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Abstract: A stunning outcome of fractional calculus for control practice are fractional-order
PID (FOPID) controllers. Based on their experimental and numerical results, several studies
have reported improvements in control performance of closed loop control systems by FOPID
controllers compared to classical PID controllers. However, the industry at large is still cautious
about adopting FOPID controllers because of the lack of concrete data about the related cost-
benefit trade-off. Main concerns arise at the point that there have not been a quantitative
evaluation scheme that clearly demonstrates for which concrete cases FOPID controllers can
provide considerable improvements in control. Therefore, there is a need for more thorough
theoretical and quantitative demonstrations. To that end, this study presents a plant function
independent evaluation methodology to reveal inherent advantages of FOPID control. Impacts
of two additional controller coefficients, namely fractional orders of differentiator and integrator,
are analyzed in the frequency domain and their contributions to open loop gain maximization,
phase margin and Reference to Disturbance Rate (RDR) performance are investigated.

Keywords: Fractional-order PID Control, PID controller, robust performance, stability,
disturbance rejection.

1. INTRODUCTION

Robust control performance is a major concern for
real world applications. Robustness against unpredictable
plant parameter perturbations and environmental distur-
bances strongly depends on the characteristics of con-
trollers offering robustness in stability and disturbance
rejection. To this end, the concept of FOPID control was
introduced in Podlubny et al. (1997). This extension in
dynamic responses of integrator and derivative compo-
nents suggests improved control laws by increasing span
of controller response. By the tuning the orders of the
integrator and differentiator, it may be possible to obtain a
controller which is more robust against parametric system
perturbation and uncertain disturbance models. There-
fore, the common expectation is that FOPID controllers
should become a substitute of classical PID controllers in
practical applications (Chen et al. (2009)).

1 This study is based upon works from COST Action CA15225, a
network supported by COST (European Cooperation in Science and
Technology).

Classical PID control has a history of almost a century.
Today, the PID controller is a well-known, fundamental
and widely utilized controller structure that has become
industrial standard. Nevertheless, based on the experimen-
tal and numerical results published in last two decades,
many researchers have reported superior control perfor-
mance of FOPID controllers compared to the performance
of classical PID control (Chen et al. (2009); Padula and
Visioli (2011); Tepljakov et al. (2014); Sundaravadivu et al.
(2011); Tepljakov et al. (2016); Gole et al. (2012)). How-
ever, higher computational complexity in FOPID real-
ization and corresponding rise in substitution costs put
forth the questions when the improvements, provided by a
FOPID controller, are affordable and the concerns about
usefulness of these assets in improvement of control perfor-
mance. From the industrial point of view, FOPID should
offer a considerable cost-benefit advantage for specific
control requirements to justify substituting existing PID
controllers with FOPID controllers. There is clearly a need
for a thorough investigation and theoretical clarification
of the origins of performance improvements and how to
benefit from them in applications. These issues are the
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main motivation of this study and in this paper we focus
on the theoretical assessment of contribution of fractional-
order dynamics to robust control performance.

Some analytical derivations proving contribution of FO
control dynamics to robust performance were presented
through fundamental plant assumptions in Vinagre et al.
(2003). The demonstration was based on a template, so-
called iso-damping, providing flatness of phase response
of open loop fractional-order transfer function around the
crossover frequency. In another study, fragility analysis of
PID and FOPID has been presented to show sensitivity of
controller performance to controller coefficients and some
design and implementation concerns were explored for
this controller (Alfaro (2007); Padula and Visioli (2016)).
However, due to assumption of a specific plant model,
dynamics originating from plant function may raise the
concern of a loss of generality. To see exact contribution
of the controller, plant independence in analyses have a
potential to yield more common properties related with
controller performance.

The current study applies a plant function independent
assessment methodology to show common contributions
of FOPID controllers to system stability and disturbance
rejection performance. To eliminate plant function depen-
dent dynamics from our analyses, we assumed an ideal
plant function with G(s) = 1. Thus, effects caused by
plant parameters such as amplitude, phase and delay,
are eliminated. After isolation of closed loop control from
plant models, the impact of FOPID controller integration
and differentiator orders can be analyzed in frequency
domain. In the paper, the contribution of tuning of these
coefficients to robustness indicators such as open loop
gain maximization, phase margin and RDR performance
is discussed.

2. THEORETICAL BACKGROUND FOR
FRACTIONAL ORDER SYSTEMS

Fractional-order systems are represented by time domain
system models in the form of fractional-order differential
equations (Chen et al. (2009))

anD
αny(t) + an−1D

αn−1y(t) + · · ·+ a0D
α0y(t) =

bmD
βmu(t) + bm−1D

βm−1u(t) + · · ·+ b0D
β0u(t) (1)

that can be expressed in s-domain in the form of FO
transfer functions of the form

T (s) =
Y (s)

U(s)
=

m∑
i=0

bjs
βj

/ n∑
i=0

ais
αi , (2)

where denominator polynomial coefficients ai and nu-
merator polynomial coefficients bj are real numbers. The
αi ∈ R+ and βj ∈ R+ are non-integer orders, and setting
of α0 = 0 and β0 = 0 constitutes constant terms of the
fractional order transfer function (Chen et al. (2009); Xue
and Chen (2015)).

Discrete realization of theoretical fractional order deriva-
tive is not so straightforward, because computations of
ideal fractional order derivative are not localized at the
current value of the function. To deal with high compu-
tational burden, integer-order approximate models have
been widely utilized for fractional order system realization.

Fig. 1. Block diagram of a negative unity feedback control
system with additive input disturbance

These are two fundamental methods for integer order ap-
proximation: continued fraction expansion (CFE) method
(Vinagre et al. (2003); Chen et al. (2004)), and Oustaloup’s
approximation method (Oustaloup et al. (2000)).

The transfer function of a FOPID controller can be written
in general form as

C(s) = kp +
ki
sλ

+ kds
µ, (3)

where parameters kp, ki and kd are controller coefficients,
and λ > 0 and µ > 0 are fractional orders of controller
function (Podlubny et al. (1997); Chen et al. (2009); Xu
et al. (2016)). For realization of FOPID controllers, a
retuning FOPID controller function, given by

C(s) = (CR(s) + 1)CPID(s), (4)
where CR(s) is the transfer function of the retuning con-
troller and CPID(s) is the transfer function of the original
PID controller, was suggested to transform an existing
PID-based control loops to FOPID control systems in
Tepljakov et al. (2014, 2016).

3. PLANT INDEPENDENT FREQUENCY DOMAIN
PERFORMANCE INDICATORS

Figure 1 depicts a fundamental block diagram of negative
feedback closed loop control systems. Closed loop transfer
function of this system is written by

T (s) =
Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s)
. (5)

To perform frequency response analysis, the open loop
transfer function is given by,

H(s) = C(s)G(s). (6)
When H(s) � 1, equation (5) states that T (s) → 1 and
hence Y (s) → R(s) (Ogata (2010)). This is an indication
of improved control performance. Therefore, the maxi-
mization of |H(jω)|, leads to increase ‖H(s)‖∞ improves
control performance of system (Ogata (2010)). However,
|H(jω)|is bounded by stability requirement of closed loop
control system because unstable systems are useless in
practical sense. Inside the stability bounds of the system,
optimization of design parameters to maximize |H(jω)|
improves control performance. To avoid effects of plant
function G(s) = G0(s)e−Ls on performance evaluations,
we assumed the plant function as an ideal communication
channel modeled by G(s) = 1ej0, which allows omitting
contribution of plant function to amplitude and phase
response by G0(s) = 1 and the dead time delay of system
by L = 0. In this case, one eliminates amplitude and phase
contributions of the plant function because of |G(jω)| = 1
and ∠G(jω) = 0. Stability analyses of fractional order
system can be carried out by considering phase and am-
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plitude responses of open loop transfer function, which are
expressed as

|H(jω)| = |C(jω)| |G(jω)| = |C(jω)| (7)

and

∠H(jω) = ∠C(jω) + ∠G0(jω)− Lω = ∠C(jω), (8)
where |H(jω)| and ∠H(jω) are amplitude and phase re-
sponses ofH(jω) function and Bode diagrams are obtained
by using these functions. For the stability analysis of
transfer function, consideration of phase margin of closed
loop control system with unit plant function is very useful,
which is expressed by considering crossover frequency ωc
as

θm = ∠C(jωc) + kπ for |H(jωc)| = 1, k = 1, 3, 5, .... (9)

If the phase margin of the system is greater than zero
(θm > 0), the system becomes stable. By using equations
(7) and (8), plant independent frequency response of
FOPID controller can be written as

H(jω) = C(jω) = kp+ki cos
(π

2
λ
)
ω−λ+kd cos

(π
2
µ
)
ωµ

+ jkd sin
(π

2
µ
)
ωµ − jki sin

(π
2
λ
)
ω−λ, (10)

|H(jω)| =

((
kp + ki cos

(π
2
λ
)
ω−λ + kd cos

(π
2
µ
)
ωµ
)2

+
(
kd sin

(π
2
µ
)
ωµ − ki sin

(π
2
λ
)
ω−λ

)2
) 1

2

(11)

∠H(jω) =

tan−1

(
kd sin

(
π
2µ
)
ωµ − ki sin

(
π
2λ
)
ω−λ

kp + ki cos
(
π
2λ
)
ω−λ + kd cos

(
π
2µ
)
ωµ

)
. (12)

For a numerical assessment of disturbance rejection capac-
ity of closed loop negative feedback control systems, Refer-
ence to Disturbance Rate (RDR) indices was proposed for
unknown additive input disturbance model (Deniz et al.
(2014); Alagoz et al. (2015a,b)). It has shown that dis-
turbance rejection capacity of a negative feedback control
system only depends on energy spectral density of con-
troller transfer function (Alagoz et al. (2015a,b)). It is a
plant independent measure that indicates strength of con-
troller in a closed loop control. For improved disturbance
rejection control, FOPID providing a high value of RDR
should be designed,

RDR = |C(jω)|2 ≥M, M � 1. (13)

For a quantitative evaluation of disturbance rejection
capability of closed-loop FOPID control systems, the RDR
index derived for unknown additive disturbance model can
be expressed in the form (Alagoz et al. (2015a))

RDR(ω) =
(
kp + ki cos

(π
2
λ
)
ω−λ + kd cos

(π
2
µ
)
ωµ
)2

+
(
kd sin

(π
2
µ
)
ωµ − ki sin

(π
2
λ
)
ω−λ

)2

. (14)

Equation (14) provides a tool for the spectral analysis
of disturbance rejection control performance of FOPID
(Deniz et al. (2014); Alagoz et al. (2015a,b)). Recently,

RDR objective can be employed for improvement of distur-
bance rejection control performance in a multi-objective
controller tuning problem (Ates et al. (2017)).

Table 1 presents a summary of frequency domain robust
performance indicators, which are considered in this study.

Table 1. List of some frequency domain robust
performance indicators

Indicators Improvement
direction

Explanation

|H(jω)| Increase Improves control
performance due to
T (s) → 1 for ω < ωc

θm Increase Improves robust
stability

RDR Increase Improves the
disturbance and noise
rejection performance

4. FREQUENCY DOMAIN PERFORMANCE
EVALUATION OF FRACTIONAL-ORDER PID

CONTROLLERS

To isolate effects of plant function and common design
parameters in analysis of FOPID and classical PID, the
following assumptions are applied:

(1) An ideal communication channel model of plant func-
tion is applied by unit plant function G(s) = 1.

(2) To neutralize effect of common coefficients of FOPID
and PID controllers, the gain coefficients is set to one,
which is kp = 1, ki = 1and kd = 1.

These assumptions allow to evaluate pure and explicit
contributions of fractional-order dynamics of the controller
to the control loop. The dynamic contributions of FOPID
control to open loop frequency response can be written as

H(jω) = C(jω) = 1 + cos
(π

2
λ
)
ω−λ + cos

(π
2
µ
)
ωµ

+ j
(

sin
(π

2
µ
)
ωµ − sin

(π
2
λ
)
ω−λ

)
. (15)

Phase and amplitude response contributions of FOPID
controller can be formulated as

|H(jω)| =

((
1 + cos

(π
2
λ
)
ω−λ + cos

(π
2
µ
)
ωµ
)2

+
(

sin
(π

2
µ
)
ωµ − sin

(π
2
λ
)
ω−λ

)2
) 1

2

(16)

∠H(jω) =

tan−1

(
sin
(
π
2µ
)
ωµ − sin

(
π
2λ
)
ω−λ

1 + cos
(
π
2λ
)
ω−λ + cos

(
π
2µ
)
ωµ

)
. (17)

It is obvious that by configuring fractional orders to one
(λ = 1 and µ = 1) in equations (15), (16), and (17), one ob-
tains the frequency response of a classical PID controller.
Therefore, we carry out comparison of FOPID and classical
PID controller performance by considering order ranges in
the form of λ ∈ [1 − ∆λ

2 , 1 + ∆λ
2 ] and µ ∈ [1 − ∆µ

2 , 1 +
∆µ
2 ]. Thus, effects of additional two parameters of FOPID

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

541



(a) Amplitude (b) Phase

(c) RDR spectrum

Fig. 2. Frequency characteristics of the controllers for ω ∈
[0, 50] with an increment of 0.1rad/s versus µ ∈ [0, 2]
with 0.002 increments

controller on the control performance can be evaluated
and one can observe that contributions of fractional order
dynamics to classical PID control.

Figure 2 shows values of |H(jω)|, ∠H(jω) and RDR(ω)
functions in ω ∈ [0, 50] with an increment of 0.1rad/s
versus µ ∈ [0, 2] with 0.002 increments, while λ = 0 was
configured to observe only the contribution of µ order.
The white dash line indicates the responses for µ = 1,
which refers the case of a classical PID controller differen-
tiator. The gray dash curve shows the crossover frequency
of FOPID controller, which is approximately drawn and
reveals the frequencies collection satisfying to|H(jω)| = 1.
Amplitude response in Figure 2a reveals that |H(jω)| can
be increased by µ and this offers the potential of control
performance improvement for FOPID. Phase response in
Figure 2b shows dependence of phase transition region to
µ parameter. This dependence can be utilized to configure
an appropriate phase to controller so that it can stabilize
control system. For stabilization of system, the phase re-
quirement, ∠C(jω∗)+∠G0(jω∗)−Lω∗ > −kπ, |H(jω∗)| =
1,k = 1, 3, 5, ..., should be satisfied, which infers a positive
phase margin of closed loop control system. The line of a
sharp phase transition in the figure increases the risk of
instability in realization due to increase of sensitivity to
µ parameter and makes fractional-order derivative critical
for robust stability. Sensitivity of robust stability to frac-
tional order derivative was previously reported in Padula
and Visioli (2016) and it is consistent with our expectation
related to instability risks arisen in the configurations in
the vicinity of phase transition line. However, for the high
values of µ, RDR performance can be further improved in
Figure 2c.

Figure 3 shows values of |H(jω)|, ∠H(jω) and RDR(ω)
functions in ω ∈ [0, 50] with an increment of 0.1rad/s
versus λ ∈ [0, 2] with 0.002 increments, while µ = 0 was

(a) Amplitude (b) Phase

(c) RDR spectrum

Fig. 3. Frequency characteristics of the controllers for ω ∈
[0, 50] with an increment of 0.1rad/s versus λ ∈ [0, 2]
with 0.002 increments

set to observe only the contribution of λ order to frequency
response. The white dash line also indicates the response
for the case of λ = 1, which refers to an integer of PID
controller. One can observe that fractional-order integrator
can increase |H(jω)| and RDR(ω) at low frequency region,
and contributes to set-point control performance as value
of λ decreases. The analyses did not indicate a transition
region formation in the parameter ranges, which can lead
to a high sensitivity to λ order.

Figure 4 shows values of max |H(jω)|, φm and minRDR(ω)
functions of FOPID controllers in ω ∈ [0, 30] with an
increment of 0.01rad/s versus λ ∈ [0.5, 1.5] with 0.025
increments and µ ∈ [0.5, 1.5] with 0.025 increments. In-
tersection of λ = 1 and µ = 1 lines (white dash lines)
represents the performance of a classical PID control dy-
namics. Figure 4a shows contribution of λ and µ couple to
max |H(jω)|, where a high value of max |H(jω)| indicates
improved set-point performance. This figure clearly shows
that FOPID control dynamics can improve control perfor-
mance. Figure 4b shows contribution of λ and µ together
to phase margin φm. Increase in option of phase margin
provided by FOPID controller enhances stabilization skill
of control systems in controller tuning task. However, an
irregular phase transition region below to white curve can
lead to a fragility of system stability for non-ideal FOPID
implementation cases because approximate implementa-
tion of FOPID causes imprecise configuration of fractional
orders and this may lead to occurrence of an undesired
phase and hence serious performance degradation in this
irregular region. For realization of FOPID controller co-
inciding in this region, approximate implementation of
FOPID controllers should be carried out with the highest
accuracy around the crossover frequency (|H(jωc)| = 1)
to avoid undesired phase errors. These irregular transition
regions can be a reason of high robustness fragility index
reported in Padula and Visioli (2016). This study sug-
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(a) Maximum amplitude (b) Phase margin

(c) Minimum RDR spec-
trum

Fig. 4. Frequency characteristics of the controllers for
ω ∈ [0, 30] with an increment of 0.01rad/s

gested that FOPID controller is much more fragile in the
sense of robustness than the PID controller, therefore fine
tuning of FOPID is more critical. Irregular phase transi-
tion region can be a source of high sensitivity of robustness
to FOPID controller coefficients. Figure 4c reveals that
RDR performance can be further improved by FOPID
controller. Besides, there is a transition region of RDR,
which may cause very poor RDR performance and this
region should be considered in FOPID controller designs.

5. ADDITIONAL DYNAMICS OF
FRACTIONAL-ORDER PID CONTROLLERS

COMPARED TO CLASSICAL PID CONTROLLERS

The additional dynamics introduced by FOPID controllers
relative to classical PID controllers can be expressed as

∆C(s) = Cfopid(s)− Cpid(s). (18)

Then, the additional dynamics of FOPID with respect to
classical PID can be written by

∆C(s) = ki(s
−λ − s−1) + kd(s

µ − s). (19)

By using s = jω, the frequency response can be expressed
as

∆C(jω) = kiω
−λ cos

(π
2
λ
)

+kdω
µ cos

(π
2
µ
)

+j

(
kiω
−1

− kdω + kdω
µ sin

(π
2
µ
)
− kiω−λ sin

(π
2
λ
))

, (20)

(a) Amplitude (b) Phase

Fig. 5. Frequency characteristics of the additional con-
troller dynamics for ω ∈ [0, 30] for µ ∈ [0, 2]

|∆C(jω)| =

((
kiω
−λ cos

(π
2
λ
)

+ kdω
µ cos

(π
2
µ
))2

+

(
kiω
−1 − kdω + kdω

µ sin
(π

2
µ
)

− kiω−λ sin
(π

2
λ
))2) 1

2

, (21)

∠∆C(jω) = tan−1

(
Cb(jω)

Ca(jω)

)
, (22)

where

Cb(jω) =

kiω
−1 − kdω + kdω

µ sin
(π

2
µ
)
− kiω−λ sin

(π
2
λ
)
, (23)

and

Ca(jω) = kiω
−λ cos

(π
2
λ
)

+ kdω
µ cos

(π
2
µ
)
. (24)

Contributions of additional dynamics of FOPID controller
to frequency domain properties of classical PID controller
are presented in Figures 5 and 6. To eliminate gain
coefficients in analyses, ki and kd coefficients were set
to one. Figure 5a shows |∆C(jω)| and Figure 5b shows
∠∆C(jω) in ω ∈ [0, 50] with an increment of 0.1rad/s
and µ ∈ [0, 2] with 0.002 increments, where λ = 0. We
observed that increase of µ adds additional amplitude on
the amplitude response of classical PID in high and low
frequency parts. It adds negative phases at the both sides
of ω = 24rad/s in Figure 5b. Figure 6a shows |∆C(jω)| and
Figure 6b shows ∠∆C(jω) in ω ∈ [0, 50] with an increment
of 0.1rad/s and λ ∈ [0, 2] with 0.002 increments, where
µ = 0. Increase of λ adds additional amplitude on the
amplitude response of classical PID uniformly. It removes
phases from the phase response.

6. CONCLUSIONS

This paper demonstrates contribution of FOPID controller
dynamics to frequency response of a control system by
isolating effects of FO dynamics from effects of other
parameters on the frequency response performance indi-
cators. This type of analysis can be helpful for numeri-
cally proving, classifying and evaluating the contributions
of FOPID control to control loop performance. In phase
margin analyses, accuracy in finding crossover frequency
by solving |H(jωc)| = 1 depends on sampling period of an-
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(a) Amplitude (b) Phase

Fig. 6. Frequency characteristics of the additional con-
troller dynamics for ω ∈ [0, 30] for λ ∈ [0, 2]

gular frequency ω. Therefore, for more accurate calculation
of phase margin, angular frequency ω should be refined.

In this work, an ideal communication channel model is
used for the model of plant function. This can be seen
as a weakness in the overall discussion, since from a
practical perspective real-life process control loops rarely
enjoy this favorable property. Therefore, one important
future direction of this study is related to the practical
verification of the proposed approach. Meanwhile, the
results of the present work can be summarized as follows:

• The order of FO differentiation µ allows further in-
crease ‖H(s)‖∞ and thus can contribute to improve-
ment of set-point control performance. It also allows
for further adjustment of phase transition region to
improve stability of closed loop control systems by
providing positive phase margin.
• The set-point control performance of FOPID can
be further improved by tuning λ and µ for higher
max |H(jω)|.
• According to analysis results, it is evident that tuning
λ and µ of FOPID controller provides more options to
stabilize a control system, however there are regular
and irregular transition regions where sensitivity to
λ and µ increase sharply. The designs coinciding in
sharp phase transition region can cause a fragility
of control performance. In these regions, accuracy of
approximation method should be maximized. These
regions can be related to high robustness fragility
of FOPID controller compared to classical PID con-
troller reported in Padula and Visioli (2016).
• The disturbance rejection control performance of
FOPID can be further improved by tuning λ and
µ for higher RDR values. However, the transition
region in min RDR characteristics should be taken
into account to avoid poor RDR performance designs.

A further study can be conducted for considering other
performance indices to have a complete view of behavior
of FOPID controllers.
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