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Abstract: Recent advances in data-driven (or model-free) control have permitted to enhance
the closed loop behavior of linear and especially nonlinear systems using very simple control
structures. As a result, unknown or badly known dynamics are compensated and disturbances
are rejected without any learning or on-line identification procedure. However, the ultra-local
phenomenological models on which this control technique rely have not yet exploited the
fractional nature of many processes and the nonlocal nature of the fractional integrodifferential
operators. In this paper, fractional derivatives are used in the so called model free control
structure in order to explore the advantages they provide in terms of robustness and dynamic
response. Fractional and integer order data driven PIDs will be compared for a DC motor in a
robot flexible joint control application in a simulation environment.
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1. INTRODUCTION

PID controllers are still by far the most popular feedback
design in industry (Aström and Hägglund, 2006). The rea-
sons for the popularity of this technique can be found both
in the simplicity of the control structure and in the physical
meaning of control parameters that allow operators to
easily tune and maintain the controlled systems.

However, the behavior of process is frequently modified
due to the change of operating condition, the process
ageing, the faulty behavior of a particular actuator and the
non-linearity of the systems to be controlled. Therefore, it
is necessary either to readjust the control parameters -
a huge literature exist on adaptive control (Aström and
Wittenmark, 1989)- or to somehow model the aforemen-
tioned uncertainty or nonlinearities in order to maintain
the desired control performance with any model based
control strategy.

Most adaptive control techniques and methodologies are
typically assumed that the structure of the system is
known linear and the parameters may be unknown or slow
time-varying. However, for complex practical systems, the
structure of the plant is often difficult to determine and the
parameters are hard to identify, which make the adaptive
control designing and applications questionable.

Besides, robust control techniques attempt to quantify the
amount of uncertainty a certain model possess in order to
find a compensator able to fulfill the control requirements
all through the parametric uncertainty region. The main
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drawback of these model based approaches is that a
precise mathematical description of the plant is not always
available or it is too costly and time consuming.

Data-driven control approaches focus on designing con-
trollers merely using input and output measurement data
of a plant. Since these approaches do not require a model
of a plant in controller designing, the modelling pro-
cess and the theoretical assumptions on the dynamics of
the plant disappear. Several data-driven controller tuning
techniques have appeared in the literature recently. Itera-
tive feedback tuning (Hjalmarsson et al., 1998), iterative
correlation-based tuning (Karimi et al., 2004), iterative
unfalsified control (Safonov and Tsao, 1997), iterative
learning control (Ahn et al., 2007) and virtual reference
feedback tuning (Campi et al., 2002) are examples of data-
driven controller tuning techniques, where one or more
experiments are needed in each iteration.

A new family of controllers has arisen in the last years that
is based on the data-driven control paradigm in a different
way: it uses input/output data -in a sort of feedforward
controller- to compensate the effects of unmodelled dy-
namics that more simple control structures -like PID- are
not able to properly handle. Active disturbance rejection
control (Han, 2009) treats the discrepancy betweeen the
real system and a non-physical differential phenomenolog-
ical model to reject disturbances in real time. To achieve
such a task, an extended state observer is needed, and
therefore the simplicity of PID becomes a burden in tun-
ing the associated observers. A rather similar model-free
approach permits to fast and properly compensate uncer-
tainty and unmodelled dynamics while keeping simplicity.
These techniques, initiated in (Fliess et al., 2006), pro-
pose an algebraic framework to deal with fast numerical
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Fig. 1. Data-driven control scheme.

derivatives estimation, and thereafter, model free control
design. However, the ultra-local phenomenological models
on which this control technique rely have not yet exploited
the fractional nature of many processes and the nonlocal
nature of the fractional integrodifferential operators. In
this connection, a preliminary work is presented in this
paper to explore the interest of the additional parameter
that a fractional differential model introduces.

The rest of the paper is organized as follows. Section 2 will
be devoted to present the key features of the model-free
(or data-driven) control strategy used in this work. Since
the ultra-local phenomenological models on which this
control technique rely do not exploit the fractional nature
of many process, Section 3 presents a generalization of the
aforementioned data driven PID control. The advantages
of such generalization are shown in Section 4, where a
robot flexible joint control application is presented. Finally
some concluding remarks and future work are drawn in
Section 5.

2. DATA-DRIVEN PID CONTROLLERS

As given in Fliess and Join (2009), consider a nonlinear
finite-dimensional SISO system

Φ(t, y, ẏ, . . . , y(ι), u, u̇, . . . , u(κ)) = 0

where Φ is a sufficiently smooth function of its arguments.
Assume that for some integer n, 0 < n ≤ ι, ∂Φ

∂y(n) 6≡ 0. The

implicit function theorem yields then locally

y(n) = Υ(t, y, ẏ, . . . , y(n−1), y(n+1), . . . , y(ι), u, u̇, . . . , u(κ))

This equation becomes by setting Υ = F + αu:

y(n) = F + αu (1)

where

• α ∈ R is a constant parameter, which is chosen in such
a way that F and αu are of the same magnitude,

• F is determined thanks to the knowledge of u, α, and
of the estimate of y(n). It plays the role of a nonlinear
back-box identifier.

The differentiation order n has been defined until present
as an integer and most often as n = 1 or n = 2. If the
simplest case is considered (n = 1), the term F (t) reads at
each sample time

F (tk) = ˆ̇y(tk)− αu(tk−1) (2)

Likewise, when the second derivative (n = 2) is used in
the local model, the estimator F becomes

F (tk) = ˆ̈y(tk)− αu(tk−1) (3)

The model locality implies that (1) is only valid in a
very short period of time (one sampling period). If the

sampling rate is high enough with respect to the system
time constant, model (1) accurately represents the system
dynamics, and therefore the desired behavior can be ob-
tained, as illustrated in Figure 1, by merging an inversion
of (1) and a classical PID controller

u(t) =
1

α

(

y(n)r (t)− F (t)
)

+KP e(t)+KI

∫

e(t)dt+KD

de(t)

dt
(4)

where yr is a the reference trajectory, e = yr − y is the
tracking error, KP , KI , KD ∈ R are suitable gains.

The main advantage of this approach is that it uses
a standard PID controller structure, but it is able to
take into account, without any modeling procedure, the
unknown parts of the system. As a consequence, Fliess
and co-workers (Fliess and Join, 2008) called this model-
free technique intelligent PID (i-PID) control. However,
in order to avoid confusing statements for the intelligent
control community, we have preferred to keep calling this
technique in the generic way it has been done before: data-
driven (DD) PID control.

Remark 1. This algebraic techniques for data driven PID
control have already been successfully implemented in
several applications, where the advantages with respect
with standard PID is clearly highlighted (cf. e.g. (Villagra
et al., 2009), (Villagra and Balaguer, 2011), (Villagra and
Herrero-Perez, 2011)).

Remark 2. Note that since successive derivatives of the
reference trajectory are required in this approach, the set-
point variation has to be transformed into a sufficiently
smooth trajectory (see (Villagra et al., 2010) for more
details on how to transform a step into an equivalent
smoothed trajectory).

3. AN EXTENSION TO FRACTIONAL DERIVATIVE
ORDERS

Even though DD-PID provide a remarkable behavior to
compensate unmodelled dynamics and reject disturbances
Fliess et al. (2011), all the applications carried out until
present within this framework have been limited to the
simplest differential orders (n = 1 or n = 2). The main goal
of this preliminary work is to explore the advantages of
introducing fractional derivatives in the ultra-local model
presented in equation (1).

3.1 Fractional derivatives

Fractional calculus is a generalization of the integration
and differentiation to the non-integer (fractional) order
fundamental operator bD

n
t , where b and t are the limits

and n is the order of the operation. The Riemann-Liouville
definition of fractional derivative is (Podlubny, 1999)

bD
n
t f(t) =

1

Γ(m− n)

dm

dtm

∫ t

b

(t− τ)
m−n−1

f(τ)dτ, (5)

where m is the first integer larger than n, i.e., m − 1 ≤
n < m and Γ denotes the Gamma function defined as,

Γ(z) =

∫

∞

0

tz−1e−t. (6)

As can be observed, this generalized operator is local only
when n is an integer. This nonlocal property and its ability
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Fig. 2. PID closed loop behavior (a) Step response (b)
Frequency response

to model memory phenomena has been extensively used
in science and engineering, as well as in control theory to
improve the robustness and the dynamic posibilities of the
controlled systems (see (Monje et al., 2008), (Monje et al.,
2010) and references therein).

3.2 Towards a more flexible control requirement space

Let us consider the following stable monovariable linear
system

G(s) =
(s+ 2)2

(s+ 1)3
(7)

As suggested in (Fliess and Join, 2009), the Bröıda method
is used to obtain the PID control gains, KP = 1.8181
KI = 0.7754 KD = 0.1766. The time and frequency
responses of the controlled system are depicted in Figure 2,
where one can observe that the settling time is ts = 3.05 s,
the rising time is tr = 0.63 s, the overshoot is Mp = 8.7%,
and the bandwidth is ωb = 2.63 rad·s−1.

To evaluate the control requirement domain of both integer
DD-PID and fractional DD-PID approaches, the PID
controller above detailed has been used as a reference, and
therefore its corresponding values of KP , KI and KI were
used in the all the subsequent tests. Hence, an iterative
computation of the time response characteristics and the
bandwidth from the frequency response of the linearized
system have been performed to obtain an idea of the stable
regions when varying α ∈ [1, 100] and n ∈ [0, 2]. Figure

3 shows two different representations of the requirement
space for DD-PID when n = 1 (red points) and when
n varies from 0 to 2 (blue points). In the first graph,
the overshoot, settling time and rising time are plotted
respectively in the X-Y-Z axes. In the second one, time
response characteristics -overshoot and settling time- are
confronted to a frequency domain attribute -bandwidth.

Note that in both cases the most attractive region (less
overshoot, rising and settling time and more badwidth)
is largely best covered by the fractional DD PID. As a
consequence of this, not only the best closed loop behavior
is provided by a fractional DD PID controller, but also a
wider set of specifications can be reached with the latter.
Specifically, the configuration providing a best dynamic
response with the standard DD-PID (n = 1) is obtained
for α = 1 and the settling time, rising time, overshoot
and bandwidth are, respectively, ts = 0.19 s, tr = 0.06 s,
Mp = 1.64%, ωb = 2.98 rad·s−1. Note that the fractional
DD-PID that provides the best dynamic behavior among
all the plotted configurations in Fig. 3 is attained when
α = 1 and n = 1.12, guaranteing ts = 0.19 s, tr = 0.04
s, Mp = 0.99%, ωb = 100 rad·s−1, which is significantly
better than the dynamic response of PID and even DD-
PID.

4. APPLICATION TO A DC MOTOR CONTROL IN A
ROBOT FLEXIBLE JOINT

4.1 Joint motion control under uncertainty

The accurate position control of robot joints has been
extensively studied in the last decades. Thus, many dif-
ferent feedback techniques have achieved good position
tracking when considering electrically driven rigid robots
(cf. e.g. (Tarn et al., 1991)). However, the transmission
systems usually introduce nonlinear dynamics between the
motor output and the real joint. Moreover, it is not easy
to obtain a precise model of these effects, because of the
great number of parts that intervene in the transmission.
Some authors (Tjahjowidodo et al., 2007) have tried to
obtain, through careful modelling, an accurate feedforward
control which, in turn, allows to follow a desired trajectory
with low-feedback gains. The main problem of this sort of
approaches is that they have to deal with highly cross-
coupled non-linear models, where the parameters are not
always identifiable. Thus, several robust/intelligent control
approaches (Oya et al., 2004), (Kwan et al., 1998) and
adaptive control techniques (Chang, 2002), (Ishii et al.,
2001) have been proposed to tackle with an appropriate
feedback law the transmission uncertainty problem in rigid
joint tracking. However, not so many efforts (Chien and
Huang, 2007) have been addressed to control electrically
driven flexible-joints under uncertainty. This is because the
presence of joint flexibility greatly increases the complexity
of the system dynamics.

4.2 System model

The system to be controlled consists of a DC motor and
an Harmonic Drive Transmission system. Furthermore,
flexion torques due to the robot structure compliance have
been taken into account (see (Villagra and Balaguer, 2011)
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Fig. 3. Requirement space comparison between standard DD PID control and fractional DD PID control. (a) Settling
time-overshoot-rising time requirement space (b) Settling time-overshoot-bandwidth requirement space

for more details). The classical direct current (DC) motor
model is considered:

Jmθ̈m(t) =Kti(t)− τfr(t)− τfl(t)

Lm

di(t)

dt
=−Rmi(t) + Eum(t)−Kbθ̇m(t) (8)

where i denotes the armature current, θm the angular
position of the motor shaft, Jm the rotor inertia, Lm the
terminal inductance, Rm the motor terminal resistance,Kb

the back electromotive force constant and Kt the torque
constant. E represents the maximum available voltage, in
absolute value, which excites the machine, while um is an
input voltage modulation signal, acting as the ultimate

control input, with values restricted to the closed real set
[−1, 1]. Flexible torque τfl due to the structure compliance
will be above detailed.

The model of the reducer can be written as follows (cf.
(Abba and Sardain, 2005) for more details):

θ̇t =
θ̇m

N
, τt = αmNτm (9)

where θt is the transmission angular position, τt is the
transmission at the Harmonic Drive output, N is the gear-
box ratio and αm represents the torque transfer coefficient.
Consider the dynamics of the flexible system as follows (cf.
(Ghorbel et al., 1989)):
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Jlθ̈l + τl − τfl = 0, τfl = c(θt − θl) (10)

where Jl is the joint inertia, c the joint stiffness constant,
τl the load torque, and the τfl the flexible torque. Remark
that the torque τfl, generated by joint flexible dynamics,
is here the same than in equation (8), but with opposite
sign.

The system to be controlled is therefore the one conformed
by equations (8)-(9)-(10), where the input signal is the
motor voltage u = Eum and the output is the link tip
position y = θl.

4.3 Controllers comparative simulation

The fractional DD-PID is compared with the standard
DD-PID in a scenario, where the position reference is a
sinus of amplitude equal to 1 rad and frequency of 1 Hz,
and a varying load τl is applied to the flexible link (a
sinusoidal of 1 Nm and 15Hz, see Villagra and Balaguer
(2011) for more details)

Figure 4 shows the response of the closed loop system to
the sinusoidal excitation with 4 different configurations:
the best PID, the best DD-PID (n = 1), the best fractional
DD-PID and the best configuration (KP , KI , KD, α)
for two controllers with fixed fractional derivative order
(n = 0.7 and n = 1.2). Note that the optimal configura-
tion in each case is obtained by minimizing the Integral
Absolute Error (IAE) via a sequential combination of two
nonlinear optimizers: Sequential Quadratic Programming
and Nelder Mead. Note that even though the varying
disturbances imposes a quite demanding control challenge
(that it is not easy to handle nor by PID neither by DD-
PID) the fractional DD-PID achieves a remarkable track-
ing quality, and therefore a very satisfactory disturbance
rejection.

Since one of the key features of this data-driven approach is
its ability to adapt to unmodelled dynamics or parameter
uncertainty, a second experiment has been simulated,
where three of the most influent parameters (Jm, Kt and
c) in the model are modified. The results on Figure 5 shows
the dynamic behavior of the best DD-PID and fractional
DD-PID when an increment of 20% is applied to each
parameter with respect the experimental plotted in Figure
4.

Both in Figure 5 and 4 the behavior of each controller is
quantified with an arrowed text where the corresponding
IAE is plotted -in Figure 4 the value associated to the
arrows corresponds to the worst case among the 3 pa-
rameter variations. Looking at these, it is clear that the
introduction of a fractional derivative order significantly
increases the control performance to track the desired
reference while rejecting disturbances and under an im-
portant degree of uncertainty.

5. CONCLUDING REMARKS

A first attempt to introduce fractional derivative orders in
the local model on which the presented data-driven PID
controllers rely has been explored. The results obtained
firstly in an academic example and thereafter in a more
complex application highlight the interest of fractional
calculus in this new control framework.

Since the main advantage of this new approach is the
enlargement of control requirements accessibility, an im-
portant breakthrough would be to obtain a systematic
procedure that allows firstly to analytically characterize
the stable regions of the closed loop system, and thereafter
to assign a set of specifications to a particular controller
configuration. Our current research work is looking for
some answers to this challenging problem.
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