fig.1 (SW in position „3“). 

2. From the required settling time ts calculate the relative 
settling time τs=ωcts. 

3.  On the vertical axis of the plot in Fig.4b or Fig.5b find 
the value τs calculated in Step 2. 

4. Choose the excitation level σ (e.g. σ5=ωn5/ωc=0,8). 
5.  For τs, find the corresponding phase margin φM on the 

parabola τs=f(φM,ωn) at excitation level found in Step 4.  

6. Read φM from Step 5 on the horizontal axis of the plot in 
Fig.4a or Fig.5a, and find the corresponding maximum 
overshoot ηmax on the parabola ηmax=f(φM,ωn) at the 
excitation level found in Step 4. 

7. If the found ηmax is inappropriate, repeat steps 4 to 6 for 
parabolas τs=f(φM,ωn), and ηmax=f(φM,ωn) corresponding 
to other levels σk=ωnk/ωc (related with the choice 
σ5=ωn5/ωc=0,8 for σk={0,2;0,35;0,50;0,65;0,95}, 
k=1...4,6). Repeat until both required performance 
measures ηmax and ts are satisfied. 

8. Using the critical frequency ωc (from Step 1) and the 
chosen excitation level σ (from Step 4), calculate the 
excitation frequency ωn according to ωn=σωc. 

9. Identify the plant using sinusoidal excitation signal with 
frequency ωn specified in Step 8 (SW is in position „2“). 

10. Specify ϕ=argG(ωn), and |G(ωn)|. Calculate the controller 
argument Θ by substituting ϕ and φM into (13). 

11. Calculate the PID controller parameters by substituting 
the identified values ϕ=argG(ωn), |G(ωn)| and specified 
φM into tuning rules (10a), Ti=βTd and (12). 

 
The above PID controller design procedure has been 
integrated into the auto-tuning algorithm of the presented 
sine-wave method. To estimate computation time th of PID 
coefficients, following approximate relation can be used 

 ( ) 







++= −

nc
h tt

ωω
π 124...273  (25) 

where t3-7 is convergence time of the iteration fragment (steps 
3…7 of the above procedure). It is evident, that computation 
time of PID coefficients depends on the plant dynamics.  

5. VERIFICATION OF THE SINE-WAVE METHOD 
ON BENCHMARK EXAMPLES 

Using the sine-wave method let us design ideal PID 
controllers (6) for the following plants 

 3)101,0(
1)(
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The control objective is to secure two different performances: 

• (ηmax1,τs)=(30%,12); (ηmax2,τs)=(5%,12) for the plant GA, 
• (ηmax1,τs)=(30%,20); (ηmax2,τs)=(20%,20) for the plant GB. 
 
PID controller design for the plant GA(s) 

Critical frequency of the plant identified by the Rotach test is 
ωc=173,216[rad/s]. The prescribed closed-loop settling time 
is ts=τs/ωc=12/173,216[s]=69,3[ms]. 

For the first expected performance (ηmax1;τs)=(30%;12) a 
satisfactory choice is (φM1;ωn1)=(50°;0,5ωc) resulting from the 
B0,5 parabola in Fig.4. The second performance in terms of 
(ηmax2;τs)=(5%;12) can be achieved by choosing (φM2;ωn2)= 
=(70°;0,8ωc) resulting from the B0,8 parabola in Fig.4. Sine-
wave type identification of GA(s) at excitation frequencies  
ωn1=0,5ωc and ωn2=0,8ωc is depicted in Fig.8. 
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Fig.8. Sine-wave type identification of the plant GA(s) at 
a) ωn1/ωc=0,5 for (ηmax1,τs)=(30%,12); 
b) ωn2/ωc=0,8 for (ηmax2,τs)=(5%,12) 
 
Identified points for the first and second designs are 
GA(j0,5ωc)=0,43e-j120° and GA(j0,8ωc)=0,19e-j165°, respectively. 
According to Fig.9, both points are located in the Quadrant II 
of the complex plane, on the Nyquist plot GA(jω) (blue curve 
in Fig.9) which verifies the identification. 

Using the PID controller designed for (φM1;ωn1)=(50°;0,5ωc), 
the point GA(j0,5ωc) is moved into the gain crossover 
LA1(j0,5ωc)=1e-j130° on the unit circle M1, which verifies 
achieving the phase margin φM1=180°-130°=50° (red Nyquist 
plot in Fig.9). By designing PID controller for (φM2;ωn2)= 
=(80°;0,8ωc), the point GA(j0,8ωc) has been moved into 
LA2(j0,8ωc)=1e-j110° yielding phase margin φM2=180°-110°=70° 
(green Nyquist plot in Fig.9). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.9. Nyquist plots of GA(s), and open-loops for required 
performances (ηmax1,τs)=(30%,12) and (ηmax2,τs)=(5%,12) 
 
Performance read from the closed-loop step response in 
Fig.10b (red plot) ηmax1

*=29,7%, ts1
*=58,4[ms] was achieved 

using PID controller coefficients (K;Ti;Td)= 
=(2.2811;0.0194;0.0049). Performance in terms of 
ηmax2

*=4,89%, ts2
*=60,5[ms] identified from the closed-loop 

step response in Fig.10a (green plot) complies with the 
required performance. In this case the PID controller 
parameters are (K;Ti;Td)=(2.9826;0.0488;0.0122). 

 
 

 

 

 

 

 

 

 

 

Fig.10. Closed-loop step responses with GA(s) and required 
performance a) (ηmax1,τs)=(30%,12), b) (ηmax2,τs)=(5%,12) 
 
PID controller design for the plant GB(s) 
 
According to plant critical frequency ωc=0,2407[rad/s], the 
required settling time is ts=τs/ωc=20/0,2407[s]=83,09[s]. 
Time delay of GB(s) is DB=2,1[s]. 

The first performance specification (ηmax1;τs)=(30%;20) can 
be provided using the B0,35 parabolas for β=12 (Fig.5) at 
ωn1/ωc=0,35 and for parameters (φM1;ωn1)=(53°;0,35ωc), 
supplying the augmented open-loop phase margin 
φ´

M1=φM1+ωn1DB=53°+10,1°=63,1° into the controller design 
algorithm. The second performance specification (ηmax2;τs)= 
=(20%,20) is achievable using the B0,5 parabolas in Fig.5 for 
β=12 and ωn2/ωc=0,5 and parameters (φM2;ωn2) =(62°;0,5ωc). 
To reject the influence of DB, instead of φM2=62° the augmented 
open-loop phase margin φ´

M2=φM2+ωn2DB=62°+14,5°=76,5° 
was supplied into the PID controller design algorithm. 
Sine-wave type identification of GB(s) at ωn1=0,35ωc and 
ωn2=0,5ωc is depicted in Fig.11. 

 

 
 
 
 
 
 
 

Fig.11. Sine-wave type identification of the plant GB(s) at 
a) ωn1/ωc=0,35 for (ηmax1,τs)=(30%,20); 
b) ωn2/ωc=0,5 for  (ηmax2,τs)=(20%,20) 
 
Using PID controller, the first identified point GB(j0,35ωc)= 
=12,7e-j122° (Design No.1) was moved into the gain crossover 
LB1(j0,35ωc)=1e-j127 located on the unit circle M1; this verifies 
achieving the phase margin φM1=180°-127°=53° (red Nyquist 
plot in Fig.12). Achieved performance (ηmax1

*=29,6%, 
ts1

*=81,73[s]) red from the closed-loop step response in 
Fig.13a (red plot) was obtained using designed controller 
coefficients (K;Ti;Td)=(0.0783;26.2993;6.5748). 

Nyquist plots, φM1=50°, ωn1=0.5ωc; φM2=70°, ωn2=0,8ωc 
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The second identified point GB(j0,5ωc)=8,10e-j129° (Design 
No.2) was moved into LB2(j0,5ωc)=1e-j118° achieving the phase 
margin φM2=180°-118°=62° (green Nyquist plot in Fig.12). 
Achieved performance (ηmax2

*=19,7%, ts2
*=82,44[s]) red 

from the step response in Fig.13b (green plot) meets the 
required specification and was obtained by PID controller 
with coefficients (K;Ti;Td)=(0.1090;14.2784;3.5696). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12. Nyquist plots of GB(s), and open-loops for required 
performances (ηmax1,τs)=(30%,20) and (ηmax2,τs)=(20%,20) 
 
 

 

 

 

 

 

 

 

 

 

Fig.13. Closed-loop step responses with GB(s), and required 
performance a) (ηmax1,τs)=(30%,20), b) (ηmax2,τs)=(20%,20) 

6. VERIFICATION OF THE SINE-WAVE METHOD 
ON A REAL PLANT 

The sine wave method was applied to control a physical model 
of a DC permanent magnet motor; controlled variable was the 
speed, and plant input u(t) was armature voltage generated 
using the Matlab-Realtime Workshop control system. A speed-
voltage generator was used to sense the output variable y(t). 
The control objective was to guarantee the performance 
requirements: ηmax1=10%, ηmax2=25% and τs=10.  

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.14. Closed-loop time responses of the DC motor speed 
for a) ηmax1=10%, τs=10; b) ηmax2=25%, τs=10 

7. CONCLUSIONS 

Resulting closed-loop step responses depicted in Fig.10, 
Fig.13 and Fig.14 prove that PID controllers were able to 
guarantee the required performance measure values. The 
proposed new sine-wave type design method allows 
successful PID controller tuning. Another important 
contribution of the paper is construction of empirical plots 
converting engineering time-domain requirements specified 
by a process technologist (maximum overshoot and settling 
time) into frequency domain performance specification 
(in terms of phase margin and gain crossover frequency). 
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