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Abstract: A new identification procedure has been developed based on the information obtained from the 
oscillations that a non-linear element as a simple relay introduces in the feedback loop. Features of the 
method are: (1) the procedure does not demand a priori process information, (b) non-iterative algorithms 
are needed to derive the process parameters, (c) only one test is needed, and (d) it allows identifying the 
process at a user-specified phase lag in the third quadrant. 
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1. INTRODUCTION 

 
The proposed approach allows the identification of 
model parameters from measurements derived of the 
asymmetric oscillations generated by a relay and a 
bias added to the output. These measures are the 
oscillation frequency, the main harmonics, and the 
steady gain (if the process is without integration). The 
identification procedure is relevant for four reasons:  
 
(1) Unlike previous works based on relay-induced 

oscillations, the model parameters do not need to 
be calculated using a-priori information of the 
process (i.e., static gain). 

(2) Iterative methods to solve non-linear equations 
are not necessary,  

(3) The number of tests to obtain the measures is 
always one regardless the transfer function 
structure or order, and  

(4) The procedure can be extended to estimate any 
type of transfer function.  

 
The structure of the paper is as follows. First, the basis 
of the estimation approach is described in Section 2. 
In Section 3, the procedure is explained also, 
expressions to estimate the parameters of common 
transfer functions are derived and simulation results 
are presented. Section 4 discusses a way to estimate 
with user-defined phase angle specifications. The 
paper finishes with conclusions. 
 

 
Fig. 1. Basic relay feedback control loop. 

 

2. BASIS AND PROBLEMS OF THE ESTIMATION 
BASED ON RELAY-INDUCED OSCILLATIONS 

 
The pioneering works on the use of relay feedback for 
identification purposes are from the 80’s (Åström and 
Hägglund, 1984). The basis of the method is that a 
linear system under an ideal relay control (Figure 1) 
oscillates, approximately, at its ultimate frequency, 

that is, uosc ww »  and the critical gain Ku  is derived 

from the describing function (DF) of the ideal relay. 
That is, 

 uK
A

D
AN ==



4
)(  (1) 

 
where A is the oscillation amplitude and D is the relay 
output. Knowing that the oscillation happens when the 
expression 

 )(
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1
oscjG
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-
 (2) 

 
is satisfied, it is feasible to derive the parameters of a 
transfer function model. One way to do that it is to use 
the magnitude and argument of the critical point 

)( oscjG w  in the Nyquist plot that corresponds to the 

intersection of G(s) and -1 N(A) , separating both 

components to solve them. That is,  
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To separate both parts is key to the estimation 
approach presented here. It is possible to apply 
iterative methods to solve directly (2), but when the 
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transfer function to estimate has four or more 

unknowns (for example, K, 1T , 2T , and L), most of the 

time the iterative methods do not converge (Li et al., 
1991). It is due primarily to the inaccuracy of the 
describing function and the extreme nonlinearity of 
the equations with respect to the parameters. However, 
by separating (2) in magnitude and argument, it is 
possible to solve (3) to get the zeros and poles, and (4) 
to obtain the time delay. 
   
After reviewing the literature on DF-based 
identification, the main problems found are 
summarized: 
 
- The reciprocal of the DF provides an approximation 
of the Nyquist point at the frequency where the 
process oscillates. It is fundamental to obtain an exact 

value of )( oscjG w during a test. 

- In process without integration, it is necessary to 
obtain G(0) as a first parameter. If the transfer 
function template to fit is exactly equal to the real 
process to identify, it is not necessary, as the 
identification will provide exact results at any 
frequency. However, if the true process has higher 
order or different structure to the template and G(0) is 
not known, this will produce that the result is good 

around the critical frequency º180-»w  but with 

discrepancies at 0=w . It is due to the fact that the 

template is fitted with lesser degrees of freedom that 
the true process. So, the fitting will be exact around 

oscw  but will present discrepancies in frequencies 

close to zero. 
- If the process has an integrator, as the identification 
is based on the behavior in the third quadrant, the 

results around º180-»
w  will be good even when the 

transfer function has different structure than the real 
process. However, if the structure is different, the 
results will differ at low frequencies, improving the 
results if the identification is done at frequencies 

around º135-w . 

- It is necessary to design a procedure to get in just 
one test as many points of the Nyquist plane as 
unknowns )(sG  owns to solve the system of 

equations. One point will always be the oscillation 
point situated in the third quadrant of the Nyquist 
map. A second point must be G(0) when needed 
depending of the template to fit.  
- To be able of identifying at a user-defined phase 
angle. In (Åström and Hägglund, 2006), authors 

recommend estimating the process at º135-w  or º180-w  

depending if PI or PID control is applied, respectively. 
 

3. BASIS OF THE APPROACH 
 
As said before, the reciprocal of the relay DF is just an 
approximation and can introduce errors in the 

estimation. The solution adopted to get accurately 

)( oscjG w  during a test is presented in (Vivek and 

Chidambaram, 2005). As y(t) and u(t) are periodic and 
piecewise, using the Laplace transform of both, it can 
be written 
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and following (5), and as indicated in (Wang et al., 
2007), it is possible to obtain the harmonics 
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Expression (6) lets solving two problems: (i) to get the 

value of )( oscjG w  that represents the exact point in 

the Nyquist plot where the intersection with )(1 AN-  

is happening and, (ii) to obtain the additional points 

)( oscjnG w  needed in one test to work out the 

equations.  
 
The last problem to solve is the estimation of the 
steady gain. Expression (5) cannot be applied as the 
oscillations produced by a relay are symmetric and the 
integration of the semi periods will be zero. However, 
if an asymmetry is introduced in the oscillations by 
adding a small bias to the relay output (see Figure 1), 
the process static gain can be derived from (5) (Shen 
et al., 1996) as 
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It is important to notice that without bias, the signals 
are symmetric and even harmonics become cero. 
 
3.1 Models 
 
The identification procedure can be adapted to most of 
the process found in process industry just obtaining 
the magnitude and argument expressions of the 
transfer function to fit. Expressions for a first order 
plus time delay (FOPTD), an overdamped second-
order with time delay (SOPTD-1), a second-order with 
time delay (SOPTD-2) to identify underdamped 
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processes, and an integrating process with inverse 
response and time delay (IPIRTD) are given.  
 
Model 1: FOPTD 

 
1

)(1
+

=
-

Ts

Ke
sG

Ls

 (8) 

Model 2: SOPTD-1 
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Model 3: SOPTD-2 
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Model 4: IPIRTD 
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where bK 1=  and baT =2 . 

 
From each of these models, the expressions of 
magnitude and argument of G( jwosc)   are derived. 

 
Model 1: FOPTD 
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 argG1( jwosc) = -arctan(Twosc)-woscL  (13) 

 
where  0,2)(arg 1 w -oscjG . 

 

As K, oscw  and ( )oscjG w1  are obtained directly from 

the test using (6) and (7) by adding a bias, T can be 
obtained directly from (12). After that, L is derived 
from (13). 
 
Model 2: SOPTD-1 
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 LTjG oscoscosc www --= )arctan(2)(arg 2  (15) 

 
The unknowns are the same that in the previous one, 
so the procedure to apply is the same. 
 
Model 3: SOPTD-2 
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There are three unknowns K, a , and b  in (10). As K 
is obtained directly from the test using (7) by adding a 
bias, to get the other two unknowns is necessary the 
expression corresponding to the second harmonics, 

that is, ( )oscjG w23 . This expression is derived from 

(16) just replacing oscw  by oscw2  and its experimental 

value is obtained from the test (see (6)). Once a and b 
are known, the dead-time is derived from (17). 
 
Model 4: IPIRTD 
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The unknowns in (18) are T1, a, and b. As it is a 
process with integration, the velocity gain can directly 
be obtained solving the system of equations. So, the 

expressions of G4 j2wosc( ) and G4 j3wosc( )  are 

needed and its experimental values are got from the 
test (see (6). The dead-time is directly got from (19) 
once the other three unknowns are obtained. 
 
The following expressions are the result of solving the 
previous equations for the four models. For the sake of 

simplicity, nC  represents )( oscjnG w  and 1argC  

corresponds to )(arg oscjG w . 

 
Model 1: FOPTD  
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Model 2: SOPTD-1 
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Model 3: SOPTD-2 
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Model 4: IPIRTD 
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3.2 Outline of the procedure 
 
The procedure is based on producing a limit cycle 

oscillating at oscw  as consequence of the relay control 

actions generate when )(sG  crosses zero. As shown 

before, mathematically, the limit cycle is explained as 

the consequence of the intersection of )(sG  with 

)(1 AN-  at oscw . The intersection point corresponds 

to the value of )( oscjG w . 

 
The estimation procedure can be divided into the 
following steps: 
 
1. Add a small bias, i.e, D1.0»  to the relay output.  

2. Once the oscillation is stable, annotate oscw , and 

the harmonics )( oscjnG w  needed to solve the 

equations. In models without integration, it is 
necessary K. 

3. Use the expressions: 
 (20) and (21) for FOPTD model. 
 (22) and (23) for SOPTD-1 model.  
 (24), (25), and (26) for SOPTD-2 model. 
 (27), (28), (29), and (30) for IPIRTD model. 

 
Remark 1: Model 3 lets detecting if the true process 
corresponds to a dynamics of first order instead of 
second order. In this case, the procedure will generate 
a value for a close to zero. 
 
Remark 2: Model 2 and 3 can produce the same 
result if the true process corresponds to an 
overdamped second order system. In case of being 
underdamped (non-monotone), models 1 and 2 can 
produce a complex value for the time lag or an 
overdamped solution, and the correct results are 
produced only by Model 3. 
 
3.3 Simulation examples 
 
The simulations have been run in Matlab/Simulink 
with a sampling time h=0.001. The parameters used in 
the tests have been D=1 and bias=0.1D. 
 

Table 1 shows the results when the structure of the 
true process and the model are the same. Models 2 and 
3 produce similar solutions for Cases 2 and 3 as both 
real processes correspond to overdamped systems. 
However, in Case 4, model 2 produces complex 
values as the true process is underdamped. The 
identification in Case 5 provides a complex value for 

1T  close to zero (0.08i) due to the numerical errors; 

and it is ignored and equated to zero. Accuracy in the 
estimated process model is computed using integral of 
absolute error (IAE) criterion 
 

IAE =
Gm( jw)-G( jw)

G( jw)0

wosc

ò dw  

 
where )( wjGm  is the identified model,  )( wjG  is the 

actual process and oscw  is the critical frequency, 

respectively.  
 
Table 2 corresponds to the results when the structure 
of the true process is different to the transfer function 
to fit. Cases 7 and 8 correspond to the fitting of 
FOPTD models; cases 9, 10, and 11 to second order 
processes, and cases 12 and 13 to processes with 
integration and inverse response. In Case 9, it is not 
possible to present solutions for models 1 and 2 as the 
true process is an underdamped system (non-
monotone).  
 

Table 1: Solutions for processes with same order 
and structure than the transfer function fitted. 

 Process Proposed method IAE 

1 
110

2

+

-

s

e s

 

85.0

º78.0

10364.10

003.1 0008.2

»

-»

+

-

osc

osc

s

s

e

w

j  

 
0.012 

2 
2

2

)12( +

-

s

e s

 
( )

656.0

º61.0

10043.2

0003.1

1007.4024.4

0003.1

2

996.1

2

004.2

»

-»

+

++
-

-

osc

osc

s

s

s

e

ss

e

w

j

 

 
0.002 

 
 

0.008 

3 15.15.0 2

2.0

++

-

ss

e s

 
( )

646.3

º27.2

17188.0

001.1

1502.15004.0

001.1

2

189.0

2

2.0

»

»

+

++
-

-

osc

osc

s

s

s

e

ss

e

w

j

 

 
0.0018 

 
 

 
0.0992 

4 
12 2 ++

-

ss

e s

 
917.0

º6.0

19946.0013.2

002.1
2

98.0

»

»

++

-

osc

osc

s

ss

e

w

j

 

 
0.007 

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

471



     

5 
( )120

10

+

-

ss

e s

 
( )

0624.0

º88.2

199.19

999.0 003.10

»

»

+

-

osc

osc

s

ss

e

w

j  

 
3*10-5 

6 
( )1

)6.04.2(

+

+-

ss

s
 

( )

3109.0

º5.21

199.0

)6.039.2( 0026.0

»

»

+

+- -

osc

osc

s

ss

es

w

j

 

 
8*10-4 

 
Table 2: Solutions for processes with higher order 

or different structure than the model fitted. 
 Process Proposed method IAE 
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4. SELECTING THE IDENTIFICATION PHASE 
ANGLE 

 
The identification approach using a relay without 
hysteresis produces a model that corresponds exactly 
with the dynamics of the true process at the oscillation 

frequency, that is G( jwosc)= Ĝ( jwosc) . If the order of 

the process is equal to the transfer function model to 
fit, the identification will be exact and the behaviour 

of )(ˆ sG will be equal to )(sG  in all the frequencies 

range. However, if the order of process and model is 
different, it can be necessary to modify the oscillation 
frequency to find a more suitable approximation to the 
pursued control purposes. 
 
In the previous examples, the phase angle is not 0º and 
changes depending of the features of the process. 
Theoretically, the bias added to the output cannot be 
used for this purpose as it does not affect to the phase 
angle as not provide phase shifting (Gelb and Van der 
Velde, 1968),  
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To obtain a point in the Nyquist curve different to the 
obtained with the simple relay can be done by 
introducing hysteresis in the relay (Åström and 
Hägglund, 1984). The negative reciprocal of the DF of 
a biased relay with hysteresis is 
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where A is the oscillation output, D the relay 
amplitude, and d  the hysteresis (it must be noticed 
that the reciprocal is independent of the bias). As 
happens in the simple relay, this function is 
represented in the Nyquist map as a straight line 
parallel to the real axis. However, by increasing d , 
the line can be move down along the imaginary axis of 
the Nyquist map. As the intersection of G(s) with this 
line means the existence of an oscillation, the critical 
point where the intersection happens can be modified, 
increasing the phase angle to fulfill the user 
specifications. 
 
From (32), the theoretically phase angle obtained by 
applying hysteresis to the relay is defined by 
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where A³ d . Obviously, this expression provides just 
an approximation that depends on the features of the 
true process.  
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Example 1: The result of the identification of 

G(s)= e-s s(s+1)  using a relay with D=1, d = 0 , and 

bias=0.1D is 
 

Ĝ1(s) =
(-0.1614s+1.051)e-0.781s

s(1.139s+1)
 

 

with º66.2»oscj . If the hysteresis is increased to

2=d , the result of the identification is 
 

Ĝ2(s) =
(-0.08321s+1.001)e-0.929s

s(1.005s+1)
 

 

with º46»oscj . In Figure 2, it can be appreciated the 

differences between the two results. 
 
4.1 Automatic generation of the hysteresis 
 
In the previous example, the hysteresis was fixed by 
trial and error in successive simulations. A solution 
proposed in (Åström and Hägglund, 1984) for 
autotuning of PID controllers can be adapted to adjust 
iteratively the hysteresis during the tests using the 
information obtained from the experimental measure 

of )( oscjG w . The formula is 
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where refj is the desired phase angle and 1  is a 

convergence speed factor. 
 
Example 2: Applying the iterative method to the 
identification of the process of Example 1 using (34), 

fixing º1º45 =refj  and 5.0= , it is obtained 

d =1.897 and the new identified model is 
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with josc » 45.32º . 

 
6. CONCLUSIONS 

 
The basis of the method is the oscillations that a relay 
generates in the feedback control loop. Instead of 
using the approximations of the intersection points 
that the describing function of the relay provides, on-
line measurements of the process and control signals 
are used to obtain the harmonics needed to solve the 
linear equations and generate the estimations. In this 
way, the number of tests to make the estimations is 
always one regardless the order or structure of the 
model transfer function to fit. Moreover, the 
identification procedure is not iterative so the 

computational cost is very low. With the simple relay, 
the identification procedure is done near the ultimate 
frequency. By using a relay with hysteresis and 
modifying its value, the identification will be possible 
at a user-specified phase lag.  
 
Acknowledgements 
 
This work has been funded by Spanish Ministry of 
Economy and Competitiveness under contract 
DPI2014-55932-C2-2-R and DPI2017-84259-C2-2-R. 
 
 

 Figure 2: Example of the differences in the 
identification results depending of the phase angle.  
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