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Abstract: A new design method that satisfies the setting settling time with small maximum overshoot
in a servo controller was developed using a PI controller and an internal feedback system. The internal
feedback system consists of the model parameter of the controlled object that was approximated as
a second-order lag-time system. Therefore, an adaptive ability that counteracts the changing model
parameters was required. In this paper, the variable parameters of the controlled object were obtained
by on-line execution of a non-linear least-squares method. Suitable adaptation by the developed method
was confirmed in simulation and experimental tests.
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1. INTRODUCTION

In order to reduce the CO2 emission of an automobile, an
optimal control is necessary to operate the power train with
high efficiency. Then, since the parameters of a dynamic char-
acteristics of the power train vary according to the driving
condition, non-linear compensation is required for the control
system [Takiyama (2014)]. Besides, since the number of power
train component is increased for high efficient operation, it is
desirable that the control system can be easily and conveniently
constructed for an efficient development.

PID controllers are widely used for closed-loop systems from
the viewpoints of simplicity and control performance. Though
various methods are considered to determine the control pa-
rameters [Ålström and Hägglund (1995)], those are obtained
by evaluating the settling time or overshoot of the time re-
sponse in numerous trial-and-error cases. A coefficient diagram
method that consider both the dynamics of the target system
and the time response were proposed [Manabe (1998)], how-
ever, it is complicated. And, the dead-beat controller is a well-
known controller that satisfies the setting settling time, but
lacks robustness. Recently, a method for optimizing the control
parameters using a non-linear programming method has been
proposed based on the measured input/output data to/from the
controlled object [Kaneko (2013)]. Therefore, the non-linear
programming method is expected to obtain a suitable parameter
of the dynamic characteristics of the controlled object.

In a normal second-order lag-time system, the time response
is known to depend on the damping coefficient or frequency
parameter. Based on this background, we investigate a new
design method of a servo system that satisfies the setting set-
tling time with small overshoot amount without trial-and-error.
The controller consists of a proportional integral (PI) controller
and an internal controller for a second-order lag-time system

using the model parameters of the control objects [Ohta, et al.
(2014)]. Since the control system can be simply constructed by
using the desired settling time, it is very useful to improve the
efficient development of control system. Furthermore, changes
in the parameters of the controlled object are handled by an
adaptation method implemented in the control system by an on-
line parameter search using a non-linear programming method.

This paper investigated about PI and adaptive model matching
control system that satisfies the setting settling time. Then, it
was applied to the speed controller of a gasoline engine and the
experimental examination were carried out.

2. SETTING SETTLING TIME SERVO SYSTEM

2.1 PI Controller and Settling Time in the Second-order
Lag-time System

Figure 1 shows the unity feedback system. In (1) and (2)
respectively, P(s) denotes a virtual control object in the second-
order lag-time system and CPI(s) denotes the PI controller.
Equation (3) defines the M% overshoot. The smallest Ts that
satisfies (3), called the M% settling time, is denoted as Ts(M).

P(s) =
ωn

2

s2 + 2ζωns + ωn
2 (1)

CPI(s) = KP + KI
1
s

(2)

|y(t) − y(∞)|
|y(∞)| × 100 ≦ M, t ≧ Ts (3)

Fig. 1. Unity feedback system
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The step-response characteristics of this closed loop system
were investigated in numerical experiments. In these experi-
ments, we select ωn=10, M ∈{1, 2, 5, 10}, ζ ∈{0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1.0, 1.1} and KP ∈{0.01, 0.02,· · · , 10.00}. Then,
we investigated the KI value that stabilized the closed loop
and minimized Ts(M) for different combinations of (M, ζ,KP)
triples. Then, in order to diminish the maximum overshoot
less than M%, ζ was investigated that achieve a small Ts at
a relatively low gain crossover frequency ωg. Ultimately, we
selected ζ= 0.7 for M=2. The experimental results as M was
varied from 1 to 10 are presented in Table 1 [Ohta, et al. (2014)].

Table 1. Recommended value of ζ, KP, KI and
corresponding values of Ts(M), phase margin ϕm,

and ωg for each M{1, 2, 5, 10}, where ωn=10

M ζ KP KI Ts(M) ϕm ωg

1 0.7 0.11 3.44 0.597 67.6 3.44
2 0.7 0.28 4.39 0.442 67.7 4.49
5 0.6 0.27 4.77 0.356 66.0 5.18
10 0.6 0.71 6.88 0.223 55.5 8.64

2.2 Control System that Satisfies the Setting Settling Time

For example, whenωn=10 and a 2% settling time T̂s is required,
the controller parameters can be read from Table 1: ζ=0.7,
KP=0.28, KI=4.39 and Ts(2)=0.442 for M=2. According to the
similarity theorem of the Laplace transform, the M% settling
time Ts(M) and the setting settling time T̂s are related through
α (see (4)) [Ohta, et al. (2014)]. Applying the PI controller of
(6) to the system governed by (5), the 2% settling time of the
step response of the closed-loop transfer function (Gr(s) in (7))
satisfies the T̂s. Hereafter, we refer to Gr(s) as the reference
model (where the subscript r denotes reference).

α =
Ts(M)

T̂s

=
Ts(2)

T̂s

=
0.442

T̂s

, ωn = 10 (4)

Pr(s)=
(αωn)2

s2+2ζ(αωn)s+(αωn)2 =
(αωn)2

D(s)
(5)

CPI(s) = KP +
αKI

s
= 0.28 +

α4.39
s

(6)

Gr(s) =
CPI(s)Pr(s)

1 +CPI(s)Pr(s)
(7)

2.3 Servo System using Internal Feedback

Equation (8) describes a general second-order lag-time system
P f (s). A servo system that satisfies the setting M% settling time
T̂s(M) was constructed using an internal feedback controller.
The internal feedback controller was constructed following the
pole-assignment method with a dynamic controller using a
minimum-order observer [Ichikawa (1985)]. Figure 2 shows the
structure of the system. The transfer function P̂ f (s) from ua to y,
given by (9), depends on the gain Ka and the internal feedbacks
Cbu(s) and Cby(s).

Fig. 2. Structure of the control system

P f (s) =
b0

s2 + a1s + a0
(8)

P̂ f (s)=
Y(s)

Ua(s)
=

KaP f (s)
1+Cbu(s)+P f (s)Cby(s)

(9)

Ka=
(αωn)2

b0
,Cbu(s)=

q−γ
s+γ
,Cby(s)=

r1s+r0

b0(s+γ)
(10)

q = 2ζ(αωn) + γ − a1 (11)

r1 = (αωn)2 + 2ζγ(αωn) − a1q − a0 (12)

r0 = γ(αωn)2 − a0q (13)

P̂ f (s) =
KaP f (s)

1+Cbu(s)+P f (s)Cby(s)
=

(s+γ)Kab0

(s+γ)D(s)
=Pr(s) (14)

G f (s)=
CPI(s)P̂ f (s)

1+CPI(s)P̂ f (s)
=

(s+γ)CPI(s)Pr(s)
(s+γ)[1+CPI(s)Pr(s)]

=Gr(s) (15)

Using the parameters described in (10)-(13), P̂ f (s) equals
Pr(s) and the closed-loop transfer function G f (s) equals Gr(s).
These relationships are described by (14) and (15), respectively.
Therefore, the general second-order lag-time system with the
internal feedback match the reference model and the system
can satisfy the setting settling time. The control system that
satisfies the M% settling time T̂s is called the setting settling
time controller (SSTC) hereafter. Note that the denominator
and numerator of (14) and (15) are offset by (s+γ), where −γ
denotes the pole of the minimum-order observer. To preserve
the responsiveness of the system, the value of γ should be
sufficiently larger than the other poles and zeros of G f (s) (for
example, five times or higher).

3. NON-LINEAR PROGRAMMING

The model parameters of the controlled object vary under sev-
eral influences. This variation must be corrected by some kind
of countermeasure for the SSTC. In this paper, a changing
parameter is detected from variations in the dynamic charac-
teristics of the transient response. The calculation is performed
by non-linear least squares sequential quadratic programming
(NLSSQP). The NLSSQP method combines the quasi-Newton
method for the unconstrained non-linear least-squares problem
with the SQP method for general non-linear minimization prob-
lems [Takahashi (1987)]. The objective is to determine the x
that minimizes the objective function (18) under the constraints
described by (16) and (17). In (18), r(x) stands for the residual
vector.

g(x) ≦ 0, g(x) =
[
g1(x), · · · , gm(x)

]T (16)
h(x) = 0, h(x) = [h1(x), · · · , hl(x)]T (17)

f (x) =
1
2

r(x)T r(x) =
1
2

p∑
j=1

[
r j(x)
]2

(18)

This problem was solved by a sequential quadratic-programming
algorithm. Given xk, this partial QP problem seeks the d ∈
Rn that minimizes (21) under the linear constraint condi-
tions described by (19) and (20). Figure 3 is a flow-chart of
the NLSSQP method. The direction d was searched by the
Goldfarb-Idnani method, and the minimum step size β was
determined by a golden sectioning method.
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g(xk) + ∇g(xk)d ≦ 0 (19)
h(xk) + ∇h(xk)d = 0 (20)

argmin
[
1
2

dT Bk d+r(xk)T J(xk)d
]
, d∈Rn (21)

Fig. 3. Flow-chart of NLSSQP

4. CONTROL SYSTEM

4.1 Experimental Apparatus and Objective System

The experiments were performed on a gasoline engine installed
on a test-bench without an equivalent inertial mass. The engine
has three cylinders and a displacement of 660cc. It was con-
trolled by a digital signal processing (mtt iBIS(DSP7101)). The
measurement and control were executed at every suction action
of the top dead center of cylinder #1. Therefore, the sampling-
and-control time ∆t was set to ∆t=2/ne, where ne represents the
engine speed (s−1).

The target was the engine speed ne, controlled by commanding
the ignition timing Ig. The objective model (see Fig. 4) was
based on on our previous investigation and the step response
shown in Fig. 6. The transfer function is given by (22), and
the operating conditions are shown in Fig. 5. The intake valve
opening (IVO) angle was set to 0 or 20 CA (where CA denotes

Fig. 4. Objective model of the
target system

IVO advanced deg BTDC

33.3

36.7

30.0

26.7
020

27.8

31.4

34.3

Fig. 5. Operating points for
model identification
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number of samples
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32

34

36

Fig. 6. Model identification results (at θ2′V1)

Table 2. Identified model parameter
IVO adv. 20 0

θ3’V1 θ3V0
T1 0.7 0.9
K1 0.42 0.39
T2 5.0 5.0
K2 0.11 0.15

20 0
θ2’V1 θ2V0
0.65 0.75
0.37 0.37
5.0 5.0
0.14 0.24

20 0
θ1’V1 θ1V0

0.7 0.8
0.35 0.33
5.0 5.0
0.13 0.18

the crank angle). Figure 6 shows a typical identification result.
The upper and lower panels display the time responses of the
ignition timing Ig and the engine speed ne, respectively. During
the step-down of the Ig, the time responses of the objective
model (sim.) and experimental results (exp.) slightly deviated
because parameters such as the time constant of the intake
system differ at deceleration and acceleration. Otherwise, the
model output well agreed with the engine output, verifying
the suitability of this objective model as a controller design.
Table 2 provides the identified model parameters under each
operating condition. Although the engine speed varied within
10 s−1, the time constant T1 and gain K1 varied by 20-30%.
These parameters were then targeted for adaptation.

Pp0 (s)=
NE(s)
IG(s)

=

K1
T1T2

(T2s + 1)

s2 + T1+T2
T1T2

s + 1+K1K2
T1T2

(22)

4.2 Construction of SSTC for Speed Controller

The relative order of the transfer function of the controlled
objective Pp0 (s) (22) is a first-order. To translate the second-
order system, a compensator Cp(s) was connected in series with
(22). Equation (23) denotes the second-order lag-time system
after compensation. Substituting the parameters a1, a0, and b0
(defined by (24)) into (10)-(13), we construct the control system
shown in Fig. 7. In this way, we can automatically construct the
SSTC based on the correct model parameters and the setting
settling time.

P f (s)=Cp(s)Pp0 (s)=
K1

T1T2

s2+ T1+T2
T1T2

s+ 1+K1K2
T1T2

,Cp(s)=
1

T2s+1
(23)

a1 =
T1 + T2

T1T2
, a0 =

1 + K1K2

T1T2
, b0 =

K1

T1T2
(24)

ζ = 0.7, ωn = 10, γ = 10 (25)

Fig. 7. Structure of the engine control system

4.3 Construction of Real-Time Adaptive Control System

Figure 8 schematizes the adaptive control system with SSTC.
The Pp(s) in Fig. 8 represents a virtual model with the same
structure as the engine model Pp0 (s). The C(s) represents the
overall control system comprising the SSTC’s internal feedback
control system (Ka,Cbu(s),Cby(s) described by (10)) and the
compensator Cp(s). These compartments are delined by the
dashed line in Fig. 7. The parameter value of C(s) was set equal
to that of Pp(s).

ENGINE NLSSQP

Fig. 8. Schematic of the adaptive control system
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The feedback control to the controlled object Pp0 (s) was per-
formed through the output yp0 . To obtain the open-loop re-
sponse yp, the up control signal was commanded to the Pp(s)
at the same time. As the virtual model Pp(s) and the controlled
object model Pp0 (s) are structurally identical and the same
input is commanded, the parameter difference is expected to
be detectable from the output difference.

4.4 Procedure of On-line Real-time NLSSQP Operation

Figure 9 displays the procedure of the on-line real-time
NLSSQP. Note that the model parameters [T1,K1, T2,K2] in
the controlled object Pp0 (s) are expressed in vector form as xE
(where the subscript E denotes engine), and those in the virtual
model Pp(s) and the SSTC C(s) are expressed as xC (where the
subscript C denotes controller).

While 1≦ k ≦150, the first procedure (indicated by (s)) stores
the input up and the output yp0 of the controlled object. The
following procedure (a) calculates the open response of Pp(s)
using up, (b) sets the residual vector, and (c) executes NLSSQP
to obtain xC . Finally, it (d) updates Pp(s) and C(s) using xC .
Routines (a)-(d) are iterated for 151≦k≦250. When ñe changes,
the procedure returns to (s) and the adaptation repeats.

{ {

{ {

Fig. 9. Schematic of on-line NLSSQP

4.5 Constraint Conditions

Equations (26)-(27) are assigned as constraint conditions to
accelerate convergence of the parameter exploration. Equation
(26) restricts the range of each parameter. Based on the identifi-
cation results in Table 2, these ranges were determined as 20%
above the maximum and 20% below the minimum value.

0.45≦T1≦ 1.1, 0.21≦K1≦ 0.51, 4≦T2≦6, 0.05≦K2≦0.29 (26)
g1= j1T1 + j2K1 + j3T2 + j4K2≦0 (27)

For every change in T1 and K1, T2 and K2 were changed
through (27). Investigation showed that the convergence speed

Table 3. INEQ par. combina-
tion

j1 j2 j3 j4
p1 -1 -1 0.3 0.1
p2 -1 -1 0.2 0.1
p3 -1 -1 0.1 0.1
p4 -1 -1 0.2 0.2
p5 -1 -1 0.2 0.01

Fig. 10. Concordance rate
for each combination
pn of INEQ coefficients

and accuracy of matching xC and xE depend on the values of
the coefficients j1- j4 in (27). Figure 10 plots the concordance
rate xC/xE for each combination p1-p5 of j1- j4 listed in Table
3. When the concordance rate approximates 1, xC and xE
are well-matched. Based on these results, we selected the p2
combination with j1=-1, j2=-1, j3=0.2 and j4=0.1.

5. SIMULATION AND EXPERIMENTATION

To clarify the adaptation process, the dynamic behavior of the
controller was set slower than that of the controlled object. To
this end, the parameter at θ3V0 with the largest time constant
T1 was applied to xC , while the parameter at θ2′V1 with the
smallest T1 was applied to xE . The C(s) was designed with a 2%
settling time T̂s(2)=3s, and α was multiplied by 1.01 to provide
a margin. As mentioned at 4.1, ∆t=2/ne ≈0.06(s).

Figure 11 illustrates the simulation results. The target engine
speed (ñe) was periodically increased and decreased. Figure
11(A) illustrates the time responses of the input and output sig-
nals of the controlled object. The upper panel presents the input
Ig(up), and the lower panel plots the ñe and output ne. The ne and
ñe values are consistent, confirming a well-controlled output.
Figure 11(A) also shows the input and output behavior of the
reference model Gr(s), represented by ur and yr respectively.
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(A). Time responses of inputs and outputs
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(B). Inequality constraints
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(D). Coincidence ratios of model parameters

Fig. 11. Results of the simulated adaptive control
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As ne(yp0 ) and yr almost overlap after the second period of the
ñe change, the NLSSQP is deemed effective.

Figure 11(B) illustrates the time response of each parameter
of xC . The same time responses are elicited by the inequality
constraints and by g1 in (27). The range of the vertical axis
covers the range of inequality constraints, confirming that each
inequality constraint is satisfied. The dotted line in each panel
plots the xE . At every ñe change, the parameter xC at the
controller side gradually changed over steps 151 ≦ k ≦ 250
in one period, as mentioned above. In the third period of ñe
change, the xC almost coincided with the parameter xE of the
controlled object. This implies successful adaptive operation
by NLSSQP. The integrated square error (ISE) (Fig. 11(C))
behaved similarly to the objective function of NLSSQP. During
one period, ISE decreased throughout 151≦ k≦250 with every
iteration of ñe change. Almost the same behavior occurred
during an xC change. Figure 11(D) illustrates the error ratio
between the obtained parameter xC and the controlled object
parameter xE . The small residual was attributed to the limit of
the parameter search when ISE became very small.

5.1 Consideration of Adaptive Behavior

To clarify the adaptive action during one period of ñe change,
Fig. 12 superposes the adaptive behaviors at the first (k=151),
fiftieth (k=200) and hundredth (k=250) instances in the first
period of a ñe change. The upper panels of Fig. 12 depict yp0

and yp(xC(k), l). The yp0 is the stored data used in the NLSSQP
processing, so remains constant throughout the period. The
yp(xC(k), l) was obtained from the open response of Pp(s) and
supplied to the NLSSQP calculation at every k. During the ñe
step-up in the first period of a ñe change, the virtual model
output yp(1st) and the controlled object output yp0 were mis-
matched because the value of xC at the controller side deviated
from that of xE at the controlled (object) side. Furthermore,
yp0 did not satisfy the setting M% settling time because the
SSTC’s parameters were designed using xC . However, between
50 and 100 steps, the the yp gradually edged closer to yp0 .
The bottom panels of Fig. 12(A) plot the the squared error

0 50 100 150
0

1

2

er
2

0 50 100 150
0

2
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×
 1

0
-2

number of samples

(A). during ñe step-up in the 1st period.

0 50 100 150

number of samples
0 50 100 150

0

1
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×
 1

0
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0

1

2

(B). during ñe step-down in the 1st period.

Fig. 12. Adaptive behavior using NLSSQP

er2(l) =
[
yp0 (l) − yp(l)

]2
at first, fiftieth and hundredth. During

the ñe step-up, the error er2 gradually decreased, demonstrating
strong convergence of yp to yp0 . During a ñe step-down in the
first period of a ñe change, yp appears to reasonably agree with
yp0 (Fig. 12(B), top), but er2 was not complementary attenuated
(Fig. 12(B), bottom). The er2 shown in Fig. 12(B) bottom had
decreased to 1/10 of those in Fig. 12(A) bottom. Then, the
difference of er2 at 50 steps and at 100 steps is small. Therefore,
the er2 was to be sufficiently decreased and the adaptation was
considered to be almost accomplished.

5.2 Consideration of Settling Time

Figure 13 illustrates the amplified yp0 (ne) behavior of the
transient response in five periods of ñe change for T̂s(2)=3 and
4s. The upper and lower panels present the responses during a
ñe step-up and ñe step-down, respectively. The time response
of yr of reference model Gr(s) is clarified by the × symbols in
Fig. 13. Since yr satisfies the setting settling time, the response
through the × symbols also demonstrates satisfying the setting
settling time. The indices s1-s10 indicate when the ñe changed.
Odd and even indices denote a ñe step-up and a ñe step-down
period, respectively. During the first period, the yp0 (s1) (blue
line) did not pass over the ×. However, the yp0 (s3-s9) passed
over and almost overlapped the × points. This confirms that
the time responses of yp0 satisfies the setting M% settling time
T̂s(M). In the ñe step-down period (Fig. 13, lower), all behaviors
almost passed over the × points, demonstrating near coincided
of the time responses of yp0 and yr. Therefore, the setting
M% settling time T̂s(M) was well satisfied in this case. The
adaptation method almost accomplished until the second period
of the ñe change and satisfied the setting settling times T̂s(2)=3
and 4s, although some parameter deviations remained.

These results also demonstrate that the maximum overshoot
becomes less than M%.

5.3 Experimental Results

The physical experiments were carried out under similar con-
ditions to the simulation study. The results are shown in Fig.
14. On average, the time responses of the input Ig and output ne
(Fig. 14(A)) reasonably agreed with those of ñe. The fluctuation
of ne near ñe are attributable to combustion variations. The be-
havior of the reference model (ur and yr) is also depicted in the

number of samples
0 50 100 150 200

31

32

33

34

number of samples
0 50 100 150 200

31

32

33

34

Fig. 13. Amplified transient response showing convergence to
the settling time and adaptive behavior
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figure. Ig(exp.) deviated from ur because the engine parameters
varied with the environmental conditions. This difference is es-
pecially noticeable during the third period. The largish variation
in the engine parameters was probably caused by changes in
factor such as combustion. Figure 14(B) illustrates the time
responses of the parameters and the inequality constraint condi-
tion. Although it settled within the constraint range, xC varied
widely at each ñe change. T1 and K2 especially varied at the ñe
step-down in the third period and the ñe step-up in the fourth
period (indicated by arrows (→) in the figure). These changes
were caused by the unfavorable work output of NLSSQP when
the inputs-outputs relationship were deteriorated by the com-
bustion variation in the third period, as mentioned above. Figure
14(C) illustrates the time response of the ISE. Again, significant
deterioration is seen during periods 3→4. However, as the ISE
generally decreased during the other periods, it is considered
that the on-line real-time NLSSQP performed well in the ex-
periments, too, although the the parameter error (Fig. 14(D))
was larger than in the simulation result.

Figure 15 overlaps the time responses during five periods. The
response yr of the reference model is also plotted (broken line).
At the ñe step-up shown in the upper panel of Fig. 15, the
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Fig. 14. Results of the physical experimented adap-
tive control
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Fig. 15. Comparison between experimental results
and the reference yr

responses yp0 (s1-s9) in each period follow the rise in ne and well
agree with yr. During the first period, yp0 (s1) slightly deviates
from the reference response yr after the rise, but yp0 (s3-s9) in
the later-periods almost correspond to yr. At the ñe step-down
shown (lower panel of Fig. 15), the ne fluctuates remarkable, but
yp0 (s2-s10) reasonably agree with yr on average. These results
confirm that the adaptation was completed at the second ñe

change and the setting settling time T̂s(2)=3s was satisfied, as
observed in the simulation result.

From these results, we conclude that the developed adaptive
control system satisfies the setting settling time in the exper-
iments. Further improvement can be expected by considering
the combustion variation.

6. CONCLUSION

This paper investigated a servo system designed to satisfy the
setting settling time with small maximum overshoot, and an
adaptation method developed through non-linear programming.
The designed system was applied to a gasoline engine speed
controller and its effectiveness was demonstrated in simulation
and experimental tests. The results validated the design method
for the model-based adaptive-control system using the model
parameters of the controlled object.
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Ålström, K. and Hägglund, T. (1995). PID Controllers:Theory,
Design, and Tuning, ISA.

Ichikawa, K. (1985) Control System Design Based on Exact
Model Matching Techniques, Lecture Notes in Control and
Information Sciences, 74, Springer-Verlag.

Kaneko, O. (2013), Data-Driven Controller Tuning:FRIT ap-
proach, 11th IFAC ALCOSP, 326–336.

Manabe, S. (1998). Coefficient Diagram Method, IFAC
Automatic Control in Aerospace, 211–222.

Ohta, Y., Takiyama, T, and Masubuchi, I. (2014). Design
of Servo Systems to Attain the Given Setting Time(in
Japanese). Trans. of ISCIE, 27(1), 1–7.

Takahashi, S., Yamaki, N. and Yabe, H. (1987). Some Modi-
fications of Sequential Quadratic Programming Method for
Constrained Optimization, TRU Mathematics, Science Uni-
versity of Tokyo, 23(2), 281–295.

Takiyama, T. (2014). Investigation on the Highly Precise
Air Fuel Ratio Adaptive Control in Transient States under
Changes in the Intake Valve Opening Timing. SAE Tech.
Paper,[DOI]10.4271/2014-01-1162.

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

399


