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Abstract: In this paper we propose a methodology to evaluate the performance of decentralized PID
controllers for two-inputs-two-outputs processes and to retune the parameters. In particular, the model of
the process is estimated based on a technique that exploits the final value theorem. Then, an evolutionary
algorithm is applied in order to find the Pareto front by considering a multiobjective optimization
problem. Finally, the performance obtained with the current tuning is compared with the optimal ones
and, in case it is necessary, the PID parameters are retuned accordingly. A procedure to achieve the Nash
optimal point is also proposed.
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1. INTRODUCTION

It is well-known that proportional-integral-derivative (PID)
controllers are widely employed in the process industry but they
are often poorly tuned because of the lack of time and/or skill
of operators. Indeed, the parameters of the controller selected
during the commissioning of the plant are often never modified
despite possible changes in the process dynamics. This issue
is especially critical if multiple-input-multiple-output (MIMO)
processes are considered, because the presence of different ob-
jectives (for example, related to the different process variables)
makes the tuning task more difficult. From another point of
view, the industry 4.0 revolution yields the availability of a huge
quantity of process data, which can be fruitfully exploited in
order to automatically assess the performance of a controller
and, in case it is evaluated as unsatisfactory, to provide new
controller parameters in order to optimize the selected perfor-
mance.
A large number of performance assessment techniques for
PID controllers have been proposed in the literature, by tak-
ing into account either stochastic or deterministic performance
(Hägglund, 2005; Jelali, 2006; Huang and Shah, 1999; Qin,
1998). In general, one of the most desirable feature that a
performance assessment technique should possess is the em-
ployment of routine operational data as the need to perform
special (possibly expensive) experiments can be detrimental for
the process operations (Bauer et al., 2016). Further, it is very
important that, once the performance has been recognized to be
improvable, the controller can be retuned automatically without
a specific intervention of the operator.
In this context, a technique based on the final value problem
has been recently proposed in the literature for different pro-
cesses and control structures in order to estimate the process
model and, based on that, to assess the performance of the
controller and to retune it (Veronesi and Visioli, 2009, 2012,
2010a,b, 2011, 2014; Normey-Rico et al., 2014). In fact, the

achieved performance can be compared to that provided by a
properly tuned controller which serves as a benchmark. One
of the main advantages of this method is that its exploits the
integral of suitable signals and it is therefore inherently robust
to the measurement noise.
Nowadays, it is also recognized that the availability of high-
performance software tools and of hardware components with
high computational capabilities can be exploited to obtain an
optimal tuning of PID controllers, where, for example, the
trade-off between different control specifications can be explic-
itly considered (Garpinger and Hägglund, 2015; Sanchez et al.,
2017; Boyd et al., 2000). In particular, evolutionary algorithms
such as genetic algorithm and particle swarm optimization have
been employed for this purpose, especially for the control of
MIMO processes (Reynoso Meza et al., 2017; Turco Neto et al.,
2017).
In this paper we present a method to evaluate the performance
of decentralized PID controllers for two-inputs-two-outputs
(TITO) processes and to optimally retune them by considering
a Pareto front related to the integrated absolute errors of the two
process variables. In particular, first the process model is esti-
mated from set-point step response data (Pereira et al., 2017).
Then, based on the model, Pareto fronts are built (one for each
control specification) by means of an evolutionary algorithm
and the performance of the PID controllers is evaluated by
comparing it to the optimal ones. Finally, the PID controllers
are retuned (in case the current performance is far from an
optimal one) by selecting the desired trade-off between the
different specifications. A technique to obtain also the tuning
corresponding to the Nash point of the Pareto front is also
proposed.

2. CONTROL SYSTEM

We consider a linear, time-invariant, continuous-time TITO
system whose matrix transfer function is:
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Fig. 1. The considered TITO control scheme.

P(s) = [Pi j(s)] i, j = 1,2 (1)
where (i, j = 1,2)

Pi j(s) =
µi je−sθi j

qi j(s)
(2)

and

qi j(s) =
ni j

∏
k=1

(1+ sτi j,k) = sni j ∏
k=1

τi j,k + ...+ s
ni j

∑
k=1

τi j,k + 1 (3)

Define as

T 0
i j :=

ni j

∑
k=1

τi j,k +θi j (4)

the sum of the dead time and of the time constants of the single
transfer function Pi j(s). We consider a decentralized control
law (where the input-output pairings have been previously
selected), where the PID controller is in ideal form, namely,

C(s) =

[

C1(s) 0
0 C2(s)

]

. (5)

where

C j(s) = Kp j

(

1+
1

TI js
+Td js

)

j = 1,2 (6)

and Kp j, TI j , Td j, j = 1,2 are, respectively, the proportional
gain, the integral time constant and the derivative time constant
of the PID controller that handles loop j. Note that, in order
to make the controller proper, a low-pass filter has also to be
implemented. Its cut-off frequency should be selected in order
for the filter to be negligible for the PID relevant dynamics and
to filter the high frequency noise at the same time. Hereafter
we will neglect the presence of the filter in the autotuning
procedure, but we will include it in the simulation results (see
Section 6). For the analysis made in the following sections, it is
convenient to write the PID controller transfer function as

C j(s) =
Kp jc j(s)

sTI j
, j = 1,2 (7)

where
c j(s) = Td jTI js

2 +TI js+ 1, j = 1,2. (8)
The control scheme is shown in Fig. 1.

3. ESTIMATION OF THE PROCESS PARAMETERS

As indicated in (Pereira et al., 2017), the estimation of the pro-
cess parameters can be performed by evaluating the response of
the system to two separated step signals applied to each of the
two set-points starting from steady-state conditions. This means
that the transient response caused by a set-point step has to be
terminated before another set-point step is applied and should
not be perturbed by external disturbances.

Thus, by considering a step change of amplitude As1 to the set-
point of the first loop and then, at the end of the transient, a step
change of amplitude As2 to the set-point of the second loop, the
four process gains and the values of the four sums of the lags
and dead times T 0

i j (i, j = 1,2) can be computed as:

µ11 =
Ti1IE2,2

Kp1(IE1,1IE2,2 − IE1,2IE2,1)
As1,

µ12 =
Ti2IE1,2

Kp2(IE1,2IE2,1 − IE1,1IE2,2)
As1,

µ21 =
Ti1IE2,1

Kp1(IE1,2IE2,1 − IE1,1IE2,2)
As2,

µ22 =
Ti2IE1,1

Kp2(IE1,1IE2,2 − IE1,2IE2,1)
As2.

(9)

T 0
11 =

µ21IV2

µ11As2
+

IV1

As1
, T 0

12 =
µ22IV2

µ12As2
+

IV1

As1
,

T 0
21 =

µ11IW1

µ21As1
+

IW2

As2
, T 0

22 =
µ12IW1

µ22As1
+

IW2

As2
.

(10)

where IEi, j is the integral of the errors e1(t) and e2(t) after the
step change in the set-point signals r1(t) and r2(t), respectively,
IV1 and IW1 are the integrals of the following variables

v(t) := µ11u1(t)+ µ12u2(t)− y1(t)

w(t) := µ21u1(t)+ µ22u2(t)− y2(t)
(11)

after the step change in the set-point signal r1(t), and IV2 and
IW2 are the integrals of the same variables after the step change
in the set-point signal r2(t).
Finally, the apparent dead time θ̃i j of each transfer function
P̃i j(s) can be evaluated by using a noise band approach as
explained in (Pereira et al., 2017).
Summarizing, the identification procedure initially consists of
evaluating IE1,1, IE2,1, IE1,2, IE2,2, IV1, IW1, IV2, IW2, and
then by determining µi j and T 0

i j (i, j = 1,2) by applying (9) and
(10). Note that the values of the parameters of the PID con-
trollers employed (those that need to be retuned) are obviously
known. Once µi j and T 0

i j (i, j = 1,2) have been determined,
each transfer function Pi j(s) can be approximated as a FOPDT
transfer function, namely:

P̃i j(s) =
µi je−sθ̃i j

τ̃i js+ 1
, (12)

where τ̃i j = T 0
i j − θ̃i j.

Finally, it has to be highlighted that closed-loop data are em-
ployed to estimate the process model, which means that PID
controllers have to be in place. The tuning of the controllers
is not an issue for the model estimation as only steady-state
values of the signals are considered, provided the stability of
the control system is ensured.

4. PERFORMANCE ASSESSMENT

Once the model of the process have been obtained, an evolu-
tionary algorithm (for example, a genetic algorithm (Mitchell,
1998) or a particle swarm optimization algorithm (Kennedy and
Eberhart, 2001)) is used in order to solve a multiobjective op-
timization problem (MOP) that takes into account performance
of the two process variables. For this purpose, we can consider
the integrated absolute error (IAE), defined as

IAEi =
∫

|ei(t)|dt, i = 1,2 (13)
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and therefore we can define the following objective functions
(0.1 ≤ α ≤ 0.9):

J1 = αIAEr1
1 +(1−α)IAEr2

2 (14)

J2 = αIAEr1
1 +(1−α)IAEr1

2 (15)

J3 = αIAEr2
1 +(1−α)IAEr2

2 (16)

where IAEr1
1 is the integrated absolute error related to the first

process variable when a step signal is applied only to the first
set-point, IAEr2

1 is the integrated absolute error related to the
first process variable when a step signal is applied only to the
second set-point, IAEr2

2 is the integrated absolute error related
to the second process variable when a step signal is applied
only to the second set-point and, finally, IAEr1

2 is the integrated
absolute error related to the second process variable when a step
signal is applied only to the first set-point.
By considering different values of α ranging from 0.1 to
0.9 (note that the case α = 0 and α = 1 are avoided as
this would imply that the performance related to one of the
process variables can be completely neglected and therefore the
problem reduces to consider a single-input-single-output case),
each MOP can be solved by finding the PID parameters that
minimize the considered objective function. Formally, we can
consider the following MOPs:

min
Kp1,TI1,Td1,Kp2,TI2,Td2

Ji, i = 1, . . . ,3 (17)

and, for each MOP, a Pareto front can be determined.
Then, the IAE values obtained with the current PID controllers
can be compared with those achieved by the optimal PID
controllers determined by the evolutionary algorithm. In other
words, the controller performance can be assessed by evaluat-
ing the distance of the achieved integrated absolute errors from
the determined Pareto fronts.
Note that, in order to determine the search space of the opti-
mization problem, we can use the current tuning as a starting
point. In fact, the bounds of the search space can be obtained,
for example, by multiplying and dividing the current values by
ten (in case the derivative action is not used, the maximum
value can be selected by considering a ratio of the integral
time constant). The possible occurrence of instability is not
a problem as the optimization algorithm uses the (previously
obtained) model of the plant and the unstable cases can be
handled by significantly penalizing the cost function. In this
context, the user can obviously also choose to avoid to use
the derivative action very simply by constraining the derivative
time constants to be zero. It is worth underlying at this point that
the computational burden of the evolutionary algorithm can be
quite high as it needs a large number of simulations to obtain
the global optimum. However, this is not a critical issue as the
optimization is completely performed off-line.

5. RETUNING

If, according to the performance assessment procedure based on
the Pareto fronts, it results that the performance achieved by the
current controllers can be improved, the PID controllers can be
retuned by considering one of the set of parameters determined
by evolutionary algorithm for a given objective function and
for a given value of α , depending on the control specifications
for a given application. Actually, a default value of α can be
assumed in order for the overall method to be fully automatic
and to avoid any intervention from the operator.
An alternative option is to consider a point in the Pareto front
that provides a suitable trade-off between the performance

Fig. 2. Locations of the bargaining solutions with respect to the
Pareto front.

indexes IAE1 and IAE2 achieved for the two process variables
y1 and y2. In this context, it is worth considering the following
bargaining points (see Figure 2):

• the disagreement point D, where both IAE1 and IAE2 are
the worst ones;

• the utopia point U , where both IAE1 and IAE2 are the best
ones;

• the egalitarian point E where IAE1(D) − IAE1(E) =
IAE2(D)− IAE2(E);

• the point M of the Pareto front at the minimum distance
from the utopia point;

• The point K at the intersection between the Pareto front
and the straight line connecting the utopia and the dis-
agreement points;

• the Nash point N, for which the area having D and N as
vertexes has a maximum value.

In this paper we choose to find the tuning of the PID parameters
in order to achieve the Nash point, as in (Sanchez et al., 2017).
The Nash point can be found by determining a convenient
expression of the Pareto front by a suitable fitting function, so
that the determination of the rectangular area having D and N
as vertexes can be easily performed numerically by considering
many points of the Pareto front.
Then, when the Nash point N is determined, the new set of PID
parameters can be found by linear interpolation between the
two available closer points, denoted as P and Q respectively,
found through the evolutionary optimization.
Each PID parameter κ j can then be computed as

κ j =
QN

PN +QN
κP +

PN
PN +QN

κQ (18)

where PN and QN is the distance from N to P and Q, respec-
tively, and κP and κQ are the values of the parameter in P and
Q, respectively.
In case the resulting performance is not yet close enough to the
Nash point, a local search algorithm can be run to minimize this
distance.

6. ILLUSTRATIVE EXAMPLES

Consider the well-known Wood and Berry distillation column
model presented in (Wood and Berry, 1973):

P(s) =









12.8e−s

1+ 16.7s

− 18.9e−3s

1+ 21s
6.6e−7s

1+ 10.9s

− 19.4e−3s

1+ 14.4s









. (19)

As an initial controller parameters, those proposed by applying
the “biggest log modulus tuning” (BLT) technique proposed in
(Luyben, 1986) are selected: Kp1 = 0.375, Ti1 = 8.29, Td1 = 0,
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Fig. 3. Left: Pareto front for the minimization of J1. Right:
zoom of the results.

Kp2 =−0.075, Ti2 = 23.6, Td2 = 0.
With these values of the parameters, the indexes resulting by
applying two (separated) steps to the two set-points are IAEr1

1 =

4.1158 and IAEr2
2 = 33.8937.

The evaluation of the two responses, according to the method
reviewed in Section 3, yields

T 0
11 = 17.72, T 0

12 = 24.16, T 0
21 = 17.93, T 0

22 = 17.83
θ̃11 = 1.08, θ̃12 = 3.32, θ̃21 = 7.1, θ̃22 = 3.2

µ11 = 12.80, µ12 =−18.92, µ21 = 6.61, µ22 =−19.46
(20)

and therefore:

τ̃11 = 16.64, τ̃12 = 20.84, τ̃21 = 10.83, τ̃22 = 14.63
(21)

The results obtained by applying a genetic algorithm in order
to minimize J1 for the estimated process are shown in Table
1 and the Pareto front is shown in Figure 3. It can be seen
that the current performance is far away from the Pareto front
and therefore, for the selected task, it is worth retuning the two
PID controllers. As mentioned in Section 5, this can be done
by simply selecting a suitable column in Table 1. If the Nash
solution is pursued, the optimal points on the Pareto front can
be fitted by the function IAEr2

2 = b1
xb3

+b2, where x = IAEr1
1 and

b1 = 32.4221, b2 = 5.0713 and b3 = 2.9088. Thus, the Nash
optimal is determined as N = (3.4590,5.9486).
After the Nash optimal performance has been determined, the
corresponding PID parameters can be estimated on the base of
the distances from the two closest known points in the Pareto
front. In this example they are the points P and Q obtained for
α = 0.2 and α = 0.3, respectively.
As PN = 1.6414 and QN = 1.1356, by applying formula
(18) the new set of PID parameters results in Kp1 = 0.7291,
Ti1 = 12.0881, Td1 = 0.7711, Kp2 = −0.1713, Ti2 = 7.6699,
Td2 = 1.8777, yielding (IAEr1

1 , IAEr2
2 ) = (3.4313,6.6301), rep-

resented by the square in Figure 3. Denoting this point as V , it
is possible to minimize the VN distance through a local search
algorithm (based on descendent gradient), in order to obtain a
tuning that yields a performance closer to the Nash point. Doing
so, the distance from V to N can be improved from VN =
0.6821 to VN = 0.4305. The corresponding tuning is Kp1 =
0.5672, Ti1 = 10.8147, Td1 = 1.1230, Kp2 = −0.1715, Ti2 =

8.5088, Td2 = 1.9446, resulting in IAEr1
1 = 3.6339, IAEr2

2 =
6.4607, see the diamond in Figure 3.
The set-point step responses obtained before and after the re-
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Fig. 4. Set-point step responses before (dashed line) and after
(solid line) the retuning by minimizing J1.

tuning are shown in Figure 4, where the increment of the per-
formance is evident.

As a second illustrative example we consider again process
(19) but in this case we address the control task where the
minimization of J2 is of concern. The two PID controllers are
initially (well) tuned by applying the rules proposed in (Lee
et al., 2004):

Kp1 = 0.61 Ti1 = 8.42 Td1 = 0.26
Kp2 =−0.12 Ti2 = 7.68 Td2 = 0.73 (22)

By evaluating the two set-point step responses, the process
parameters are estimated as

T 0
11 = 17.69, T 0

12 = 23.98, T 0
21 = 17.90, T 0

22 = 17.40
θ̃11 = 1.04, θ̃12 = 3.20, θ̃21 = 7.05, θ̃22 = 3.1

µ11 = 12.80, µ12 =−18.89, µ21 = 6.60, µ22 =−19.40
(23)

and therefore:
τ̃11 = 16.64, τ̃12 = 20.84, τ̃21 = 10.83, τ̃22 = 14.63

(24)
Then, we have IAEr1

1 = 3.799 and IAEr1
2 = 5.598.

The application of a genetic algorithm in order to minimize J2
yields the results shown in Table 2 and the Pareto front shown in
Figure 5. In this case the performance is not very far away from
the Pareto front but it can be improved. The Nash optimal point
is found to be N = (4.8800 2.5665). With the initial tuning the
distance from the Nash point is equal to 5.5977.
Then, we have PN = 1.1897 and QN = 2.7790 so that the new
set of PID parameters resulting from (18) is Kp1 = 0.4717,
Ti1 = 9.1693, Td1 = 0.5355, Kp2 = −0.2542, Ti2 = 6.0996,
Td2 = 1.9321, yielding IAEr1

1 = 5.18893 and IAEr1
2 = 4.1828.

The point V is still not very close to the Nash point. By
minimizing VN through a local search algorithm, the following
PID parameters are obtained: Kp1 = 0.3589, Ti1 = 7.7921,
Td1 = 1.2619, Kp2 = −0.2241, Ti2 = 4.9495, Td2 = 2.2680;
giving IAEr1

1 = 4.9090, IAEr1
2 = 2.6085 and VN = 0.0511,

which means that the Nash point has been virtually achieved.
The set-point step responses obtained before and after the
retuning are shown in Figure 6.

Finally, when J3 is considered, by starting again from the tuning
(22) we have IAEr2

1 = 7.8175 and IAEr2
2 = 2.1358. Results
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Table 1. Results of the application of the evolutionary algorithm to minimize J1.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IAE1 5.6526 4.9926 2.7879 2.6314 2.5849 2.5361 2.4982 2.4600 2.4406
IAE2 5.2823 5.3634 6.8647 6.9437 7.0279 7.0734 7.3760 7.4975 7.5659
Kp1 0.2630 0.2545 1.0574 1.1127 1.1153 1.1734 1.2408 1.2400 1.2419
Ti1 8.4866 6.4997 15.9545 15.2145 14.2495 13.7192 13.2372 13.0012 12.5541
Td1 0.9173 0.9534 0.6449 0.5750 0.5761 0.5030 0.4613 0.4701 0.4874
Kp2 -0.2000 -0.2012 -0.1506 -0.1452 -0.1388 -0.1394 -0.1124 -0.1150 -0.1176
Ti2 8.4814 8.5735 7.0448 7.0749 7.3445 7.2647 6.1091 7.0014 7.5987
Td2 2.2884 2.2525 1.6184 1.5822 1.4126 1.4066 1.0402 0.9501 0.9388

Table 2. Results of the application of the evolutionary algorithm to minimize J2.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IAE1 10.492 6.8459 5.9964 2.8246 2.7496 2.5212 2.4835 2.4125 2.3647
IAE2 1.2275 1.8489 2.1553 4.4368 4.4476 4.7178 4.794 5.088 5.3991
Kp1 0.1390 0.1577 0.2076 1.0887 1.1190 1.1271 1.1599 1.2283 1.2159
Ti1 7.8533 5.0086 5.8842 16.8429 16.9524 14.2210 13.9952 13.1143 12.2261
Td1 1.9712 0.4683 0.5259 0.5578 0.5706 0.5113 0.4798 0.4918 0.4941
Kp2 -0.2876 -0.3183 -0.3123 -0.1185 -0.1398 -0.1413 -0.1352 -0.1239 -0.1117
Ti2 3.7779 5.8218 7.1765 3.5841 4.6199 8.6516 8.5712 9.5403 9.6724
Td2 1.9473 1.5513 1.6172 2.6675 1.8176 1.5585 1.5527 1.0616 1.0178

Table 3. Results of the application of the evolutionary algorithm to minimize J3.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IAE1 5.8233 3.7588 0.7954 0.7311 0.3537 0.3199 0.3008 0.2902 0.2481
IAE2 5.4139 5.4491 7.263 7.2983 7.5628 7.6357 7.7028 7.7146 7.8216
Kp1 0.2452 0.2486 1.9246 1.9616 1.8348 1.8161 1.7434 1.6327 1.7153
Ti1 9.3670 5.4357 8.9008 7.7128 1.2858 1.4167 1.1760 1.1937 1.3099
Td1 1.8343 1.0628 0.3379 0.3329 0.4644 0.4517 0.5086 0.5892 0.4811
Kp2 -0.1982 -0.2114 -0.1360 -0.1335 -0.1084 -0.1047 -0.1017 -0.0976 -0.0901
Ti2 8.8048 8.6809 5.5265 5.5162 4.7514 4.6910 4.6055 4.5356 4.5226
Td2 2.0852 2.2343 1.4025 1.3755 0.7170 0.6201 0.2631 0.4696 0.3730
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Fig. 5. Pareto front for the minimization of J2.

obtained by the genetic algorithm are in Table 3 and in Figure
7. The Nash point is determined as N = (1.9650,6.2389). With
the initial tuning, the distance from the Nash point is equal to
1.5878. Then, we have PN = 1.9600 and QN = 1.5546 so the
set of PID parameters resulting from the (18) is Kp1 = 1.1833,
Ti1 = 7.3681, Td1 = 0.6585, Kp2 = −0.1694, Ti2 = 6.9218,
Td2 = 1.7704, giving IAEr2

1 = 1.2623 and IAEr2
2 = 7.3385,

corresponding to VN = 1.3049. Even if both IAEr2
1 and IAEr2

2
are lower than the ones obtained by the initial tuning, this point
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Fig. 6. Set-point step responses before (dashed line) and after
(solid line) the retuning by minimizing J2.

is still not very close to the Nash point. By minimizing VN
through a local search algorithm the following PID parameters
are obtained: Kp1 = 0.3978, Ti1 = 4.2630, Td1 = 0.9607, Kp2 =

−0.1941, Ti2 = 9.1714, Td2 = 2.2505, yielding IAEr2
1 = 1.9650,

IAEr2
2 = 6.2389 and VN = 1.9015 · 10−7, which means that a

Nash optimally tuning has been achieved. The step responses
before and after the retuning are shown in Figure 8.

7. CONCLUSIONS

An optimization-based performance assessment technique for
decentralized PID controllers of TITO processes has been pro-
posed in this paper. After a process model has been estimated
by using the data of two separated set-point step responses, an
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Fig. 7. Pareto front for the minimization of J3.

time
0 10 20 30 40 50 60 70 80 90 100

y 1

-0.1

0

0.1

0.2

0.3

0.4

time
0 10 20 30 40 50 60 70 80 90 100

y 2

0

0.5

1

1.5

Fig. 8. Set-point step responses before (dashed line) and after
(solid line) the retuning by minimizing J3.

evolutionary algorithm is applied to build a Pareto front which
can be used to evaluate the achieved performance, according
to a selected task. The PID controllers can then be retuned
by exploiting the results of the optimization or by considering
the Nash point of the Pareto front, which can be reached by
a simple local optimization procedure. The overall methodol-
ogy is suitable for industrial frameworks where computational
resources can be employed to process data available from the
control systems.
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