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Abstract: Aircraft antiskid braking system is designed to prevent the main wheels from locking and 
additionally seeking the optimal braking performance. Wheel deceleration is the traditional controlled 
target used in antiskid system, since it can be easily measured by angular velocity transducer. However 
the optimal target value is hard to find due to the changing of road-surface and aircraft velocity. An 
alternative controlled target is the wheel longitudinal slip which is more robustly controllable under all 
conditions. But the wheel slip cannot be measured directly, that will definitely result in control error from 
the poor estimated aircraft speed. In this work a PID control scheme based on mixed slip-deceleration 
input variable is proposed for aircraft antiskid braking system. This control algorithm is able to stabilize 
the wheel slip around any equilibrium point. Moreover, it inherits all the appealing characteristics of slip 
control, while overcoming its sensitivity to slip measurement errors. 

Keywords: aircraft antiskid braking system, PID controller, mixed slip-deceleration control, Lyapunov’s 
First Method, aircraft speed influence 

 

1. INTRODUCTION 

During the landing run of aircraft, wheel braking system is 
the main subassembly to dissipate the massive kinetic energy 
and protect the main wheels from locking that may cause tire 
excessive wear and even burst (Alsobrook, 1995). While the 
kinetic energy is dissipated through brake discs, antiskid 
function of wheel braking system, also known as antiskid 
braking system, could provide protection for the safety of 
aircraft by controlling the brake pressure on brake discs. 
Antiskid function is generally achieved by the antiskid 
controller, which could determine whether skid happened and 
then adjust brake pressures to eliminate severe skid of 
braking wheels (Tanner and Stubbs, 1977).  

The traditional controlled variable of antiskid control is the 
wheel angular velocity or other derived variables such as 
wheel deceleration, since the wheel angular velocities can be 
easily measured by the angular velocity transducers mounted 
inside the wheel axles (Stubbs and Tanner, 1976, Wellstead 
and Pettit, 1997). However, due to the rapidly changing road-
surface and gradually reduced aircraft velocity, it is hard to 
find the optimal target value. Therefore the on-line estimation 
or adaptive algorithms are generally used to achieve the most 

appropriate target value for improving the performance of 
speed-based control strategies (Yi et al., 2003). 

The wheel longitudinal slip is an alternative variable that be 
used, since its target value can be set as a constant which is 
optimal or suboptimal (Johansen et al., 2003, Solyom et al., 
2004, Yu, 1997). However, the main drawback of slip control 
is that the accurate measurement of the longitudinal slip is 
critical, since the aircraft velocity is unobtainable, 
considering neither airspeed nor nose wheel speed could 
precisely represent the aircraft velocity. In the field of 
automotive brake control, deceleration is introduced to the 
skid control with weighting coefficient in order to reduce the 
obnoxious effects of poor slip measurements (Pasillas-Lépine 
and Loría, 2010, Savaresi, 2005). 

The aircraft’s force situation and the dynamic process of 
aircraft landings are much more complicated than automobile. 
Additionally, the aircraft velocity is larger than that of 
automobile, whose impact on factors such as tire-road 
friction coefficient cannot be ignored. In the meantime, the 
inadequate working conditions of aircraft braking system 
may increase the slip measurement error, degrading the 
braking performance. In this paper, we use a convex 
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combination of the wheel slip and deceleration, named Mixed 
Slip-Deceleration (MSD), as the controlled variable of 
aircraft antiskid braking system, in order to acquire good 
brake performance. We use PID control as the control law, 
which is very common and mature with antiskid control 
(Song et al., 2009, Han and Xiao-Ping, 2007). This MSD-PID 
control algorithm is able to stabilize the wheel slip around 
any equilibrium point. Moreover, it inherits all the excellent 
characteristics of slip control, while significantly reducing the 
troublesome effects of poor slip measurements. We also give 
precise bounds on the parameters of the control law for which 
stability is proved mathematically. 

2. SYSTEM DESCRIPTION 

The aircraft structure with tricycle-type telescopic landing 
gears is typically used for the design and testing of braking 
control algorithms. The model is given by the following set 
of equations: 
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  (1) 

where ω  is the wheel angular speed; v  is the longitudinal 
speed of the aircraft body; 1N  and 2N  are the vertical loads 
at the contact points of main wheels and nose wheels; 1m  and 

2m  are the tire-road friction coefficients of main wheel and 
nose wheel; bT  is the braking torque on braking discs; vF  is 
the engine residual thrust; xk  and yk  are the coefficient of air 
resistance in horizontal and vertical; H  is the height of the 
center of aircraft gravity; a and b  are the horizontal distance 
from the center of aircraft gravity to main wheels and nose 
wheels; and J , r , m  and g  are the momentum of inertia of 
the main wheel, the main wheel radius, the aircraft mass, and 
the gravitational acceleration, respectively. 

 

Fig. 1. Dynamical model of aircraft during braking process. 

The deceleration η  used in this paper is defined as a 
normalized linear wheel deceleration, and wheel slip λ  is 
also defined as follow: 

= r
g

v r
v

ωη

ωλ

 −


− =



 (2) 

Observing the first two equations of (1), the system dynamic 
characteristic is affected by the vertical loads on wheels iN  

and the tire-road friction coefficients im . According to the 
Dynamic balance equations of aircraft, given in the last two 
equations of (1), iN  can be analytically described as follow: 
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Noted that iN  is also affected by im , it is crucial to study the 
accurate model of im . However the tire-road friction 
coefficient im  depends on a large number of features of the 
road, tire, speed, and the depth of slip, a simple empirical 
model is widely used: 

( ) ( )( )1 2 3; sinj arctgm λ θ θ θ θ λ= ⋅ ⋅  (4) 

The parameters jθ  are decided by tire conditions, road 
conditions, and aircraft velocity. To simplify the analysis and 
design process, we approximately consider the tire-road 
contact conditions and aircraft velocity remain unchanged 
during every short time periods of the rotational dynamic 
process of wheels.  

Plugging the expression 2

r r v
v v

ωλ ω= − +

   derived from (2) 

into (1), we can obtain the following equation: 
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 (5) 

By replacing = r
g

ωη −


 into (1), we obtain the expression: 

( )1 1= ( ) b
r r N T

gJ
η m λ− −  (6) 

With the purpose of controlling the depth of skid or the 
deceleration of wheel, we should study the dynamic relations 
between the system input instruction bT  and the output λ  or 
η . Equations in (5) and (6) can be expressed as followed: 

= ( )+ T
= ( )+

b
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 (7) 

It is easy to observe that the system is nonlinear, so we can 
hardly analysis the global dynamic of system. Based on the 
theory of Lyapunov’s First Method, the problem can be 
transformed into the dynamic characteristics analysis around 
some equilibrium point. Firstly, the quasi-linear system 
model is constructed as followed: 

( )

( )
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= +
b
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 (8) 

Then the dynamic characteristics analysis methods of linear 
systems can be applied in this model. 
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3. MODEL ANALYSIS 

Based on the analysis of the previous section, the wheel 
dynamics is presented by the first-order approximation mode 
(see equation (8)) around the equilibrium point λ . The 
significative equilibrium point should share the characteristic 
of =0λ  and =η η .  Combined with the above equations, we 
can obtain the following relation between η  and λ  : 

2
1 1 2 24 ( ) 2

(1 ) v xN N F k v
mg

m λ m
η λ

 + − +
= −  

 
 

Therefore, the transfer function ( )G sλ  from bTδ  to δλ  
around the equilibrium points λ  is given by: 
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Consider that the nose wheels are in the state of pure roll with 
no brake applied, the tire-road friction coefficient 2m  is 
approximately defined as a constant. The transfer function 

( )G sη  from bTδ  to δη  is obtained by: 
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(10) 

The open-loop dynamic characteristics around the 
equilibrium point can be easily analyzed. Having the same 
pole, the stability condition for ( )G sλ  and ( )G sη  is: 
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Modify the inequation into the following expression: 
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Since ( )
2

4 1mr
J

λ+ −  is much larger than each item in the 

polynomial of numerator, it can be reduced to 1 ( ) 0m λ′ > . 
This means the open-loop system is unstable around the 
equilibrium point λ  beyond the peak of 1( )m λ . 

The minimum-phase condition for ( )G sη  is: 

( )
2
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It can be easily analyzed that the open-loop dynamic 
properties are affected by the equilibrium point λ . The 

pilots cannot guarantee the stability of system under all 
conditions without any supplementary control method. The 
antiskid braking system is mainly designed for this 
fundamental objective. 

4. CONTROL STRATEGIES 

The structure of Mixed Slip-Deceleration (MSD) control 
scheme is outlined in Fig. 2. The basic idea is to define an 
control variable ε  , which is the convex combination of the 
two measured variables λ  and η  , namely: 

= +(1 )ε αλ α η− , [0,1]α ∈                                              (11) 

and to regulate the output variable to a target value ε  . This 
reference value ε  can be a set-point constant value as the 
convex combination of slip and deceleration, namely 

= +(1 )ε αλ α η− , or a variational value adapted to different 
factors. 

( )G sλ

( )G sη

α

1 α−

( )PIDR s
－

＋

＋

＋

dλ

dη

εε bT

 

Fig. 2. General structure of MSD controller. 

The control variable bT  is assumed to be driven by the 
regulation error through a simple PID controller, since PID 
controller is commonly used in SISO first-order linear 
systems, and also satisfactorily applied to actual aircraft 
brake controllers. The PID controller is complemented with a 
first-order filter to achieve approximation of the ideal 
derivative term, the transfer function is given as follow: 

1 2( 1)( 1)
( )

( 1)PID
s sR s K
s Ts

τ τ+ +
=

+
, 0T >  , 1 0τ >  , 2 0τ >  

The dynamic characteristics change a lot with the variation of 
weight value α  from 1 to 0. The two extremal cases of MSD 
controller are exactly the slip controller ( =1α ) and the 
deceleration controller ( =0α ).  Pondering the geometrical 
relationship between the controlled variable plot and -η λ  
curve in Fig. 3, we can guarantee the existence and 
uniqueness of the steady-state equilibrium point by carefully 
choosing ε  and α  . 

 

Fig. 3. Graphical interpretation of MSD control in the ( λ ,η ) 
domain for different road condition. 
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The open-loop transfer function ( )G sε  from bTδ  to δε  is 
given by: 

( ) ( )
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And ( )G sε  can be modified to the following form: 
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So the closed-loop transfer function of the Mixed Slip-
Deceleration control system is obtained: 
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The necessary and sufficient condition for closed-loop 
stability of system is obtained: 
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Analyzing the inequations above, we can easily find a value 
K  such that, for K K>  , the stability condition is satisfied, 
when the coefficients of K  and the quadratic coefficient of 
polynomial are positive. So the following condition is 
obtained: 

1 2 1 2
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simplified to the inequation 0A′′ > . 

Having 
2

1 1( )rA A N
vJ

m λ′′ = −  (consider aircraft speed v  as a  

scaling constant), we can obtain the worst condition of the 

inequation: ( ) ( )
0

1Min

gA v α
α
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−
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So the condition of α  is derived: 
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In order to satisfy the stability requirement in every condition 
with a fixed value of α , the minimum of α  is given as: 

 
( )

( )
Min

Min
Min Max

A v
A v g

α
′ 

=  ′ −  
 (14) 

The advantage of Mixed Slip-Deceleration control strategy is 
obvious that by choosing a proper value of α  in the range of 

1Minα α< <  , the reliance and sensitivity on wheel slip is 
reduced. Meanwhile we can obtain a unique steady-state 
equilibrium point and the global stability of MSD control 
system can be guaranteed with sufficiently large controller 
parameter K , namely K K>  . Sharing the same features of 
slip control strategy, the MSD control also has other 
advantages that will be discussed in the next section. 

5.  DISTURBANCE ANALYSIS 

Relying on the wheel slip and deceleration, MSD control is 
sensitive to the value variation of λ  and η  . It is 
indispensable to analyze the effects of controlled signal 
disturbance on the control performance. Based on the 
structure of MSD controller in Fig.2, the disturbance term 

( )dε α  of control variable ε  has a relationship with the slip 
and deceleration disturbances λ  and η  :  

( ) ( ) (1 ) ( ) ( )D s D s D s S sε λ η εα α = + −   

where ( )D sε , ( )D sλ , ( )D sη  are the Laplace transforms of 
the disturbance signals ( )dε α , dλ , dη  respectively, and 

( )S sε  is the closed-loop sensitivity function, given by: 

3 2
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For the purpose of comparing the disturbance resisting 
capacity of slip control and MSD control, we also deduce the 
sensitivity function of slip control: 

3 2

3 2
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where rB
vJ

= . 

It can be easily analyzed that the frequency characteristic of 
these two functions is related to the value of aircraft speed v , 
wheel slip λ  and weight factor α . Assigning the control 
parameter as 6=6 10K ×  , we can obtain the Bode-plots of 
closed-loop sensitivity function of MSD and slip control for 
different conditions, namely aircraft speed =10 /v m s , wheel 
slip =0.05λ  or 0.2 , weight factor =0.9α  or 1 in Fig. 4. In 
this condition, all of the system closed-loop poles have 
negative real parts, which guarantee the stability of system. 
The low frequency gain decreases no matter what the slip and 
weight factor value. The high frequency gain strongly 
decreases in MSD control system when =0.9α , while 
remains unchanged in slip control system ( =1α ). 
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Fig. 4. Bode-plots of closed-loop sensitivity function of MSD 
and slip control for 6=6 10K ×  

The analysis above has shown the noise-attenuation effect of 
MSD control strategy is obviously stronger than that of slip 
control. Meanwhile MSD control guarantees the uniqueness  
of steady-state equilibrium point with respect to deceleration 
control. These advantages make the MSD control an 
admirable control strategy for aircraft braking control system. 

6. INFLUENCE OF AIRCRAFT SPEED 

The biggest difference between aircraft and automobile is 
that the aircraft braking process can be easily influenced by 
aerodynamic forces and tire-road friction force which all 
have connections with aircraft speed. In the previous 
discussion we assume that the aircraft speed remains 
unchanged during every short time periods of the rotational 
dynamic process of wheels. However, the scale of aircraft 
speed still determines the instantaneous system model, which 
affecting the stability and control performance of closed-loop 
system. The influence of aircraft speed is analyzed for the 
following aspects 

6.1  Control Target 

As mentioned above, the tire-road friction coefficients im  
depends on a large number of features of road, tire and 
aircraft speed. The aircraft speed strongly affects the shape of 

( ); jm λ θ  curve, the vertical loads 1N  and 2N  and the air 

resistance term 2
xk v , hence affecting the figure of 

deceleration-slip ( -η λ ) curve, under the relation : 

2
1 1 2 24 ( ) 2

(1 ) v xN N F k v
mg

m λ m
η λ

 + − +
= −  

 
 

Analyzing the -η λ  curve at different aircraft speeds, it is 
easy to observe that the peak point of each curve is shifting 
non-linearly, see Fig. 5, the impact of aircraft speed on the 
tire-road friction coefficients has been considered. Therefore, 
some performance of MSD control strategy is sacrificed for 
the fixed structure, since the target point (where the line 

= +(1 )ε αλ α η−  and the curve η λ（ ） intersect) is more far 
away from optimal point. This issue can be dealed with an 
adaptive modification with control variable 

= +(1 )ε αλ α η−  concerning aircraft speed that will be 
discussed in the future work. 

 

Fig. 5. Variation trend of maximum points of wheel 
deceleration. 

6.2 System dynamic characteristics 

The stability of MSD method is related to the values of 
control parameters ( α  and K ). While the value range of 
each parameter is affected by aircraft speed v . In last section 
the minimum value of α  was given as function (14), which 
has ignored the influence of aircraft speed v  on the variable 
A′ . Analyzing the stable condition of MSD control, we can 

obtain the general expression of α  : 

( )g A v A vα′ ′− > − . 

Setting the function of slip λ  and aircraft speed v  as 
( ; )F v A v gλ ′= − , it is easy to derive the worst situation 

when the value of ( ; )F vλ  is minimum: 

( ; )
( ; )

Min
Min

Min

F v g
P

F v
λ

α
λ

+
= =  

The minimum of α  can be easily figured out that 
0.46Minα =  with ( ; ) 18.18MinF vλ = −  (when =0.18λ  and 

=0v ). As the aircraft speed increases, the value of ( ; )F vλ  
increases that leads the range of α  becoming larger. 
Therefore, as long as the condition of 1Minα α< ≤  is 
satisfied, it is easy to find a constant K  such that, for 
K K>  , the stability condition of MSD control is guaranteed 
under any slip and aircraft speed situation. Simultaneously, 
the value of K  could be affected by slip ratio λ  and aircraft 
speed v , but we will not amplify the numerical calculation 
here. We usually choose the control parameter K K>  
sufficiently large enough so that it can satisfy all conditions. 

7. NUMERICAL SIMULATION 

The aircraft braking system dynamical model used above has 
been simplified to a certain degree, in order to focus on the 
very bulk of the control problem and to gain a deep insight in 
the algorithm behaviour, while remaining the main dynamical 
features of the system. However, the theoretical analysis 
based on this simplified model should be corroborated by 
more reliable simulation results. 

     

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

164



 
 

 

A detailed aircraft braking simulator is constructed in 
MATLAB/SIMULINK and tuned to fit the characteristics of 
a certain type aircraft. The simulation results can be 
considered very close to real situation. Specifically, the 
simulator has been complemented with the dynamics of 
direct drive press servo-valve (second-order object) and oil 
pipeline (inertial element), which can be approximated as 
follows: 

2

1 1( )=
0.01 10.00318 0.0406 1actuatorG s

ss s
⋅

++ +
 

The slip controller and MSD controller have been both 
implemented with a PID control architecture (complemented 
with incomplete derivation), which have been tuned to work 
satisfactorily in every working condition, obtaining the 
following transfer function: 

(0.0199 1)(2.012 1)( )=149
(0.02 1)PID
s sR s

s s
+ +

+
 

Before evaluating the noise sensitivity of the control scheme, 
we should analyze the measurement noises of the wheel 
deceleration and wheel slip, which are shown in Fig. 6. Due 
to poor speed estimation, the measurement noise of wheel 
slip dλ  has larger variance than dη  while characterized by 
huge spikes at the same time. In Fig. 7 the behaviours of the 
wheel slip of slip and MSD control are compared (on dry 
asphalt with measurement noises). Same as expected, the 
noise sensitivity of MSD control is remarkably lower than 
slip control, the actual wheel slip is more stable around 
control target and the slipping is less serious at low speed, 
leading to better braking action. The brake efficiency of MSD 
control has reached 85%, while that of slip control is still 
81.5%. This result well proves the reliability of theoretical 
analysis which is worked out in the simplified setting. 

 

Fig. 6. Measurement noises of the wheel deceleration and 
wheel slip 

 

Fig. 7. Slip behaviour of Slip control and MSD control under 
measurement noises 

8. CONCLUSIONS 

In this paper, a PID control scheme based on mixed slip-
deceleration input variable has been proposed for aircraft 
antiskid braking system. This control algorithm is able to 
stabilize the wheel slip around any equilibrium point. 
Moreover, it inherits all the appealing characteristics of slip 
control, while overcoming its sensitivity to slip measurement 
errors. The brake efficiency of the method is higher than slip 
control, resulting in a better braking performance. The 
influence of aircraft velocity has also been demonstrated, 
which restricts the range of control parameters. 
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