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Abstract: REX is an industrial control system which has been developed by the authors of
this paper and by several their colleagues during the last decade. Control algorithms of REX
are contained in a large function block library (block set). Controller blocks, including various
PID controllers, cover a significant part of the library. This paper briefly explains main ideas
of REX and it focuses on description of two advanced PID controller function blocks with
built-in auto-tuning facilities. Both of these controllers use active identification experiment for
the process identification, first of them uses a pulse experiment, second of them uses a relay
experiment. After finishing of the identification experiment, the designed controller parameters
are immediately computed in both cases. These controllers and some additional function blocks
are presented in several examples demonstrating various control structures.
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1. INTRODUCTION

The general statement “there is a wide gap between aca-
demic research and practice” is valid also in automatic
control. Application results of academic research in au-
tomatic control are usually only in the simulation form,
without a direct practical verification.

Verification of a newly developed “academic” algorithm
is a very long-term and usually iterative task. Utilization
of a standard, commercially available programmable logic
controllers (PLCs) for this purpose is a very laborious,
ineffective and error prone because the developer has to
transfer the algorithm from the simulation form to the
target form, which are almost always different.

Matlab-Simulink (see MathWorks (2011b) for the current
version) was probably the most frequently used simulation
tool in the last decade. The Mathworks, the producer of
Matlab, Simulink and other toolboxes, wanted to bridge
the gap by a rapid prototyping toolbox Real-Time Work-
shop (RTW), which was recently renamed to Simulink
Coder (see MathWorks (2011a)). RTW shortened the ver-
ification process of a new control algorithms because it
allowed to generate the C-language code from Simulink
block diagrams, to compile them to various target plat-
forms (hardware devices) and to debug these algorithms
online using Simulink environment and tools (e.g. the
Scope block, parametric dialogs).

But still using Simulink and Real-Time Workshop have
the following main disadvantages (from the authors’ point
of view):

• Lack of high-quality control algorithms suitable for
industry

• High price of necessary tools (Matlab, Simulink,
RTW, etc.) and suitable target devices.

These facts (but not only these) were important triggers
of our own control system development, which would also
help to bridge the mentioned gap.

2. REX CONTROL SYSTEM

REX (Balda et al. (2005)) is a software control system
compatible with Matlab-Simulink. The compatibility is
based on two facts:

• REX contains the large function block library RexLib
(Schlegel et al. (2001)), which has been developed
using Simulink. Each function block is a standalone
Simulink C MEX file. The whole library is integrated
with Simulink as REX Industrial Blockset in the
Simulink library browser.

• REX uses the .mdl (Simulink model) text file format
for control algorithm configuration. It means that
the same configuration files can be used for the
development of control algorithms in Simulink as well
as for real-time control of the particular process or
machine.

This section brings a brief description of REX architecture
and several supported target platforms.

2.1 Architecture of REX

The simplified overall architecture of REX is depicted in
fig. 1. REX is not a monolithic program, it has a modular
structure. Real-time control is executed on a target de-
vice, while configuration (control algorithms) development
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tools, visualization (Human-Machine Interface, HMI) and
diagnostics tools are running on a single or more host
computers. Target and host environments are connected
with a communication layer.

Fig. 1. Architecture of REX (simplified)

Real-time control algorithms are executed by the REX
core (the RexCore program), see the biggest blue area
in fig. 1. It contains function blocks in RexLib which
are divided into smaller sub-libraries (placed above the
horizontal line in the figure):

• REG – function blocks for regulation including PID
controllers, the other advanced controllers, process
models and many more.

• LOGIC – blocks for logic control (combinational and
sequential).

• ANALOG – blocks for processing of analog signals.
• MOTION – motion control blocks.
• EXEC – blocks for configuration of the execution

environment in RexCore.
• MATH – math functions and simple blocks.
• GEN – various signal generators.
• ARCHIVE – trending and alarming blocks which can

store results to memory and disk archives.
• SPEC – special advanced function blocks, e.g. univer-

sally programmable function block
• INOUT – function blocks connecting input and output

process signals to control algorithms

The detailed description of function blocks is contained in
REX Controls (2011).

Inputs and outputs of a controlled technological process
(or a machine) are available via input/output drivers
(placed below the horizontal line in the figure). Drivers
implement various communication protocols, e.g. Ethernet
POWERLINK, EtherCAT, CAN, Modbus, OPC Data Ac-
cess Client, or directly read inputs from and write outputs
to plug-in cards or modules, e.g. WinPAC and XPAC
by ICP DAS, Advantech I/O cards, National Instruments
DAQ.

Control algoritms of REX can be configured in the Rex-
Draw program or in Matlab-Simulink. RexDraw is in-
dependent of Matlab-Simulink and it does not require

any license from The Mathworks products. But a user,
who has the Matlab-Simulink license, can use Simulink
for development and simulation of the control strategy
before putting the control application into operation. REX
target devices do not use the .mdl files directly, they are
first compiled by RexComp to a more compact binary
format .rex. RexComp is called internally from RexDraw
as well as Simulink. Moreover, download of the compiled
application to the target device, online monitoring and
debugging is built into RexDraw.

REX itself does not implement visualization tools. Instead,
it supports the OPC Data Access standard via the REX
OPC server, which enables utilization of any OPC client
available in the market. Moreover, REX communication
protocol based on TCP/IP has been ported to Java classes,
which can be used for communication with a Java appli-
cation or an applet. Also, the Automation (formerly OLE
Automation) is supported and it is suitable for communi-
cation with any software using Visual Basic scripting, e.g.
Microsoft Excel.

Diagnostic information is especially crucial during the
commissioning of the control system into operation. The
RexView program (see left bottom part of fig. 1) provides
real-time information about the timing of control tasks
and input output drivers, inputs, outputs and parameters
of each task, subsystem and function block in the control
algorithm, allows the user to change block parameters
(including controller parameters), displays real-time trend
signals of selected variables, displays alarms and archive
history, and many more.

2.2 REX Target platforms

Originally REX was developed on a standard PC platform
in Windows operating system (OS). Since then, REX
has been ported to several operating systems and target
platforms. Fig. 2 shows some of them.

a) b) c)

Fig. 2. Examples of REX hardware platforms

The lowest price control units are represented by massively
produced single board computers. Fig. 2a) depicts the
ALIX 2D13 computer by PC Engines which is equipped
with an AMD Geode processor, a Compact Flash slot,
3 Ethernet ports, 2 USB ports and 1 miniPCI slot. The
REX implementation runs in GNU Linux or GNU Linux
with real-time extension Xenomai. Typically, remote in-
put/output modules communicating with control system
via an industrial Ethernet are used. The shortest sampling
period is 1 millisecond.

A very cost-effective solution is provided by the WinPAC-
8000 programmable automation controller (PAC) by ICP
DAS, see fig. 2b). Input and output signals are connected
to plug-in modules. This PAC runs REX ported to Win-
dows CE 5.0. The shortest sampling period is 2 millisec-
onds.
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The highest computing power of REX supporting hard-
ware is offered by industrial PCs (IPC). Fig. 2c) shows the
V2402 fanless model by MOXA with Intel Atom processor,
Compact flash slot, 2 Ethernet ports and 4 serial lines. The
REX implementation runs on GNU Linux, optionally with
Xenomai and the shortest sampling period is slightly under
1 millisecond. If a more powerful model is requested, an
IPC with PCI expansion slots with plug-in boards can be
used. Typically, an IPC (with PCI cards) by Advantech
and IntervalZero ETS (formerly Phar Lap ETS) real-time
operating system is used. The minimum sampling period
of this solution is 0.1 millisecond.

3. PID CONTROL IN REX

Various PID controllers are essential function blocks of
REX from the very beginning. All of them belongs to the
RegLib sub-library of RexLib (see the REG box in fig. 1).
This section deals with two degrees of freedom (2DOF)
PID controllers which are a standard part of RexLib.
The next section describes PID controllers with advanced
autotuners.

3.1 2DOF PID controllers in REX

Standard REX PID controllers are implemented by a
PIDU, PIDUI and PIDGS function blocks. Their symbols are
depicted in fig. 3.
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Fig. 3. Symbols of standard 2DOF PID controllers

The PIDU function block is a basic block for creating
a complete PID controller or P, I, PI, PD, PI+S (PI
controller with Smith predictor) controllers. The PIDUI
function block differs from the PIDU block by connecting
the controller parameters to the block inputs which can be
changed dynamically (programmatically) from the control
algorithm. The PIDGS is a gain scheduling variant of the
PIDU block. The PIDGS can bumplessly switch at most
six sets of basic PID controller parameters using the
additional block inputs (ip or vp).

All three blocks can operate in automatic mode (MAN=off)
or manual mode (MAN=on).

In the automatic mode (MAN=off), the block PIDU imple-
ments the PID control law with two degrees of freedom in
the form

U(s) =±K

{
bW (s)− Y (s) +

1
Tis

[W (s)− Y (s)]

+
Tds

Td

N s + 1
[cW (s)− Y (s)]

}
+ Z(s)

where U(s) is Laplace transform of the manipulated vari-
able mv, W (s) is Laplace transform of the setpoint vari-
able sp, Y (s) is Laplace transform of the process variable
pv, Z(s) is Laplace transform of the feedforward control
variable dv and K (controller gain), Ti (integral time
constant), Td (derivative time constant), N (derivative
filtering parameter), b (setpoint weighting factor of the
proportional part) and c (setpoint weighting factor of the
derivative part) are the parameters of the controller. The
sign of the right hand side depends on the parameter
RACT. The range of the manipulated variable mv (position
controller output) is limited by parameters hilim, lolim.
The parameter dz determines the dead zone in the integral
part of the controller. The integral part of the control
law can be switched off and fixed on the current value
by the integrator hold input IH (IH=on). For the proper
function of the controller it is necessary to connect the
output mv of the controller to the controller input tv
and properly set the tracking time constant tt (the rule
of thumb is tt ≤ √

TiTd). In this way we obtain the
bumpless operation of the controller in the case of the
mode switching (manual, automatic) and also the correct
operation of the controller when saturation of the output
mv occurs (antiwindup). The additional outputs dmv, de
and SAT generate the velocity output (difference of mv),
deviation error and saturation flag, respectively.

In the manual mode (MAN=on), the input hv is copied
to the output mv unless saturated. The overall control
function of the PIDU block is quite clear from the diagram
in fig. 4.
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Fig. 4. Internal structure of the PIDU function block

A simple PID control loop with the PIDU function block is
depicted in fig. 5.
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Fig. 5. Simple PID control loop in REX

Unlike Simulink, REX uses at least two files for its config-
uration. The first main file in sub-fig. 5a) specifies the real-
time core parameters (the block EXEC). Further, additional
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modules, drivers, archives and tasks (the highest priority
QTask and tasks connected to different priority levels) can
be connected to the EXEC block. In this case, only one task
simple_pidu is used.

The control algoritm of the simple_pidu task is shown
in sub-fig. 5b). Controlled process is simulated by the
MDL_PROCESS second order block with dead time. It is
controlled by the PIDU_1 controller. Real constants CNR_sp
and CNR_hv correspond to the controller setpoint sp and
the value hv which is set to the controller output mv
in the manual mode. The controller in fig. 5b) works in
the automatic mode because the output of the binary
constant CNB_MAN is 0 (off). The controller variables
sp, pv and mv are being strored to the trending block
TRND_1. Small crossed squares correspond to the Loop
break blocks indicating the feedback edges which are
temporarily removed from the control scheme to determine
the proper execution order of all blocks.

More detailed information about the 2DOF PID control
algorithms in REX can be found in REX Controls (2011).

3.2 PID controller with pulse width modulated output

Pulse width modulation (PWM) is a well known technique
for proportional conversion of a continuous signal u from
the interval [0; 1] to the ratio Ton/Tpm where the digital
output UP is on for the Ton time of the modulation period
Tpm. The output signal UP is off (resp. on) for the whole
period Tpm for u=0 (resp. u=1). In the case of two binary
outputs UP and DN the input interval [−1; 1] can be used
where the negative values are mapped analogously to the
DN output.
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Fig. 6. PID control example with PWM output

For discrete implementation of the PWM algorithm, the
ratio Ts/Tpm where Ts is the sampling period determines
resolution and precision of PWM because the algorithm
can set outputs from on to off only once during the
sampling period. In other words, the shorter the sampling

period, the higher the PWM accuracy. This situation is
illustrated with the configuration in fig. 6. The PWM block
and the process model are contained in the fast_task,
the PIDU controller is in slow_task.

REX implementation of the PWM block is a more sophisti-
cated, the user can define minimum width of the output
pulse, minimum delay between output pulses, minimum
delay between UP and DN pulses (reversing the direction)
etc., see REX Controls (2011) for more details.

3.3 PID controller with three state output

Not all actuators are equipped with an analog input
signal which can be directly connected to a PID controller
output. Besides PWM, also actuators with two digital
inputs are used very often. Control actions like change a
value “up”–“do not change it”–“down” or rotate a motor
to “left”–“stay in place”–“right” can be implemented by
means of these two digital inputs.

Motorized valves use this strategy, which is demonstrated
in fig. 7 (the project main file is omitted).
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Fig. 7. PID control example with three state output

The PIDMA block which is a PID controller with built-
in autotuner (see the next section) is used as a primary
controller instead of the PIDU block. The block SCUV is
used in the step controller loop when the position signal
is not available. The primary controller is connected with
the block SCUV using the block inputs mv, dmv and SAT.

If the primary controller uses PI or PID control law then
all three inputs mv, dmv and SAT of the block SCUV are
sequentially processed by the special integration algorithm
and by a three state element. Pulse outputs of the three
state element are further shaped in such a way that the
minimum pulse duration time and minimum pulse break
time are guaranteed at the block outputs UP and DN.

The position pos of the valve is estimated by an integrator
with the specified time constant trun. If signals from high
and low limit switches of the valve are available, they
should be connected to the inputs HS and LS.

If the primary controller uses P or PD control law then the
deviation error of the primary controller can be eliminated
by the bias ub manually. In this case, the control algorithm
is slightly modified, see REX Controls (2011) for details.

There is also a group of input signals for manual control
available. The manual mode is activated by the MAN=on
input signal. Then it is possible to move the motor back
and forth by the MUP and MDN input signals. It is also
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possible to specify a position increment/decrement request
by the mdv input. In this case the request must be
confirmed by a rising edge in the DVC input signal.

The controlled valve is simulated by the MVD (Motorized
Valve Drive) block and the process by the MDL block.
Further, a manual pulse (MP) block is used three times
(MP_TUNE, MP_UP and MP_DN). The MP block generates the
binary pulse of the specified duration at its output after
a binary parameter is set to on. The selected signals are
stored to the trend block TRND_1.

4. PID CONTROLLERS WITH AUTOTUNERS

The most advanced controllers in RexLib are equipped
with autotuners. Two of them (PIDMA and PIDAT) are PID
controllers which are depicted in fig. 8. These controllers,
with the same control function as the PIDU block, are
briefly described in the next subsections.
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Fig. 8. Symbols of the PIDMA and PIDAT function blocks

4.1 PID controller with pulse tuning experiment

The PIDMA (PID controller with Moment Autotuner) block
uses a pulse experiment for the controlled process identifi-
cation. The approach is based on papers Schlegel and Čech
(2005) and Schlegel and Večerek (2003).
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Fig. 9. Tuning experiment of the PIDMA controller

The autotuner function is illustrated in fig. 9. The exper-
iment consists of the following phases:

a Waiting for the steady state.
b Pulse experiment itself, which is determined by its

amplitude (the amp parameter of the PIDMA block)
and by a threshold (the dy parameter) of the process
variable (pv). When the difference between the cur-
rent value of pv and its value in the preceding steady
state exceeds the threshold the pulse is automatically
finished.

c Controller works in automatic mode with a newly
computed parameters.

d Step response of the closed loop.

e Response to the disturbance.

The detailed description of the PIDMA block can be found
in the manual REX Controls (2011).

4.2 PID controller with relay tuning experiment

The PIDAT (PID controller with relay AutoTuner) block
uses a relay experiment for the controlled process iden-
tification. The relay autotuner is based on the method
described in Schlegel (2011).
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Fig. 10. Tuning experiment of the PIDAT controller

Fig. 9 shows a relay experiment example, which consists
of the phases:

a Waiting for the steady state.
b Relay experiment itself, which is determined by its

amplitude (the amp parameter of the PIDAT block)
and by a maximum number of half periods of the
experiment (the n1 parameter)..

c Controller works in manual mode.
d Controller works in automatic mode with a newly

computed parameters.
e Step response of the closed loop.
f Response to the disturbance.

Again, more details can be found in the manual REX
Controls (2011).

5. EXAMPLES OF ADVANCED CONTROL
STRUCTURES

5.1 Center seeking control

Center seeking control is a control strategy which can be
used when two actuators (usually valves) with different
ranges (fine and coarse) of the control action are available.
Fig. 11 shows one of the possible REX implementations.
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Fig. 11. Center seeking control block diagram

Control function is always performed by the fine (small)
valve. The coarse (big) valve is controlled by the integra-
tion controller so that the fine valve is in the centre of

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 ThPS.3



its range. It can be ensured by an appropriate choice of
the relay blocks RLY_1 and RLY_2. The integration con-
troller PIDU_I should be sufficiently slow (i.e. its integral
time constant must be sufficiently large) so that the main
control loop with the PIDU_PV controller remains stable.
The position of the coarse valve will be corrected by
switching the PIDU_I controller to the automatic mode
(MAN=off) whenever the fine valve leaves the specified
(recommended) interval (0.25; 0.75) and correction is fin-
ished when the (recommended) interval (0.45; 0.55) is
reached. The RTOI_1 and RTOI_2 blocks perform only type
conversion of real to integer numbers which are inputs of
the logical AND block.

5.2 Nuclear reactor power controller

A power controller of the nuclear reactor LR0 (Schlegel
and Balda (2008)) in Nuclear Research Institute Řež,
Czech Republic, is one of the most interesting applications
of REX. The nuclear reactor power control is a very
demanding task because the controller must work in the
power scale of seven orders of magnitude. The overall
control scheme is depicted in fig. 12.
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Fig. 12. Selector control of nuclear reactor

The control algorithm is based on a suitable switching
of two controllers which is provided by the Selector
subsystem. The active controller is selected by its output
SW connected to the SW input of the SSW (Simple SWitch)
block. When SW=off, the PIDUI controller is active (its
output mv is copied through the SSW block to the reactor
model). The PIDU controller is active when SW=on.

The Selector subsystem makes the PIDUI controller ac-
tive when the reactor power (pv) is near to the desired
power (sp), i.e. the absolute value of the deviation error
(de=sp-pv) of the PIDUI is small relatively to the sp,
which is specified by the CNR_rde constant.

Otherwise, the PIDU intergration controller is active. It
controls the relative velocity of the reactor power increase
(decrease), which is determined by the CNR_rvel constant.
The sp_vel=rvel (sp_vel=−rvel) for power increasing
(decreasing).

6. CONCLUSION

This paper briefly inform about the possibilities of the
PID control in the REX control system, which are demon-
strated on several examples. The examples in figures 5, 6,
7 and 11 are included in the EXAMPLES\REX_TUTOR subdi-
rectory of the REX for Windows installation directory.

But REX offers more than only PID control, other ad-
vanced controllers (several of them with autotuners) are
available, e.g. the PSMPC block (Pulse-Step Model Predic-
tive Controller, Schlegel and Sobota (2008)), SMHCCA block
(Sliding mode Heating Cooling Controller with Autotuner,
Schlegel and Mertl (2006)), and SC2FA block (State Con-
troller for 2nd order system with Frequency Autotuner).
Very interesting are also sequential control blocks ATMT
(automat) and EATMT (extended automat) supporting the
Sequential Function Chart (SFC) formalism (IEC 61163-3
standard) including a user-friendly editor (Kocánek and
Balda (2011)), and many more.

Free demonstration version of REX is available at
www.rexcontrols.com
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