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Abstract:
General closed form expressions of linear continuous time system responses of an arbitrary
order are derived, by first relating them to basic responses, i.e., responses corresponding to
unity numerator transfer functions. Those are then related to the fundamental solutions of the
underlying differential equations. These expressions apply to all systems without any restrictions
on the poles or the zeros, further the systems may be noncausal. We derive responses for
all regular types of inputs, impulse, step, ramp, parabola, etc., in addition for all generalized
derivatives of the impulse. All the presented results have a direct counterpart in results presented
in Sigurðsson et al. (2017) on discrete time systems based on the fundamental solution of the
associated difference equation. Efficient evaluations of the fundamental solutions along with their
derivatives and integrals can thus be extended to the responses and are readily implemented,
e.g., as Matlab functions. Such results may be presented symbolically as functions of time or
evaluated numerically at any sequence of times without time stepping.

Keywords: Control education, continuous time systems, time domain responses, linear control
systems.

1. INTRODUCTION

Closed form expressions for transfer functions of continu-
ous time systems receive some attention in textbooks on
control systems, see e.g. Dorf et al. (2017), Ogata (2010),
Franklin et al. (2014), Kailath (1980), and signals and
systems, see e.g., Roberts (2011), Chen (2004), Oppenheim
(1997). Typically, the task of finding the system time
response includes some basic steps. First, linear differ-
ential equations are introduced in order to describe the
dynamics of a physical system from the laws of physics
or from system identification procedures. Then, a Laplace
transformation of the differential equations is presented in
order to generate the transfer function of the system. Once
the transfer function has been found some techniques for
direct inverse Laplace transform can be used to obtain the
time response for simple transfer functions. A more general
solution is then presented using partial fraction expansion
in order to simplify more complicated transfer functions
into sums of simpler terms, where inverse Laplace trans-
forms can be applied directly.
Little attention has, however, been given to the task of
presenting general expressions for continuous time system
responses in a unified manner, that may be used as a
basis for general algorithms. The main contribution of
this paper is to relate such expressions to those of basic
responses, referring to the case when we have unity in
? This work was supported by the University of Iceland.

the numerator of the transfer function, and subsequently
to the fundamental solution of the underlying differen-
tial equation. As such, these expressions provide a closer
analogue to the responses of discrete time systems, than
typically attained by treating the latter by Z−transforms.
By relating responses of continuous time systems to the
fundamental solution of the differential equation, all the
results of this paper have a direct counterpart in the
results presented in Sigurðsson et al. (2017) on discrete
time system responses. The closed forms result in efficient
computation of the responses at any sequence of times
without timestepping - as well as in symbolic responses.
These are readily implemented, e.g., as Matlab functions.
As illustrated by an example in this paper, the computa-
tional efficiency of such a Matlab function, is comparable
to that of the Matlab function lsim, when the number of
output points is the same. Moreover, when the input is not
linear and the number of chosen output values is smaller
than that required to obtain sufficient accuracy with lsim,
the approach in this paper offers a potential computational
gain over lsim.

Earlier closed form expressions were initially developed by
the first author in Hauksdóttir (1996), for systems with
non-repeated poles. Since then they have been extended
to handle repeated poles and applied, e.g., in model reduc-
tion, see Herjólfsson et al. (2009), as well as to the optimal
computation of PID zeros in Herjólfsson et al. (2005)
and Herjólfsson et al. (2012). Other potential applications
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related to PID control are, e.g., in response evaluations re-
lated to tracking and disturbance rejection characteristics,
when we wish to concentrate on the response at critical
time intervals.
The closed form expressions in this paper are related more
explicitly to the fundamental solution of the associated
differential equation, simplifying the proofs. They are
also extended so that there are no restrictions on either
the poles or the zeros, i.e., those may be real, complex,
repeated, stable, marginally stable or unstable. The forcing
functions are restricted to power products of a given order,
i.e., step, ramp, parabola, etc., but also include impulse
and have been extended to the generalized derivatives of
the delta function in this paper, allowing the inclusion
of noncausal systems for the sake of completeness. In
all these cases, that include polynomial inputs of any
order by linearity, we get a closed form expression for the
output. Moreover, as shown in Hauksdóttir et al. (2018),
where a similar approach to responses of a general MIMO-
system is presented for a general input u(t), the output
in this case can be expressed in terms of a convolution
between u(t) and a vector of the fundamental solution
and its derivatives and integrals. Combining such general
expressions with the results of this paper will clearly
increase their scope with respect to efficient response
evaluation.
Assumptions and the forms of possible forcing functions
are introduced in Sections 2 and 3. The relationship
between basic responses and fundamental solutions is
derived in Section 4. The result for general responses is
presented in Section 5. Computational issues including an
example and response interpretation are discussed in 6 and
7, respectively. Conclusions are discussed in 8.

2. ASSUMPTIONS

Consider the n-th order linear continuous-time system
n∑
i=0

aiy
(i)(t) =

m∑
i=0

biu
(i)(t), an = 1, a0 6= 0, (1)

assuming that y(t) = 0 for t < 0. Here u(t) is a forcing
function of a given order γ and the system corresponds to
the transfer function

Y (s)
U(s) = bms

m + bm−1s
m−1+→ +b0

sn + an−1sn−1+→ +a0
= b(s)
a(s) . (2)

Note that b(s) and a(s) may have common factors that do
not need to be cancelled.
It turns out to be convenient to assume that the char-
acteristic equation has no zero roots, i.e., a0 6= 0, for
the sake of analysis. This is no real restriction, because
if we were to add a zero root of order n0, so that the de-
nominator in (2), i.e., the characteristic equation, becomes
sn0
(
sn + an−1s

n−1+→ +a0
)
, this can be taken care of

simply by increasing the order of the forcing function to
γ + n0.

It means, though, that we do not include systems that only
have zero poles, i.e., ai = 0, i = 0, 1, . . . , n − 1. However,
such a system, takes the form

y(n)(t) =
m∑
i=0

biu
(i)(t) (3)

and is readily solved by repeated integration, e.g., in the
case of PID controllers.

3. FORCING FUNCTIONS

As stated in the introduction, we are restricting the
attention to forcing functions that are power products of
a given order, as well as the Dirac delta function, δ(t). We
choose to define

I0(t) = δ(t)

Iγ(t) = tγ−1

(γ − 1)! , γ ≥ 1, t ≥ 0. (4)

Further, Iγ(t) = 0, ∀t < 0, γ ≥ 0. Thus, I1(t) is the
Heaviside step function.
The forcing functions Iγ(t), γ = 0, 1, 2, · · · thus correspond
to the impulse input, the step input, the ramp input, the
parabolic input, etc., with the Laplace transforms

L{Iγ(t)} = 1
sγ
, (5)

explaining the fact why a zero pole of order n0 effectively
corresponds to an increase in the degree of the forcing
function by n0.

We shall also make use of generalized derivatives, so
that d

dtI1(t) = I0(t), and denote the generalized γ − th
derivative of δ(t) with I−γ(t), i.e.,

I−γ(t) = I
(γ)
0 (t), γ ≥ 0. (6)

We also allow (6) as possible forcing functions for the sake
of generality, noting that (5) also holds true for γ < 0.
It is common to define the forcing function of order γ ≥ 1
simply as tγ−1. The reason for adopting the choice (4) is,
apart from the correspondence (5), the fact that

d

dt
Iγ+1(t) = Iγ(t),

Iγ+1(t) =
∫ t

0
Iγ(τ)dτ.

(7)

We further note that in the sense of generalized functions,
(7) holds for all integer values of γ.
Denoting the response when the forcing function Iγ(t) is
applied to (1) by yγ(t), it follows by linearity, that

d

dt
yγ+1(t) = yγ(t),

yγ+1(t) =
∫ t

0
yγ(τ)dτ.

(8)

Thus, as well known, the impulse response, the step
response, the ramp response, etc., are related in the same
manner as the inputs themselves.
More generally, it also follows by linearity, that if the
forcing function is a linear combination of the functions
in (4) and (6)

u(t) =
∑
σ

fσIσ(t), (9)

then the response will be the corresponding linear combi-
nation

y(t) =
∑
σ

fσyσ(t). (10)
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4. BASIC RESPONSES AND FUNDAMENTAL
SOLUTIONS

We introduce the notation yb(t) for the basic impulse
response, i.e., yb(t) is the response of the system

n∑
i=0

aiy
(i)(t) = I0(t). (11)

We note that for t ≥ 0, yf (t), also referred to as the
fundamental solution, can be characterized as the solution
to the differential equation

n∑
i=0

aiy
(i)(t) = 0 (12)

satisfying the initial conditions
y(i)(0) = 0, i = 0, 1, . . . , n− 2, y(n−1)(0) = 1. (13)

However, whereas the fundamental solution yf (t) with all
its derivatives extend continuously to t < 0, the (n −
1)st derivative of the basic impulse response yb(t) has a
discontinuous jump from 0 to 1 at t = 0. We denote
the fundamental solution by yf (t) in order to make this
distinction and we have the following result in terms of
generalized derivatives (6) at t = 0.
Lemma 1: Consider the γ-th differential of the basic
impulse response y(γ)

b (t). Then

y
(γ)
b (t) = y

(γ)
f (t)I1(t) +

γ∑
i=n

y
(i−1)
f (0)Ii−γ(t), γ ≥ 0.

(14)
Proof: We prove this by induction.
The result clearly holds for γ = 0, 1, . . . , n− 1, since then
y

(γ)
b (t) = y

(γ)
f (t)I1(t).

Assume that it holds for γ = k ≥ n − 1. Then it follows
from (7) that
y

(k+1)
b (t) = y

(k+1)
f (t)I1(t) + y

(k)
f (t)I0(t)

+
k∑
i=n

y
(i−1)
f (0)Ii−k−1(t)

= y
(k+1)
f (t)I1(t) +

k+1∑
i=n

y
(i−1)
f (0)Ii−k−1(t),

(15)

i.e., the result also holds for γ = k + 1 and hence for all
γ ≥ 0. q.e.d.
We observe that

y
(γ)
b (t) = L−1

{
1
a(s)s

γ

}
. (16)

We now introduce the notation yb,γ(t) for the basic re-
sponse to forcing function Iγ(t). For γ ≥ 1, yb,γ(t) can be
characterized as the solution to the differential equation

n∑
i=0

aiy
(i)(t) = Iγ(t), (17)

satisfying the initial conditions
y(i)(0) = 0, i = 0, 1, . . . , n− 1. (18)

The basic response yb,γ(t) is composed of two components,
a fundamental component yf,γ(t), also termed the tran-
sient response, satisfying (12) and a particular component,

also termed the forced response satisfying (17). We then
have the following result.
Lemma 2: Consider the basic response with the forcing
function Iγ(t), yb,γ(t). Then

yb,γ(t) = yf,γ(t)I1(t)−
γ−1∑
i=0

yf,i+1(0)Iγ−i(t), γ ≥ 0.

(19)
Proof: We proof this by induction.
First note that from (8)

d

dt
yb,γ+1(t) = yb,γ(t) for γ ≥ 0, t ≥ 0. (20)

It follows that
d

dt
yf,γ+1(t) = yf,γ(t) for γ ≥ 0, t ≥ 0, (21)

since our assumption that the system has no zero poles
implies that the derivative of the particular/forced com-
ponent of yb,γ+1(t) cannot contribute to the fundamen-
tal/transient component of yb,γ(t).
The result clearly holds for γ = 0. Assume that it holds
for γ = k ≥ 0. Then it follows from (21), (7) and (8) that

yb,k+1(t) =
∫ t

0

d

dt
yf,k+1(τ)dτI1(t)

−
k−1∑
i=0

yf,i+1(0)
∫ t

0
Ik−i(τ)dτ

= (yf,k+1(t)− yf,k+1(0)) I1(t)

−
k−1∑
i=0

yf,i+1(0)Ik+1−i(t)

= yf,k+1(t)I1(t)−
k∑
i=0

yf,i+1(0)Ik+1−i(t),

(22)

i.e., the result also holds for γ = k + 1 and hence for all
γ ≥ 0. q.e.d.
We observe that

yb,γ(t) = L−1
{

1
a(s)

1
sγ

}
. (23)

We now introduce the notation that
y

(−γ)
f (t) = yf,γ(t), γ ≥ 0, t ≥ 0 (24)

and applying this to (21)
d

dt
y

(−γ−1)
f (t) = y

(−γ)
f (t) γ ≥ 0. (25)

It then follows that
d

dt
y

(γ)
f (t) = y

(γ+1)
f (t) ∀γ. (26)

Further, note that by introducing generalized forcing func-
tions I−γ(t) = I

(γ)
0 (t) as in (6), it follows from (7) that

yb,−γ(t) = y
(γ)
b (t) γ ≥ 0, t ≥ 0. (27)

Theorem 1: The basic response of system (1) to forcing
function Iγ(t), (4) or (6) is given by

yb,γ(t) = y
(−γ)
f (t)I1(t)−

γ−1∑
i=0

y
(−i−1)
f (0)Iγ−i(t)

+
−γ∑
i=n

y
(i−1)
f (0)Ii+γ(t) ∀γ.

(28)
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Proof: We combine (14) in Lemma 1, reversing the sign on
γ, and (19) in Lemma 2 into a single result, valid for all
γ. q.e.d.
We note that the sum in Theorem 1 with the negative sign
(integrating effect from Lemma 2) is only present if γ > 0.
The sum with the positive sign (differentiating effect from
Lemma 1) is only present if γ ≤ −n. Thus at most only
one of the sums is present for any one value of γ and no
sum is present if −n < γ ≤ 0.

5. GENERAL RESPONSES

Introduce the l-vector function including differentials
and/or integrals of the basic impulse response

Y(j)
l (t) =

[
y

(j)
f (t) y(j+1)

f (t) · · · y(j+l−1)
f (t)

]T
,∀j, (29)

and the (j − i+ 1)−vector, for any integers i and j, i ≤ j,
Bi,j = [ bi bi+1 → bj ]T , (30)

where bl = 0 if l > m or l < 0. Then we can state:
Theorem 2: Denote by yγ(t), for any integer value γ,
positive, negative or zero, the response of the linear system
(1) where n > 0 and m ≥ 0, with possibly an additional
zero pole of order n0 ≥ 0 and with u(t) = Iγ(t). Then with
γ̂ = γ + n0

yγ(t) = BT0,mY
(−γ̂)
m+1 (t)I1(t)

−
γ̂−1∑
i=0
BT0,iY

(−i−1)
i+1 (0)Iγ̂−i(t)

+
m−γ̂∑
i=n
BTm+n−i,mY

(n−1)
i−n+1(0)I−m+i+γ̂(t),

for t ≥ 0.

(31)

Proof: Assume first that n0 = 0.We then have by linearity
from (28) that

yγ(t) =
m∑
l=0

blyb,γ−l(t)

=
m∑
l=0

bly
(−γ+l)
f (t)

−
min(γ−1,m)∑

l=0
bl

γ−l−1∑
i=0

y
(−i−1)
f (0)Iγ−l−i(t)

+
m∑

l=max(0,n+γ)

bl

−γ+l∑
i=n

y
(i−1)
f (0)I−l+i+γ(t)

(32)

where min(γ − 1,m) is due to the fact that the inner sum
becomes empty if l > γ − 1 in the forcing function part
and max(0, n + γ) is due to the fact that the inner sum
becomes empty for l < n+ γ in the noncausal part. Then

yγ(t) =
m∑
l=0

bly
(−γ+l)
f (t)

−
γ−1∑
i=0

min(i,m)∑
l=0

bly
(l−i−1)
f (0)

 Iγ−i(t)

+
m−γ∑
i=n

(
i−n∑
l=0

bm−ly
(i−1−l)
f (0)

)
I−m+i+γ(t),

(33)

which is equivalent to the stated result when n0 = 0.

If the characteristic equation has an additional root of
order n0 at s = 0, the denominator in (2) or equivalently
the characteristic equation becomes

sn0a(s) = sn0
(
sn + an−1s

n−1+→ +a0
)
. (34)

The factor sn0 can according to (5) be incorporated into
the forcing function u(t), by changing it from Iγ(t) to
Iγ+n0(t). Thus (31) also holds for n0 > 0. q.e.d.
Theorem 2 does not include systems of form (3). It follows,
however, from (7) and (8) by repeated integration or
differentiation, that for any integer value γ the response
when u(t) = Iγ(t) can be expressed by

yγ(t) =
m∑
i=0

biI−i+γ̂(t). (35)

The usefulness of Theorem 2 is twofold. Firstly, it shows
explicitly how the system response relates to the solution
of the underlying fundamental solution. Secondly, we have
closed form expressions for the fundamental solution, yf (t)
along with its repeated derivatives and the transient part
of its integrals, that are readily evaluated, given the poles
of the system, as shown in the next section. Thus, the
theorem extends such expressions to the general responses
of systems of form (1).

6. COMPUTATIONAL ISSUES

In order to compute yγ(t) from Theorem 2 we need to be
able to compute the vector function Y(−γ̂)

m+1 (t) as well as the
vectors Y(−γ̂)

γ̂ (0) if γ̂ ≥ 1 and Y(n−1)
m−n−γ̂+1(0) if t = 0 and

γ̂ ≤ m− n and we are interested in the coefficients of the
generalized functions Ii−m+γ̂(t), i = n, n+ 1, . . . ,m− γ̂ at
t = 0. We shown in this section how this can be done in a
manner that is readily implemented, e.g., in Matlab.
Assume that we know the roots of the characteristic equa-
tion corresponding to (1) denoted by λ1, λ2, . . . , λν and
their multiplicities denoted by d1, d2, . . . , dν , respectively,
i.e.,

1
a(s) = 1

(s− λ1)d1(s− λ2)d2 → (s− λν)dν

=
ν∑
i=1

di∑
j=1

κij
(s− λi)j

,
(36)

where κij denotes the basic partial fraction coefficients.
We further introduce the n-vector

κ = [ κ11 ↔ κ1d1 κ21 ↔ κ2d2

→ κν1 ↔ κνdν ]T . (37)

Next we introduce the n-vector function
E(t) =

[
ET1 (t), ET2 (t), . . . , ETν (t)

]T
, (38)

where

Ei(t) =



eλit

d

dλ
eλt
∣∣∣∣
λ=λi
↓

1
(di − 1)!

ddi−1

dλdi−1 e
λt

∣∣∣∣
λ=λi

 =


eλit

teλit

↓
tdi−1

(di − 1)!e
λit

 .
(39)

Then it follows
yf (t) = κTE(t). (40)
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Now we introduce the n× n Jordan matrix

J =


J1 0 ↔ 0
0 J2 ← 0

l
. . . . . . ↓

0 ↔ 0 Jν

 (41)

with the diagonal blocks

Ji =


λi 1 ← 0

0
. . . . . . ↓

l
. . . . . . 1

0 ↔ 0 λi

 (42)

each a di × di matrix.
Here we note that

d

dt
E(t) = JTE(t) (43)

and hence from (26) that
y

(j)
f (t) =

(
Jjκ

)T E(t) ∀j. (44)

Finally, introduce the l × n matrix

K(j)
l =


(
Jjκ

)T(
Jj+1κ

)T
↓(

Jj+l−1κ
)T
 , (45)

noting that the assumption that the system has no zero
poles, implies that J is non-singular and hence that K(j)

k
is well defined for all j. Then it follows directly from (44)
that

Y(j)
l (t) = K(j)

l E(t). (46)

We can now compute yγ(t) from Theorem 2 by first
computing K(−γ̂)

max(m+1,γ̂), starting with the (γ̂ + 1)−st
row that is equal to κT and the proceeding recursively
downwards with the Matlab operation u = vJT and
upwards with the operation u = v\JT . These operations
can in fact be separated into block calculations, the blocks
corresponding to separate, possibly repeated, eigenvalues.
The basic partial fraction coefficients are evaluated by
a procedure given in Ævarsson (2005) and Herjólfsson
et al. (2009). Since E(t) and Ij(t) are readily calculated
for any sequence of t−values, the same holds true for the
calculation of yγ(t).
This procedure has been implemented as a Matlab func-
tion which has been compared with the Matlab function
lsim. Considering arbitrarily a system of the following
transfer function

(s+ 0.69)(s+ 0.51)(s+ 0.36)(s+ 0.22)
(s+ 0.67± j0.20)(s+ 0.46± j0.32)(s+ 0.16± j0.36)(s+ 0.11)2

(47)
over the interval [0, 100], the relative difference between
the output values obtained by lsim and by our function,
with respect to the latter, are shown in the table below.
The results are shown for t = 10 (the first value within
brackets) and t = 100 (the second value within brack-
ets), for the linear forcing function I2(t) (ramp) and the
quadratic function I3(t), and for the stepsizes ∆t = 1, 10−2

and 10−4 in the case of lsim.
∆t = 1 ∆t = 10−2 ∆t = 10−4

I2(t) [8.0e-15,6.7e-16] [5.0e-14,-4.4e-15] [-7.7e-14,1.3e-14]
I3(t) [1.2e-02,2.3e-05] [1.2e-06,2.3e-09] 1.2e-10,1.4e-13]

We note that the difference increases with the stepsize
for I3(t), whereas for I2(t), when one expects lsim to
be accurate, it decreases slightly with stepsize due to
the smaller number of timesteps. This also indicates that
the output from our function is more accurate. Moreover,
since timing tests show that the computing times for both
functions are very similar when the number of output
values is the same, the implication is that our function
offers potential computational savings when the number
of output values is smaller than that required to obtain
sufficient accuracy with lsim. Tests with other systems
reflect a similar behaviour.

7. RESPONSE INTERPRETATION

In this section we expand the result of Theorem 2 such
as to bring out more clearly the structure of the various
terms.
The fundamental component or equivalently the transient
response is given by the first term in (31)

BTmY
(−γ̂)
m+1 (t)I1(t) =

[
b0 b1 → bm

]
(
J−γ̂κ

)T(
J−γ̂+1κ

)T
↓(

J−γ̂+mκ
)T
 E(t)I1(t),

(48)
which shows the integrating effects of γ̂ > 0 from Lemma
2 or differentiating effects if γ̂ < 0 from Lemma 1.
In addition we have the differentiating effects of the
numerator elements in B from the proof of Theorem 2.
These simply reside in the power of the Jordan matrix.
The forced type part of the response is given by the first
sum in (31) for γ̂ ≥ 1. The sum expands as

−
γ̂−1∑
i=0
BTi Y

(−i−1)
i+1 (0)Iγ̂−i(t) = − [ b0 b1 → bγ̂−1 ]

×


(
J

−γ̂
κ
)T
E(0)

(
J

−γ̂+1
κ
)T
E(0) →

(
J

−1
κ
)T
E(0)(

J
−γ̂+1

κ
)T
E(0)

(
J

−γ̂+2
κ
)T
E(0) → 0

↓
...

... l(
J

−1
κ
)T
E(0) 0 ↔ 0


[
I1(t)
I2(t)
↓

Iγ̂(t)

]
,

(49)
We note the relation to the zero pattern in the initial
conditions from (13) which is mirrored here, as it is in the
noncausal type part of the response, given by the second
sum in (31), only active when m− γ̂ ≥ n, which has been
included for the sake of completeness. The sum expands
as
m−γ̂∑
i=n
BTm+n−i,mY

(n−1)
i−n+1(0)I−m+i+γ̂(t) = [ bn+γ̂ → bm−1 bm ]

×


0 ↔ 0

(
J
n−1

κ
)T
E(0)

l →
(
J
n−1

κ
)T
E(0)

(
J
n
κ
)T
E(0)

0
... ↓(

J
n−1

κ
)T
E(0) → →

(
J
m−γ̂−1

κ
)T
E(0)


×

 I−m+n+γ̂(t)
↓

I−1(t)
I0(t)

 .
(50)
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The impulse response for a causal system with n0 = 0,
thus γ̂ = 0 and m < n can be expressed as

y0(t) = [ b0 b1 → bm ]


κT

(Jκ)T
↓

(Jmκ)T

 E(t)I1(t). (51)

The step response with n0 = 0, such that γ̂ = 1 and
m < n+ 1 is given by

y1(t) = [ b1 b2 → bm ]


κT

(Jκ)T
→(

J−1+mκ
)T
 E(t)I1(t)

+b0
(
J−1κ

)T (E(t)− E(0)) I1(t).

(52)

The ramp response with n0 = 0, then γ̂ = 2 and m < n+2
is given by

y2(t) = [ b2 b3 → bm ]


κT

(Jκ)T
↓(

J−2+mκ
)T
 E(t)I1(t)

+ [ b0 b1 ]
[ (
J−2κ

)T(
J−1κ

)T
]

(E(t)− E(0)) I1(t)

−b0
(
J−1κ

)T E(0)I2(t)
for t ≥ 0.

(53)

8. CONCLUSIONS

The derivation of the results in this paper is guided by
various aims. First, to clarify how the responses relate
to the solutions of the underlying differential equation,
in particular the relationship between the fundamental
solution of the differential equation and the basic response,
when the forcing function is a Dirac delta function. One
observes a structure in the expressions for the responses by
focusing on the fundamental solution, that is less evident
when deriving corresponding expressions from Laplace
transforms. It also implies that they are readily presented
in elementary texts on linear differential equations, as well
as in textbooks on, e.g., control systems and on signals
and systems.
Second, to relate the responses of continous time systems
to those of discrete time systems. By basing the expres-
sions in the latter case on the fundamental solution of
underlying difference equations as is done in Sigurðsson
et al. (2017), one obtains a complete correspondence to
the continuous time results in this paper. Again, this is
less evident, if one derives the expressions for continuous
time systems by the Laplace transform on one hand, and
for discrete time systems by the Z-transform on the other.
Third, to obtain expressions that are fully general with
respect to the nature of the roots of the characteristic
equation and are at the same time transparently and
efficiently implemented in a program environment like
Matlab, either numerically or symbolically.
The closed form responses may be used in simulation, at
fixed or varying intervals in time and may as such have
applications in hybrid system simulation. They also turn
out to play a useful role in the computation of general
MIMO responses as shown in Hauksdóttir et al. (2018).

Finally, they lend themselves well in various types of
analysis and optimization involved in the computation
of PID-type controllers, e.g., closed form Gramians, see
Herjólfsson et al. (2005) and Herjólfsson et al. (2009).
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