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Abstract: New tuning rules for 2-DoF PI controllers in the spirit of the kappa-tau ones are addressed in 
this paper. In particular, tuning rules have been devised in order to minimize the integrated absolute error 
with a constraint on the maximum sensitivity MS. Different tuning rules have been obtained for a batch of 
plants and for several robustness levels in terms of MS. The setpoint weight is also exploited to improve 
the setpoint following performance because the PI controller is tuned by optimizing the load disturbance 
rejection performance. In particular, explicit tuning rules are given in order to select the optimal setpoint 
weight to minimize the integrated absolute error. Simulation results demonstrate the effectiveness of 
these methodologies. Some comments relating to industrial practice are offered in this context. 
Keywords: Control design, tuning methods, PID control, optimization, process control. 

 

1. INTRODUCTION 

In spite of all the advances in process control over the past 
several decades, the proportional integral (PI) and the 
proportional integral derivative (PID) controller remains to be 
certainly the most extensive option that can be found on 
industrial control applications, see (Åström and Hägglund, 
2001). The transparency of the PID control mechanism, the 
availability of a large number of reliable and cost-effective 
commercial PID modules, and their widespread acceptance 
by operators are among the reasons of its success, see (Gude 
and Kahoraho, 2007). 

Over the last half-century, a great deal of academic and 
industrial effort has focused on improving PID control, 
primarily in the area of tuning rules. In fact, since Ziegler and 
Nichols proposed their popular tuning rules, (Ziegler and 
Nichols, 1942), an intensive research has been done. Works 
include from modifications of the original tuning rules, see 
(Chien et al., 1952), (Hang et al., 1991), and (Åström and 
Hägglund, 2004), to a variety of new techniques, see (Åström 
and Hägglund, 2006) for reference. 

Recently, tuning methods based on optimization approaches 
with the aim of ensuring robust stability have received 
attention in the literature (Vilanova and Alfaro, 2011).  

There are methods such as the kappa-tau, see (Åström and 
Hägglund, 1995) and AMIGO (Åström and Hägglund, 2006) 
that provide tuning rules to design 2-DoF PI controllers 
subject to a robustness constraint but for only one or two 
maximum sensitivity values. An alternative tuning method 
for 2-DoF PI controllers is presented in (Alfaro al., 2010) for 
first order plus dead-time (FOPDT) processes. This approach 
explicitly takes into consideration the performance-
robustness trade-off aiming to obtain a smooth response to 
both disturbance and setpoint. 

The alternative tuning rules for 2-DoF PI controllers 
presented in this paper can be considered in the spirit of the 
kappa-tau tuning rules. They are mainly based on 
characterization of the process dynamics by the following 
process parameters: gain KP, dead-time L, and time constant 
T. Their main characteristic is simplicity but with two 
distinctive features: the designer may select one of four 
different robustness levels for a test batch of typical industrial 
process models and the improvement obtained in servo 
control by considering higher values of the setpoint 
weighting factor β. 

The layout of this paper is the following. The considered 
controller and the test batch are presented in Section 2. The 
design method is established in Section 3. This is followed by 
the main results obtained in this paper: new tuning rules for 
2-DoF PI controllers and for several robustness levels are 
presented in Section 4. In Section 5, the developed tuning 
rules are applied to a well-known process in control literature 
and a comparison between different tuning rules is made. 
Finally, conclusions and final remarks are drawn in Section 6. 

2. CONTROLLER AND TEST BATCH 

2.1  Plant knowledge 

To be accepted in industrial applications controller tuning 
rules must be based on a limited amount of plant knowledge 
that is easy to obtain. The plant can then be characterized by 
its τ value (Åström and Hägglund, 1995): 

TL
L
+

=τ
 

(1) 

This parameter is usually called the normalized dead-time. It 
is essentially the classical controllability ratio L/T, but the 
parameter τ has the advantage that it is in the range from  
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0 to 1. The controllability ratio was often mentioned in the 
early process control literature, see (Cohen and Coon, 1953). 
This parameter can be used to characterize the difficulty of 
controlling a process. Roughly speaking, processes with 
small τ can be considered easy to control and the difficulty in 
controlling the system increases as τ increases. 

2.2  2-DoF PI Controller 

The process will be controlled with a two-degree-of freedom 
(2-DoF) proportional-integral (PI) controller (Åström and 
Hägglund, 1995) whose output is: 
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And can be rewritten as follows: 

( ) ( )sy
sT

Ksr
sT

Ksu
ii

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

111)( β
 

(3) 

and in compact form as: 
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transfer function. In (2) and (3), K is the controller gain, Ti is 
the integral time constant, and β is the setpoint weight factor. 
The closed loop system with the 2-DoF PI controller is 
shown in Fig. 1. 

2.3  The test batch 

The design method presented in the next section requires the 
transfer function of the process to be known. The results of 
this investigation depend critically on the chosen test batch. 
To apply the method we therefore have to choose process 
models that are representative for the dynamics of typical 
industrial processes. Processes with the following transfer 
functions have been used: 
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T = 0.01, 0.05, 0.1, 0.2, 0.3, 
0.5, 0.7, 1, 2, 4, 6, 8, 10 
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T = 0.02, 0.05, 0.1, 0.2, 0.5 

The process (6) is the standard model that has been used in 
many investigations of PID tuning. 
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The test batch (5) does, however, not include this transfer 
function because this model is not representative for typical 
industrial processes, see (Åström and Hägglund, 1995). 
Tuning based on the model (6) typically gives controller 
gains that have a different behaviour from the other processes 
in the test batch, see for example (Hang et al., 1991). This is 
remarkable because tuning rules have traditionally been 
based on this model. 

The processes selected in the test batch (5) are representative 
for many of the processes typically found in process control, 
see for example (Åström and Hägglund, 2000) and (Gorez, 
2003), suggested as standard benchmark models for testing 
PID controllers. The test batch includes processes that range 
from delay-dominated to lag-dominated processes. They 
include all kinds of plants with poles strictly on the negative 
real axis, such as plants with time delay or non-minimum 
phase zeros, plants of high and low orders, plants with 
multiple and spread poles, etc. All processes are normalized 
to have unit steady state gain and have a parameter that can 
be changed to influence the response of the process. The 
parameter ranges have been chosen to give a wide variety of 
responses. The normalized time delay ranges from 0.17 to 
0.909 for G1. The rest of the processes have values of τ in the 
range 0.05 < τ < 0.5. In this paper, values of the normalized 
dead time in the range 0.05 ≤ τ ≤ 0.9 are considered. 
Actually, for values of τ < 0.05 the dead time can be virtually 
neglected and the design of a controller is rather trivial, while 
for values of τ > 0.9 the process is significantly dominated by 
the dead time and therefore a dead time compensator should 
be employed. 

3. DESIGN METHOD 

Within the process industry, regulation performance is often 
of primary importance since most controllers operate as 
regulators, see (Shinskey, 1996). Regulation performance is 
often expressed in terms of the control error obtained for 
certain disturbances. A load disturbance is typically applied 
at the process input. Typical criteria are to minimize a loss 
function of the form: 

( ) dttetI mn∫
∞

=
0  

(7) 

where the error is defined as e(t) = r(t) – y(t). Common cases 
are IAE (n = 0, m = 1), ISE (n = 0, m = 2), or ITSE  
(n = 1, m = 2). 

r(s) 

u(s) y(s) 
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Fig. 1. Two-degree-of-freedom PI control scheme. 
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Minimizing the integral absolute error: 
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(8) 

yields, in general, a low overshoot and a low settling time at 
the same time (Shinskey, 1996). 

Robustness is an important consideration in control design. 
There are many different criteria for robustness. Many of 
them can be expressed as constraints on the Nyquist curve of 
the loop transfer function L(s) = G(s)·C(s). (Åström and 
Hägglund, 1995) introduced the maximum sensitivity 
function of the closed-loop system, MS, as a tuning parameter 
for PID controllers. The constraint (9) that sensitivity 
function S(jω) is less than a given value MS implies that the 
loop transfer function should be outside a circle with radius 
1/MS and center at (–1, 0). 
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The MS value is being established as a de facto standard 
measure of robustness and MS value of 2.0 is recognized as 
the minimum acceptable robustness level. This corresponds 
to the classical (Am ≥ 2, ϕm ≥ 30º) relative gain and phase 
stability margins specification. Then, MS = 2.0 will be 
considered as the minimum degree of robustness, MS = 1.8 
will be a low, MS = 1.6 a medium, and MS = 1.4 will be a 
high level of robustness. Tuning rules with the same levels of 
robustness are proposed in (Alfaro et al., 2010). 

The design problem discussed in this paper can be formulated 
as an optimization problem: Find parameters of the different 
controllers that minimize performance criterion (8) subject to 
the four different levels of the robustness constraint (9). 

4. TUNING RULES 

An numerical method is used to develop the new tuning rules 
for PI controllers. The design method proposed in Section 3 
with four different robustness levels MS = {1.4, 1.6, 1.8, 2.0} 
was applied to all processes in the test batch (5). These tuning 
rules allow the design of the control system with any desired 
robustness level and to analyze the robustness-performance 
trade-off. 

This gave a set of equations for the corresponding parameters 
K, Ti, and the setpoint weight factor β, for the 2-DoF PI 
controller. The process parameters KP, L and T were also 
computed from the step response experiment. The controller 
gain is normalized by multiplying it with the static process 
gain KP. Integration time is normalized by dividing by T. 

We will represent normalized controller parameters as 
functions of τ. Data can be well approximated by functions 
having the form: 

00
0 caKK b

P += τ  (10) 

11
1 ca

T
T bi += τ  (11) 

4.1  PI parameters 

Simplified tuning rules for PI controllers will be obtained. 
Figures 2 and 3 show the normalized proportional gains and 
integration times for each robustness level, respectively, as a 
function of the normalized time delay τ when the design 
procedure is applied to all the processes in the test batch (5). 
The curves drawn correspond to the results obtained by curve 
fitting. Both figures show that there appears to be a good 
correlation, for each robustness level, between the normalized 
controller parameters and the normalized time delay τ. This 
indicates that it is possible to develop good tuning rules based 
on the KLT-model. 

Table 1 and Table 2 gives the coefficients for functions of the 
forms (10) and (11), respectively, fitted to the data available 
in Figs. 2 and 3. The corresponding graphs are shown in solid 
lines in figures. 

Fig. 2. Normalized PI controller proportional gains, for each 
robustness level, plotted versus the normalized time delay τ 
for the test batch. The solid lines correspond to the tuning 
rules obtained in Table 1. 

Fig. 3. Normalized PI controller integration times, for each 
robustness level, plotted versus the normalized time delay τ 
for the test batch. The solid lines correspond to the tuning 
rules obtained in Table 2. 
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Table 1.  KKP tuning rule parameters for the different 
values of MS 

MS a0 b0 c0 
1.4 0.055 –1.684 0.0607 
1.6 0.1085 –1.586 0.0273 
1.8 0.3152 –1.221 –0.3084 
2.0 0.166 –1.617 0.0833 

 

Table 2.  Ti/T tuning rule parameters for the different 
values of MS 

MS a1 b1 c1 
1.4 5.682 7.794 0.8025 
1.6 9.559 10.51 0.8858 
1.8 9.764 32.78 0.9219 
2.0 2.10 3.36 0.9341 

Fig. 4. Values of the PI controller setpoint weight, for each 
robustness level, plotted versus the normalized time delay τ 
for the test batch. The solid lines correspond to the tuning 
rules obtained in Table 3. 

Fig. 5. Servo-control performance improvement obtained 
using setpoint weighting. The ratio between the IAE value 
using setpoint weighting (IAEβ) and the one without using it 
(IAE).

4.2  Setpoint weighting 

It is well-known that the setpoint weighting is an effective 
technique for the reduction of the overshoot in the setpoint 
step response when the controller is tuned for the purpose of 
achieving a satisfactory load disturbance rejection 
performance, see (Åström and Hägglund, 2006).  

Tuning rules for the selection of the value of β have been 
devised by considering the processes in the test batch (5) and, 
for each of them, the PI controller tuning by applying 
formulae (10) and (11) with the coefficients shown in Tables 
1 and 2. Then, in each case the value of β that minimizes the 
integrated absolute error value in the setpoint unit step 
response has been found and, eventually, results have been 
interpolated in order to provide analytical tuning rules. The 
optimal values of β can be therefore expressed, for each value 
of MS, as 

22
2 ca b += τβ  (12) 

where the values a2, b2, and c2, depend on the PI parameters, 
as shown in Table 3. Note that the value of β increases, for all 
the values of MS, with τ, as shown in Fig. 4. β ranges from 
0.8 to 4 for MS = 1.4, from 0.9 to 2.5 for MS = 1.6, from 0.7 
to 2 for MS =1.8, and from 0.6 to 1.6 for MS = 2.0, 
respectively. The slopes decrease and take the following 
values: 3.9, 2.0, 1.6, and 1.2, respectively, for increasing 
values of MS. The corresponding values of β for decreasing 
values of MS are high. Note that β < 1 for τ < 0.5 in the  
MS = 2.0 case, however, β > 1 for nearly all the range in τ in 
the MS = 1.4 case. 

The improvement in the integrated absolute error obtained by 
applying the setpoint weight (IAEβ) determined according to 
the formula (12) and Table 3 divided by the one without 
setpoint weighting (IAE) is shown in Fig. 5. In this Figure, 
crosses correspond to the results obtained for G1, circles to 
G2, squares to G3, plus signs to G4, and triangles to G5. This 
notation was also used in Figs. 2–4 and also in Fig. 6.  

This behaviour was also indicated in (Alfaro et al., 2009) for 
FOPDT processes, which presented an analysis of the 
influence of the 2-DoF controllers proportional setpoint 
weight over the servo-control performance and showed that 
the removal of the existing constraint for its selection  
(0 ≤ β ≤ 1.0) will allow to improve its performance when a 
high robust regulatory control system is required. 

Important performance improvements can be obtained, for all 
the process in the batch, for the more robust case avoiding to 
constraint β ≤ 1, as usual in industry. 

Table 3.  Tuning rules for β and the different values of MS 

MS a2 b2 c2 
1.4 4.00 1.088 0.5884 
1.6 2.076 0.9278 0.5465 
1.8 4.86 3.222 0.8381 
2.0 1.158 1.579 0.6549 
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Fig. 6. Normalized PI controller parameters plotted versus 
normalized dead time for the processes in the test batch. 
Parameters in blue correspond to the design parameter  
MS = 1.4, and parameters marked in red correspond to  
MS = 2.0. The ratios between the IAE value using setpoint 
weighting and the one without using it are also compared for 
both values of MS. 

4.3  Comparison between rules for different robustness levels 

The new simple tuning rules have been derived minimizing 
disturbance performance, using MS as a design parameter. 

Figure 6 shows 2-DoF PI controller parameters, for a high 
(MS = 1.4) and a minimum level of robustness (MS = 2.0), in 
order to compare the effect of the robustness design 
parameter over the obtained controller parameters. 

Figure 6 shows that the integration times are essentially the 
same for both values of MS. The controller gains have similar 
dependencies on τ but the gain obtained for minimum 
robustness (MS = 2.0) is about twice as high as the gain 
obtained for high robustness (MS = 1.4). This indicates that to 
obtain more aggressive control at the cost of lower robustness 
can be achieving simply by increasing the gain. An extremely 
simple tuning rule for PI controllers could be following 
expressions (11) and (12) together with Tables 2 and 3 for Ti 
and β parameters while K could be modified depending on 
the desired aggressiveness. However, following the proposed 
tuning rules for several robustness levels instead of 
modifying by trial and error the proportional gain, we 
guarantee the desired robustness level and respect the 
performance-robustness trade-off. 

The value of β is approximately the same for both cases for 
very low values of τ, however, the slope increases nearly four 
times for the high robustness case. 

The improvement in servo control using the setpoint 
weighting behaves in a different way depending on the 
robustness level. For a high level of robustness (MS = 1.4), 
note that for values of τ ≥ 0.15 the value of β is greater than 
1.0. The improvement in using setpoint weighting grows 
towards 45% for delay-dominated processes and it is 
negligible for lag-dominated processes. This behaviour 
changes for increasing values of MS.  

However, the behaviour is completely different for MS = 2.0. 
The improvement in lag-dominant processes grows towards 
20%, the one for delay-dominated processes is reduced 
towards 3%, and the negligible improvement is moved 
progressively towards balanced lag and delay processes. 

5.  SIMULATION RESULTS 

Consider a process with the transfer function: 

( )41
1)(
+

=
s

sG  (13) 

Fitting the FOPDT model to the process we find that the 
apparent time delay and time constant are L = 1.42 and  
T = 2.90, respectively. Hence the controllability index is  
L/T = 0.5 and the normalized dead time is τ = 0.33. 

The tuning rules for 2-DoF PI controllers proposed in this 
paper are compared in terms of IAE and MS with the Ziegler 
and Nichols step and frequency methods (ZN step and ZN 
frequency), Åström and Hägglund’s kappa-tau and AMIGO 
methods, and Alfaro’s PI2Ms tuning rules for the same 
robustness levels, respectively. See (Åström and Hägglund, 
2006) and (Alfaro et al., 2010) for reference of all these 
methods.  

Table 4 shows controller parameters, robustness and servo-
regulation performance indices for all the tuning methods 
considered.  

First of all, the benefit obtained in using the proposed 
setpoint weighting values can be quantified in 26%, 4%, 1%, 
and 2%, respectively, for increasing values of MS. This is in 
correlation to Fig. 5, which quantifies the improvement for 
the whole test batch. 

A reduction of 16% and 18% in IAEβ has been obtained for 
the proposed method (MS = 1.4 and 2.0) in comparison with 
kappa tau tuning rules. 

Related to disturbance rejection performance, kappa tau rules 
have a decrease of 4% in IAEd at the cost of a smaller 
robustness. However, a reduction of 20% in IAEd is obtained 
using the proposed method for MS = 2.0 in comparison with 
kappa tau method. 

Otherwise, the reduction in IAEβ is 20%, 17%, 10%, and 7%, 
respectively, compared to Alfaro’s method for increasing 
values of MS. Similar or smaller values of IAEd are obtained 
for the proposed method in comparison to Alfaro’s method, 
what show the effectiveness of the proposed method. 

Table 4 shows good results for the proposed tuning rules in 
comparison with classical and well-established modern 
methods. 

6. CONCLUSIONS 

This paper presents new tuning rules for 2-DoF PI controllers 
for several robustness levels in the spirit of the kappa-tau 
tuning rules for a test batch of typical processes found in 
process control. The rules are based on characterization of the 
process dynamics by three parameters, i.e. gain KP, apparent 
time constant T and apparent time delay L, that can be 
obtained by a simple step response experiment. 
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Table 4.  Controller parameters obtained with several design methods for a process with transfer function  
G(s) = 1/(s+1)4  

Method K Ti β ki MS IAEd IAEr IAEβ IAEβ/IAEr 
Proposed (MS = 1.4) 0.43 2.35 1.78 0.18 1.38 5.40 5.55 4.09 0.74 
Proposed (MS = 1.6) 0.66 2.59 1.28 0.26 1.59 3.90 4.12 3.98 0.96 
Proposed (MS = 1.8) 0.92 2.70 0.97 0.34 1.87 3.20 4.10 4.09 0.99 
Proposed (MS = 2.0) 1.09 2.88 0.85 0.38 2.05 3.02 4.23 4.14 0.98 

Alfaro et al. (MS = 1.4) 0.54 2.90 1.05 0.19 1.39 5.38 - 5.12 - 
Alfaro et al. (MS = 1.6) 0.76 1.14 0.78 0.66 1.59 4.13 - 4.82 - 
Alfaro et al. (MS = 1.8) 0.92 3.20 0.66 0.29 1.76 3.49 - 4.52 - 
Alfaro et al. (MS = 2.0) 1.03 3.21 0.59 0.32 1.90 3.13 - 4.43 - 

κτ (MS = 1.4) 0.36 1.89 1.26 0.19 1.41 5.19 5.25 4.87 0.93 
κτ (MS = 2.0) 0.77 1.89 0.54 0.41 2.13 3.76 5.00 5.04 1.00 

AMIGO (MS = 1.4) 0.51 2.3 1 0.22 1.47 4.54 4.56 4.56 1.00 
ZN Step 1.85 4.27 1 0.43 3.25 2.85 5.34 5.34 1.00 

ZN Frequency 1.61 5.01 1 0.32 2.48 3.11 4.30 4.30 1.00 
 

The design method consists on minimizing IAE, for 
disturbance rejection, subject to a constraint on the maximum 
sensitivity function. Four robustness levels are proposed and 
tuning rules are obtained for those levels. Based on these 
parameters it is possible to develop very simple tuning rules 
for PI controllers that only depend on the normalized time 
delay τ. 

In this paper it is also demonstrated that substantially better 
performance can be obtained using setpoint weighting 
without constraining its value. The benefit is quantified for 
the four proposed levels and for all the processes in the test 
batch. 

These tuning rules are shown to give good results compared 
to a couple of well established classical and modern tuning 
methods, especially when simplicity, performance and 
robustness are emphasized.  

Future investigation should rely on extending these tuning 
rules to integral processes and applied to PID and fractional 
PID controllers. 
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